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Introduction:  The presence of allophane and other 

nanophase materials on Mars indicates a time when wa-

ter was intermittent and short lived [1,2]. These materi-

als likely represent partially altered or leached basaltic 

ash [3] and therefore, could represent a geologic marker 

for where water was present on the Martian surface. 

Further, they may indicate regions of climate change, 

where surface water was not present long enough to 

form clays [1]. Characterization of these materials is im-

portant for increasing spectral recognition capacities of 

our current Martian science array. Ongoing work sug-

gests that variability in the Al:Si ratio of allophane can 

dictate the amount of both structural and adsorbed water 

in the crystalline structure.   

Geologic Context: Allophane is an amorphous or 

poorly crystalline hydrous aluminosilicate material 

[3,4,5]. On Earth, allophane is typically associated with 

volcanic ash or fine-grained pumice-bearing soils and 

forms under neutral to mildly acidic pH regimes (5-7) 

[e.g. 3,4,5]. Allophane has been identified in clay-bear-

ing regions on Mars using thermal emission spectros-

copy (TES) [2]. Additionally, MSL Curiosity instru-

ments have identified an X-ray-amorphous phase in 

soils that may contain allophane [6]. This evidence sug-

gests allophane may be a common component of altered 

regions of Mars [2].  

Methods: We created a suite of nanophase materials 

of varying compositions. These synthetic samples were 

then spectrally characterized using Fourier transformed 

IR (FTIR) spectroscopy, visible/near-infrared (VNIR) 

reflectance spectroscopy, thermal infrared emission 

spectroscopy (TIR), magic angle spin nuclear magnetic 

resonance (MAS NMR), and Fe K-edge X-ray absorp-

tion spectroscopy (XAS).Verification of compositions 

was carried out by supernatant analysis on an induc-

tively-coupled plasma atomic emission spectrometer 

(ICP-AES), and by precipitant analysis using X-ray dif-

fraction. Compositions of the nanophase materials 

range from high-Si allophane (molar Al:Si = 1:2) to pro-

toimogolite (molar Al:Si = 2:1), while spanning a range 

of Fe3+ isomorphically substituted for Al from 0-10 

mol%. These compositions span the range observed in 

natural terrestrial allophanes [4]. 

Synthesis Procedures. Synthetic allophane samples 

were created using an established method that has been 

modified to produce allophane with Fe isomorphically 

substituted for Al in octahedral coordination [7,8]. Syn-

thetic imogolite samples were created by Z. Abidin us-

ing a previously established method [9].  

FT-IR. IR characterization was performed on a Per-

kin-Elmer Spectrum System 2000 FT-IR spectrometer. 

Samples were diluted to ~3 wt.% sample with optical 

KBr and measured as loose powder using a Perkin-

Elmer diffuse reflectance accessory.   

Emission spectroscopy. Thermal Infrared (TIR) 

emissivity spectra was collected from 5-50 µm at the 

Mars Space Flight Facility at Arizona State University 

as in past studies [2,10]. Samples were pressed into pel-

lets and heated to 80 °C to increase the signal-to-noise 

ratio.   

Reflectance spectroscopy. Reflectance spectra of 

undiluted, particulate samples were measured at the 

SETI Institute from 0.35 to 2.5 µm using an ASD spec-

trometer and are under measurement at RELAB, Brown 

University as in past studies [10]. FTIR spectra are 

measured from 1-50 µm relative to a rough gold surface 

and are scaled near 1.2 µm to bidirectional spectra 

measured from 0.3 to 2.5 µm relative to halon. 

Nuclear Magnetic Resonance. 27Al and 29Si MAS 

NMR were collected at the University of Idaho Town-

send NMR Suite. Spectra were collected at 12.6 kHz 

and processed using Bruker TopSpin analytical soft-

ware. 

X-Ray Absorption Spectroscopy. Fe K-edge X-ray 

absorption spectroscopic signatures of the allophane 

and imogolite samples were acquired at Stanford Syn-

chrotron Radiation Laboratory (SSRL). Full EXAFS 

scans of the Fe K-edge range (6880-7874 eV) were col-

lected at 10 K.  The spectra were then processed using 

Demeter-Athena and fit using Demeter-Artemis. 

Discussion: Differnces in these spectra have been 

analyzed to show that changes in the chemical structure 

of allophane can be dictated by Al:Si ratio.  VNIR re-

flectance spectra and FTIR transmittance spectra of Fe-

bearing allophanes and imogolites indicate small 

changes in the OH features (Fig. 1), consistent with Fe 

in the structure. Allophane bands occur at 1.38, 1.40, 

1.92 and 2.19 µm (Fig. 1a). Imogolite bands are similar, 

occurring at 1.39, 1.92 and 2.20 µm (Fig. 1b). Shifts to-

wards longer wavelengths were observed with the addi-

tion of Fe for OH bands near 1.4 and 2.2 µm in both 

samples (Fig 1c). The OH band at 2.2 µm changes with 

the addition of Fe in the imogolite samples such that a 

shoulder forms at longer wavelengths (~2.22-2.23 µm) 
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and the reflectance maximum does not return as high 

following this band. 

 

XAFS spectra indicate changes in octahedral sheet 

disorder due to the oxidation state of Fe (Fig. 2). XAFS 

spectra also indicate changes in local atomic structure 

when changes in Al:Si occur. 27 Al MAS NMR data 

show an increase in Si correlating with more tetrahedral 

Al as well as a correlation with increasing Fe resulting 

in increased tetrahedral Al.  

Future Work: Loss on ignition (LOI) experiments 

are being conducted to confirm changes in water con-

centrations across varying sample compositions. Trans-

mission electron microscopy will aslo be performed to 

look for varying degrees of crystallinity in the sample 

suite. 

 

 

Figure 1. VNIR reflectance spectra of several allophane 

and imogolite samples showing the effects of Fe on the 

spectra. a) synthetic allophones, b) synthetic imogolites, 

and c) close-up view of low and high Fe allophones and 

imogolites. Grey lines mark spectral features of interest. 

 

 
Figure 2. Fe K-edge X-ray absorption near edge struc-

ture for 10% Fe(III) allophane samples of 1:2, 1:1, and 

2:1 Al:Si. Differences in the pre-edge region can be at-

tributed to disorder introduced by increased Si content 

as well as changes in the edge shape. Fourier trans-

formed Fe K-edge extended X-ray absorption fine struc-

tural spectra plotted in terms of R-space (radial dis-

tance from absorbing atom). Slight differences in mag-

nitude and shape of the first and second shell structures 

indicate slight changes in bond distances, indicating a 

change in the local atomic structure. 
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