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What the technology does
Problem Statement
 To improve fuel efficiency for an aircraft
 Reducing weight or drag
 Similar effect on fuel savings

 Multidisciplinary design optimization (design phase) or active control (during flight)

 Real-time measurement of structural responses and loads during flight are critical 
data.

 Active flexible motion control
 Active induced drag control

Objective
 Compute unsteady aerodynamic loads from unsteady strain measurements
 Structural responses (complete degrees of freedom) are essential quantities for load 

computations during flight.
 Loads can be computed from the following governing equations of motion.

 Internal Loads: using finite element structure model
 𝐌  𝒒 𝒕 , 𝐆  𝒒 𝒕 , 𝐊 𝒒 𝒕 : Inertia, damping, and elastic loads

 External Load: using unsteady aerodynamic model
 𝑸𝒂 𝑴𝒂𝒄𝒉, 𝒒 𝒕 ,  𝒒 𝒕 ,  𝒒 𝒕 : Aerodynamic load

Issue
 Traditionally, lift load over the wing are measured using a pressure gauge. 
 This conventional pressure gauge with associated piping and cabling would create 

weight and space limitation issues and pressure data will be available only at 
discrete gauge location. Therefore, a new innovation is needed. 

 Fiber optic strain sensor (FOSS) is an ideal choice for aerospace applications.

𝐌  𝒒 𝒕 + 𝐆  𝒒 𝒕 + 𝐊 𝒒 𝒕 = 𝑸𝒂 𝑴𝒂𝒄𝒉, 𝒒 𝒕 ,  𝒒 𝒕 ,  𝒒 𝒕

𝒒 𝒕 =

𝛿𝑥

𝛿𝑦

𝛿𝑧

𝜃𝑥

𝜃𝑦

𝜃𝑧
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Previous technologies
 Liu, T., Barrows, D. A., Burner, A. W., and Rhew, R. D., “Determining Aerodynamic Loads Based on Optical Deformation Measurements,” AIAA Journal, 

Vol.40, No.6, June 2002, pp.1105-1112

 NASA LRC; Application is limited for “beam”; static deflection & aerodynamic loads

 Igawa, H. et al., “Measurement of Distributed Strain and Load Identification Using 1500 mm Gauge Length FBG and Optical Frequency Domain 
Reflectometry,” 20th International Conference on Optical Fibre Sensors, 2009

 JAXA; using inverse analysis. “Beam” application only; static deflection & loads

 Richards, L. and Ko, W. , “Process for using surface strain measurements to obtain operational loads for complex structures,” US Patent #7715994, May 
11, 2010

 NASA AFRC; “sectional” bending moment, torsional moment, and shear force along the “beam”.

 Carpenter, T.J. and Albertani, R., “Aerodynamic Load Estimation from Virtual Strain Sensors for a Pliant Membrane Wing,” AIAA Journal, Vol.53, No.8, 
August 2015, pp.2069-2079

 Oregon State University; Aerodynamic loads are estimated from measured strain using virtual strain sensor technique.
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Steps used to compute aerodynamic load from measured strain
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𝑸𝒂 𝒌
Measure 
unsteady 

strain

𝝐 𝒌

Expand wing 
deflection, 
velocity, & 

acceleration

 𝒒 𝒌

 𝒒 𝒌

 𝜼 𝒌  𝜼 𝒌

𝒒 𝒌

𝜼 𝒌
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Technical features of two-step approach : Deflection Computation
 First Step of two-step approach
 Use piecewise least-squares method to minimize noise in the 

measured strain data (strain/offset): re-generate strain data
 Obtain cubic spline (Akima spline) function using re-generated 

strain data points (assume small motion): 

𝑑2𝛿𝑘

𝑑𝑠2
= −𝜖𝑘(𝑠)/𝑐(𝑠)

 Integrate fitted spline function to get slope data:

𝑑𝛿𝑘

𝑑𝑠
= 𝜃𝑘 (𝑠)

 Obtain cubic spline (Akima spline) function using computed slope 
data

 Integrate fitted spline function to get deflection data:  𝛿𝑘(𝑠)

A measured strain is fitted using a piecewise least-squares method together with the cubic spline technique.
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Least squares fitting with respect to spatial coordinates 
using piecewise polynomial functions
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Time interval for least-squares curve fitting (56 time steps)
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for on-line parameter estimator

Step size for CFL3D & 

NASTRAN computations

Updated every 8 time steps

Predict 

deflections

From curve fitting
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parameter estimator

