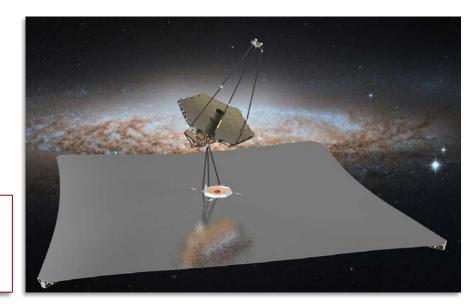


Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

Presented by: Matthew R. Bolcar NASA Goddard Space Flight Center

ATLAST Technology Development Team:

M. R. Bolcar, K. Balasubramanian, M. Clampin, J. Crooke, L. Feinberg, M. Postman, M. Quijada, B. J. Rauscher, D. Redding, S. Shaklan, H. P. Stahl, C. Stahle, H. Thronson


Background

- 2009
 - ATLAST initial design study; proposed to 2010 Decadal Survey
- 2010
 - Decadal Committee recommends "a New Worlds Technology Development Program" as the highest priority medium-scale activity
- 2014
 - NASA Astrophysics 30-year Roadmap recommends a large UV-Optical-Infrared (LUVOIR) telescope in the "Formative Era"
- 2015
 - AURA releases From Cosmic Birth to Living Earths; recommends the High Definition Space Telescope (HDST) as a general astrophysics observatory with the "killer app" of detecting and characterizing habitable exoplanets
- Early to mid-2016
 - NASA Astrophysics Division initiates Science and Technology Definition Teams (STDTs) to perform detailed mission concept studies in preparation of the 2020 Decadal Survey: LUVOIR is one of four missions to be studied

What Is ATLAST?

- ATLAST, LUVOIR, HDST are all *mostly* interchangeable
 - LUVOIR is architecture non-specific
 - HDST advocates for a large segmented aperture
 - ATLAST has engineering reference designs for segmented and monolithic systems
 - All have very similar science goals
- A multi-institutional team to continues to study ATLAST
 - Multiple engineering reference designs, discussed in:

N. Rioux, "A future large-aperture UVOIR space observatory: reference designs", paper 9602-4

ATLAST Science

- Detect and characterize a statistically significant population of habitable exoplanets
 - Discover dozens of exoEarths
 - Look for, and potentially confirm, presence of life
 - Observe general planet populations for comparative studies
- Perform a broad array of UVOIR general astrophysics:
 - Galaxy, star, and planet formation
 - Flow of material between galaxies
 - Observations within our own solar system
- ATLAST's science portfolio is very similar to that outlined in AURA's *From Cosmic Birth to Living Earths* report

