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ABSTRACT 
 

The near wake of a flat plate with circular and elliptic trailing edges is investigated 
with data from direct numerical simulations. The plate length and thickness are the 
same in both cases. The separating boundary layers are turbulent and statistically 
identical. Therefore the wake is symmetric in the two cases. The emphasis in this 
study is on a comparison of the wake-distributions of velocity components, 
normal intensity and fluctuating shear stress obtained in the two cases.  
 

INTRODUCTION 
 

The wake of the thin flat plate with a sharp trailing edge and turbulent boundary layers has been 
discussed in several articles, one of the earliest being that of Chevray & Kovasznay (1969). The ratio of 
the boundary layer momentum thickness to the trailing edge thickness of the plate (θ/D) is large (23.2) in 
their study (D = 0.25mm). Profiles of measured mean velocity and turbulent normal intensities and shear 
stress are provided. The boundary layers merge slowly to form the wake and large-scale vortex shedding 
is absent.  

 
Ramaprian et al (1982), based on their own experimental data for a flat plate with a sharp trailing 

edge, and data from other studies, conclude that the wake only reaches an asymptotic state for x/ θ > 350 
(θ is the momentum thickness of the wake in their study); they refer to the wake region upstream of this 
location as the “developing wake”. They suggest that the developing region be divided into the near wake 
(x/θ < 25) and the intermediate wake (25 < x/θ < 350). The near wake experiences the development of an 
inner wake and is influenced by the wall-layer of the upstream boundary layers. In the intermediate wake 
the effect of the upstream boundary layer diminishes and ultimately becomes insignificant. 

 
Nakayama & Liu (1990) investigate the Reynolds number dependence of the wake centerline 

velocity profiles (normalized by the wall variables at the trailing edge), indicated by earlier experimental 
data. Their experiments (low Reynolds number, sharp trailing edge) show that indeed the profiles are 
Reynolds number dependent. They suggest that this is because of the effect of outer-layer eddies on the 
spreading of the inner wake. 

 
Hayakawa & Iida (1992) obtained flat plate wake data with a sharp trailing edge (0.2mm) to better 

investigate the very near wake (x+ < 500). The centerline velocity profile (x direction) was found to be 
similar to the velocity profile of the turbulent boundary layer (with counterparts to the viscous sub-layer, 
buffer layer and the log-law). The peak values in normal intensity and shear stress profiles in the cross-
stream direction were found to first increase in the streamwise direction (x), from that obtained at the 
trailing edge, before diminishing further downstream. Based on space-time correlations, the authors 
attribute the initial increase in intensities and shear stress to an interaction between the wall turbulence 
from either side of the plate upon merger at the trailing edge and a change in orientation of longitudinal 
vortices. Of interest is the appearance of a broadband peak in centerline cross-stream velocity spectra, 
indicating quasi-periodicity (possibly due to vortices or wave-like motions). 
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In addition to the experimental investigations mentioned above analytical solutions based on 
certain simplifying assumptions are provided by Albers (1980). In essence, the centerline velocity 
distribution in the x direction in the near wake can be approximated by a logarithmic relation similar in 
form to that obtained for the turbulent boundary layer upstream of the wake in these cases. A good 
comparison is obtained between experimental data and the wake ‘log-law’ in the near wake.  

 
Thomas & Liu (2004) report on an experimental investigation of symmetric and asymmetric 

turbulent wakes behind a flat plate. The thickness of the plate is tapered down to 1.6 mm in the last 0.2 
meters of the plate length. Hence, as in earlier flat plate wake experiments, little or no vortex shedding is 
expected. The asymmetric wake is obtained by introducing a semicircular bump on the lower side and a 
suction slot on the upper side. The net effect is a ratio of θL/θU of 2.5. Data are provided for adverse, 
favorable and zero pressure-gradient wakes.  
 

In contrast to the thin plate with a sharp trailing edge, the thick plate with a blunt trailing edge 
(small θ/D case), exhibits vigorous vortex shedding. Unlike the case of the cylinder, the Reynolds number 
based on momentum thickness of the boundary layer just upstream of the trailing (Reθ) and the Reynolds 
number defined using the thickness of the flat plate or the diameter of its trailing edge (ReD), are 
independent parameters. A detailed computational investigation of the wake of the thick plate with a 
circular trailing edge and turbulent separating boundary layers, was initiated by Rai (2013, 2014 & 2015).  
This was accomplished with direct numerical simulations (DNS). The boundary layers as well as the wake 
were computed via DNS in these investigations. The separating boundary layers are fully turbulent well 
upstream of the trailing edge and are statistically identical. Thus the wake is symmetric in the mean. 