Technical features of new technology: Velocity & Acceleration Computation

𝒒𝑴𝒆(𝑡) =  𝒒𝑴𝒆 +  

𝑖=1

𝑛𝑚

𝑒−𝜎𝑖𝑡 {𝐴𝑖𝑐𝑜𝑠 𝜔𝑑𝑖𝑡 + 𝐵𝑖𝑠𝑖𝑛 𝜔𝑑𝑖𝑡 }
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 𝒒𝑴𝒆(𝑡) = 
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𝒒𝑴𝒆(𝑡)

 𝒒𝑴𝒆(𝑡) = 
𝑑2

𝑑𝑡2 𝒒𝑴𝒆(𝑡)  𝒒𝑴𝒆 𝒌  𝒒𝑴𝒆 𝒌

#2

Use low pass filter, ARMA model, on-line parameter estimator, and least-squares curve fitting method to obtain velocity and acceleration. 

Least squares fitting with respect to time 
using sine, cosine, & exponential functions
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Technical features of expanding procedure
 Second step of two step approach: Based on General Transformation

 Definition of the generalized coordinates vector  𝒒 𝒌 and the othonormalized
coordinates vector 𝜼 𝒌 at discrete time k

 For all model reduction/expansion techniques, there is a relationship between 
the master (measured or tested) degrees of freedom and the slave 
(deleted or omitted) degrees of freedom which can be written in general 
terms as

 Changing master DOF at discrete time k 𝒒𝑴 𝒌 to the corresponding measured 
values 𝒒𝑴𝒆 𝒌

 Expansion of displacement using SEREP: kinds of least-squares surface fitting; most 
accurate reduction-expansion technique
 𝒒𝑴𝒆 𝒌: master DOF at discrete time k; deflection along the fiber “computed 

from the first step”

 𝒒𝑴 𝒌 = 𝚽𝑴 𝚽𝑴
𝑻 𝚽𝑴

−𝟏
𝚽𝑴

𝑻 𝒒𝑴𝒆 𝒌: smoothed master DOF

 𝒒𝑺 𝒌 = 𝚽𝑺 𝚽𝑴
𝑻 𝚽𝑴

−𝟏
𝚽𝑴

𝑻 𝒒𝑴𝒆 𝒌: deflection and slope all over the 

structure

𝒒 𝒌 =
𝒒𝑴

𝒒𝑺 𝒌
= 𝚽 𝜼 𝒌 =

𝚽𝑴

𝚽𝑺
𝜼 𝒌

𝒒𝑴 𝒌 = 𝚽𝑴 𝜼 𝒌 𝒒𝑺 𝒌 = 𝚽𝑺 𝜼 𝒌

𝒒𝑴𝒆 𝒌 = 𝚽𝑴 𝜼 𝒌

𝜼 𝒌 = 𝚽𝑴
𝑻 𝚽𝑴

−1
𝚽𝑴

𝑻 𝒒𝑴𝒆 𝒌

𝚽𝑴
𝑻 𝒒𝑴𝒆 𝒌 = 𝚽𝑴

𝑻 𝚽𝑴 𝜼 𝒌

Z motion along the fiber
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−1
𝚽𝑴

𝑻 𝒒𝑴𝒆 𝒌

 𝜼 𝒌 = 𝚽𝑴
𝑻 𝚽𝑴

−1
𝚽𝑴
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𝜼 𝒌
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𝚽𝑺
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System Equivalent Reduction and Expansion Process

#3

𝒒𝑴𝒆 𝒌 𝒒𝑴 𝒌 𝒒𝑺 𝒌

Least-squares “surface” fitting 
using basis functions



Chan-gi Pak-9/22Structural Dynamics Group

Flow

Lift from linear panel code

aerodynamic model

X

Y

Z

Technical features of New Technology: Unsteady Aerodynamic Loads

 Rational function approximation:  Select Roger’s Approximation

 Time marching algorithm: 

𝜼 𝒌 = 𝚽𝑴
𝑻 𝚽𝑴
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𝒙 𝒌 = 𝐄 𝒙 𝒌−1 + 𝛉 𝐁
 𝜼 𝒌 +  𝜼 𝒌−1

