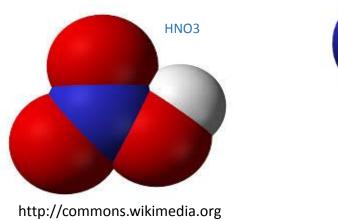


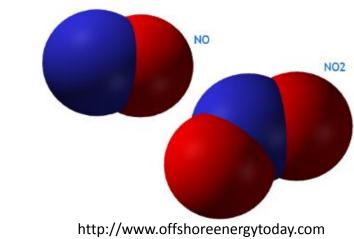
Alternative to Nitric Acid Passivation

NASA Corrosion Technology Laboratory (CTL) & NASA Technology Evaluation for Environmental Risk Mitigation (TEERM)

2016 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ALTERNATIVE ENERGY October 20, 2016

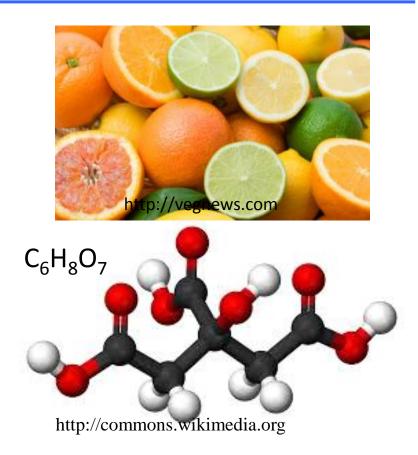
- Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
- The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel.
- It is vital to reduce corrosion costs and risks in a sustainable manner.



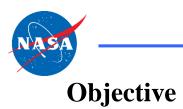


- Nitric acid passivation results in fumes that contain nitrogen dioxide and nitrogen oxide (NOx) emissions which are considered greenhouse gases; Best Available Technology (BAT) to be employed to control nitric acid and NOx emissions
- Nitric acid passivation requires 25% or 50% concentration of the strong acid.
- Wastewater generated from the passivation process is regulated under the U.S. Environmental Protections Agency's (EPA) Metal Finishing Categorical Standards
- Nitric acid can remove beneficial heavy metals (nickel, chromium, etc.) that give stainless steel its desirable properties.

- Citric acid passivation is allowed per:
 - ASTM A 967 (Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts)
 - AMS 2700 (Passivation Treatments for Corrosion-resistant Steel)
- Citric acid passivation is not a new technology; it was developed (many years ago) for the beverage industry in Germany to process containers that were free of iron which causes an unwanted taste to the beverage.
- While citric acid use has become more prominent in industry in the U.S., there is little evidence that citric acid is a technically sound passivating agent, especially for the unique and critical applications encountered by NASA and ESA.



