

# Additive Manufacturing of Multi-Material Systems for Aerospace Applications

Michael C. Halbig<sup>1</sup> and Mrityunjay Singh<sup>2</sup> 1-NASA Glenn Research Center, Cleveland, OH 2-Ohio Aerospace Institute, Cleveland, OH

MS&T19 - Materials Science & Technology 2019 Portland, OR, September 29 to October 3, 2019.





- Needs, challenges, and applications
- AM of multi-materials in a single feed-stock
  - Direct writing of low resistance conductors
  - Binder jet printing of SiC fiber / SiC matrix composites
  - FDM of polymer-based materials with functional additions
- Hybrid and two-stage AM toward multi-material components
  - Stators for electric motors
  - Lightweight multi-functional components, e.g. thermal management of battery packs
- Summary and Conclusions

# Additive Manufacturing of Multi-Materials

# **Needs:**

- Achieving complex shapes and processing not possible from conventional fabrication methods.
- Components with integrated sub-elements of differing materials and structures.
- Tailored material properties: e.g. microstructure, mechanical, electrical, thermal, and magnetic.

# Challenges:

- Additive manufacturing for multi-materials is not as mature as for single materials.
- Optimal utilization of several methods, e.g. single machine AM, multi-machine AM, and hybrid approaches (combinations of AM and conventional).
- Post-processing of multi-materials with differing sintering temperatures and material mismatches and incompatibilities.



# **Components for Aerospace Applications**



### Electric Motors-Targeted Components (structural, functional, and electrical)

### **Axial Flux Machine**







### Ultra-Efficient Commercial Vehicles

 Pioneer technologies for big leaps in efficiency and environmental performance

### Transition to Low-Carbon Propulsion

 Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

### Turbine Engines -Targeted Components (CMCs and PMCs)



### AM for In-Space and on Terrestrial Planets -Targeted Components (Functional PMCs)



**Replacement Part Fabrication** 



# **Additive Manufacturing Technologies**



### **Direct Write Printing**

Controlled dispensing of inks, pastes, and slurries.





### **Fused Deposition Modeling**

Plastic is heated and supplied through an extrusion nozzle and deposited.





### **Binder Jetting**

An inkjet-like printing head moves across a bed of powder and deposits a liquid binding material.









- Needs, challenges, and applications
- AM of multi-materials in a single feed-stock
  - Direct writing of low resistance conductors
  - Binder jet printing of SiC fiber / SiC matrix composites
  - FDM of polymer-based materials with functional additions
- Hybrid and two-stage AM toward multi-material components
  - Stators for electric motors
  - Lightweight functional components, e.g. thermal management of battery packs
- Summary and Conclusions

# **Direct Writing of Low Resistance Conductors**



# nScrypt 3Dn-300



2000

-2 -

-4

-6

-8

-10

-12-

-14 -

**Decorated CNT** 

Log  $\sigma_{_{DC}}$  (S/cm)



TARGET CONTENT OF CARBON

NANOTUBES REQUIRED

FOR ELECTRICAL NETWORK

0.1 ~ 1 WEIGHT%

3

2

CONTENT OF CARBON NANOTUBES (WEIGHT%)

Y. Kim, et al. U.S. Patent 8,481,86, 2013 -

**Conductive Paste Containing Silver** 



Peng-Cheng Ma, "Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of **Carbon Nanotubes and Carbon Black** 