2

𝑵 𝒌 = 𝑞𝐷 𝐃0 𝜼 𝒌 + 𝐃1  𝜼 𝒌 + 𝐃2  𝜼 𝒌 + 𝐂 𝒙 𝒌

𝐄 = 𝑒 𝐀 𝑇𝑎 𝛉 =  
0

𝑇𝑎

𝑒  𝐀 (𝑇𝑎−𝜏 𝑑𝜏 𝐀 =
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⋮
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⋮
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⋱ ⋮
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𝐁 =

𝐈
𝐈
⋮
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 𝐂 = [𝐂1 𝐂2 …𝐂𝑳𝑻 𝒙 𝒌 =

𝒙1

𝒙2

⋮
𝒙𝐿𝑇 𝑘

𝐀 𝑠 = 𝐃0 + 𝑠 𝐃1 + 𝑠2 𝐃2 +  

𝑗=1

𝐿𝑇
𝑠 𝐂𝑗

𝑠 + Ωj

Modal Aerodynamic 
Influence Coefficient Matrix

𝑸𝒂 𝒌

A rectangular matrix 𝚽 𝑻 can be inverted using 
a singular value decomposition technique.
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Drag

normal
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Drag

normal

Flow

Side view of the 
unsteady wing motion

Flow

𝑸𝒂 𝒌 = 𝚽 𝑻 −1
𝑵 𝒌

𝚽 𝑻 𝑸𝒂 𝒌 = 𝑵 𝒌

𝐌  𝒒 𝒕 + 𝐆  𝒒 𝒕 + 𝐊 𝒒 𝒕 = 𝑸𝒂(𝒕)

𝑠2 𝐌 𝚽 )𝜼(𝑠 + 𝑠 𝐆 𝚽 )𝜼(𝑠 + 𝐊 𝚽 )𝜼(𝑠 = 𝑸𝒂(𝑠)

𝑠2 𝚽 𝑻 𝐌 𝚽 )𝜼(𝑠 + 𝑠 𝚽 𝑻 𝐆 𝚽 )𝜼(𝑠 + 𝚽 𝑻 𝐊 𝚽 )𝜼(𝑠
= 𝚽 𝑻 𝑸𝒂(𝑠) = )𝑵(𝑠 = 𝑞𝐷 𝐀 𝑠 )𝜼(𝑠



Computational Validation

Cantilevered rectangular wing model
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Structural Model & Results from Modal Analysis
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 Configuration of a wind tunnel test article
 Has aluminum insert (thickness = 0.065 in ) covered with 6% circular arc cross-sectional shape 

(plastic foam)

 lumped mass weight are computed based on 6% circular-arc cross sectional shape.

 Use structural dynamic model tuning technique

 Chan-gi Pak and Samson Truong, “Creating a Test-Validated Finite-Element Model of the X-56A 
Aircraft Structure,” Journal of Aircraft, Vol. 52, No. 5, pp. 1644-1667, 2015. doi: 
http://arc.aiaa.org/doi/abs/10.2514/1.C033043

 300 beam elements for fictitious FOSS (50 per each fiber). Zero stiffness and zero weight.
 Modal analysis

 NASTRAN sol. 103

Mode 1 Mode 2 Mode 3

Measured and computed natural frequencies

Mode Measured (Hz) Computed (Hz) % Error

1 14.29 14.29 0.0

2 80.41 80.17 -0.3

3 89.80 89.04 -0.8

0.065” aluminum insert Flexible plastic foam

6% Circular arcA-A

http://arc.aiaa.org/doi/abs/10.2514/1.C033044
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CFL3D Model & Aeroelastic Analysis using CFL3D/NASTRAN

Flow direction

X
Y

Z

M=0.714 M=0.875

 CFL3D code is used to generate unsteady aerodynamic loads.
 Compute aerodynamic load vector at structural grid points. 
 The CFD grid is a multi-block (97 × 73 × 57) grid with H-H topology. 
 M=0.714 selected. Delta t =  0.000060515 sec. 10240 time steps
 The first three flexible modes are used.
 Computes deflections and velocities. (compare with NASTRAN results)

 MSC/NASTRAN sol 112: to compute unsteady strain
 Modal transient response analysis with 1024 time steps, Delta t =  0.00060515 sec.
 Force cards are obtained from CFL3D code.  Available @ CFD center points.
 Computes strain (assume measured value), deflection, velocity, & acceleration (target)

 Splines between CFL3D and NASTRAN
 Develop new approach.
 Use interpolation element, RBE3, between FE grids and CFD grids & center points.
 CFD grids: pressure 
 CFD center points: aerodynamic load vector Subsonic Transonic
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CFL3D vs. NASTRAN: deflection & velocity

qd = 1.455

(a) Deflection
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(b) Velocity
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qdf = 1.4561: Dynamic pressure for wing flutter condition
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Time Histories of Strain under Different Levels of Random White Noise

(a) Without noise
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(d) SNR = 0 dB

Rms = 3.28 E-4

 Strain is measured at the leading-
edge of wing root section (upper 
surface).

