UAM Fleet Manager Gap Analysis

ASA

AERONAUTICS

Richard Mogford, Ph.D. Dan Peknik, Jake Zelman, Cody Evans January 23, 2020

Dispatchers for UAM

- How do the functions of a UAM dispatcher ("Fleet Manager" or FM) compare with the airline dispatcher (AD)?
- Listed tasks for AD and FM and identified differences
- Created a list of software functions and information requirements for the FM
- Started a user interface (UI) design for an FM software tool

Who is the Airline Dispatcher?

What Do Airline Dispatchers Do?

- ADs are airline employees who manage all flights
- Dispatchers have the authority to originate and terminate flights
- Generate flight plans and monitor flights throughout their routes
- Manage contingencies (weather, air traffic control, and maintenance)
- ADs work in an airline operations center (AOC)
- AOCs also provide other functions, such as crew scheduling and maintenance management

Airline Operations Center

Southwest Airlines Network Operations Control

Airline Dispatcher Tasks

- ADs are licensed airman certified by the FAA
- Have joint responsibility with the captain for operational control of a flight
- Manage safety, economics, fuel planning, passenger service, and support the brand of the airline
- Closely analyze and evaluate meteorological information to determine potential hazards to the safety of flight
- Deeply versed in federal regulations for aviation
- The AD makes recommendations to continue to destination, or to divert if needed

Flight Planning

Z Z

- Software automatically generates fuel/time efficient flight plan
- Contents of flight plan:
 - Weight and balance of the aircraft
 - Fuel load
 - Alternate airports
 - Load manifest
 - Passenger load/count
 - Weather
 - Filed route
 - Maintenance items

FLIGHT 3	407	COMPU	JTER F	LIGHT PL	AN		TODAY
ORG DES	T ALTI AI	.T2 T/OAI	T A/C	TYPE	TAIL	BOW	INDEX
PHL DCA			EMB	-170NXXX	XX 4830	0 -02.1	5
SPEED SC	HEDULES						
CLIMB 29	0/M74	CI	RUISE	M78		DESCEN	T M74/290
BURN RESERVE ALT/ HOLD MIN TANKER TAXI RAMP	FUEL 1739 (3200 (0 (4939 (1461 (400 (6800 (TIME 00.26 BC 00.45 PY 00.00 ZH 00.00 FC 01.13 TC 00.21 BC 00.20 LC 01.34 FC	P (LD 7W 5)B 0W 6 JRN 5W 5)D	LAN 8300 6599 4899 6400 1299 1739 9560 4661	STRU 6525 2073 8196 7231	JC FL DEP ARV 66 34 54	T SKD PHL NOW DCA LATER
ROUTE 001 P NOW Z FL 120 AVG WIND 016004 ETE 00.26 <u>PHL</u> DQO.V166.BELAY.V378.BALDCA							
CONTINGE	NCY SUMMAR	RIES					
FL AVG	WIND ETH	E BURN	N MI	N RAMP	PYLD	LDG WT	
60 06	5006 00.2	26 1808	s 50	08 6800	6599	59491	
40 07	2006 00.2	26 1853	3 50	53 6800	6599	59446	
WAYPOINT KPHL	TIME DIS LEG LEG TOTAL TO 00.26 10	ST G IAS FAL TAS 09	MCH G/S	MC ALT HDG IOA!	WIND T ISA	FUEL LEG TOTAL	SCORE TIME/FUEL
TOC	00.02	11 232 11 273	278	120 248 8	043005 P10	360 360	/

Flight Release

NAS:

MEL/CDL

NO ITEMS

FP SWA40 B733/Q 426 DAL P2220 370 DAL.TEX1.MLC..SGF.TRAKE8.STL/0129 EQP DGILORVWZ SRV S NAV/ RNVD1E1A1

- An AD prepares a Dispatch Release for each respective flight
- Dispatch Release (or Flight Release) is a legal document
- The AD and pilot in command formally agree to the operational control of the flight by signing the Dispatch Release

	Fuel	Time	Plan		Struc Lim	tural it
TAXI	0005					
ENROUTE BURN	0077	01:29	OEW	074446		
CONTINGENCY	0026	00:30	PLYD	030500		
ALTERNATE	0000	00:00	ZFW	104900	MZFW	1050
FAR RESERVE	0035	00:45	FOB	013800	MFW	0356
*********	* * * * *					
MINIMUM FUEL	0143	02:44	TOW	118700	MTOW	1360
*********	* * * * *					
TANKER	0000	00:00	BURN	007700		
PLAN FOB	0143	02:44	LGW	111100	MLGW	1140
PLANNED ARRIV	AL FUEL	0061	ESTI	MATED MA	X QUIC	K TURN WGT
AVG WIND MO31 NFUEL BURN AD	MXSH JUSTMEN	05/SGF T FOR 1	FUEL OOOLBS D	BIAS + ECREASE	3.9% IN TOW	CRZ C2O/W : 0054 LBS