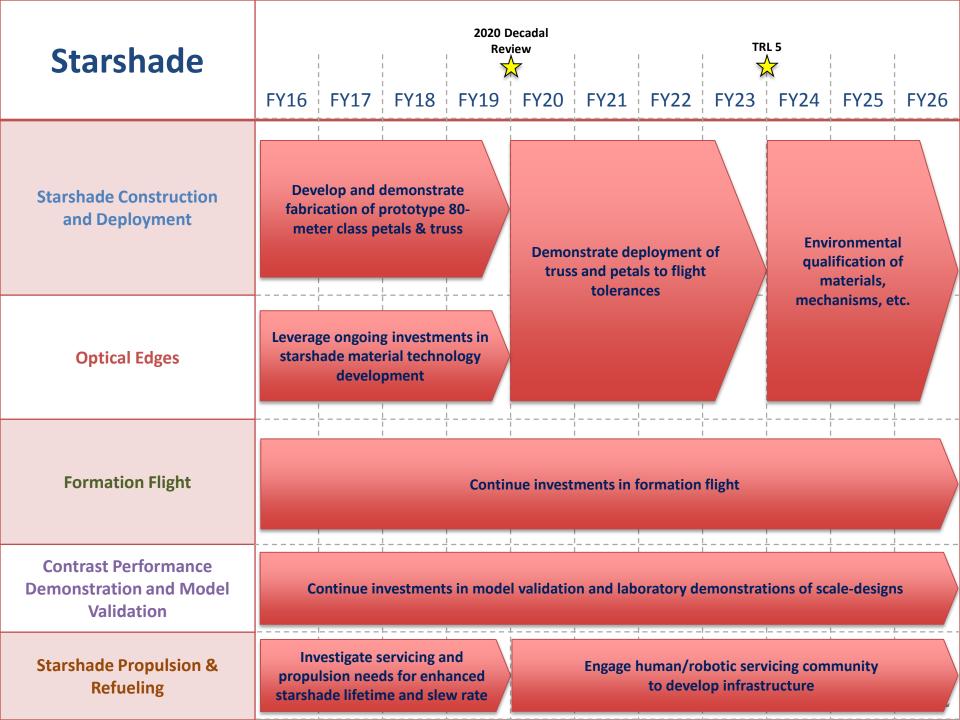
Top-Level System Requirements

Parameter		Requirement	Stretch Goal	Traceability
Primary Mirror Aperture		≥ 8 meters	12 meters	Resolution, Sensitivity, Exoplanet Yield
Telescope Temperature		273 К — 293 К –		Complexity, Fabrication, Integration & Test, Contamination, IR Sensitivity
	UV	100 nm– 300 nm	90 nm – 300 nm	-
Wavelength	Visible	300 nm – 950 nm -		-
Coverage	NIR	950 nm – 1.8 μm	950 nm – 1.8 μm 950 nm – 2.5 μm	
	MIR	Sensitivity to 5.0 µm	-	Transit Spectroscopy
Image	UV	< 0.20 arcsec at 150 nm	-	-
Quality	Vis/NIR/MIR	Diffraction-limited at 500 nm	-	-
Stray Light		Zodi-limited between 400 nm – 1.8 μm	Zodi-limited between 200 nm – 2.5 μm	Exoplanet Imaging & Spectroscopy SNR
Wavefront Error Stability		< 10 pm RMS uncorrected system WFE per control step	-	Starlight Suppression via Internal Coronagraph
Pointing	Spacecraft	≤ 1 milli-arcsec	-	-
FUIILING	Coronagraph	< 0.4 milli-arcsec	-	-

Technology Development for ATLAST

- Our team identified 5 key technology areas to enable the ATLAST mission:
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large aperture systems
 - Detectors
 - Mirror Coatings
- Established a technology development roadmap
 - Identifies technology gaps
 - Includes current TRL and gap-type (*e.g.* technology, engineering, manufacturing)
 - Recommends development activities

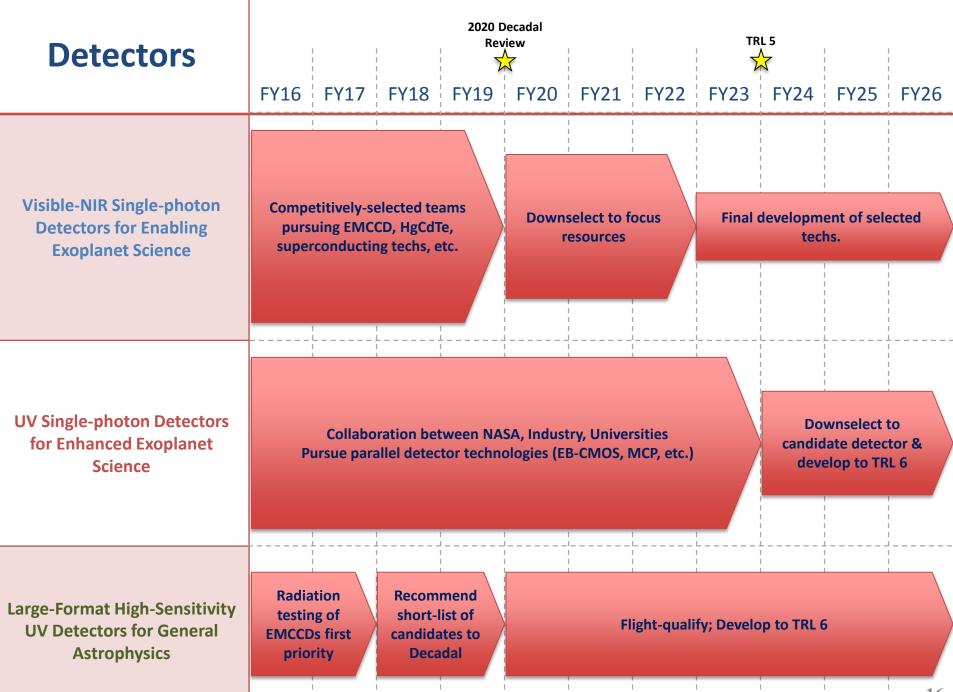
Assumptions


- Assume a new mission start with PDR circa 2024
 - Technologies must be TRL 5 by PDR
 - Technology development plan must be credible in time for 2020
 Decadal Survey
- Assume flexibility with respect to ATLAST architecture
 - Explore multiple solutions at this early stage of development
 - i.e. develop for both monolithic and segmented apertures, develop both internal coronagraphs and starshades, etc.
- Adopt a conservative approach in identifying gaps
 - This a systems-level problem: every technology impacts every other
 - Requires detailed integrated design cycles
 - For now, assume "worst case" and refine as technologies develop and modeling is performed

