The Role of Plants in Space Exploration:

Some History and Background

Raymond M. Wheeler NASA Exploration Research and Technology Kennedy Space Center, Florida, USA

raymond.m.wheeler@nasa.gov

Human Life Support Requirements:

Inputs

Outputs

Daily Rqmt.	(% total mass)		C	Daily	(% total mass)
Oxygen 0.83 kg	2.7%		Carbon	1.00 kg	3.2%
Food 0.62 kg	2.0%		dioxide		
Water 3.56 kg (drink and	11.4%		Metabolic solids	0.11 kg	0.35%
Water 26.0 kg (hygiene, flush laundry, dishes)	83.9%		Water (metabolic / (hygiene / flr (laundry / di (latent	29.95 kg urine ush sh	96.5% 12.3%) 24.7%) 55.7%) 3.6%)
TOTAL 31.0 kg			TOTAL 31.0 kg		

Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document Food assumed to be dry except for chemically-bound water.

International Space Station Life Support Systems

Plants in Space for Life Support

Bioregenerative Life Support

Early references:

- Greg, P. 1880. Across the zodiac. (recently reprinted by BiblioBazaar, 2006).
- Tsiolkovsky, K.E. 1926. Exploration of world space with rockets. Kaluga (*In Russian*).
- Ley, W. 1948. Rockets and space travel. The future of flight beyond the stratosphere. The Viking Press, New York, NY, US. 374 pages.
- Specht, H. 1952. Toxicology of travel in the aeropause. In: C.S. White and O.O. Benson (*eds.*) Physics and Medicine of the Upper Atmosphere, University of New Mexico Press, Albuquerque.
- Bowman, N.J. 1953. The food and atmosphere control problem on space vessels. II. The use of algae for food and atmospheric control. J. British Interplanetary Soc. 12:159-167.
- Myers, J. 1954. Basic remarks on the use of plants as biological gas exchanges in a closed system. J. Aviation Medicine 25:407-411.

Joseph Priestley--1772 "Patron Saint" of Bioregenerative Life Support ?

" I have been so happy as by accident to hit upon a method of restoring air, which has been injured by the burning of candles and I have discovered at least one of the restoratives...it is vegetation "

"...when I first put a sprig of mint into a glass jar standing inverted in a vessel of water; it had continued growing for some months [and] I found that the air would neither extinguish a candle, nor was it at all inconvenient to a mouse..."

Bioregenerative Life Support Testing Around the World

Crop Considerations for Space

- High yielding and nutritious
- High harvest index (edible / total biomass)
- Horticultural considerations
 - planting, watering, harvesting, pollination, propagation
- Environmental considerations
 - lighting, temperature, mineral nutrition, CO₂
- Processing requirements
- Dwarf or low growing types
- Cultural preferences for food

NASA's Biomass Production Chamber (BPC)

20 m² growing area; 113 m³ vol.; 96 400-W HPS Lamps; 400 m³ min⁻¹ air circulation; two 52-kW chillers

Hydroponic System

Wheat (Triticum aestivum)

Soybean (Glycine max)

Lettuce (Lactuca sativa)

Potato (Solanum tuberosum)

Closed System CO₂ Uptake / O₂ Production (20 m² Soybean Stand)

Wheeler. 1996. In: H. Suge Plants in Space Biology.

High Yields from High Light and CO₂ Enrichment

Wheat - 3-4 x World Record Potato - 2 x World Record Lettuce-Exceeded Commercial Yield Models

Univ. Wisconsin Biotron

Bubgee, and Salisbury. 1988. Plant Physiol; Wheeler et al. 1991. Crop Sci; Wheeler et al. 1994. J. Amer. Soc. Hort. Sci.

Light, Productivity, and Crop Area Requirements

Wheeler. 2004. Acta Hort.

Nigel Packham, NASA Johnson Space Center

Integrated Testing with Humans \rightarrow One Human and 11 m² of Wheat !

Metrics for Assessing Space Life Support Technologies

- Mass
- Power
- Volume
- Crew Time
- Concept of Equivalent System Mass or ESM

"Intangible" Aspects of Plants in Remote Environments; Biophilia? (Photo from US South Pole Plant Chamber)

OF LET 2

CY

Novel Crops for Space

Dwarf plums with over-expressed FT flowering gene (USDA / ARS)

Current Estimates for Plants and Life Support (for one person)

• < 5 m² for drinking and hygiene water

20 - 25 m² for O₂ requirements and CO₂ removal

40 - 50 m² for food (2500 kcal day⁻¹)

A "Priestley Experiment" on Mars?

Technical Challenges:

Efficient Lighting Concepts
Optimized Water and Nutrient Management
Mechanization and Automation
Improved Crops for Space Settings

How do we get started International Space Station Cis-Lunar or Mars Transit Vehicles Lunar Outposts Mars Outposts Autonomous Space Colories

Thank You !

12-14

T/AND TENT

Kennedy Space Center Florida