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Abstract  

A simple approach for computing unsteady 

aerodynamic forces from simulated measured 

strain data is proposed in this study. First, the 

deflection and slope of the structure are computed 

from the unsteady strain using the two-step 

approach. Velocities and accelerations of the 

structure are computed using the autoregressive 

moving average model, on-line parameter 

estimator, low-pass filter, and a least-squares 

curve fitting method together with analytical 

derivatives with respect to time. Finally, 

aerodynamic forces over the wing are computed 

using modal aerodynamic influence coefficient 

matrices, a rational function approximation, and 

a time-marching algorithm. A cantilevered 

rectangular wing built and tested at the NASA 

Langley Research Center (Hampton, Virginia, 

USA) in 1959 is used to validate the simple 

approach. Unsteady aerodynamic forces as well 

as wing deflections, velocities, accelerations, and 

strains are computed using the CFL3D 

computational fluid dynamics (CFD) code and an 

MSC/NASTRAN code (MSC Software 

Corporation, Newport Beach, California, USA), 

and these CFL3D-based results are assumed as 

measured quantities. Based on the measured 

strains, wing deflections, velocities, 

accelerations, and aerodynamic forces are 

computed using the proposed approach. These 

computed deflections, velocities, accelerations, 

and unsteady aerodynamic forces are compared 

with the CFL3D/NASTRAN-based results. In 

general, computed aerodynamic forces based on 

the lifting surface theory in subsonic speeds are in 

good agreement with the target aerodynamic 

forces generated using CFL3D code with the 

Euler equation. Excellent aeroelastic responses 

are obtained even with unsteady strain data under 

the signal to noise ratio of -9.8dB. The deflections, 

velocities, and accelerations at each sensor 

location are independent of structural and 

aerodynamic models. Therefore, the distributed 

strain data together with the current proposed 

approaches can be used as distributed deflection, 

velocity, and acceleration sensors. This research 

demonstrates the feasibility of obtaining induced 

drag and lift forces through the use of distributed 

sensor technology with measured strain data. An 

active induced drag control system thus can be 

designed using the two computed aerodynamic 

forces, induced drag and lift, to improve the fuel 

efficiency of an aircraft. Interpolation elements 

between structural finite element grids and the 

CFD grids and centroids are successfully 

incorporated with the unsteady aeroelastic 

computation scheme. The most critical technology 

for the success of the proposed approach is the 

robust on-line parameter estimator, since the 

least-squares curve fitting method depends 

heavily on aeroelastic system frequencies and 

damping factors. 

1  Introduction  

Reducing fuel consumption for modern aircraft is 

a goal of the National Aeronautics and Space 

Administration (NASA) Aeronautics Research 

Mission Directorate (ARMD). This goal can be 

accomplished by reducing airframe weight and 

aerodynamic drag, however, reductions in both 

for a civil transport aircraft is a challenge that may 

require extensive design changes for optimization 

and/or active controls. In general, the same 

percentage of weight and drag reductions can have 

a similar effect on fuel savings of a transport 

aircraft [1]. 
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Real-time measurement of aerodynamic drag 

force in flight is an essential element for 

implementing an active drag control technique. 

Two major sources of aerodynamic drag on a 

business jet and a long-haul transport aircraft at 

cruise speed are viscous drag and induced drag, 

which are approximately 48% - 53% (one half) 

and 21% - 38% (one third) of the total 

aerodynamic drag [1]. Moreover, induced drag 

comprises more than 90% of the total drag during 

takeoff for a typical transport aircraft. 

Traditionally, lift forces over the wing are 

measured using a pressure gauge; however, the 

conventional pressure gauge with its associated 

piping and cabling can create weight and space 

limitation challenges, and pressure data are 

available only at the discrete location of the gauge. 

A new method to measure lift forces is needed in 

order to overcome the weight and bulk associated 

with conventional pressure gauges. Development 

of lightweight distributed sensors is a critical 

technology which can allow continuous 

monitoring of aerodynamic surface shape, 

dynamic loading, and active controls of flexible 

motion and drag. 