 
The objective of the present investigation is to better understand the changes in the 

characteristics of the wake of a flat plate with turbulent separating boundary layers as the geometry of the 
trailing edge is modified. Two different trailing edges are used in this study, a semi-circle and a semi-
ellipse (major to minor axis ratio of 4.0). The emphasis is on the time-averaged distributions of the velocity 
components, normal intensity and fluctuating shear stress. The data used in the present investigation are 
obtained from two direct numerical simulations of flat plate flow  (constant plate thickness and length). 
The turbulent boundary layers and the wake are all computed via DNS as in the earlier investigations. 
Here we continue the analysis of the near wake of the flat plate initiated in Rai (2013, 2014 & 2015). 

A BRIEF REVIEW OF THE FLAT PLATE WAKE RESEARCH 
PERFORMED TO DATE (RAI, 2013, 2014 & 2015) 

 
A first effort at visualizing some of the important features of the near wake, such as the strength 

and structure of rib vortices in relation to the shed vortices, their evolution in time, the internal structure of 
shed vortices etc. are provided in Rai (2013). Some of the findings are as expected (rib vortices in the 
braid regions) while others such as the presence of intense elongated spanwise vortices instead of a 
single columnar vortex in the cores provide new understanding of the cores and braids and the interaction 
between them. Figure 1, showing contours of instantaneous spanwise velocity in a (x, y) plane is provided 
as an introduction to the flat plate wake. The shed vortices and the embedding of the turbulent vortices 
within the shed vortices are evident. The signature of the rib vortices within the braid region connecting 
two subsequent shed vortices (one of the shed vortices is shown with an arrow) can be discerned. 
 

Figures 2a & 2b show perspective views of the wake region (up to x/D = 7.0). Figure 2a shows 
the full spanwise extent of the computational region. Two surfaces of constant streamwise vorticity (equal 
in magnitude), positive (red) and negative (green) are shown in this figure. Rib vortices are observed in 
the braid regions (arrow marks one of them); many of them are paired (positive & negative) and some are 
solitary.  The core regions show the rib vortices wrapping around the cores. This is more clearly visible in 
Fig. 2b, which, for the sake of clarity, only shows only 25% of the spanwise extent of the computational 
domain.  A surface of constant vorticity magnitude (streamwise and cross-stream components only Ω = 
(Ωx

2 + Ωy
2)1/2, magenta) and, a surface of constant pressure (yellow) are shown in Fig. 2b. The surface of 



 

 

constant pressure shows the position of the cores. The elongated yellow segments associated with some 
of the rib vortices are indicative of a pressure minimum running along their length.  

 

 
 
Fig. 1. Contours of instantaneous spanwise velocity in a (x, y) plane; red/magenta represent high/highest 

positive values, green/blue low/lowest negative values, yellow ≈ 0.0. 
 

 
Figure 2. Perspective view of wake region (up to x/D = 7.0), a) surface of positive (red) and negative 

(green) streamwise vorticity, showing rib vortices (full span) and b) surface of constant vorticity magnitude 
(magenta) and pressure (yellow), showing rib and shed vortices (25% span only, Case A, Rai 2013). 



 

To better illustrate the structure of the vortex core, Fig. 3a provides contours of instantaneous 
spanwise vorticity in an end-plane (y, z). This plane intersects the lower positive shed vortex indicated 
with an arrow in Fig. 1, at approximately its center. The fragmented nature of the core is evident. The level 
of fragmentation is expected since the vortices are formed by the roll-up of turbulent shear layers. It 
should be noted that the region 1.0 < z/D < 3.0, y/D > 0.0 corresponds to the braid and not the shed 
vortex. The elongated positive vortices that comprise the core are evident (y/D < 0.0). Peak vorticity 
values are about 5 times as large as the peak phase-averaged spanwise vorticity at nearly the same x 
location (5.7D) as the end-plane. Interspersed among the positive vortices are regions of negative 
vorticity. They are weaker and in general do not have the characteristic shape of the positive vortices.  
Some of the negative vorticity is accumulated in the initial formation of the positive shed vortices when 
they are in close proximity to the turbulent shear layers from the opposing side.  

