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Acronym List
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Acronym Definition Acronym Definition

ABS() Absolute Value GSFC Goddard Space Flight Center

AS&D ASRC Federal Space and Defense H Horrizontal

AUC Area Under Curve ICA Independent Component Analysis

CERBM Complex Entropy Rate Bound Minimization INR Interference to Noise Ratio

CONUS Continental United States NASA National Aeronautics and Space Administration

CQAMSYM Complex Quadrature Amplitude Modulation NCCFASTICA Non Circular Complex Fast ICA

CSK Complex Signal Kurtosis PI Principal Investigator

CW Continuous Wave QPSK Quadrature Phase Shift Keying)

dB Decibel RADAR RAdio Detection And Ranging

DDC Digital Down Converter RF Radio Frequency

DSP Digital Signal Processing RFI Radio Frequency Interference

DVB-S2 Digital Video Broadcasting - Satellite - Second Generation ROACH Reconfigurable Open Architecture Computing Hardware 

ERBM Entropy Rate Bound Minimization ROC Receiver Operating Characteristic

ESTO Earth Science Technology Office RRCOS Root Raise Cosine

FB Full Band RSK Real Signal Kurtosis

FPGA Field Programmable Gate Array SB Sub Band

Gbps Billions of Bits per Second SERDES Serializer / Deserializer

GMI GPM Microwave Imager SMAP Soil Moisture Active Passive

GPM Global Precipitation Measurement V Vertical



Motivation

• Unmitigated RFI (Radio Frequency Interference) 
can cause errors in science measurements
– L- and C-Band: soil moisture measurements over land
– L-, C- and X-band: ocean salinity, sea surface 

temperature, wind speed direction
– K band: water vapor, liquid water

• Approach
– RF front end development for 18 GHz (K band)

• These allocations are known to be corrupted by direct 
broadcast services

– Digital back end to allow sophisticated RFI detection 
and mitigation techniques
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L, X band RFI
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RFI from Geosynchronous Satellites 
Reflecting from the Surface

18 V Maximum of daily average RFI index

The 18 GHz Channel sees significant RFI from surface reflections around 
CONUS (Continental United States) and Hawaii 
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Picture from David W. Draper, [1]

GMI 
data



Real Signal Kurtosis (RSK)
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RSK [2] is used on SMAP [3] to help flag measurements that are contaminated with RFI 



Real Signal Kurtosis (RSK)

Given a complex baseband signal 𝑧 𝑛 = 𝐼 𝑛 + 𝑗𝑄 𝑛 , the fourth

standardized moment is computed independently for both the real

and imaginary vectors, I and Q, as was used in SMAP[3].

RSKI =
𝔼[ I−𝔼 I 4]

𝔼 (I−𝔼[I]) 2 − 3 ,     RSKQ =
𝔼[ Q−𝔼 Q 4]

𝔼 (Q−𝔼[Q]) 2 − 3

The test statistic, RSK [2,3] (Real Signal Kurtosis), is then defined as

RSK =
|RSKI|+|𝑅𝑆𝐾𝑄|

2
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Complex Signal Kurtosis

Given a complex baseband signal 𝑧 𝑛 = 𝐼 𝑛 + 𝑗𝑄(𝑛), moments 𝛼ℓ,𝑚 of 𝑧(𝑛) are defined as 

𝛼ℓ,𝑚 = 𝔼 (𝑧 − 𝔼 𝑧 )ℓ(𝑧 − 𝔼 𝑧 )∗𝑚 , ℓ ,𝑚 ∈ ℝ ≥ 0

With 𝜎2 = 𝛼1,1 , Standardized moments 𝜚ℓ,𝑚 can then be found as

𝜚ℓ,𝑚 =
𝛼ℓ,𝑚
𝜎ℓ+𝑚

Leading to the CSK (Complex Signal Kurtosis) RFI test statistic used [4].