Flexible and lightweight optical fibers not only 

revolutionized telecommunications, but also 

altered the sensing world. Optical fibers can be 

used as fiber optic sensors to measure strain and 

temperature [2]. Fiber optic sensors have been 

developed to measure co-located strain 

simultaneously with very high accuracy using 

fiber Bragg gratings (FBGs) [2]. Specifically, the 

fiber optic strain sensor (FOSS) uses a series of 

FBGs to obtain measurements at intervals as small 

as every millimeter [3] along a fiber and at 

frequencies of several kHz [4]. The ability of 

FBGs to operate at such high frequencies makes 

them an ideal choice for both static and dynamic 

aerospace applications. The methodology of 

optically measuring aerodynamic forces described 

by Lie et al. [5] is developed based on beam 

deformation theory. A two-camera 

videogrammetric system is used for optical 

deformation measurements. The data reduction 

models for extracting the normal force and 

pitching moment utilize either the local 

displacement and slope change or the global beam 

deformation profile. 

The availability of wing deflections, velocities, 

and accelerations at all element grid points across 

the structural finite element (FE) model [6, 7] will 

allow engineers to undertake more accurate, real-

time analyses of both internal elastic and inertial 

forces as well as external aerodynamic forces at 

any point on the structure. These force values over 

the entire surface of a structure may also find 

application in structural health monitoring, active 

flexible motion control, and active drag reduction. 

This paper focuses on a computation of 

unsteady aerodynamic force over an entire three-

dimensional structure based on measured strain 

information. First, structural deformations of the 

entire three-dimensional structure are obtained 

using the two-step approach introduced by Pak 

[6]. Next, velocities and accelerations are 

computed using an AutoRegressive Moving 

Average (ARMA) model, on-line parameter 

estimator [8], low-pass filter, and a least-squares 

curve fitting method [9] together with analytical 

derivatives with respect to time. The unsteady 

aerodynamic forces are computed from structural 

deflections, velocities, and accelerations along 

with linear lifting-surface-based modal 

aerodynamic influence coefficient (AIC) matrices 

and a rational function approximation (RFA). 

 

2  Mathematical Background  

In this study, external unsteady aerodynamic 

forces are computed from measured strain data. 

Simulated strain data using CFL3D [10] / 

MSC/NASTRAN (MSC Software Corporation, 

Newport Beach, California, USA) [11] code will 

be assumed as measured strain data. In the first 

section, deflections and slopes of an entire 

structure are computed from measured strain 

through the use of the two-step approach [6]. 

Velocities and accelerations of the structure are 

computed in the second section using analytical 

derivatives with respect to time. In the last section, 

unsteady aerodynamic forces are computed in 

time-domain using the time-marching algorithm 

[12]. 

2.1 Computation of Wing Deflection from 

Measured Strain 
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Consider the following structural dynamic 

governing equations of motion as shown in  

Eq. (1): 

 

[M]{�̈�}𝑘 + [G]{�̇�}𝑘 + [K]{𝑞}𝑘 = {𝑄𝑎}𝑘  (1) 

 

where [M], [G], and [K] are mass, damping, and 

stiffness matrices, respectively, and 

{𝑞}𝑘 and {𝑄𝑎}𝑘 are the generalized coordinates 

and aerodynamic force vectors at discrete time k, 

respectively. 

Out-of-plane deflections along FOSSs can be 

computed from measured unsteady strain data 

{𝜖}𝑘 using a piecewise least-squares method, an 

Akima spline, and a linear assumption, as 

described in the two-step approach [6]. These 

computed deflections along the fibers are 

combined with an FE model of the structure in 

order to interpolate and extrapolate the deflection 

and slope of the entire structure through the use of 

the System Equivalent Reduction and Expansion 

Process (SEREP) [13]. All of the degrees of 

freedom (DOF) in the FE model can be 

rearranged, as shown in Eq. (2): 

 

{𝑞}𝑘 = {
𝑞𝑀

𝑞𝑆
}

𝑘
= [Φ]{𝜂}𝑘 = [

Φ𝑀

Φ𝑆
] {𝜂}𝑘 (2) 

 

where, {𝑞𝑀}𝑘 is the master DOF at discrete time 

k. In this approach, deflections along the FOSS 

computed from the first step of the two-step 

approach [6] are defined as the master DOF. The 

remaining deflections and slopes over all of the 

structure are defined as slave DOFs at discrete 

time k, {𝑞𝑆}𝑘. In Eq. (2), matrices [Φ𝑀] and [Φ𝑆] 
are eigen-matrices corresponding to master and 

slave DOFs, respectively, and {𝜂}𝑘 is the 

orthonormalized coordinates vector at discrete 

time k. Therefore, Eqs. (3) and (4) are derived 

from Eq. (2). 