 𝑆𝑁𝑅 ≡ 20 × 𝑙𝑜𝑔10
𝜖𝑟𝑚𝑠

𝑛𝑟𝑚𝑠

 𝜖𝑟𝑚𝑠 root-mean-squared level of strain

 𝑛𝑟𝑚𝑠 root-mean-squared level of noise

 SNR value is correct near 0.33 sec.

 𝐿𝑆𝑁𝑅 ≡ 20 × 𝑙𝑜𝑔10
𝜖𝑚𝑎𝑥

𝑛𝑟𝑚𝑠

 𝜖𝑚𝑎𝑥 local maximum strain

 𝑛𝑟𝑚𝑠 root-mean-squared level of noise

 LSNR @ 0.035 sec 

 20log10(8.97/3.28) = 8.74 dB

 LSNR @ 0.24 sec

 20log10(3.95/3.28) = 1.61 dB

 LSNR @ 0.33 sec

 20log10(3.28/3.28) = 0 dB

 LSNR @ 0.59 sec 

 20log10(1.06/3.28) = -9.83 dB
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Time Histories of Z Deflection: SNR = 0 dB

 Z deflection is computed at the leading-edge of wing tip section (upper surface).
 Time interval: 0 – 0.2414 sec
 Learning period for on-line parameter estimator.
 Effect of piecewise least squares method can be observed. (first step of two step approach)

 Time interval: 0.2141 sec – 0.6 sec
 Least-squares curve fitting method is on.
 Working even with “SNR = 0 dB”

 Effect of SEREP transformation can be observed.
 SEREP transformation is a kind of least-squares surface fitting approach.
 Noise in the signal after the first step of the two step approach is further filtered using SEREP transformation.

𝒒𝑴𝒆(𝑡) =  𝒒𝑴𝒆 +  

𝑖=1

𝑛𝑚

𝑒−𝜎𝑖𝑡 {𝐴𝑖𝑐𝑜𝑠 𝜔𝑑𝑖𝑡 + 𝐵𝑖𝑠𝑖𝑛 𝜔𝑑𝑖𝑡 }

𝜼 𝒌 = 𝚽𝑴
𝑻 𝚽𝑴

−1
𝚽𝑴
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Time Histories of Z Velocity: SNR = 0 dB

 Z velocity is computed at the leading-edge of wing tip section (upper surface).

 Time interval: 0 – 0.2414 sec

 Learning period for on-line parameter estimator.

 Velocities are not computed during this period.

 Time interval: 0.2141 sec – 0.6 sec

 Least-squares curve fitting method is on.

 Working even with “SNR = 0 dB”
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 Z acceleration is computed at the leading-edge of wing tip section (upper surface).

 Time interval: 0 – 0.2414 sec

 Learning period for on-line parameter estimator.

 Accelerations are not computed during this period.

 Time interval: 0.2141 sec – 0.6 sec

 Least-squares curve fitting method is on.

 Working even with “SNR = 0 dB”

Time Histories of Z Acceleration: SNR = 0 dB

𝒒𝑴𝒆(𝑡) =  𝒒𝑴𝒆 +  

𝑖=1
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𝑒−𝜎𝑖𝑡 {𝐴𝑖𝑐𝑜𝑠 𝜔𝑑𝑖𝑡 + 𝐵𝑖𝑠𝑖𝑛 𝜔𝑑𝑖𝑡 }
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Time Histories of Total Induced Drag Load under Different Levels of Random White Noise

 Time interval: 0 – 0.2414 sec

 Learning period for on-line 
parameter estimator.

 Load computations are based on 
wing deflection only.

 Time interval: 0.2141 sec – 0.6 sec

 Least-squares curve fitting 
method is on.

 Big difference before and after the 
proposed method is on.

 Working even with “SNR = 0 dB”

 CFL3D calculation

 Subtracted 0.0353 (thickness 
effect)
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Time Histories of Total Spanwise Load under Different Levels of Random White Noise

 Time interval: 0 – 0.2414 sec

 Learning period for on-line 
parameter estimator.

