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The Eye in Microgravity

Edema

Choroidal folds

Posterior Globe Flattening

Optic Nerve ‘kinking’

~Mader et al. 2011; Kramer et al. 2012
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Hypothesis

• Cephalad fluid shifts in microgravity affect 
intracranial and intraocular pressures, leading to 
altered biomechanical loads on the connective 
tissues of the posterior globe and optic nerve 
sheath. 
‒ Leads to connective tissue remodeling that persists 

upon return to 1g, which is an important contributing 
factor to vision changes seen in the VIIP syndrome.

3

~humanresearchroadmap.nasa.gov
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Goal & Approach

• Goal: To build a computational framework to 
understand the response at the optic nerve head 
(ONH) to elevations in intracranial pressure (ICP)
‒ Examine how inter-individual variations alter 

deformations

• Finite Element Analysis (FEA)
‒ Simulates effects of loads (pressures) on tissues with 

complex anatomy/material properties

‒ Previously used to understand how intraocular 
pressure (IOP) alters the strains in the lamina cribrosa

~Sigal et al. 2004; Sigal et al. 2005
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Geometric Model

Taken from Liu and Kahn 1993

• Overall Geometry
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Geometric Model

Taken from Elkington et al. 1990

• Optic Nerve Head
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Model Considerations

• Incorporate collagen fiber orientation and material 
properties
‒ Tissues: sclera, peripapillary sclera, annular ring, pia mater and 

dura mater

o Allow for us to incorporate more complex, nonlinear behavior and 
collagen fiber orientation and stiffness

‒ 3 inputs describing tissue mechanical behavior: stiffness of the 
ground substance (c1) and of the collagen fibers (c3 and c4)

LC

Annular 

Ring

Sclera

Dura Mater

~ Pijanka et al. 2012 & Zhang et al. 2015
~ Raykin et al. 2016; Raspanti et al.; 1992 Noort et al. 1980 
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Model Considerations

• Incorporate collagen fiber orientation and material 
properties
‒ Tissues: sclera, peripapillary sclera, annular ring, pia mater and 

dura mater

o Allow for us to incorporate more complex, nonlinear behavior and 
collagen fiber orientation and stiffness

‒ 3 inputs describing tissue mechanical behavior: stiffness of the 
ground substance (c1) and of the collagen fibers (c3 and c4)

• Linear-elastic, homogenous and isotropic
‒ Tissues: lamina cribrosa, optic nerve, retina and retinal vessel

o Simplifications of complex tissue behavior, but chosen due to limited 
information on the biomechanical properties

‒ 2 input parameters: stiffness (E) and tissue compressibility (ν)
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Outcome Measures

• Peak tensile and compressive strains in the prelaminar 
neural tissue, lamina cribrosa (LC) and optic nerve

Lamina 
Cribrosa

Prelaminar 
Neural Tissue

Optic
Nerve
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Latin Hypercube Sampling (LHS)

• Examine how variation in the pressures and tissue 
mechanical properties altered the strains in the optic 
nerve head (ONH)
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Peak Strain Distributions in the ONH

• Examined the histograms and cumulative distribution 
functions (CDFs) of the peak strains of the lamina 
cribrosa, optic nerve and retina from each set of input 
parameters
‒ Represents the distribution of peak strains over a population of 

individuals with our eye geometry 

~ Haslwanter 2015
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• Decrease in strains as ICP increased
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Optic Nerve
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• Strains outside the predicted 
physiological range with elevated ICP
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Prelaminar Tissue
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LHS/PRCC

• Determines how the uncertainty in each input 
parameter influenced the peak tensile and 
compressive strains 
‒ Results in a correlation coefficient (±1) for each input 

parameter to each outcome measure

‒ We ranked the magnitude of the correlation 
coefficient and summed them across each tissue 
region

‒ Normalized this ranking to the highest possible 
ranking (i.e. 138) to determine the “cumulative 
influence factor”
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Cumulative Influence Factor

• Cumulative influence 
factor for all 23 model 
inputs 

• Considered input 
parameters with an 
average cumulative 
influence factor for all 
three ICPs > 0.5 as the 
most relevant for 
influencing peak strains 
in the ONH
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Cumulative Influence Factor

• IOP and ICP had a large influence on the peak strains

• Stiffness of the optic nerve (ON), lamina cribrosa (LC), 
nerve compressibility (Poisson’s), and retina (Ret)

• Collagen fiber stiffness of the pia mater (pia c3), 
peripapillay sclera (ppSC c3)and annular ring (AR c3 & AR c4) 
had a large influence on peak strains
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Conclusions

• Examined how ICP affects the peak strains in the ONH

• Identified pressures and tissue properties that had the 
largest influence on the peak strains in the ONH

• From our CDF’s we found that c. 47% of individuals would 
experience “extreme strains” in the optic nerve
‒ These strains may induce connective tissue remodeling

o Note: This simulated population with extreme strains is coincidently 
similar to the 41% of astronauts suffering from VIIP syndrome

‒ These CDF’s also identified specific factors that are associated 
with these extreme strains 

o ICP and a weak pia mater stiffness 
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Future Work

• Examine the influence of geometry on the peak 
strains in the ONH

• Compare strains in the lamina cribrosa and optic 
nerve predicted from the computational model to 
those strains measured from elevated ICP in an 
experimental model

• Investigate how strains initiate a remodeling 
response in the optic nerve and optic nerve 
sheath
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