 

{𝑞𝑀}𝑘 = [Φ𝑀]{𝜂}𝑘 (3) 

 

{𝑞𝑆}𝑘 = [Φ𝑆]{𝜂}𝑘 (4) 

 

In Eq. (3), changing the master DOF at discrete 

time k {𝑞𝑀}𝑘 to the corresponding measured value 
{𝑞𝑀𝑒}𝑘, along the FOSS, gives Eq. (5): 

 

{𝑞𝑀𝑒}𝑘  = [Φ𝑀]{𝜂}𝑘 (5) 

 

where {𝑞𝑀𝑒}𝑘 is obtained from the first step of the 

two-step approach [6]. Pre-multiplying [Φ𝑀]𝑇 to 

Eq. (5) with matrix inversion yields Eq. (6) for 

computing the orthonormalized coordinates 

vector at discrete time k: 

 

{𝜂}𝑘 = ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{𝑞𝑀𝑒}𝑘, (6) 

 

and the generalized coordinates vector {𝑞}𝑘 of Eq. 

(7) is obtained from substituting Eq. (6) into  

Eq. (2). 

 

{𝑞}𝑘 = [
Φ𝑀

Φ𝑆
] ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{𝑞𝑀𝑒}𝑘 (7) 

2.2 Computation of Velocity and Acceleration 

from Computed Wing Deflection  

A simple harmonic motion assumption for the 

computation of wing acceleration works with 

undamped free vibration problems [7], but this 

assumption cannot handle the heavy damping 

issues associated with aeroelastic oscillation 

problems. Also, the orthonormalized coordinate 

vector {𝜂}𝑘 used for the computation of velocities 

in Ref. [7] are not fully decoupled because of 

coupling between structural dynamics and 

unsteady aerodynamics. 

A new approach for the computations of 

aeroelastic velocity and acceleration is proposed 

in this study. Velocity and acceleration vectors at 

each sensor location at discrete time k, {�̇�𝑀𝑒}𝑘 and 

{�̈�𝑀𝑒}𝑘, of an aeroelastic structural motion are 

computed using Eq. (8) together with analytical 

derivatives with respect to time: 

 

{𝑞𝑀𝑒(𝑡)} =  {�̃�𝑀𝑒} +
{ ∑ 𝑒−𝜎𝑖𝑡𝑛𝑚

𝑖=1 [𝐴𝑖𝑗𝑐𝑜𝑠(𝜔𝑑𝑖𝑡) + 𝐵𝑖𝑗𝑠𝑖𝑛(𝜔𝑑𝑖𝑡)]} 

 (8) 

 

where, 𝜎𝑖(=  𝜁𝑖𝜔𝑛𝑖) and 𝜔𝑑𝑖 are the i-th damping 

factor and damped frequency, respectively, and 

nm is the number of modes. A vector {�̃�𝑀𝑒} 

represents the static equilibrium position of the 

unsteady wing motion. The coefficients 𝐴𝑖𝑗 and 

𝐵𝑖𝑗 , j = 1, 2, … , n, for the j-th row element of the 

vector can be fitted using a least-squares curve 

fitting technique [8, 9]. In this study, 𝜎𝑖 and 𝜔𝑑𝑖 

are computed using an ARMA model, an on-line 
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parameter estimator, and a sine Butterworth low-

pass filter [14]. It should be noted in Eq. (8) that 

𝜎𝑖 and 𝜔𝑑𝑖 are estimated; therefore the least-

squares curve fitting in this study is based on a 

linear fitting. From Eq. (8), velocity and 

acceleration are computed using analytical 

derivatives with respect to time t. The FE model 

is not used for the computation of {𝑞𝑀𝑒}𝑘, {�̇�𝑀𝑒}𝑘, 

and {�̈�𝑀𝑒}𝑘. 

