

Vibration control via stiffness switching of magnetostrictive transducers

Justin J. Scheidler

Universities Space Research Association NASA Glenn Research Center Materials & Structures Division Rotating & Drive Systems Branch Cleveland, OH 44135

Vivake M. Asnani

NASA Glenn Research Center Materials & Structures Division Rotating & Drive Systems Branch Cleveland, OH 44135

Marcelo J. Dapino

The Ohio State University Department of Mechanical & Aerospace Engineering Columbus, OH 43210

Acknowledgements:

- NASA Revolutionary Vertical Lift Technology Project
- NASA Aeronautics Scholarship Program
- NSF I/UCRC on Smart Vehicle Concepts

- Introduction
- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Introduction

- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Introduction

Motivation

- Many power generation and transmission systems generate excessive noise and vibration
 - exacerbated by lightweighting
- Semi-active vibration control often relies on stiffness tuning
- Magnetostrictive transducer developed for real-time stiffness control

Objectives

- Apply the dynamically-tunable transducer to switched-stiffness vibration control
- Compare the performance to electrical shunting techniques

National aeronautics security goals¹

reduce main rotor gearbox noise by 20 dB reduce vibratory loads by 30% reduce cabin noise below 77 dB

NASA's Rotary Wing project goal²

1. Security and Homeland Defense Goal #2, 2010 National Aeronautics R&D Plan

2. Subsonic Rotary Wing Project goals, 2011 ARMD Program and Project overview

Stiffness tuning of magnetostrictive materials

Material characteristics

- 2-way coupling of magnetic and mechanical states
- Non-contact operation, inherent active behavior, and no aging

key properties of common magnetostrictive materials.			
	Terfenol-D ³	Galfenol ^{4,5}	
Frequency bandwidth, Hz	≈2e4	≈2e3	
Young's Modulus, GPa (tunable range)	15–110	35–70	
Tensile strength, MPa	40	350	
Energy conversion factor	0.7–0.8	0.6–0.7	
Temp. limits, °C (lower/upper)	<-20 / 380	<-20 / 670	

- 3. ETREMA Products, Inc., "Terfenol-D physical properties," online, 2015.
- 4. ETREMA Products, Inc., "Galfenol physical properties," online, 2015.
- 5. Atulasimha, J. & Flatau, A.B., Smart Mater. & Struct. 20(4), 2011.

+ 49% to 64% theoretically possible^{3,4}

$$\Delta E = \frac{\frac{Metric}{E_{max} - E_{min}}}{E_{max}}$$

E = Young's modulus

- Introduction
- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Model development

- Newton's 2nd law coupled with nonlinear electromechanical transducer model
- Assumption: transducer has no internal loss
 - Terfenol-D selected over Galfenol
- Magnetostrictive force generated by current

 $\uparrow F$

m

Ftrans

 $\uparrow x$

Model development

8

- Introduction
- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Switched-stiffness vibration control law

- Potential energy decreases at displacement maxima
- Switching bandwidth > 4 times vibration frequency

Switched-stiffness vibration control

Mechanical resonance induced by the control due to the magnetostrictive force.

11

- Introduction
- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Voltage-controlled stiffness switching

- Control of undamped, free vibration studied
- F_{mag} prevents
 complete
 vibration
 attenuation
- Performance may improve if current controlled

Voltage-controlled stiffness switching

Voltage-controlled stiffness switching

- Controlled response calculated after F_{mag} artificially removed
- Effective viscous damping factors calculated by logarithmic decrement

	Effective Viscous Damping Factor
Controlled Response 1	0.25
Controlled Response 2	0.19
Controlled Response 2 (Fmag removed)	0.02

- Introduction
- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Comparison to shunting techniques

- Voltage-controlled switching compared to...
 - Shunt-controlled switching
 - Open circuit to short circuit
 - Open circuit to optimal resistance
 - Optimal resistive shunt damping
- Performance of shunting techniques improves as coupling factor increases
 - Bias condition changed

Controlled response 1 compared to shuntcontrolled stiffness switching and optimal shunt damping.

- Introduction
- Development of lumped parameters model
 - Stiffness switching via controlled voltages
 - Stiffness switching via electrical shunting
- Vibration control law for stiffness switching
- Results: voltage-controlled stiffness switching
- Comparison to shunting techniques
- Summary and conclusions

Summary

- Structural vibration control via stiffness switching of magnetostrictive transducers
- Nonlinear, electromechanical model developed
 - Voltage control of stiffness
 - Shunt control of stiffness
- Control of undamped, free vibration studied
- Modified control law developed
- Voltage-controlled switching compared to shunt-controlled switching and shunt damping

Conclusions

	Voltage switching	Shunt switching	
Modulus change	Large	Moderate	
Need external power source?	Yes	No	
Continuous stiffness tuning?	Yes	Yes	
Unwanted magnetostrictive force?	Yes	No	
Unwanted parametric force?	No	No (resistive shunts) Yes (reactive shunts)	
Complexity	Moderate	Simple to moderate	

- Control performance may improve if current is controlled rather than voltage
- Voltage-controlled switching outperforms shunt-controlled switching due to F_{mag}
- Performance likely degrades when higher modes participate or feedback
 uncertainty exists
- Effect of internal energy losses should be studied
 - E.g., magnetic hysteresis, eddy currents, mechanical material damping

Extra slides.....