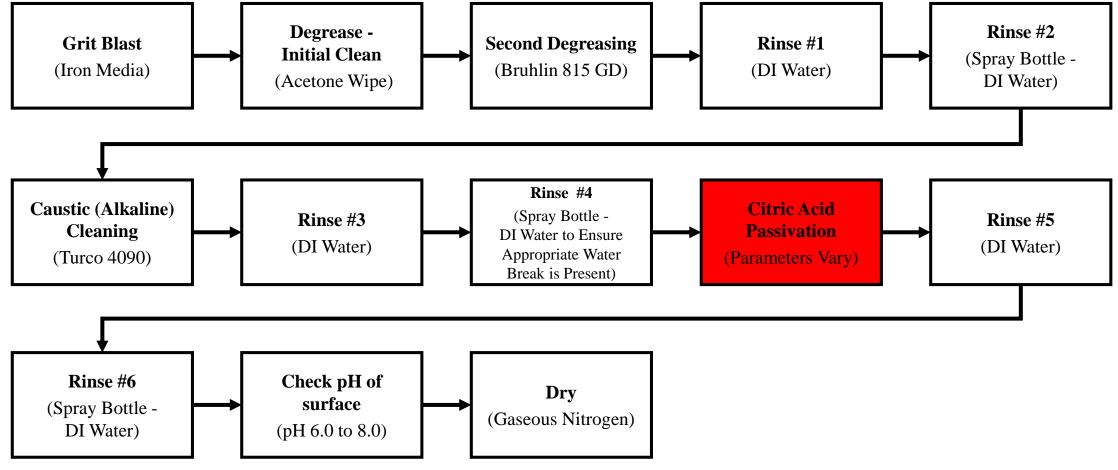
TEERN


Benefits of Citric Acid Passivation

- Citric acid is a bio-based material that helps government agencies meet the procurement requirements of the Farm Security and Rural Investment Act of 2002
- There are no toxic fumes created during the citric acid passivation process making it safer for workers.
- Nitric acid passivation requires 25% or 50% concentrations of the strong acid which are extremely corrosive and hazardous to workers.
- Citric acid removes iron from the surface more efficiently than nitric acid and therefore uses much lower concentrations reducing material costs.
- Citric acid-based processing baths retain their potency for longer periods requiring less frequent refilling and reduced volume and potential toxicity of effluent and rinse water.

TEERM

• The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.

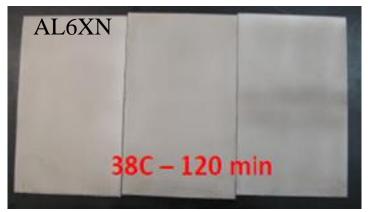


Test Specimen Preparation

The NASA Corrosion Technology Lab followed the United Space Alliance (USA) procedure for passivation:

Parameter Optimization

Test panels of each stainless steel alloy were prepared using various process parameters

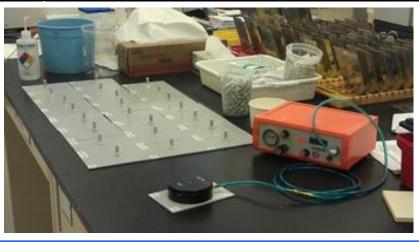

- Citric Acid Concentration: <u>4%</u> ONLY in this phase
- Immersion Times: 60, 90, and 120 minutes
- Bath Temperatures: 38°C (100°F), 60°C (140°F), and 82°C (180°F)
- Salt Spray Testing per ASTM B 117
- Corrosion Resistance Evaluation every 168 hours up to 504 hours of salt spray testing
- Parameters resulting in the best corrosion resistance shall be used for preparation of that substrate's test panels for the remainder of the testing

Process Parameters Used for Testing								
Alloy	Passivation	Concentration (%)	Bath Temperature (°C)	Dwell Time (minutes)				
AL6XN	Nitric Acid	22.5	60	20				
	Citric Acid	4	38	120				
1096	Nitric Acid	50	64	30				
A286	Citric Acid	4	82	60				
304	Nitric Acid	22.5	60	20				
304	Citric Acid	4	49	120				
17 (DU ¹	Nitric Acid	50	64	30				
17-4PH ¹	Citric Acid	4	38	30				
316	Nitric Acid	22.5	60	20				
	Citric Acid	4	60	90				
321	Nitric Acid	22.5	60	20				
321	Citric Acid	4	82	60				
410	Nitric Acid	50	64	30				
410	Citric Acid	4	82	60				
440C	Nitric Acid	50	64	30				
440C	Citric Acid	4	60	60				
15 5DU	Nitric Acid	50	64	30				
15-5PH	Citric Acid	4	82	60				
17 7 DII	Nitric Acid	50	64	30				
17-7 PH	Citric Acid	4	82	60				
		rameters were initially	determined by USA ed by KSC Corrosion Lab					