Velocity and acceleration vectors over the 

entire structure are also computed using Eqs. (9) 

and (10) (SEREP transformation). 

 

{�̇�}𝑘 = [
Φ𝑀

Φ𝑆
] ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{�̇�𝑀𝑒}𝑘 (9) 

{�̈�}𝑘 = [
Φ𝑀

Φ𝑆
] ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{�̈�𝑀𝑒}𝑘 (10) 

 

2.3 Computation of Aerodynamic Load from 

Wing Deflection, Velocity, and Acceleration  

First, modal AIC matrices are computed at Mach 

number  𝑀 and reduced frequencies 𝜅𝑝 (≡
𝜔𝑝𝐶

2𝑈
, 𝑝 = 1, 2, … , 𝑚) using lifting surface theory: 

 

[A(𝜅1)], [A(𝜅2)], … , [A(𝜅𝑚)] 
 

where C is the chord length at a typical section and 

U is a far-field airspeed. These modal AIC 

matrices can be approximated with respect to 

frequency, Laplace variable 𝑠, using an RFA. In 

this study, Roger’s approximation, Eq. (11), is 

selected for the RFA. 

 

[A(𝑠)] = [D0] + 𝑠[D1] + 𝑠2[D2] +

∑
𝑠[C𝑗]

𝑠+Ωj

𝐿𝑇
𝑗=1       (11) 

 

Substituting Eq. (2) into Eq. (1) and pre-

multiplying [Φ]𝑇 yields Eq. (12). 

 

[Φ]𝑇[M][Φ]{�̈�}𝑘 + [Φ]𝑇[G][Φ]{�̇�}𝑘

+ [Φ]𝑇[K][Φ]{𝜂}𝑘 
 

= [Φ]𝑇{𝑄𝑎}𝑘 = {𝑁}𝑘 (12) 

 

The orthonormalized aerodynamic force vector 

{𝑁(𝑠)} in Laplace-domain is in Eq. (13). 

 

{𝑁(𝑠)} = 𝑞𝐷[A(𝑠)]{𝜂(𝑠)} (13) 

= 𝑞𝐷 ([D0]{𝜂(𝑠)} + 𝑠[D1]{𝜂(𝑠)} +

𝑠2[D2]{𝜂(𝑠)} + ∑
𝑠[C𝑗]{𝜂(𝑠)}

𝑠+Ωj

𝐿𝑇
𝑗=1 )      

 

The time-marching algorithm for the computation 

of the orthonormalized aerodynamic force at 

discrete time k can be summarized as follows [12] 

in Eqs. (14) through (21): 

 

{𝑁}𝑘 = 𝑞𝐷([D0]{𝜂}𝑘 + [D1]{�̇�}𝑘 + [D2]{�̈�}𝑘 +
                      [C]{𝑥}𝑘) (14) 

 

{𝑥}𝑘 = [E]{𝑥}𝑘−1 + [θ][B]
{�̇�}𝑘+{�̇�}𝑘−1

2
 (15) 

where, [E] = 𝑒[A]𝑇𝑎  (16) 

[θ] = ∫ 𝑒[A](𝑇𝑎−𝜏)𝑑𝜏
𝑇𝑎

0
  (17) 

 

[A] = [

−Ω1I 0 … 0
0 −Ω2I … 0
⋮
0

⋮
0

⋱ ⋮
… −ΩLTI

] (18) 

 

[B] = [

I
I
⋮
I

] (19) 

 

[C] = [C1 C2  … C𝐿𝑇] (20) 

 

{𝑥}𝑘 = {

𝑥1

𝑥2

⋮
𝑥𝐿𝑇

}

𝑘

 (21) 

 

and 𝑇𝑎 is a sampling time. Orthonormalized 

coordinate vectors {𝜂}𝑘, {�̇�}𝑘, and {�̈�}𝑘 are 

computed from Eqs. (22), (23), and (24). 