Additions of Graphene and **Carbon Nanostructures** 



| Plain Pastes                        |                     |                         |  |  |  |  |  |  |  |
|-------------------------------------|---------------------|-------------------------|--|--|--|--|--|--|--|
| Paste Composition                   | Resistivity<br>[Ωm] | Conductivity<br>[Ωm]^-1 |  |  |  |  |  |  |  |
| Plain CB028                         | 2.82 E-08           | 3.54 E+07               |  |  |  |  |  |  |  |
| Plain Heraeus                       | 4.12384E-08         | 2.42E+07                |  |  |  |  |  |  |  |
| Most Conductive Composites          |                     |                         |  |  |  |  |  |  |  |
| Paste Composition                   | Resistivity<br>[Ωm] | Conductivity<br>[Ωm]^-1 |  |  |  |  |  |  |  |
| CB028 + 0.2 wt%<br>QUATTRO Graphene | 8.14798E-08         | 1.23E+07                |  |  |  |  |  |  |  |
| Heraeus + 0.04 wt% CNS              | 8.29725E-08         | 1.21E+07                |  |  |  |  |  |  |  |
| CB028 + 0.1 wt%<br>QUATTRO Graphene | 1.03586E-07         | 9.65E+06                |  |  |  |  |  |  |  |
| CB028 + 0.085 wt% CNS               | 1.1145E-07          | 8.97E+06                |  |  |  |  |  |  |  |
| Heraeus + 0.14 wt% CNS              | 1.19059E-07         | 8.40E+06                |  |  |  |  |  |  |  |
| CB028 + 0.2 wt% MONO<br>Graphene    | 1.26118E-07         | 7.93E+06                |  |  |  |  |  |  |  |
| CB028 + 0.5 wt% MONO<br>Graphene    | 1.41875E-07         | 7.05E+06                |  |  |  |  |  |  |  |

www.nasa.gov

# **Binder Jetting of SiC Fiber / SiC Matrix Composites**



**ExOne Innovent** 

**Constituents** 







~70 µm long and ~7 µm in diameter



Fiber Reinforced Ceramic Matrix Composite High pressure turbine cooled doublet vane sections.

# **Binder Jetting: Density of SiC Panels**





Densities increased by up to 33% from additional PCS infiltration steps and were maintained even at higher SiC fiber loadings of 45, 55, and 65 vol.%.

Polymer approach has a limitation on achievable densities.

Demonstration of full densification through silicon melt-infiltration.



Melt infiltration methods such, e.g. silicon melt, can achieve near full density.



### Binder Jetting: Cross-Section and Fracture Surface from SiC/SiC Sample with 65 vol.% SiC Fiber

Carborex Powder mix with 65 vol.% Si-Tough SiC fiber, SMP-10 w/800 nano SiC particles vacuum infiltration.



Good densities achieved with high fiber loading.



## Binder Jetting: 4 Point Flexure Tests of the Monolithic SiC and CMC materials - at room temperature and 1200°C



The fiber loaded SiC materials had significantly higher stresses and higher strains to failure.

# **FDM of Composite Filaments for Multi-Functional Applications**



### **Potential Missions/Benefits:**

- On demand fabrication of as needed functional components in space
- Tailored, high strength, lightweight support structures reinforced with CNT
- Tailored facesheets for functional properties, i.e. wear resistance, vibration dampening, radiation shielding, acoustic attenuation, thermal management



Filaments used: ABS-standard abs, P-premium abs, CNT-w/carbon nanotubes, C-w/chopped carbon, Home-lab extruded filament

Highest strength and modulus in CNT reinforced coupons Pure ABS Coupons. Less porosity for lower print heights.





- Needs, challenges, and applications
- AM of multi-materials in a single feed-stock
  - Direct writing of low resistance conductors
  - Binder jet printing of SiC fiber / SiC matrix composites
  - FDM of polymer-based materials with functional additions
- Hybrid and two-stage AM toward multi-material components
  - Stators for electric motors
  - Lightweight functional components, e.g. thermal management of battery packs
- Summary and Conclusions

# AM and Hybrid Approaches for Electric Motor Components

**Stators** 

### **Electric Motors**

**Components of a Commercial Axial Flux Motor** 





Litz Wire **Coreless Stator** 



**Iron Core Stator with Direct Printed Coils** 

PCB Coreless Stator

**Stator Constituents:** 

Conductor: copper,



# silver.

- Insulators: coatings, dielectrics, epoxy, high temp. polymer.
- Soft magnets (for cores): iron alloys.

### Rotors

### **Additively Manufactured Rotor Plate**



### **Rotor Constituents:**

- Permanent magnets.
- High strength structure (typically metallic).

# Wire Embedded Stator: U. of Texas El Paso (NASA CAMIEM)



Conventional stator by LaunchPoint Technologies



### Multi3D System



Cartridge heated embedding demonstration



Ultrasonic embedding horn

20 kHz Ultrasonic system





Pressing process needed to further densify the stator

Final stator

• Challenges with feeding wire through ultrasonic horn of required 14 AWG wire.

• Challenges with overprinting polycarbonate onto embedded wire.