Magnetostrictive materials

- Atomic-scale coupling between orientation of non-spherical electron cloud and magnetic moment
- Inherent behavior below Curie temperature (300 to 700 °C)
- Man-made materials: Terfenol-D (TbDyFe) and Galfenol (FeGa)

Magnetic:
$$\vec{\mathbf{B}} = \mu^{T}\vec{\mathbf{H}} + d\vec{\mathbf{T}}$$
 sensing
Mechanical: $\vec{\mathbf{S}} = d^{T}\vec{\mathbf{H}} + s^{H}\vec{\mathbf{T}}$
actuation, λ

		Piezoelectric	Magnetostrictive [4,5,27]		Magnetorheological (MR) elastomer	
		PZT ^[1-3]	Terfenol-D	Galfenol	MR rubber ^[6,24-26]	
Frequency bandwidth, Hz		≈1e6	≈1e4	≈2e3	>1.4e3	
Modulus, GPa	Young's	40–70	15–110	35–70	0.003–0.008	
(tunable range)	Shear	-	_	_	0.005–0.008	
Loss factor (max)		0.25	0.27	>0.13	>0.23	
Tensile strength, MPa		40	40	350	6.5	
Fatigue strength*, MPa		-	- 75		—	
Energy conversion factor		0.48–0.78	0.7–0.8	0.6–0.7	_	
Density, g/cm ³		4.7–7.8	4.7–7.8 9.25 7.8		≈2.8	
Temp. limits, °C (lower/upper)		<-20 / 150–500	<-20 / 380 <-20 / 670		-51 / 121	
Pros		 Direct electrical control (compact) Approx. linear 	 No permanent high temp. damage 		 Can retro-fit into NVH devices 	
Cons		 Damaged at high temp. 	 Require electromagnets 		Vulcanize in mag. fieldRequire electromagnets	
* Fully reversed (R	= -1)					

Table 1. Model parameters for switched-stimless vibration control modeling.							
$dt, \mu { m s}$	m,kg	c, Ns/m	$R_{\rm coil},\Omega$	N	$A_{\rm rod},{\rm cm}^2$	$l_{\rm rod},{ m m}$	$T_{\rm bias},{\rm MPa}$
2	80	0	2.5	1840	1.27	0.144	-70

Table 1. Model parameters for switched-stiffness vibration control modeling

	Effective Viscous Damping Factor
Switched voltage (controlled Response 1)	0.13
Switched shunt, open to short	0.20
Switched shunt, open to optimal resistance	0.17
Optimal resistive shunt damping	0.37

Magnetostrictive Variable-Stiffness Spring: Overview and Electromechanical Modeling

Goal: develop a device having a dynamically-tunable stiffness (DC to 1 kHz)

- Constraints: nominal axial stiffness (~500 N/µm), external geometry (50 mm diameter, 105 mm height)
- Independent design variable: length of the magnetostrictive rod
- Response to voltage excitation calculated using a fully-nonlinear, electromechanical transducer model
 - Eddy current effects neglected
- Blocked inductance (L^{S}) proportional to N^{2} and blocked magnetic permeability (μ^{S})

Effective electrical impedance
(for mass loading)
$$V(s) = Z_{eff}I(s) = \left[\left(L^{S}s + R_{coil} \right) + \frac{\Theta^{2}s}{ms^{2} + K^{H}} \right]I(s)$$
Current – Magnetic field relation
Magnetic field response $H(s) = \frac{N}{l_{coil}}I(s)$
 $H(s) = \frac{N}{l_{coil}Z_{eff}}V(s)$ $\Theta = \frac{NdE^{H}A_{rod}}{l_{coil}}$ L^{S} = \frac{N^{2}\mu^{S}A_{coil}}{l_{coil}}

Electromechanical transducer model (single-degree-of-freedom).

Magnetostrictive Variable-Stiffness Spring: Electromechanical modeling

- Varispring operated about a large compressive bias
 - stiff when H = 0, softens as $H \rightarrow H_{\text{max}}$
- Step change in field (stiffness) calculated as the response to step change in voltage
 - Galfenol or Terfenol-D, 3 electromagnet wire gauges
 - Minimum blocked inductance (minimum number of electromagnet windings N) for each case
- Faster response using Terfenol-D (lower μ^{S}) and larger wires (lower N)

Magnetostrictive Variable-Stiffness Spring: **Magnetic Diffusion and Internal Mass Effect**

Laminated

rod

 σ

- Terfenol-D f_c two orders of magnitude larger than for Galfenol
- Experimental objective: measure stiffness change due to elastic modulus change
- Lumped parameter model used

 10^{3}

 $H_{\rm Z}$

Worst-case conditions considered

Galfenol

Terfenol-D

n=i

n=4

Mass effect is < 3% in both materials

Magnetostrictive Variable-Stiffness Spring: Design

 Terfenol-D selected for improved rise time, diffusion cut-off frequency, and static elastic modulus range

National Aeronautics and Space Administration

Vibration control via stiffness switching of magnetostrictive transducers

Magnetostrictive Variable-Stiffness Spring: Design

- Terfenol-D rod laminated for improved dynamic performance
- Performance improved for shorter Terfenol-D rod; 2.4 cm (0.95 in) selected
- Inertial force error ≈ 0.2%
- Capacitive sensors measured displacement of Varispring

Displacement probe holders

National Aeronautics and Space Administration

Vibration control via stiffness switching of magnetostrictive transducers