 

{𝜂}𝑘 = ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{𝑞𝑀𝑒}𝑘 (22) 

 

{�̇�}𝑘 = ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{�̇�𝑀𝑒}𝑘 (23) 

 

{�̈�}𝑘 = ([Φ𝑀]𝑇[Φ𝑀])−1[Φ𝑀]𝑇{�̈�𝑀𝑒}𝑘 (24) 

 

From Eq. (12), the generalized aerodynamic force 

vector at discrete time k, {𝑄𝑎}𝑘, is shown in  

Eq. (25). 
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{𝑄𝑎}𝑘 = ([Φ]𝑇)−1{𝑁}𝑘 (25) 

 

A rectangular matrix [Φ]𝑇 can be inverted using a 

singular-value decomposition technique. The 

steps used to compute aerodynamic force from 

measured strain are depicted in Fig. 1.  

In general, aerodynamic force vectors from a 

lifting surface theory are normal to the 

aerodynamic model configuration. Therefore, 

unsteady induced drag force as well as spanwise 

force can be defined using the surface normal 

vector during the unsteady wing surface 

oscillation, as shown in Fig. 2. 

3 Results and Discussions  

A cantilevered rectangular wing, shown in  

Fig. 3, was selected for the validation of the 

proposed approach. This wing, with 6% circular 

arc cross sections and an aspect ratio of 5.0 was 

built and tested at the NASA Langley Research 

Center (Hampton, Virginia, USA) in 1959 [15]. 

The model has a uniform chord length of 4.56 in, 

a span length of 11.5 in, and a thickness of 0.065 

in aluminum insert covered with flexible plastic 

foam (Fig. 3). The material properties of the 

aluminum insert are assigned a Young’s modulus, 

E, of 9.208 Msi; a shear modulus, G, of 3.837 Msi; 

and a mass density of 0.1 lb/in3. The shaped 

lumped weights are used to match the local cross 

sectional weight distribution of the plastic foam. 

Therefore, the small lumped weights are used near 

the leading and trailing edges and the large 

lumped weights are used near the mid-chord area. 

Detailed material properties are shown in Table 1. 

To represent the six FOSSs, the model is fit with 

300 beam elements (50 per each fiber) that 

compute axial strain along the length of the wing. 

These six simulated FOSSs are assumed to be zero 

weight with zero stiffness (Fig. 3). 

The frequencies and mode shapes of this 

cantilevered wing model are computed using an 

MSC/NASTRAN code [11]. Measured and 

computed natural frequencies are summarized in 

Table 2. Unsteady aerodynamic forces as well as 

wing deflections and velocities are computed 

using the CFL3D code [10]. A computational 

fluid dynamics (CFD) grid configuration for the 

CFL3D computations based on the Euler grid is 

given in Fig. 4. The CFD grid is a multi-block 

(97× 73× 57) grid with H-H topology. The time 

step size of the unsteady CFL3D computation is 

0.000060515 s, and a total of 10,240 time steps 

were used in this computation. The unsteady 

aerodynamic theory used in section 2.3 is based 

on a linear lifting surface theory, ZAERO code 

(ZONA Technology Inc., Scottsdale, Arizona, 

USA) [16]. Therefore, a subsonic Mach number 

should be selected for the CFL3D computer 

simulation to minimize a nonlinear transonic 

effect. Local Mach number distributions under 

steady-state conditions with CFL3D computer 

simulations are given in Fig. 5. In this figure, local 

Mach number distributions at Mach 0.714 are 

high subsonic conditions. Maximum local Mach 

number reaches the 0.8-0.9 range near the center 

chord, as shown in Fig 5(a). Supersonic sub-

regions are observed in the Mach 0.875 case, that 

is, transonic speed, as shown in Fig. 5(b). 

Therefore, a Mach number of 0.714 with dynamic 

pressure of 1.455 psi was selected for the 

validation of the current approach. These CFD-

based aerodynamic forces are assumed as the 

target forces in this study.  

The MSC/NASTRAN code was used to 

calculate unsteady strains in this study, and these 

computed strains are considered as the measured 

strains. For the CFL3D computations, structural 

mode shapes should be provided at the CFD grid 

points. In this study, the structural grid points and 

the CFD grid points were connected using the 

interpolation elements, “RBE3 element” in 

MSC/NASTRAN terminology, instead of using a 

surface-splining technique. In the CFL3D code, 

unsteady aerodynamic force vectors are computed 

at the centroids of CFD cells. Therefore, a splining 

between structural grid points and these centroids 

is also needed for the transient response 

computations with the MSC/NASTRAN code. In 

this study, RBE3 elements are also created 

between structural grids and these centroids of 

CFD cells, as shown in Fig. 6. It should be noted 

that the well-known numerical problems 

associated with the Harder and Desmarais 

surface-spline technique [17] can be easily 

overcome through the use of the current technique 

with RBE3 elements. 