 
Figure 3b shows pressure contours in the same plane and time instant as in Fig. 3a. The core as 

represented by the pressure does not show the level of fragmentation seen in Fig. 3a. It has been 
observed here that the pressure fields of closely spaced turbulent vortices merge into a single low-
pressure region. The nearly circular pressure minima above and below the core in Fig. 3b are a cross-
section of the rib vortices that have wrapped themselves around the core as in Fig. 2b. 

 

 
Figure 3. Contours of a) instantaneous spanwise vorticity; red/magenta represent high/highest positive 
values, green/blue low/lowest negative values, yellow ≈ 0.0 and b) instantaneous pressure, in the end 

plane (y, z) at x/D = 5.7,  (Case A, Rai 2013). 

The fluctuating density, pressure and velocity components in the flow field are assumed to 
contain a mean component, a periodic component at shedding frequency ωst (and harmonics thereof), and 
a random turbulent component as in Reynolds & Hussain (1972). Thus a flow variable q is written as 

 
q  = q  + !q   + !!q                                                                               (1) 

 
where q  is the mean value, and !q  and !!q  are the random and periodic fluctuating components, 
respectively. The phase-averaged value < q >   (average at constant phase) is given by 
 

< q φ( ) >  = q  + ʹ́q φ( )                                                                            (2) 
 

where φ  is the phase, 0.0 ≤ φ  ≤ 1.0. The computed data are averaged in the z direction to obtain both 
the time-averages and phase-averages since the flow is homogeneous in this direction. A new event-
based phase-averaging procedure is introduced in Rai (2013). 



 

 

Distributions of the phase-averaged turbulent intensity and shear stress (random component) in 
the near wake are explored and compared with cylinder experimental data (Cantwell & Coles, 1983 & 
Hayakawa & Hussain, 1989) in Rai (2013). Wherever possible a physical explanation of the origin of the 
important features of the distributions, as well as one based on the distribution of the production term in 
the corresponding budget, is provided. Figure 4 shows distributions of the phase-averaged normal 
intensity and shear stress at one phase from Rai (2013). Phase-averaged pressure contours (magenta 
dashed lines) show the vortex core locations. 

 
Figure 4.  Contours of a) < !u !u > , b) < !v !v > , c) < !w !w >  and d) < !u !v > , and, < p>   (φ = 0.0); 

red/magenta represent high/highest positive values, green/blue low/lowest negative values, yellow ≈ 0.0 
(Case A, Rai 2013). 

 
Earlier research had primarily dealt with rib vortices as they occur in the braid regions and the 

amplification of the streamwise and transverse vorticity associated with them by vortex stretching as a 
result of the phase-averaged strain rate. In Rai (2013), it is found, that on average the stretching of rib 
vortices via the phase-averaged strain rate produces significantly less turbulent vorticity than that 
produced by turbulent stretching both in the braid regions and in the cores. In particular the data show the 
importance of turbulent stretching in sustaining fluctuations in the spanwise component of vorticity. 
 

In Rai (2014) the emphasis is on the stability of the detached shear layers, rib-vortex induced 
reverse flow, and phase-averaged distributions of the random component of normal intensities and shear 
stress and the production term in the corresponding budgets in the very near wake (x/D < 3.0). It was 
determined that, as in the case of the cylinder with laminar separating boundary layers, the flat plate wake 
also exhibits shear layer instability followed by the formation of shear layer vortices that have a profound 
impact on the structure of the shear layer and the formation of the shed vortices. However, unlike the 
cylinder cases, here only a small fraction of the separated turbulent boundary layer participates in the 
initial formation of the shed vortices and, it is this fraction that is unstable. As in Rai (2010) (cylinder 
case), periods of shear layer instability correlated well with the interaction of the shear layer with 
recirculation region vortices, and quiescent periods showed little or no interaction between the two. This is 
a strong indicator that this interaction is an important contributor to initiation of the instability. Spectra of 
the time-varying velocity and pressure within the shear layers at x/D = 0.5 were obtained. Unlike the 
cylinder case with laminar separating boundary layers, the spectrum of streamwise velocity did not show 