Technologies

Internal Coronagraph	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing
	Raw Contrast	1×10 ⁻¹⁰ (detect) 5×10 ⁻¹⁰ (char.)	3.2×10 ⁻¹⁰		Technology
	IWA	3.6 λ/D (detect) 2.0 λ/D (char.)	3 λ/D		
Broadband High-Contrast Coronagraph	OWA	~ 64 λ/D	16 λ/D		
includes Wavefront Sensing & Control (WFSC)	Bandpass	10-20% (instantaneous) 400 nm – 1.8 μm (total) 200 nm – 2.5 μm (goal)	10%	3	
	Aperture	Obscured, segmented	Unobscured		
	WFSC	Fast, low-order, at stellar photon rates	Slow, tip/tilt, bright lab source		
	Actuator count	128×128 (continuous) >3000 (segmented)	64×64 (continuous) <200 (segmented)		Engineering, Manufacturing
Deformable Mirrors	Environmental	Robust, rad. hard	Testing underway	3	
	Electronics	>16 bits, high-throughput	~16 bit, dense cabling		
Autonomous Onboard	Bandwidth	Closed-loop > a few Hz	Human-in-the-loop	3	Engineering,
Computation	Electronics	Rad. hard, >100 GFLOPS/W	<20 GFLOPS/W	5	Manufacturing
Starlight Suppression Image Processing	PSF Calibration	Factor of 50-100× improvement in contrast	25× demonstrated 30× goal for WFIRST	3	Engineering 9

Internal Coronagraph	FY16 FY17	EV19	Rev 5	Decadal view FY20	EV21	FY22		~	FY25	FY26
Broadband High-Contrast Coronagraph includes Wavefront Sensing & Control (WFSC)	Multi-institution study of new & existing coronagraph techniques Leverage WFIRST/AFTA investment in WFSC	D	evelopme o 3-4 candi to TRL 4	nt of idates	Dow	nselect to andidates; elop to TR	~2	Select	mission p nd backup elop to TF	rimary
Deformable Mirrors	Industry Engagement; Improve actuator counts, yield, electronics precision Leverage WFIRST/AFTA investment		on	Select Mirror Arch.	Devo	Environm elop flight	-		vare	
Autonomous Onboard Computation	Development of high-speed, low-power processing architectures Leverage WFIRST/AFTA investment			Implement WFSC software on hardware; perform radiation & environmental testing; Support coronagraph testbed ops.			- · · · · · · · · · · · · · · · · · · ·			
Starlight Suppression Image Processing	Leverage WFIRST/AFTA investment					tion techn n contrast			s of	