The MSC/NASTRAN modal transient 

response analysis (solution 112) with 1,024 time 

steps and a step size of 0.00060515 s is used to 
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compute the strains, deflections, velocities, and 

accelerations. The structural deflection and 

velocity values at the leading edge of the wing-tip 

section obtained through the use of the CFL3D 

and MSC/NASTRAN codes are compared in  

Fig. 7. Excellent deflection and velocity matching 

are observed in this figure. Therefore, strain 

values computed from the MSC/NASTRAN code 

can be used as measured strain values to estimate 

the unsteady aerodynamic forces computed using 

the CFL3D computer simulation with the Euler 

equation.  

Time histories of strain under different levels 

of white noise are shown in Fig. 8. Fig 8(a) shows 

time histories of strain at the leading edge of the 

wing-root section. Random white noise was added 

to the unsteady strain data to demonstrate the 

robustness of the proposed approach. The strain 

signal-to-noise ratio (SNR) is defined as shown in 

Eq. (26): 

 

𝑆𝑁𝑅 ≡ 20 × 𝑙𝑜𝑔10  
𝜖𝑟𝑚𝑠

𝑛𝑟𝑚𝑠
  (26) 

 

where, 𝜖𝑟𝑚𝑠 and 𝑛𝑟𝑚𝑠 represent the root-mean-

squared (RMS) level of the unsteady strain and 

added noise, respectively. In this study, the SNR 

of 10 dB, 6 dB, and 0 dB were used in the 

computer simulation. Corresponding time 

histories are shown in Figs 8(b), 8(c), and 8(d). 

The local SNR (LSNR) is defined as: 

 

𝐿𝑆𝑁𝑅 ≡ 20 × 𝑙𝑜𝑔10  
𝜖𝑚𝑎𝑥

𝑛𝑟𝑚𝑠
  (27) 

 

where, 𝜖𝑚𝑎𝑥 is the local maximum absolute 

unsteady strain value. In Fig. 8(d), the LSNR 

value is same with the SNR value near 0.33 s. The 

LSNR value is larger than SNR value before  

0.33 s. The LSNR value becomes -9.8 dB near 

0.59 s. 

In this study, robustness of the proposed least-

squares curve fitting method, Eq. (8), are tested 

using time histories of unsteady strain, shown in 

Fig. 8. A moving time window of 56 time steps 

was used in this curve fitting, as shown in Fig. 9. 

The least-squares curve fitting method in Eq. (8) 

is a nonlinear fitting problem; however, this 

nonlinear fitting problem becomes a linear 

problem when the damping factors and damped 

aeroelastic frequencies, 𝜎𝑖 and 𝜔𝑑𝑖, are provided. 

In this study, a sine Butterworth low-pass filter 

[14] with a cutoff frequency of 200 Hz is used to 

estimate reasonable frequencies and damping 

factors from unsteady strain data. The number of 

ARMA coefficients is seven and the sampling 

time for this on-line estimator is 0.004236 s (eight 

steps). In this study, a recursive least-squares 

method based on Bierman’s U-D factorization 

algorithm with forgetting factor of 0.98 was used 

as an on-line parameter estimator [8]. Once fitted 

coefficients {�̃�𝑀𝑒}, 𝐴𝑖𝑗, and 𝐵𝑖𝑗 are obtained based 

on the current 56 time steps, then deflections are 

predicted for the next eight time steps. These eight 

steps correspond to the one sampling period for 

the on-line parameter estimator. As shown in  

Fig. 9, the damping factors and damped 

aeroelastic frequencies, 𝜎𝑖 and 𝜔𝑑𝑖, are updated 

with every sampling time step. 

Time histories of Z deflection, velocity, and 

acceleration under 0 dB SNR are shown in Figs. 