 

a broadband peak. This is because of the large velocity fluctuations that are already present in the 
detached shear layer at its inception (turbulent boundary layer). The pressure signal on the other hand 
showed a clear broadband peak with the characteristic shear layer frequency. Figure 5 shows contours of 
instantaneous spanwise vorticity. The shear layer vortices labeled A & B in the upper detached shear 
layer are evident; a newly formed shed vortex is highlighted with a rectangle. Figure 6 shows the 
spectrum of fluctuating pressure obtained at the locations marked H in Fig. 5. The sharp peak caused by 
vortex shedding, and the broadband peak caused by the shear layer vortices, are both visible. 

 

 
Figure 5. Contours of instantaneous spanwise vorticity at T/Tp = 6.35 (Case A, Rai 2014); 

red/magenta represent high/highest positive values, green/blue low/lowest negative values, yellow ≈ 0.0. 
 

 
Figure 6. Spectrum of fluctuating pressure obtained within the detached shear layers (Case A, Rai 2014). 



 

 

An examination of the distribution of instantaneous streamwise velocity in the wake center-plane 
(Rai, 2014) first led to the discovery of regions of isolated reverse flow that are disconnected from the 
main body of reverse flow in the trailing edge region. They are formed near the trailing edge and convect 
downstream. Figure 7 shows contours of instantaneous negative streamwise velocity at consecutive 
instants in time (Tp is shedding period) showing the formation of one such region of isolated reverse flow. 

 

 
Figure 7. Contours in a (x, y) plane of instantaneous negative streamwise velocity at different instants in 

time showing the evolution of the rib–vortex induced region of reverse flow (Case A, Rai 2014); 
a) T/Tp = 0.006, b) T/Tp = 0.097, c) T/Tp = 0.211 & d) T/Tp = 0.343. 

 
These regions are a result of powerful rib vortices that are formed in the high-strain-rate region 

that exists between the shed vortices in their initial state; they are quite energetic with streamwise 
velocities (negative) within them reaching 40% of the freestream velocity. They are accompanied by 
pressure minima and relatively high cross-stream vorticity levels and are observed as far downstream as 
x/D = 4.0. These reverse flow regions occur at multiple spanwise (z) locations within short periods (25% 
of shedding period); thus they appear along nearly constant time lines in a (t, z) plane at a given x 
location in the wake center-plane. Two such lines of reverse flow (each line corresponding to the passage 
of a shed vortex) are observed per shedding period. A spectral analysis of the z-averaged negative 
streamwise velocity shows a peak at twice the shedding frequency thus confirming the frequency of 
occurrence of these lines of multiple reverse flow regions. The passage of the shed vortices over a given 
x location reduces the local streamwise velocity near the center-plane thus creating favorable conditions 
for rib-vortex induced reverse flow. Since all such regions of isolated reverse flow investigated showed an 
associated rib vortex, it was concluded that the rib vortices were the causative agent. These regions 
eventually weaken and disappear; probable reasons being a re-orientation of the rib vortices (lowering of 
cross-stream vorticity) and the increase in streamwise velocity with increasing x.  

 
In Rai (2015) the emphasis is on entrainment and the instability of the detached shear layers. It 

was observed in Rai (2014) that only a small fraction of the separating turbulent boundary layer 
participates in the initial roll-up into the shed vortex. A natural consequence is that for some distance 
downstream the wake with its shed vortices ingests fluid that was originally part of the turbulent boundary 
layer. The log-layer eddies are assimilated in this process and become a part of the shed vortices or the 
braids. A visualization of this process is provided in the article. A visualization of the effect of increasing 



 

θ/D on assimilation/entrainment is also provided. It clearly shows that wakes with larger θ/D values 
continue to assimilate boundary layer fluid for longer (until a larger value of x/D); the important 
contributors to this effect are identified in the study. In addition, wake TKE profiles in the region away from 
the shed vortices and braids are very close to that of the upstream turbulent boundary layer (especially in 
the very near wake for the large θ/D cases). This again is a consequence of the fact that much of the 
turbulent boundary layer does not participate in the initial shed-vortex roll-up process. 
 