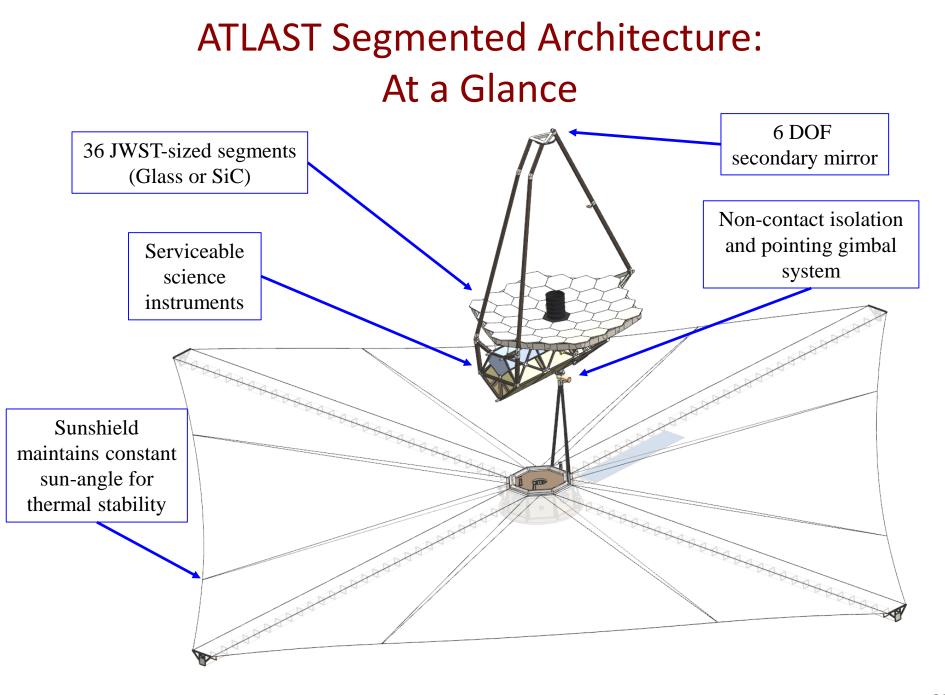

Starshade	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing
Starshade Construction and Deployment	-	Petal and central truss design consistent with an 80-m class starshade Demonstrate manufacturing and deployment tolerances	Demonstrated prototype petal for 40- m class starshade Demonstrated deployment tolerances with a 12-m Astromesh antenna with 4 petals	3	Engineering
	Edge radius	≤ 1 µm	≥ 10 µm		
Optical Edges	Reflectivity	≤ 10%	-	3	Technology
	Stowed radius	≤ 1.5 m	-		
	Lateral sensing error	≤ 20 cm	-		
Formation Flight	Peak-to-peak control	< 1 m	-	3	Engineering
	Centroid estimation	≤ 0.3% of optical resolution	≥ 1%		
Contrast Performance Demonstration and Model Validation	-	1×10 ⁻¹⁰ broadband contrast at Fresnel numbers ≤ 50	3×10 ⁻¹⁰ contrast, excluding petal edges, narrowband, at Fresnel number of ~500	3	Technology
Starshade Propulsion & Refueling	-	Propulsion & refueling to enable > 500 slews during 3 years of a 5-year mission	Requires study; robotic refueling appears feasible	3	Technology, Engineering

Ultra-stable Large Aperture Telescopes	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing
	Areal Density	< 36 kg/m² (Delta IVH) < 500 kg/m² (SLS)	~12 kg/m ² (SiC) ~35 kg/m ² (ULE) ~70 kg/m ² (JWST)		
Mirrors	Areal Cost	< \$2 M/m²	~\$6 M/m² (JWST)		Engineering,
	Areal Production Rate	30-50 m²/year	~4 m ² /year (JWST) ~1 m ² /year (HST) ~100-300 m ² /year planned by TMT but not yet demonstrated	4	Manufacturing
	Moisture Expansion	Zero after initial moisture release	Continuous moisture release		Technology
Stable Structures	Lurch	< 10 pm / wavefront control step	Micro-lurch at joint interfaces	3	
	Metrology	High-speed picometer metrology to validate performance	Nanometer speckle interferometry on JWST		
Thermal Stability	Material Stability	~10 nm/K	~100 nm/K	3	Technology
Disturbance Isolation System	End-to-end Attenuation	140 dB at frequencies > 20 Hz	80 dB at frequencies > 40 Hz (JWST passive isolator only)	4	Technology, Engineering
	Sensing Accuracy	~1 pm	~1 nm	Δ	Tashralasi
Metrology & Actuators	Control Accuracy	~1 pm	~5 nm	4	Technology

Ultra-stable Large	2020 Decadal Review TRL 5					
Aperture Telescopes	FY16 FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26					
Mirrors	Advanced Mirror System Demonstrator (AMSD)-like program comparing materials & architectures					
Stable Structures	Demonstration of subscale (segment-level) structure system dynamics Expand to multi- segment/larger scale; Subscale stability testbed: Incorporate mirrors, structure, thermal control, metrology, actuators, and dynamic icolation					
Thermal Stability	(Investigate as part of Mirrors and Stable Structures efforts) dynamic isolation dynamic isolation					
Disturbance Isolation System	Invest in high-TRL testbed demonstrations; Study low-TRL options for risk reduction					
Metrology & Actuators	Engage industry for improved metrology techniques and actuators					

Detectors	Detectors Parameter Need		Capability	Current TRL	Technology, Engineering, or Manufacturing
	Bandwidth	400 nm – 1.8 μm (2.5 μm goal)	EMCCD is promising, need radhard testing,		
	Read Noise	<< 1 e ⁻	has hard cutoff at 1.1		
Visible-NIR Single-photon	Dark Current	< 0.001 e ⁻ /pix/s	μm; HgCdTe APDs good for	25	Technology, Engineering,
Detectors for Enabling Exoplanet Science	Spurious Count Rate	Small compared to dark current	NIR but need better dark current; MKID & TES meet	3-5	Manufacturing
	Quantum Eff.	> 80% over bandwidth	requirements but		
	Format	> 2k × 2k	require cryo ops.		
	Bandwidth	200 nm – 400 nm	_	2-4	Technology, Engineering, Manufacturing
	Read Noise	<< 1 e-	EBCMOS and MCP detectors need better		
UV Single-photon Detectors	Dark Current	< 0.001 e⁻/pix/s	quantum eff., and		
for Enhanced Exoplanet Science	Spurious Count Rate	Small compared to dark current	improvements in lifetime;		
	Quantum Eff.	> 50% over bandwidth	MKID & TES detectors also apply here		
	Format	> 2k × 2k			
	Bandwidth	90 nm – 300 nm	Same as above;		
Large-Format High-Sensitivity UV Detectors for General Astrophysics	Read Noise	< 5 e⁻	δ-doped EMCCD also a candidate, but needs	4	Technology, Engineering, Manufacturing
	Quantum Eff.	> 70%	radhard testing and lower clock-induced		
	Format	> 2k × 2k	charge		