10, 11, and 12, respectively. The least-squares 

curve fitting starts after the converged damping 

factors and damped frequencies are obtained; 

thus, velocities and accelerations are not available 

until 400 steps (0.2414 s) as shown in Figs. 11 and 

12. In Figs. 10, 11, and 12, the black solid lines, 

blue solid lines, and red dashed lines represent 

target values, corresponding deflection, velocity, 

and acceleration values before ({𝑞𝑀𝑒}𝑘, {�̇�𝑀𝑒}𝑘, 

and {�̈�𝑀𝑒}𝑘) and after ({𝑞}𝑘, {�̇�}𝑘, and {�̈�}𝑘) using 

SEREP transformation, respectively.  

The effect of the piecewise least-squares 

method for the computation of the unsteady 

deflection can be observed during the learning 

period as shown in Fig.10, as the solid blue line. 

Even with noisy strain data (LSNR of 8.7 dB to 

1.6 dB), unsteady deflections are successfully 

obtained. The effect of the SEREP transformation 

can be also observed in Figs. 10, 11, and 12 as the 

blue solid line versus the red dashed line. Noise in 

the blue solid line becomes smoother after SEREP 

transformation is applied. Finally, the effect of the 

least-squares curve fitting method in Eq. (8) can 

be clearly observed before and after 0.2414 s, as 

shown in Fig. 10. Noise in unsteady deflection 

during the learning period is drastically reduced 

after the least-squares curve fitting is used. Wing 

deflection, velocity, and acceleration are in 

excellent agreement with corresponding target 
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values, as shown in Figs. 10, 11, and 12. The 

proposed least-squares curve fitting method 

together with the analytical time derivatives 

performed excellently even with an LSNR of  

-9.8 dB. 

Modal AIC matrices are computed using the 

ZAERO code at Mach 0.714. The ZAERO-based 

unsteady aerodynamic model configuration is 

shown in Fig. 2(a). Reduced frequencies of 0.0, 

0.006, 0.015, 0.035, 0.08, 0.13, and 0.26 were 

selected for this computation. Roger’s 

approximation with four aerodynamic lag terms 

was used for an RFA of these modal AIC 

matrices. The element-by-element least-squares 

curve fitting with a constraint at the steady-state 

condition, reduced frequency of zero, was used in 

the Roger’s approximation procedure. 

Aerodynamics lag frequencies were  

11.81 Hz (𝜅 = 0.0177), 47.22 Hz (𝜅 = 0.0707), 

106.2 Hz (𝜅 = 0.1591), and 188.9 Hz (𝜅 = 0.2829). 

The total induced drag, spanwise, and lift 

forces obtained from the current approach under 

different levels of white noise are compared with 

the corresponding target aerodynamic forces from 

CFL3D computations in Figs 13, 14, and 15. The 

least-squares curve fitting method starts at 0.2414 

s in Figs. 13, 14, and 15. It is interesting that the 

computed forces between time 0 to 0.2414 s are 

based on unsteady deflection only. Velocities and 

accelerations are assumed to be zero during 

learning period, as shown in Figs. 11 and 12. The 

effects of noise can be observed in Fig. 13. 

Computed total induced drag forces with an SNR 

of 0 dB is the most noisy result, as shown in  

Fig. 13(d).  

The wing thickness effects on induced drag and 

spanwise forces, 0.0353 lbf and 0.0961 lbf 

respectively, were subtracted from the CFD-based 

target force to have zero force at steady-state 

condition in Figs 13 and 14. In general, the current 

approach based on lifting surface theory gives 

smaller forces than the target values in the cases 

of lift and spanwise forces. The computed induced 

drag forces are in excellent matching with the 

corresponding target drag force, as shown in  

Fig. 13. 

6 Conclusions  

In this study, unsteady aerodynamic forces were 

computed using simulated measured strain data. 

From unsteady strain information, unsteady 

structural deflections were computed using the 

two-step approach. Unsteady velocities and 

accelerations were computed using an 

AutoRegressive Moving Average model, on-line 

parameter estimator, low-pass filter, and a least-

squares curve fitting method together with 

analytical derivatives with respect to time. The 

deflections, velocities, and accelerations at each 

sensor location are independent of structural and 

aerodynamic models. The distributed strain data 

together with the current proposed approaches 

therefore can be used as distributed deflection, 

velocity, and acceleration sensors. 