A visualization of shear-layer instability events in a (t, z) plane in Rai (2015) showed that shear-
layer vortex generation rates can vary as much as a factor of two from event to event. An analysis of 
velocity fluctuations in the upstream boundary layer indicated that high-speed streaks near the trailing 
edge result in higher rates of shear-layer vortex production.  

 
As mentioned earlier, an important contributor to the shear-layer instability is the interaction 

between the shear layer and recirculation region vortices (Rai, 2014 & 2015). This of course raises the 
following question: Do interactions between the disturbances within the portion of the detached shear 
layer that rolls up into a shed vortex, and the log-layer eddies (travelling downstream), play a role in 
generating shear-layer vortices as well? The investigation of Rai (2015), shows that, like recirculation 
region vortices, log-layer eddies also generate shear-layer vortices. However, because the log-layer 
eddies travel downstream at a relatively high rate, they usually produce only one shear-layer vortex and 
continue to interact with it during their passage over the portion of the shear layer that rolls up into a shed 
vortex. Recirculation region vortices, on the other hand, remain in approximately the same position 
relative to the shear layer because of the much lower convection rates that they encounter. Thus they 
tend to produce a few shear-layer vortices that may be relatively powerful. 

 

PLATE COMPUTATIONAL GRID, FLOW/GEOMETRY PARAMETERS AND NUMERICAL METHOD 
 

The computational region for the flat plate DNSs is divided into two zones to facilitate grid 
generation and provide adequate grid resolution for the wake. Figure 8 shows the plate cross-section and 
the two zones that comprise the computational region. The three-dimensional zones and grids are 
obtained by uniformly spacing copies of these two-dimensional zones in the spanwise direction (z). The 
plate zone is bounded by four boundaries: the plate surface (excluding the trailing edge), an external 
boundary and, two zonal boundaries (top and bottom) that interface with the wake zone.  

 

 
 
Figure 8.  Midspan plate section and multiple zone discretization of the computational region (Rai 2013). 



 

 

The plate zone captures the flow-field upstream of the trailing edge including the plate boundary layers. 
The leading edge of the plate is an ellipse. The wake zone is constructed to provide adequate grid 
resolution for the detached shear layers, the recirculation region and the wake. The boundaries of this 
zone include the circular trailing edge, the upper and lower boundaries and the exit boundary. Both the 
upper and lower boundaries consist of a zonal boundary segment that interfaces with the plate zone and 
a second segment that serves as an external boundary. Data from direct numerical simulations for two 
different trailing edges (circular, Case D and elliptic, major-to-minor axis ratio of 4.0, Case De) are used in 
this study. Of these, only Case De was computed as a part of the current investigation. 
 

The placement of the various boundaries in relation to the plate surface in Cases A & D is 
provided in Rai (2013, 2014 & 2015). The vertical extent of the wake zone near the trailing edge, where its 
upper/lower boundaries are horizontal is large enough to completely contain the wake in all cases (as in 
Fig. 1). The spanwise extent of the region in Cases A & D is 4.0D. Cases A & D of the present study are 
labeled as A & D in Rai (2015) as well.  

 
Figure 9 shows representative grids in the vicinity of the trailing edge in both zones for the circular 

trailing edge cases. These grids were generated with an algebraic grid generator. Both the plate and 
wake grids have the same spacing in the wall normal direction at the plate surface. The grid in the wake 
zone transitions from curvilinear near the trailing edge to rectangular downstream. In Cases A, D & De, 
downstream of x/D ≈ 13.5, the wake grid coarsens gradually in the x direction. In addition to reducing the 
computational costs, this coarsening dissipates the wake to a degree that inviscid exit boundary 
conditions can be employed at the exit boundary of the wake zone.  

 
 

Figure 9.  Representative grids in the plate and wake zones in the trailing edge region (Rai 2013). 
 

The wake grid for Case A (reference case) was constructed with 741 grid points in the 
streamwise direction, 411 in the cross-stream direction and 256 in the spanwise direction (about 78 x 106 
grid points). The resolution achieved along the centerline in the three spatial directions at x/D = 10.0 is 
approximately Δx/η = 3.7, Δy/η = 2.2 and Δz/η = 2.1 where η is the computed Kolmogorov length scale at 
the same location. The grid resolution in the plate grid in the x, y and z directions for this case is about 
17.8, 0.84 and 6.6 wall units respectively, based on the wall shear velocity near the end of the plate. The 
resolution achieved in all the cases used here is similar.  