@ 504 Hours of ASTM B117 Exposure

@ 504 Hours of ASTM B117 Exposure

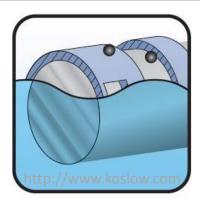
Test	Test Methodology References	Acceptance Criteria	Location						
X-Cut Adhesion by Wet Tape	ASTM D 3359		NASA Corrosion						
Tensile (Pull-off) Adhesion	ASTM D 4541								
Cyclic Corrosion Resistance	GMW 14872		Technology Lab						
	ASTM D 610		NASA Corrosion						
Atmospheric Exposure Testing	ASTM D 714		Technology Lab						
	NASA-STD-5008		Atmospheric Exposure Site						
	ASTM B 117	Alternative performs as well							
	ASTM E 4	or better than control process							
Streeps Correction Creations	ASTM E 8								
Stress Corrosion Cracking	ASTM G 38		NASA Corrosion						
	ASTM G 39		Technology Lab						
	ASTM G 44 MSFC-STD-3029								
Fatigue*	ASTM E 466								
Hydrogen Embrittlement**	ASTM F 519								
* = Only one alloy was tested; 1	7-4PH	· · · · ·							
** = Test specimens were made of AISI 4340 alloy steel, this is considered worst case									


Overall Test Results

4% Citric Acid

Test	Citric Acid Performance						
X-Cut Adhesion by Wet Tape	Performs as well or better than control process for all alloys						
Tensile (Pull-off) Adhesion	Performs as well or better than control process for all alloys						
Cyclic Corrosion Resistance	Performs as well or better than control process for all alloys	National Aeronautics and Space Administration John F. Kennedy Space Center					
Atmospheric Exposure Testing ¹	Performs as well or better than control process for the majority of alloys	Corrosion Technology					
Stress Corrosion Cracking	Performs as well or better than control process for all alloys	Laboratory					
Fatigue ²	Performs as well or better than control process for all alloys	Beach Atmospheric					
Hydrogen Embrittlement ³	Performs as well or better than control process for all alloys	Exposure Site					
1 = 17-4PH panels processed the	•						
2 = Only one alloy was tested; 17	= Only one alloy was tested; 17-4PH						

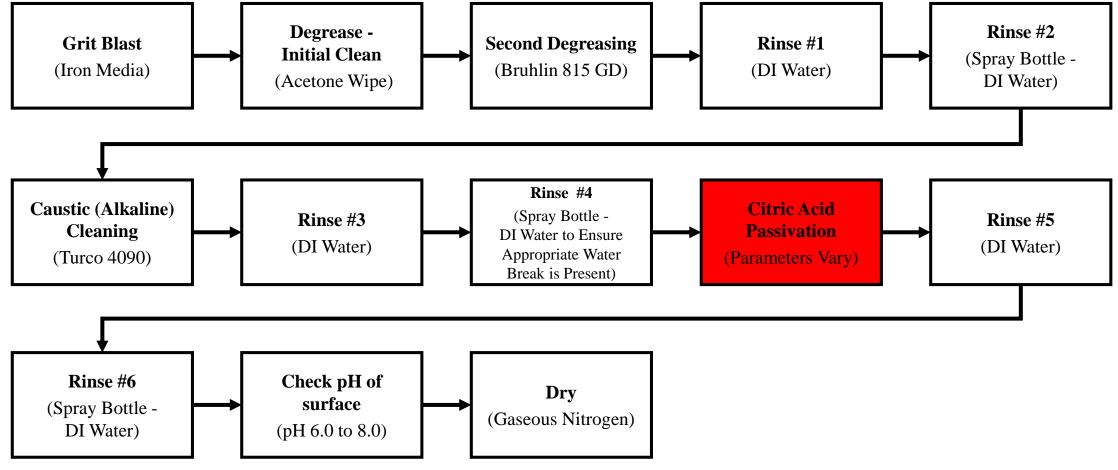
3 = Test specimens were made of AISI 4340 alloy steel, this is considered worst case



Expanded Scope to Evaluate 7% and 10% Citric Acid Concentration

Alloy	Passivation	Concentration (%)			Bath Temperature (°C)			Dwell Time (minutes)		
304		4	7	10	38	60	82	60	90	120
316		4*	7	10	38	60	82	60	90	120
321		4*	7	10	38	60	82	60	90	120
13-8PH		4	7	10	38	60	82	60	90	120
15-5PH	Citric Acid	4*	7	10	38	60	82	60	90	120
17-4PH] [4	7	10	38	60	82	60	90	120
17-7PH		4*	7	10	38	60	82	60	90	120
A286] [4	7	10	38	60	82	60	90	120
AL6XN		4	7	10	38	60	82	60	90	120