1199

W

Dispatcher Workstation

- Left Screen: Fleet management
- Middle Screen: Flight Planning, general information, and Aircraft Communications Addressing and Reporting System (ACARS) messaging
- Right Screen: Weather, flight tracking
- Phone/air-ground radio contact other personnel and aircraft in flight
- About 20 to 40 flights per dispatcher at any given time – follow tail numbers

Maintenance

- Uses Minimum Equipment List (MEL) for each type of aircraft in the fleet
- Checks errors/faults to determine if aircraft can fly
- Receives messages from dispatch and pilots about MEL items
- Has a direct voice line to the flight deck if troubleshooting is needed
- Responsible for scheduling maintenance at the airport

U.S. DEPARTMENT OF TRANSPORTATION							
FEDERAL AVIATION ADMINISTRATION							
AIRCRAFT: BOEING B-777					REVISION NO: 20	PAGE:	
					DATE: 04/14/2014	21-9	
SYSTEM &	1.	2.	NUME	JMBER INSTALLED			
SEQUENCE	ITEM		3.	NUMBER REQUIRED FOR DISPATCH			
NUMBERS				4. REMARKS OR EXCEPTIONS			
21 AIR CONDITIONING							
-27-16 Flight Der Equipmer System (sk C nt Cooling 777F)	1	0	(M)(C a b NOTE	 May be inoperative provided: Equipment cooling three-way deactivated closed, and Procedures are established a verify main deck cargo compa remains empty or contains on empty cargo handling equipm may be loaded in ULDs), or fl Operator MELs must define w are approved for inclusion in th kits and which materials can b ballast. 	valve is nd used to artment ly ballast, ent (ballast y away kits. hich items he fly away e used as	

UAM and the Dispatcher

- For UAM, a human dispatcher will be necessary during operations (initially)
- Duties include flight planning, flight following, contingency management (e.g., weather, maintenance, and air traffic control)
- There are differences between UAM and airline operations, but there are many similar tasks

Domains Compared

Present Day Aviation	Urban Air Mobility
Large aircraft (B777 is 774,600 pounds)	Small aircraft (2,000 - 4,000 pounds)
Many passengers (hundreds)	Two to four passengers
Highly structured airspace	Less structured airspace
Local and high-altitude weather data	Detailed weather data for low altitudes
Voice radio communications	Digital data and voice communications
Operations segregated from public	Operations integrated with public
Robust performance in weather	Highly susceptible to weather
NAS-wide air traffic control (ATC) services	Operator-provided ATC services
Scheduled operations	Unscheduled operations
Avoids urban areas	Operates in urban areas
Sophisticated airports	Simple landing pads or "land anywhere"
Highly trained flight crews	Minimal flight crew training
Partial reliance on automation	Heavy reliance on automation
Complex maintenance requirements	Simple maintenance requirements

Comparison of Tasks

2. Gap Analysis

In Table 2, current airline dispatcher tasks are listed with the comparable FM task. Tasks in bold have significant differences compared to conventional dispatcher tasks.

Airline Dispatcher Task	Fleet Manager Task			
Dispatcher arrives for their shift and is briefed	The outgoing FM uses their software to note			
by the outgoing dispatcher.	and communicate issues to the incoming FM.			
	The FM's workstation should have a software			
	tool that summarizes all of the important			
	information to be passed on to the relief FM.			
	The next shift may be manned at a different			
	office in another part of the country.			
Electronically logs into the dispatcher	The FM logs into their workstation.			
workstation.				
Launches flight planning system.	FM plans the flight with different information			
	compared to that used for large aircraft. The			
	UAM route structure will most likely use			
	lat/longs for waypoints, pre-defined routes,			
	corridors, etc.			
Launches aircraft situational display (ASD)	FM launches their ASD. The ASD is a primary			
system.	tool for the FM. However, due to the shorter			
	range of an air taxi, the ASD must be refined to			
	have the ability to view geographical and			
	weather data on a micro scale, using new sensor			
	suites.			
Launches communication console.	FM launches the UAM communications console			
	(e.g. radio, cell phone, text messaging, etc.).			
Identifies any electronic messages that were	FM uses their communications console to identify			
not observed during the turnover process.	any new messages.			

