

Cryogenics and Fluids Branch

The Total Hemispheric Emissivity of Painted Aluminum Honeycomb at Cryogenic Temperatures

J. Tuttle, E. Canavan, M. DiPirro, X. Li, and P. Knollenberg¹

NASA Goddard Space Flight Center, Code 552 Greenbelt, Maryland, 20771, USA

¹Northrop Grumman Aerospace Systems Redondo Beach, CA 90278, USA

- Very Black, robust surfaces are important for NASA
 - Radiators for space missions: $\mathcal{E} \approx 1$
 - Absorbers for test facilities: $\alpha \approx 1$
- Options:
 - Most space-flight black paints: ε drops for $T < \sim 100$ K
 - Ball Infrared Black[™] (BIRB[™]): very high performance; proprietary
 - Molded filled-epoxy pyramids: heavy; practical only for small areas
 - Painted aluminum honeycomb core
- James Webb Space Telescope (JWST)
 - Radiators will operate at ~ 35 Kelvin
 - Will use BIRB[™] on some radiators
 - Chose to use painted honeycomb on other radiators
 - Minimizing mass extremely important
 - Need to know emissivity accurately to predict JWST performance

Cryogenics and Fluids Branch

- Painted honeycomb: convoluted geometry (lots of holes)
 - For radiators, large effective emitting area
 - For absorbers, multiple bounces in cells enhances effective absorptivity
- Sparrow et al. (1964) calculated effective emissivity of cylindrical holes
 - Features that give high effective emissivity:
 - Large aspect ratio (depth/radius)
 - High surface emissivity
 - High % specularity of radiation reflected from surfaces
- We made a thermal desktop model of cylindrical holes
 - Verified that its predictions matched those of Sparrow
 - Made a similar model of hexagonal hole

- Our Thermal Desktop model of a honeycomb cell
 - Assumes depth/radius = 6
 - Surface emissivity applied to side walls and bottom
 - Results are similar to those for a cylindrical hole

Sample	Core	Cell	Core Foil	Avg. Core
#	Thickness	Size	Thickness	Coating Thickness
1	12.7 mm	3.175 mm	38.1 μm	16.3 μm
2	9.525 mm	3.175 mm	50.8 μm	17.0 μm
3	9.525 mm	3.175 mm	17.8 μm	8.4 μm

• Coating is Z307 paint

- Unpublished NASA study showed that emissivity of this paint is independent of thickness from 36 to 117 μ m down to 30 Kelvin
- Published NASA study found that radiation reflected off large Z307painted wall was > 98% specular
- Bottom of hole is epoxy, not painted aluminum
 - Model predicts very minor contribution from cell bottom

• Measurement technique assumes radiative heat exchange between infinite parallel plates:

$$\dot{Q} = \frac{\sigma A(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

• Correction for edge effect is done via a Thermal Desktop model

• For small
$$\Delta T$$
: $\left(T_1^4 - T_2^4\right) \approx 4\overline{T}^3 \Delta T$

(for $\Delta T < (0.06) \times T_{AVG}$, this approximation is accurate to within 0.1%)

For known
$$\mathcal{E}_2$$
:
$$\mathcal{E}_1 = \frac{1}{4\sigma A \overline{T}^3 \left(\frac{d\Delta T}{d\dot{Q}}\right) + 1 - \frac{1}{\varepsilon_2}}$$

- Hot BIRB[™]-coated disk inside cold Honeycomb-lined "can";
- Sample (disk) suspended by its thermometer, heater leads
- Control: $T_{\text{sample}} = T_{\text{suspension}} = T_{\text{hot}}$
- $T_{\rm can} = T_{\rm cold}$
- Measure ΔT vs control power for constant T_{avg}
- Using slope eliminates errors due to sensor calibrations

- Edge effect makes our setup different from "infinite planes"
- Cold side (HC) slightly larger than Hot side (BIRB[™])
- Thermal Desktop model: use smaller area in "infinite plate" analysis
 - $\sim 1\%$ smaller area than the hot plate gives correct emissivity value

Cryogenics and Fluids Branch

- Error bars: 1- σ uncertainty due to slope fit and BIRBTM uncertainty
- BIRB[™] data is that of the coating on the Hot plate in this test
- All 3 honeycomb samples show similar very-high emissivity

Data vs. Model

- Data shown are for the thinnest honeycomb (sample 3)
- Model assumes coating emissivity from internal GSFC study
- Best model match assumes 50% specularity
 - Can't explain this, as we expect ~ 100% specularity

- Honeycomb emissivity ~ equal for three samples tested.
- Honeycomb configuration was successfully light-weighted
- Honeycomb has slightly higher ϵ than original BIRB^{TM}
- It's not clear why model doesn't match data very well