Mirror Coatings	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing	
	90 nm – 120 nm	> 70%	< 50%	2		
Reflectivity	120 nm – 300 nm	> 90%	80%	3	Technology, Engineering	
	> 300 nm	> 90%	> 90%	5		
	90 nm – 120 nm	< 1%	TBD	2		
Uniformity	120 nm – 250 nm	< 1%	> 2%	3	Engineering, Manufacturing	
	> 250 nm	< 1%	1-2%	4		
Polarization	≥ 90 nm	< 1%	Not yet assessed; requires study	2	Technology	
Durability	-	Stable performance over mission lifetime (10 years minimum)	Stable performance, but with limited starting reflectivity below 200 nm	4	Engineering, Manufacturing 17	


Mirror Coatings	2 FY16 FY17 FY18 FY	020 Decadal Review 19 FY20 FY21 FY22	TRL 5 2 FY23 FY24 FY25 FY26
Reflectivity	Develop UHV equipment with moving sources and ALD capabilities.	Process development for promising techniques such as ALD	
Uniformity	Develop automated instruments test methods, and analyses.	5, Uniformity studies with a large number of samples.	TRL 5 & 6 demonstrations of
Polarization	Theoretical Analysis & Estimate	Focused, practical measurements to guide development.	coating on 1.5-m mirror substrate
Durability	Detailed tests & analysis	Large-scale tests and development of protected coatings.	

Mirror Coatings (\$32.2M)	10 5 0 FY 16 FY 17 FY 18	Funding Profile (\$M) Image: Second system Image: Second system Image: Second system I	TRL 5 TRL 6 FY 24 FY 25
UV Coating Reflectivity	Develop UHV equipment wi moving sources and ALD capabilities.		
UV Coating Uniformity	Develop automated instruments, test methods, and analyses.	Uniformity studies with a large number of samples.	TRL 5 & 6 Demonstration of coating on 1.5-m mirror substrate.
UV Coating Polarization	Theoretical Analysis & Estimate of Requirements	Focused, practical measurements to guide development.	
Coating Environmental Durability	Detailed tests & analysis	Large-scale tests and development of	protected coatings.

Conclusions

- A multi-institutional, studying a large UV-Optical-IR telescope with two science goals:
 - Detect and characterize habitable exoplanets
 - Broad array of general astrophysical observations
- Identified 5 key technologies to enable ATLAST
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large-aperture telescopes
 - Detectors
 - Mirror Coatings
- Recommended actions for developing technologies to TRL 5 in time for a new mission start in 2024

BACKUP

Notional Instrument Requirements

Science Instrument	Parameter	Requirement	Stretch Goal
	Wavelength Range	100 nm – 300 nm	90 nm – 300 nm
UV Multi-Object	Field-of-View	1 – 2 arcmin	-
Spectrograph	Spectral Resolution	R = 20,000 – 300,000 (selectable)	-
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm
Visible-NIR	Field-of-View	4 – 8 arcmin	-
Wide-field Imager	Image Resolution	Nyquist sampled at 500 nm	-
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm
Visible-NIR Integral	Field-of-View	4 – 8 arcmin	-
Field Spectrograph	Spectral Resolution	R = 100 – 10,000 (selectable)	-
	Wavelength Range	Sensitivity to 5 µm	-
MIR Transit Spectrograph	Field-of-View	TBD	-
SheerioPidhu	Spectral Resolution	R = 200	-
	Wavelength Range	400 nm – 1.8 μm	200 nm – 2.5 μm
	Raw Contrast	1×10 ⁻¹⁰	-
Starlight Suppression System	Contrast Stability	1×10 ⁻¹¹ over integration	-
System	Inner-working angle	36 milli-arcsec @ 1 μm	-
	Outer-working angle	> 0.5 arcsec @ 1 µm	-
Multi Dand Evanland	Field-of-View	~0.5 arcsec	-
Multi-Band Exoplanet Imager	Resolution	Nyquist sampled at 500 nm	-
	Field-of-View	~0.5 arcsec	_
Exoplanet Spectrograph			