The adequacy of the grid resolution and domain size used is demonstrated in Rai (2013 & 2014). 
A comparison of computed boundary layer turbulent intensities with experimental data is provided in Rai 



 

(2013). The computations are performed at a Mach number of 0.2. The Reynolds number based on plate 
length L is the same in all cases (A, D & De), ReL = 1.25 x 106. 

 The primary goal in the current investigation is to study the effect of changing the geometry of the 
trailing edge from circular to elliptic on various characteristics of the wake. Accordingly, the thickness and 
length of the plate in Cases D & De are the same and so is the placement of the various boundaries 
(zonal boundaries and exit boundary of the wake zone, external boundary of the plate zone). In addition, 
the spanwise extent of the computational domain in the two cases (4.0D), the number of grid points used 
in the two zones and the wall normal grid resolution at the wall is the same in Cases D & De. 

A high-order accurate upwind-biased method is used here to compute the flow over the plate as 
well as that in the wake. The convective terms are computed using sixth- and seventh-order upwind-
biased finite differences, both with seventh-order dissipation terms. The viscous terms are computed with 
fourth-order central differences. The method is iterative-implicit in nature, multiple iterations are employed 
at each time-step to solve the nonlinear finite-difference equations arising from a fully implicit formulation; 
the method is second-order accurate in time. The boundaries that contain the computational grids can be 
classified as natural and zonal boundaries.  The natural boundaries include the external boundary of the 
plate grid, the surface of the plate, the exit boundary of the wake grid, the segments of the upper and 
lower boundaries of the wake grid labeled as “external boundary” in Fig. 8, and, the boundaries in the z 
direction. The upstream segment of the upper boundary between the plate and wake grids is an example 
of the zonal boundaries used in the computation. Periodic boundary conditions are imposed on the 
boundaries in the z direction (homogeneity in z). No-slip/adiabatic wall conditions are used on the plate 
surface. Wall blowing/suction is implemented on a short segment on both the upper and lower surfaces of 
the plate to induce transition to turbulence. The boundary layer is turbulent well upstream of the trailing 
edge. The upper and lower transitional/turbulent boundary layers and the wake are all computed via DNS. 
The natural and zonal boundary conditions, and the high-order accurate upwind-biased finite-difference 
method used here are discussed in brief in Rai (2015) and in detail in the articles cited therein. 

 

RESULTS 
 
The data provided in the following figures were obtained during the data-sampling period (after 

the initial transients were eliminated). In the following contour plots the colors blue/green represent 
negative values (deep blue representing the lowest value) of the term/quantity being discussed.  Orange, 
red and magenta represent positive values (magenta bordering on white representing the highest value). 
Shades of yellow represent values close to zero. The specified minimum and maximum values and the 
numbers of contours in the subplots in the following figures are identical; the subplots within a given figure 
may be directly compared. The distribution of time-averaged velocity statistics (also averaged in the z 
direction) in the wake region for Cases D and De are presented in this section. Intensities and fluctuating 
shear stress include the contributions from quasi-periodic shedding and the random component (Eq. 1). 

 
The extent of the trailing edge (past x/D = 0.0) is different in the two cases. Here, unlike 

comparisons of cases with only circular trailing edges, downstream locations of minima/maxima etc. will 
(as necessary) be measured from the base (the point on the trailing edge that is furthest downstream) 
but, as before, normalized by the thickness of the plate (D). Accordingly we introduce the distance 
parameter ξ = (x –xb)/D, where xb represents the location of the base in the original coordinate system 
(xb/D = 0.5 for Case D and xb/D = 2.0 for Case De, see Fig. 9 for coordinate system origin). 
 
Distributions of time-averaged velocity components 
 

Figures 10a and 10b provide contours of time-averaged streamwise velocity u  for Cases D and 
De, respectively. The dashed white line corresponds to u  = 0.0; reverse flow is confined to the region 
between the base and this line. The separated region obtained in Case D is larger and separation occurs 



 

 

sooner on the trailing edge. The zero contour line crosses the wake centerline at ξ = 1.37 & 0.89 for 
cases D and De, respectively. Peak reverse flow occurs at ξ = 0.91 & 0.45 for cases D and De, and the 
ratio of peak negative u  values in the two cases is 1.57 (D to De). Reverse flow in Case De is weaker. 