* Optimization testing completed in a previous project



Test Specimen Preparation

The NASA Corrosion Technology Lab followed the United Space Alliance (USA) procedure for passivation:

Parameter Optimization

Test panels of each stainless steel alloy were prepared using various process parameters

- Citric Acid Concentration: 4% (limited alloys), 7% and 10%
- Immersion Times: 60, 90, and 120 minutes
- Bath Temperatures: 38°C (100°F), 60°C (140°F), and 82°C (180°F)
- Salt Spray Testing per ASTM B 117
- Corrosion Resistance Evaluation after 2 hours of salt spray testing
 - SAE AMS 2700 & ASTM A967 = No signs of red rust or staining associated with free iron particles shall be observed
- Salt Spray Testing continued for an additional 166 hours

Salt Spray Results

- 168 hours of exposure
- 3 panels were tested per parameter set
- **RED** = 1 or more panels showed evidence of rusting
- **GREEN** = all 3 panels showed no signs of rusting

Alloy	Parcipation	Concentration	Bath Tamparature	Dwell Time (minutes)			
Alloy	1 assivation		Datii Temperature	60	90	120	
			38				
		4%	60				
			82				
			38				
304	Citric Acid	7%	60				
			82				
			38				
		10%	60				
			82				
		4%*					
			38				
		7%	60				
316	Citric Acid		82				
		10%	38				
			60				
			82				
	Citric Acid	4%*					
		7%	38				
			60				
321			82				
			38				
		10%	60				
			82				
			38				
	Citric Acid	4%	60				
		70	82				
			38				
13-8PH		ric Acid 7%	60				
			82				
			38				
		10%	60				
			82				
		4%*					
		170	38				
		7%	60				
15-5PH	Citric Acid		82				
			38				
		10%	60				
		1070	82				

Alloy	Dessiration	Concentration	Bath Temperature	Dwell Time (minutes)			
Alloy	Passivation	Concentration	Baun Temperature	60	90	120	
			38				
		4%	60				
			82				
			38				
17-4PH	Citric Acid	7%	60				
			82				
			38				
		10%	60				
			82				
		4%*					
			38				
		7%	60				
17-7PH	Citric Acid		82				
		10%	38				
			60				
			82				
		4%	38				
			60				
			82				
			38				
A286	Citric Acid	7%	60				
			82				
		10%	38				
			60				
			82				
			38				
		4%	60				
			82				
			38				
AL6XN	Citric Acid	7%	60				
		-	82				
			38				
		10%	60				
			82				
* Ontimi	zation testing	completed in a	previous project				

- Regardless of alloy, higher citric acid concentrations, temperatures, and bath dwell times yielded the best results
- There is clear evidence that 38°C (100°F) had a significantly greater number of failures than either 60°C (140°F) or 82°C (180°F)
- When differentiating between 60°C and 82°C, there is not enough proof to signify that 82°C is better than 60°C because there is only a 1 percent difference in the failure data
- Increasing temperature increased difficulty in panel processing
- When scaled to an industrial process, the 82°C baths would require constant replenishing.
- Longer immersion times showed a positive trend in pass rates; 120 minutes may be the optimal immersion time.

Next Phase – Validation Testing

Test	Corrosion Protection	Requirement	Test Methodology	Evaluation	Acceptance Criteria
Salt Spray	Passivation Only	SAE AMS 2700	ASTM B 117	ASTM D 610	
Salt Spray	Passivation + Primer & Topcoat	NASA-STD-5008	ASTM B 117	ASTM D 1654	Alternative performs
Tensile (Pull-off) Adhesion	Passivation + Primer	NASA-STD-5008	ASTM D 4541	ASTM D 4541	as well or better
Atmographaria Exposure Testing	Passivation Only	NASA-STD-5008	ASTM D 1014	ASTM D 610	than control process
Aunospheric Exposure resulig	Passivation Only Passivation + Primer & Topcoat	NASA-51D-3006	AS IN D 1014	ASTM D 1654	

Laboratory Beach Atmospheric Exposure Site

Authorized Personnel Only

Questions?

Kurt Kessel Kurt.r.kessel@nasa.gov 321-867-8480

