PROBABILISTIC MODELING OF OCULAR BIOMECHANICS IN VIIP: RISK STRATIFICATION

A. Feola¹, J.G. Myers², J. Raykin¹, E.S. Nelson², L. Mulugeta³, B. Samuels⁴, C.R. Ethier¹

¹Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA; ²NASA Glenn Research Center, Cleveland, OH; ³Universities Space Research Association, Houston, TX; ⁴Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL

The Eye in Microgravity

Edema

Choroidal folds

Posterior Globe Flattening Optic Nerve 'kinking'

Hypothesis

• Cephalad fluid shifts in microgravity affect intracranial and intraocular pressures, leading to altered biomechanical loads on the connective tissues of the posterior globe and optic nerve sheath.

Goal & Approach

- <u>Goal:</u> To build a computational framework to understand the response at the optic nerve head (ONH) to elevations in intracranial pressure (ICP)
 - Examine how inter-individual variations alter deformations
- <u>Finite Element Analysis</u> (FEA)
 - Simulates effects of loads (pressures) on tissues with complex anatomy/material properties
 - Previously used to understand how intraocular pressure (IOP) alters the strains in the lamina cribrosa

Geometric Model

Taken from Liu and Kahn 1993

Geometric Model

• Optic Nerve Head

Taken from Elkington et al. 1990

Model Considerations

- Incorporate collagen fiber orientation and material properties
 - **Tissues:** sclera, peripapillary sclera, annular ring, pia mater and dura mater
 - Allow for us to incorporate more complex, nonlinear behavior and collagen fiber orientation and stiffness
 - 3 inputs describing tissue mechanical behavior: stiffness of the ground substance (c_1) and of the collagen fibers $(c_3 \text{ and } c_4)$

~ Pijanka et al. 2012 & Zhang et al. 2015

<u>Dura Mater</u>

~ Raykin et al. 2016; Raspanti et al.; 1992 Noort et al. 1980 7

Model Considerations

- Incorporate collagen fiber orientation and material properties
 - **Tissues:** sclera, peripapillary sclera, annular ring, pia mater and dura mater
 - $\,\circ\,$ Allow for us to incorporate more complex, nonlinear behavior and collagen fiber orientation and stiffness
 - 3 inputs describing tissue mechanical behavior: stiffness of the ground substance (c_1) and of the collagen fibers $(c_3 \text{ and } c_4)$
- Linear-elastic, homogenous and isotropic
 - Tissues: lamina cribrosa, optic nerve, retina and retinal vessel
 - Simplifications of complex tissue behavior, but chosen due to limited information on the biomechanical properties
 - 2 input parameters: stiffness (E) and tissue compressibility (v)

Outcome Measures

• Peak tensile and compressive strains in the prelaminar neural tissue, lamina cribrosa (LC) and optic nerve

Latin Hypercube Sampling (LHS)

• Examine how variation in the pressures and tissue mechanical properties altered the strains in the optic nerve head (ONH)

Peak Strain Distributions in the ONH

- Examined the histograms and cumulative distribution functions (CDFs) of the peak strains of the lamina cribrosa, optic nerve and retina from each set of input parameters
 - Represents the distribution of peak strains over a population of individuals with our eye geometry

Lamina Cribrosa

Optic Nerve

LHS/PRCC

- Determines how the uncertainty in each input parameter influenced the peak tensile and compressive strains
 - Results in a correlation coefficient (±1) for each input parameter to each outcome measure
 - We ranked the magnitude of the correlation coefficient and summed them across each tissue region
 - Normalized this ranking to the highest possible ranking (i.e. 138) to determine the "cumulative influence factor"

Cumulative Influence Factor

 Cumulative influence 0 0.2 factor for all 23 model IOP inputs **ON Modulus LC Modulus** ICP Poisson's Considered input AR c_3 Pia c₃ parameters with an Prelaminar Modulus ppSC c_3 average cumulative AR c₄ influence factor for all **RV Modulus** Dura three ICPs > 0.5 as the AR c₁ most relevant for Pia c₄ Pia c₁ influencing peak strains ppSC c_4 MAP in the ONH ppSC c_1

Cumulative Influence Factor

- IOP and ICP had a large influence on the peak strains
- Stiffness of the optic nerve (ON), lamina cribrosa (LC), nerve compressibility (Poisson's), and retina (Ret)
- Collagen fiber stiffness of the pia mater (pia c_3), peripapillay sclera (ppSC c_3)and annular ring (AR c_3 & AR c_4) had a large influence on peak strains

Conclusions

- Examined how ICP affects the peak strains in the ONH
- Identified pressures and tissue properties that had the largest influence on the peak strains in the ONH
- From our CDF's we found that c. 47% of individuals would experience "extreme strains" in the optic nerve
 - These strains may induce connective tissue remodeling
 - Note: This simulated population with extreme strains is coincidently similar to the 41% of astronauts suffering from VIIP syndrome
 - These CDF's also identified specific factors that are associated with these extreme strains

 $\circ\,$ ICP and a weak pia mater stiffness

Future Work

- Examine the influence of geometry on the peak strains in the ONH
- Compare strains in the lamina cribrosa and optic nerve predicted from the computational model to those strains measured from elevated ICP in an experimental model
- Investigate how strains initiate a remodeling response in the optic nerve and optic nerve sheath

Acknowledgements

- In-flight measurements
 - Lifetime Surveillance of Astronaut Health Program, NASA Johnson Space Center
- Personnel
 - DeVon Griffin
 - Beth Lewandowski
 - Wafa Taiym
- Financial Support
 - NASA (NNX13AO91G)
 - Georgia Research Alliance