 

 
Fig. 10. Contours of u , a) Case D and b) Case De. 

 
Contours of time-averaged cross-stream velocity v  for Cases D and De are shown in Figs. 11a 

and 11b, respectively. A positive peak at ξ = 0.57 and a negative one at ξ = 1.24 in the upper half of the 
plane are evident in Fig. 11a.  

 

 
Fig. 11. Contours of v , a) Case D and b) Case De. 



 

These two peaks indicate the reverse flow in the base region and the induced, downward cross-stream 
flow, respectively; both caused by the negative shed vortices. The contours obtained in the lower half are 
a reflection of those seen in the upper half (with a sign change). The contours in Case De (Fig. 11b) are 
qualitatively similar but the cross-stream flow is weaker. The positive peak in the upper half of the plane 
occurs very close to the base and is associated with the reverse flow in this region. The negative peak, in 
relation to the positive peak, is quite distant from the base; it occurs at ξ = 0.86. However, relative to the 
negative peak obtained in Case D (Fig. 11a), it is closer to the base. The ratio of negative peak values is 
1.32 (D to De). 
 
Distributions of time-averaged normal intensity and fluctuating shear stress 
 

Figures 12a and 12b show contours of time-averaged streamwise normal intensity for Cases D 
and De, respectively (including the contributions of both random and quasi-periodic fluctuations). While 
they are topologically similar, feature scales and locations are different. As expected both figures show 
non-zero levels in the turbulent separating boundary layers. Peaks in intensity, above and below the 
centerline, are observed in both cases. The peaks in Case D and De occur at ξ = 1.29 & 0.83, 
respectively. The ratio of peak values is 1.10 (D to De). 
 

 
Fig. 12. Contours of time-averaged streamwise normal intensity (random & periodic), 

a) Case D and b) Case De. 
 

Figures 13a and 13b show contours of time-averaged cross-stream normal intensity for Cases D 
and De, respectively (including the contributions of both random and quasi-periodic fluctuations). Unlike in 
Fig. 12, both cases show a single maximum at the wake centerline. The peaks in Case D and De occur at 
ξ = 1.59 & 1.37, respectively. The ratio of peak values is 2.13 (D to De); the peak value obtained in Case 
D is significantly larger. The larger peak value is indicative of more powerful shed vortices in Case D. 

 
Figure 14 shows the variation of streamwise and cross-stream normal intensities with ξ along the 

centerline for Cases D & De. While peak values of streamwise intensity are roughly the same (Case D 
shows a slightly larger peak), peak cross-stream intensity levels are substantially different. The peak 



 

 

value in Case D (cross-stream component) is larger by a factor of 2.13 (as in Fig. 13) and, occurs slightly 
further away the base. The reason for the higher peak has been discussed earlier (stronger shed vortices 
in Case D). While the streamwise intensity level is also somewhat diminished in Case De; a significant 
portion of it is inherited from the boundary layer (approximately the same in the two cases). 

 

 
Fig. 13. Contours of time-averaged cross-stream normal intensity (random & periodic),  

a) Case D and b) Case De. 

 
Fig. 14. Variation of streamwise and cross-stream intensities along the wake centerline for Cases D & De. 
 

Contours of time-averaged fluctuating shear stress for Cases D and De are provided in Figs. 15a 
and 15b, respectively. The primary peak values (negative above, positive below) are seen in both cases. 
The peaks in Case D and De occur at ξ = 1.50 & 1.12, respectively. The ratio of peak values is 1.50 (D to 



 

De). In addition to the primary peaks in Fig. 15a, there exist much weaker secondary peaks (opposite in 
sign to the primary peaks) close to the base (see arrows). The secondary peaks are absent for Case De; 
a plot with a large number of contours showed no indication of secondary peaks. 

 
The origin of the secondary peaks is discussed at length in Rai (2011). It is shown there, in the 

context of Case A, that they are caused by the periodic component of fluctuating velocities resulting from 
the formation of the shed vortices. The two velocity components are positively/negatively correlated in the 
vicinity of the upper/lower secondary peak.  
 