# **PCB Stator Concepts**





### **Direct Printed Silver Conductor Layer**





### **Direct Printed Dielectric Layer**



# National Aeronautics and Space Direct Printed Stator - Concepts A and B

### **Benefits**

- Higher magnetic flux, torque, and motor constant (K<sub>m</sub>).
- Higher temp. capability of >220°C instead of 160°C for baseline stator.
- Direct printed silver coils with high fill.

# **Concept A**

Stator Plate from Cobalt-Iron Alloy Cirlex Middle Outer Rings Layer

## nScrypt 3Dn-300











Direct Printed Silver Coils -High Current Test





Process:

# Additively Manufactured Stator Plates



lav down of a melt strand filamen Soft Magnet **FDM** contact heating **Electric magnetic laminated sheets** Soft magnetic composite materials High Temp. Powder feed roll Process Laminated sheets which are coated by insulating layer Compacting powders **Polymer** prototype which are covered with insulating film linewise High Joule heat in plane which is application perpendicular to the magnetic field Glued powe o form part Low Joule heat Eddy current along any direction Eddy current Magnetic hard axis supporting structure base plate **Binder Jetting Stator Plate from** Fe, Fe-Si powders Fe-Si sheet **Cobalt-Iron Alloy Insulating layer** (0.05~0.5mm) Insulating film  $(0.01 \sim 0.5 \text{mm})$ FDM from Extem (Tg of 311°C) (left) and Ultem 1010 (TG of 217°C) (right) FDM filament.

1200°C – 51.3% TD

Low cost and rapidly manufactured sub-components may be possible with further advancements or alternate AM processes.

# <sup>®</sup>Comparison of Methods to Obtain Outside Fabrication for Channeled Plates for Stators



**Concept A - Stator Plates** from Cobalt-Iron Alloy **Concept B - Stator Plates from Cirlex**  **Concept B - Stator Plates from Ultem1010** 





Fabrication Method Fabrication Time

Fabrication Costs <u>Material Costs</u> Total Costs Machine/EDM 4+ months

\$21,400

\$22,000

\$600

Machine/Mill 3 months

\$19, 870 <u>\$330</u> \$20,200

**Currently relying on machined stator plates.** 

3D Print/FDM 1 week (92.3% reduction)

\$1,000 <u>\$0 (included in fab.)</u> \$1,000 (95.0% reduction)

# <sup>°</sup> FDM of Multi-Material Test Coupons for Lightweight Multi-Functional Applications





# Microstructures of FDM of Multi-Material Test Coupons





# **Multi-Material Tensile Testing**







### **Multi-material print**

# 6112 83 DA H4 HI GHS 246 546 WESTCOTT - PROLER

### **Tensile Testing**



(DIC)



Hyrel Hydra 645

# **Single and Multi-Material Tensile Testing**



122122

121212

121212

122122

111222

111222

0.035

0.03

Strain [mm/mm]

QH5



|                            |        | Max Load | Avg Load |               |               |         |         |         |
|----------------------------|--------|----------|----------|---------------|---------------|---------|---------|---------|
| Material                   | Letter | [N]      | [N]      | Max Ult [Mpa] | Avg Ult [Mpa] | Max Mod | Avg Mod | Avg STF |
| 3DXTech Ultem 9085 CF      | Н      | 1992.1   | 1893.4   | 53.7          | 50.5          | 3380.5  | 3204.2  | 1.8974  |
| SABIC ULTEM AM9085F        | Р      | 3163.6   | 2988.7   | 77.5          | 74.5          | 2395.3  | 2261.5  | 7.5265  |
| SABIC 9085+3DXTech 9085 CF | PH     | 2679.0   | 2480.6   | 62.4          | 59.1          | 3082.6  | 3005.3  | 2.5691  |

# **Multi-Material Heat Exchanger Designs**





### **Forced Air Cooled**





### **Liquid Cooled**







**Single Material Battery Case Demostrations** 

# Conclusions



- Additive manufacturing enables advanced materials, structures, and components.
- AM of multi-materials in a single feed-stock allows for optimized properties and functionality, e.g. electrical conductivity, thermal conductivity, strength, etc.
- Achieving multi-material components requires hybrid and twostage AM approaches.

Acknowledgments: the research was supported by NASA Projects: CAS/CAMIEM, TTT, CIF. Thanks to the Summer Interns.