 Load computations are based on 
wing deflection only.

 Time interval: 0.2141 sec – 0.6 sec

 Least-squares curve fitting method 
is on.

 Big difference before and after the 
proposed method is on.

 Working even with “SNR = 0 dB”

 CFL3D calculation

 Subtracted 0.0961 (thickness 
effect)
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Time Histories of Total Lift Load under Different Levels of Random White Noise

 Time interval: 0 – 0.2414 sec

 Learning period for on-line 
parameter estimator.

 Load computations are based 
on wing deflection only.

 Time interval: 0.2141 sec – 0.6 sec

 Least-squares curve fitting 
method is on.

 Big difference before and after 
the proposed method is on.

 Working even with “SNR = 0 
dB”
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Updating aerodynamic forces using scaling factor

 Scaling factor = 1.2649

 Pak, C.-g., “Unsteady Aerodynamic Model Tuning for Precise 
Flutter Prediction,” AIAA Journal of Aircraft, Vol. 48, No. 6, 2011, 
pp. 2178 – 2184.

 Scaling factors for the ATW2 wing were 1.2579 and 1.2719. 

 Scaling between flight test and ZAERO code based linear 
panel theory.

 Use average of 1.2579 & 1.2719 for updating the unsteady 
aerodynamic forces. 

 Scaling between CFL3D code based Euler theory and 
ZAERO code based linear panel theory.

0.2414

: CFL3D, Euler
: Current Method x 1.2649

0.2414

: CFL3D, Euler
: Current Method x 1.2649

0.2414

: CFL3D, Euler
: Current Method x 1.2649
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Conclusions
 Unsteady aerodynamic loads are computed using simulated measured strain data.

 Unsteady structural deflections are computed using the two-step approach. 

 Unsteady velocities and accelerations are computed using the ARMA model, on-line parameter estimator, low pass filter, and a least-
squares curve fitting method together with an analytical derivatives with respect to time. 

 The deflections, velocities, and accelerations at each sensor location is independent of structural and aerodynamic models. 

 The distributed strain data together with the current proposed approaches can be used as a distributed deflection, velocity, and 
acceleration sensors.

 Induced drag loads, spanwise loads, and lift loads are obtained from the orthonormalized deflection, velocity, and acceleration together 
with the following approaches.

 The modal AIC matrices are fitted in Laplace-domain using Roger’s approximation. 

 Laplace-domain aerodynamics are converted to the time-domain using time-marching algorithm. 

 Orthonormalized aerodynamic load vectors are transformed to the general coordinates using pseudo matrix inversion based on singular 
value decomposition. 

 Normal vectors to the oscillating wing surface are used to compute drag and spanwise loads.

 An active induced drag control system can be designed using these two computed aerodynamic loads, induced drag and lift, to 
improve the fuel efficiency of an aircraft.

 Interpolation elements (RBE3 in MSC/NASTRAN terminology) between structural FE grids and the CFD grids are successfully 
incorporated with the unsteady aeroelastic computation scheme. 

 The numerical issues often associated with the Harder and Desmarais surface splines technique are bypassed through the use of the 
current technique with RBE3 elements.

 The deflection, velocity, and acceleration computation based on the proposed least-squares curve fitting method are validated with respect to the 
unsteady strain with SNR of 10dB, 6dB, & 0dB (LSNR of 8.7dB to -9.8dB). 

 The most critical technology for the success of the proposed approach is the robust on-line parameter estimator since the least-squares 
curve fitting method depends heavily on aeroelastic system frequencies and damping factors.
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Roger’s Approximation
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On-line parameter estimation with and without noise
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First three damped aeroelastic frequencies

Mode

Without noise
With noise, 

SNR=10dB

FFT 

(Hz)

On-line parameter estimator

Damp. 

factor

Freq. 

(Hz)

Damp. 

factor

Freq. 

(Hz)

1 13.81 -10.02 13.88 -11.11 14.12

2 63.15 -25.46 62.73 -25.92 62.62

3 89.82 -4.187 89.44 -5.740 88.74

400 steps

900 steps

 𝑆𝑁𝑅 ≡ 20 × 𝑙𝑜𝑔10
𝜖𝑚𝑎𝑥

𝑛𝑟𝑚𝑠

 𝜖𝑚𝑎𝑥 maximum unsteady strain after 0.1 second.

 𝑛𝑟𝑚𝑠 root-mean-squared level of noise.