𝐶𝐾 =
𝜚2;2 − 2 − 𝜚2;0

2

1 +
1
2
𝜚2;0

2
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Complex signal kurtosis (CSK) [4] is used to improve ability of the digital radiometer 
to detect RFI. It makes use of additional information in complex signals.
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ROACH2 Implementation of RFI 
Detection Algorithms

• As a base line, a modified version of the Soil Moisture Active 
Passive Mission (SMAP) digital signal processing architecture 
was implemented in the Reconfigurable Open Architecture 
Computing Hardware (ROACH2) with a bandwidth of 24 MHz 
and verified using test signals generated. [5,6]

• This architecture provided outputs for the real and complex 
kurtosis statistical computations at 24 MHz 

• The architecture was then implemented and verified at 200 
MHz bandwidth in the ROACH2

• The real and complex kurtosis were also computed using 
outputs from the 200 MHz bandwidth architecture
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ROACH2 Hardware Description 
Two 4x 10 Gigabit Ethernet Cards

Xilinx FPGA

DDR RAM

DAC

ADC

PowerPC

2 (1 Gigabit) Ethernet Ports to FPGA and PowerPC

Main Board

ZDOK Expansion
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SMAP Modified DSP Architecture at 
Faster Sampling Rate

• The FPGA clock speed was increased from 96 MHz to 200 
MHz (ratio of 1 : 2.08)

• The ADC sampling rate was increased from 96 MHz to 800 
MHz (ratio of 1 : 8.33)
– Two ADCs clocked at 800 MSPS each
– Each channel has a 1 : 4 SERDES (Serializer/Deserializer) 

reception
• The FPGA reads four samples from each channel every clock cycle

• The DSP (Digital Signal Processing) algorithm had to be 
parallelized to handle the data throughput
– A SERDES block natively implements the first stage of a 

polyphase decomposition
– The down-sampling is now performed before modulation and 

filtering, but the entire system input / output is identical
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Modified DSP Architecture 
at Faster Sampling Rate
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Wideband RFI Telemetry - RSK

3

4
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Q
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Moments m1-m4 used to 
compute Real Kurtosis

Used to produce 3rd

and 4th Stokes 
parameters

H and V Cross-Correlation
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Wideband RFI Telemetry - CSK
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Additional Moments 
for Complex Kurtosis

Moments m1-m4 used to 
compute Real Kurtosis

Used to produce 3rd

and 4th Stokes 
parameters

• +4 moments per Polarization [6]
• Extension on moments for real 

kurtosis

H and V Cross-Correlation
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ROC Curves and AUC
• Each point on an ROC curve can be 

represented by the set {FAR, PD}
– {False alarm Rate , Probability of Detection}

• ROC curves will generate from (0,0) to 
(1,1) by varying the threshold

• Poor detectors are close to the 1:1 line

• Better detectors show higher PD and 
smaller FAR 

• Figure of Merit = Area Under Curve (AUC)
– 0.5≤AUC ≤1 

– When AUC = 0.5 detector does not work

– When AUC = 1 the detector works perfectly

ROC curve example, from [7].
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Simulation Results
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Sub Band

Full Band

Smaller duty cycles are easier to detect;
sub-banding improves detection [6].
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Simulation Results
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CSK

Sub Band 
PCW

Full Band 
PCW

Sub Band CW

Wide 
Band

Full Band CW

RSK

• Wide Band revers to QPSK with a RRCOS filter simulating a DVB-S2 Channel, 
• Band occupancy = 0.0375 Fs , Carrier = 0.175 Fs

• Using Monte Carlo Simulations, INR is swept is for different types of RFI modulations.
• Algorithms are compared by looking at INR when AUC = 0.75 .
• CSK shows improved detection over RSK.
• PCW is easiest to detect. Wideband is hardest to detect [6].