 
Fig. 15. Contours of time-averaged fluctuating shear stress (random & periodic),  

a) Case D and b) Case De. 
 

CONCLUDING REMARKS 
 
The very near and near wake of flat plates with circular and elliptic trailing edges are investigated 

with data from direct numerical simulations. The plate length and thickness are the same in both cases. 
The upper/lower separating boundary layers in each case are turbulent and statistically identical. 
Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the 
wake-distributions of velocity components, normal intensity and fluctuating shear stress in the two cases.  

 
All of the wake-velocity distributions provided here indicate that the features observed in Case D 

are more intense than those obtained in Case De. This is true of peak negative u , peak positive & 
negative v , peak streamwise and cross-stream normal intensity and, peak fluctuating shear stress. In 
addition these peaks are located further downstream (in terms of ξ) relative to the base in Case D. These 
two attributes are indicative of stronger shed vortices that form further downstream of the base in Case D 
when compared to Case De. Thus, streamlining the trailing edge with an elliptic trailing edge (instead of 
using the traditional circular trailing edge) results in weaker shed vortices, a smaller region of separation 
and lower intensity levels. These are all attributes of interest not only from a fundamental flow physics 
perspective but also in turbine and compressor trailing edge design. 

 



 

 

Interestingly, distributions of the components of velocity, turbulent intensity and shear stress are 
found to remain topologically quite similar with the change in trailing edge geometry (except for the 
secondary peaks in fluctuating shear stress); only the scales and locations of the various features such as 
maxima/minima are different. 
 

 
REFERENCES 

 
ALBER, I. E. 1980 Turbulent wake of a thin flat plate. AIAA Journal, Vol. 18 (9), 1044. 
 
CANTWELL, B. & COLES, D. 1983 An experimental study of entrainment and transport in the turbulent 
near wake of a circular cylinder. Journal of Fluid Mechanics, Vol. 136, 321. 
 
CHEVRAY, R. & KOVAZNAY, L. S. G.  1969 Turbulence measurements in the wake of a thin flat plate. 
AIAA Journal, Vol. 7, 1641. 
 
HAYAKAWA, M. & HUSSAIN, F. 1989 Three-dimensionality of organized structures in a plane turbulent 
wake.  Journal of Fluid Mechanics, Vol. 206, 375. 
 
HAYAKAWA, M. & Iida, S. –I. 1992 Behavior of turbulence in the near wake of a flat plate at low Reynolds 
number. Physics of Fluids A, Vol. 4 (10) 2282. 
 
LIU, X., Thomas, F. O. & Nelson, R. C. 2002 An experimental investigation of the turbulent planar wake in 
constant pressure gradient. Physics of Fluids, Vol. 14 (8), 2817. 
 
NAKAYAMA, A. & LIU, B. The turbulent near wake of a flat plate at low Reynolds number. Journal of Fluid 
Mechanics, Vol. 217, 93. 
 
RAI, M. M. 2010 A computational investigation of the instability of the detached shear layers in the wake 
of a circular cylinder.  Journal of Fluid Mechanics, Volume 659, pp. 375-404. 
 
RAI, M. M. 2011 Flow Physics and Self-Similarity in the Turbulent Near Wake of a Flat Plate. Paper 2011-
3575, 41st AIAA Fluid Dynamics Conference, Honolulu, Hawaii. 
 
RAI, M. M. 2013 Flow physics in the turbulent near wake of a flat plate. Journal of Fluid Mechanics, 
Volume 724, 704. 
 
RAI, M. M. 2014 Flow Phenomena in the very near wake of a flat plate with a circular trailing edge.  
Journal of Fluid Mechanics, Volume 756, 510. 
 
RAI, M. M. 2015 Detached shear-layer instability and entrainment in the wake of a flat plate with turbulent 
separating boundary layers. Journal of Fluid Mechanics, Volume 774, 5. 
 
RAMAPRIYAN, B. R., PATEL, V. C. & SASTRY, M. S. 1982 The symmetric turbulent wake of a flat plate. 
AIAA Journal, Vol. 20 (9), 1228. 
 
REYNOLDS, W. C. & HUSSAIN, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear 
flow. Part 3. Theoretical models and comparisons with experiments. Journal of Fluid Mechanics, Vol. 54, 
263. 