The general structural deflections, velocities, 

and accelerations were converted to the 

orthonormalized coordinates to compute 

orthonormalized aerodynamic force vectors using 

modal aerodynamic influence coefficient (AIC) 

matrices. The modal AIC matrices were fitted in 

Laplace-domain using Roger’s approximation. 

Laplace-domain aerodynamics were converted to 

the time-domain using a time-marching 

algorithm. The orthonormalized aerodynamic 

force vectors were transformed to the generalized 

coordinates using pseudo-matrix inversion based 

on singular-value decomposition. Finally, induced 

drag and spanwise forces were obtained using 

surface normal vectors. In general, computed 

aerodynamic forces based on the lifting surface 

theory in subsonic speeds are in good agreement 

with the target aerodynamic forces generated 

using CFL3D code with the Euler equation. This 

research demonstrates the feasibility of sensing 

induced drag and lift forces through the use of 

distributed sensor technology together with the 

fiber optic strain sensor. Thus, an active induced 

drag control system can be designed using these 

two computed aerodynamic forces, induced drag 

and lift, to improve the fuel efficiency of an 

aircraft. 

In this study, interpolation elements (“RBE3 

elements” in MSC/NASTRAN [MSC Software 

Corporation, Newport Beach, California, USA] 

terminology) between structural finite elements 

grids and the CFD grids and centroids were 

successfully incorporated with the unsteady 

aeroelastic computation scheme. The numerical 
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problems often associated with the Harder and 

Desmarais surface-splines technique thus are 

bypassed using the current technique with the 

RBE3 elements. 

It should be emphasized that the deflection, 

velocity, and acceleration computation based on 

the proposed least-squares curve fitting method 

are validated with respect to the unsteady strain 

with LSNR of -9.8 dB. Therefore, the current 

methodology of computing unsteady aerodynamic 

forces can be applied to the actual flight-test data. 

The most critical technology for the success of the 

proposed approach is the robust on-line parameter 

estimator, since the least-squares curve fitting 

method depends heavily on aeroelastic system 

frequencies and damping factors.  
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Tables 

 

Properties of aluminum insert Number 

Young’s modulus, E 9207766 psi 

Shear modulus, G 3836570 psi 

Density 0.1 lb/in^3 

Total weight 0.3806 lb 

Xcg 2.28 inch 

Ycg 5.75 inch 

Thickness 0.065 inch 

Table 1. Detailed material properties of the cantilevered 

plate wing 

 

Mode 
Measured 

(Hz) 

Computed 

(Hz) 
Comment 

1 14.29 14.29 First bending 

2 80.41 80.17 First torsion 

3 89.80 89.04 Second bending 

Table 2. Measured and computed natural frequencies 
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Figures 

 
Fig. 1. Steps used to compute aerodynamic force from 

measured strain. 

 

 
Fig. 2. Definition of the unsteady aerodynamic forces from 

a linear lifting surface theory. 

 
Fig. 3. Cantilevered rectangular wing with six FOSSs. 

 

 

 
Fig. 4. A CFD grid for CFL3D computations based on Euler 

grid. 

 

 
Fig. 5. Local Mach number distributions at Mach 0.714 and 

0.875. 
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Fig. 6. RBE3 elements between structural grid points and 

CFD grids and centroids. 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Deflection and velocity comparisons using CFL3D 

and MSC/NASTRAN codes. 

 

 
Fig. 8. Time histories of strain under different levels of 

random white noise. 
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Fig. 9. Summary of the least-squares curve fitting and 

deflection prediction. 

 

 
Fig. 10. Time histories of Z deflection under SNR = 0 dB. 

 

 
Fig. 11. Time histories of Z velocity under SNR = 0 dB. 

 

 
Fig. 12. Time histories of Z acceleration under SNR = 0 dB. 

 
Fig. 13. Time histories of total induced drag force under 

different levels of random white noise. 
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Fig. 14. Time histories of total spanwise force under 

different levels of random white noise. 

 
Fig. 15. Time histories of total lift force under different 

levels of random white noise. 