AUC Results: Kurtosis As 
Detector

Kurtosis yields 
poor detector 
for CW and 
Wide Band RFI

Kurtosis yields 
good detection 
for PCW (Such 
as RADAR)
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Sub-banding Verification with 
Chirp

• 200 MHz BW
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Channelized Complex Kurtosis

Visual Verification of 
channelization.

Deviation away from 0 
means interference is 
detected.
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Hardware Results
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Sub banding decreased 
detection on wide band RFI

Sub banding improved detection 
on narrow band RFI



Independent Component Analysis
• ICA [8] uses higher order statistics to perform blind source separation

• This suggests it may be useful for separating RFI from Gaussian noise in the 
radiometry context.

• We assume noise and RFI are statistically independent sources, mixing is linear, 
sources are non Gaussian

• Mixture model:  x = As, observe x

•  𝒔 = Wx,  𝒔 is the estimated independent source

Observation vector x

Linear Mixing 
A

Linear 
Un-mixing 

W

Source vector s

Original 
sources/signals

 𝑠1(𝑛)

 𝑠2(𝑛)

 𝑠3(𝑛)

 𝑠4(𝑛)

𝑠1(𝑛)

𝑠2(𝑛)

𝑠3(𝑛)

𝑠4(𝑛)

𝑥3(𝑛)

𝑥4(𝑛)

𝑥2(𝑛)

𝑥1(𝑛)

Estimated vector  𝒔

Estimated 
sources/signals
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ICA Algorithm
𝑥HI 0 𝑥HI 1 … 𝑥HI 𝑁 − 1

𝑥HQ 0 𝑥HQ 1 … 𝑥HQ 𝑁 − 1

𝑥VI 0 𝑥VI 1 … 𝑥VI 𝑁 − 1

𝑥VQ 0 𝑥VQ 1 … 𝑥VQ 𝑁 − 1

=

𝑎00 𝑎01 𝑎02 𝑎03
𝑎10 𝑎11 𝑎12 𝑎13
𝑎20 𝑎21 𝑎22 𝑎23
𝑎30 𝑎31 𝑎32 𝑎33

𝑠0,0 𝑠0,1 𝑠0,2 𝑠0,3 … 𝑠0,𝑁−1
𝑠1,0 𝑠1,1 𝑠1,2 𝑠1,3 … 𝑠1,𝑁−1
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3 … 𝑠2,𝑁−1
𝑠3,0 𝑠3,1 𝑠2,2 𝑠3,3 … 𝑠3,𝑁−1

Independent ComponentsObservations Mixing Matrix

Are components  𝒔𝒊
in  𝐒 independent?

 𝐒 =  𝐖𝒙

Update  𝐖
No

Yes

Use  𝐒

Measured 𝒙

𝒙 =As
𝑾 = 𝑨−𝟏

𝐬 = 𝐖𝐱

• Actual Signals, S , are 
mixed by mixing matrix, 
A, and observed as X

• We pick a matrix ,  𝐖 , 
that gives us back our 

estimated signals,  𝐒

ICA 
Input

ICA 
Output

Find A matrix to transform X into S
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Signal Model

Gaussian Noise

Interference

• Assumptions
– Gaussian Noise between H and V 

polarizations is Independent and 
Uncorrelated

– Interference is circularly polarized

𝑥H 𝑡 = rfi 𝑡 + wgn1 𝑡

𝑥V 𝑡 = rfi 𝑡 𝑒
−

𝑖𝜋
2 +wgn2 𝑡

CW Example:

𝑥H 𝑡 = 𝑎 sin 𝜔0𝑡 + w2 𝑡 ∗ ℎ(𝑡)

𝑥v 𝑡 = 𝑎 sin 𝜔0𝑡 − 𝜋/2 + w2 𝑡 ∗ ℎ(𝑡)
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ICA RFI Detection

𝑠0 0 𝑠0 1 … 𝑠0 N − 1

𝑠1 0 𝑠1 1 … 𝑠1 N − 1

𝑠2 0 𝑠2 1 … 𝑠2 N − 1

𝑠3 0 𝑠3 1 … 𝑠3 N − 1

max
𝑘

{ABS(RSKk – 3)}

ICA 
Detector 
Output

Kurtosis

Kurtosis

Kurtosis

Kurtosis

RSK0

RSK1

RSK2

RSK3

Step 1: Take Kurtosis of each estimated 
independent component vector Step 2: Select the kurtosis value that 

deviated the furthest from 3

ICA Output
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AUC Results- ICA Performance - PCW
+2dB INR Gain,
Real Signal Kurtosis with 
FastICA performs just as well as 
other algorithms for PCW

RSK = Real Signal Kurtosis
CSK = Complex Signal Kurtosis
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CSK robustica
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CSK direct 

RSK direct 

ICA Performance, PCW d = 1%, N = 9000

Various ICA algorithms are tested [9,10,11,12,13,14,15,16,17].
No ICA pre-processing is done on ‘direct’ data sets.



AUC Results- ICA Performance - CW

+2dB INR Gain,
Complex Signal Kurtosis with 
Complex ICA Algorithms 
Performs Best on CW

RSK = Real Signal Kurtosis
CSK = Complex Signal Kurtosis
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ICA Performance, CW d = 100%, N = 9000

Various ICA algorithms are tested [9,10,11,12,13,14,15,16,17].
No ICA pre-processing is done on ‘direct’ data sets.



AUC Results – ICA Performance – Wide Band

+2dB INR Gain,
Complex Signal Kurtosis with 
Complex ICA Algorithms 
Performs Best on Wideband

RSK = Real Signal Kurtosis
CSK = Complex Signal Kurtosis
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Various ICA algorithms are tested [9,10,11,12,13,14,15,16,17].
No ICA pre-processing is done on ‘direct’ data sets.



Conclusions

• CSK provides better detection over RSK

• ICA allowed equivalent detection at about 2dB 
lower INR when used as a preprocessor for 
RSK and CSK normality tests

• ICA performance mainly limited due to an 
underdetermined observation matrix

• May be more suitable to systems with a 
greater number of observation channels
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ICA Algorithms Used

• Fast ICA (FASTICA) [9,15]
– A. Hyvärinen. “Fast and Robust Fixed-Point Algorithms for Independent Component Analysis”, IEEE 

Transactions on Neural Networks 10(3):626-634, 1999.

• Robust ICA (ROBUSTICA) [10,16]
– V. Zarzoso and P. Comon, "Robust Independent Component Analysis by Iterative Maximization of the 

Kurtosis Contrast with Algebraic Optimal Step Size", IEEE Transactions on Neural Networks, Vol. 21, No. 2, 
February 2010, pp. 248-261.

• Non Circular Complex Fast ICA (NCCFASTICA) [11,17]
– Mike Novey and T. Adali, "On Extending the complex FastICA algorithm to noncircular sources" IEEE Trans. 

Signal Processing, vol. 56, no. 5, pp. 2148-2154, May 2008.

• Entropy Rate Bound Minimization (ERBM) [12,17]
– X.-L. Li, and T. Adali, "Blind spatiotemporal separation of second and/or higher-order correlated sources by 

entropy rate minimization," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), Dallas, TX, 
March 2010.

• Complex Quadrature Amplitude Modulation (CQAMSYM) [13,17]
– Mike Novey and T. Adali, "Complex Fixed-Point ICA Algorithm for Separation of QAM Sources using Gaussian Mixture 

Model" in IEEE Conf. ICASSP 2007

• Complex Entropy Rate Bound Minimization (CERBM) [14,17]
– G.-S. Fu, R. Phlypo, M. Anderson, and T. Adali, "Complex Independent Component Analysis Using Three Types of 

Diversity: Non-Gaussianity, Nonwhiteness, and Noncircularity," IEEE Trans. Signal Processing, vol. 63, no. 3, pp. 794-
805, Feb. 2015.
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