Main Findings (Gaps)

- FM needs software tool for shift change (different locations)
- Flight planning will have different parameters (lat/longs for waypoints, pre-defined routes, corridors, etc.)
- FM's situation display must present very detailed geographical and weather information
- Weather data are focused on low altitude operations
- FM manages low altitude traffic over urban areas
- FM will need to handle on-demand flights
- Payload and weight balance will be critical for small aircraft

Main Findings (Gaps)

- Standard (recurring) routes will need to be checked due to constantly changing low altitude environment
- Altitude selection for flights may be very limited
- Flight plan may be an "Operation Plan," similar to UTM
- Submits Operation Plan to a service supplier rather than the FAA
- FM does not coordinate with the FAA but with corporate service provider traffic management

Software Requirements

- List of FM tasks defines functions and information requirements to support the operator
- Enables software design
 - Functions (tools)
 - Displays
 - User interaction

Software Functions: Operations

- Flight planning
- Flight following
- Flight path manipulator (in the event of a contingency)
- Conflict prediction and status
- Alternate route suggestions
- Airspace corridor saturation monitor
- Weather integration into decision-making
- Aircraft energy/consumption monitor
- In flight route optimizations

Software Functions: Communications

- Voice and text links with pilot
- Messaging with passengers
- Voice and data communications with air traffic management/local authorities
- Data communications with service suppliers
- Two-way data contact with aircraft (equipment status, fuel/battery level, etc.)
- Voice and text with vertiports
- Voice and text with maintainers

Software Functions: System

- Replacement vehicle availability
- Live repair turnaround estimates
- Role management and delegation
- Alarms or warnings of upcoming system downtime and faults
- Backup pilot for emergency events

Data Requirements: Map

- Aircraft position, identifier, speed, heading, altitude, and flight plan
- Flight corridors
- Speed and descent profiles
- Trip length
- Human-made and natural obstructions (e.g., buildings, trees, hills, etc.)
- Temporary Flight Restrictions
- Special Use Airspace
- Landing area issues
- Noise regulations that affect vehicle choices
- Other aircraft position, identifier, speed, heading, altitude, and flight plan
- Reception obstruction areas
- Vertipad/vertiport detailed map view with traffic
- Vertipad/vertiport status
- Emergency and safety related notices affecting flights

Data Requirements: Weather

- Very detailed weather information for the altitudes and areas of concern
- Very rapid surface to 5000 feet weather changes
- Micro-scale weather detection and prediction
 - Barometric pressure
 - Temperature
 - Relative humidity
 - Dew point
 - Wind speed and direction
 - Icing
- Detailed wind flows for urban canyons, structures, topographical areas, vegetation (e.g., forests, valleys, bridges, etc.) with a few meter resolution
- Ice formation on the ground
- Localized ceiling and fog

Data Requirements: Aircraft

- Aircraft type
- Fuel/battery capacity, range, and remaining
- Time to charge battery
- Payload:
 - Aircraft capacity
 - Weight
 - Manifest
 - Loading notes
- Routing
- Human pilot or ground pilot
- Safety procedures
- Deferred maintenance items
- Repair and maintenance data
- Onboard system status

Data Requirements: Communications

- Downloads of updated regulations, management advisories, etc.
- Information about crew schedule changes
- Security or emergency items (terrorism threats, reroutes, medical emergencies)

Data Requirements: System

- Company system status (communications, facilities, personnel, etc.)
- Gate assignments
- Crew changes
- Curfew issues
- Noise footprint
- Noise abatement
- Backup pilot for emergency events

Software Design Philosophy

- FMs may be challenged by the number of flights they must handle
- Complex, low-altitude vehicle management
- Information displays should be forward-looking and provide decision support
- UI architecture provides two modes:
 - Recommended actions based on user tasks
 - Background data behind decisions, if requested
- System capabilities include:
 - Optimize FM to vehicle management ratio
 - Predictive interactions as a core design principle
 - Decrease training needs of FMs vs. ADs
 - Enhance safety of low altitude, automated flight conditions

UI Design

- FM UI uses a single, large, windowed display
- Information in the interface is integrated:
 - User chooses a route
 - Software creates the route
 - Map graphically shows a problem with the route
 - Computer generates suggested solution
 - User communicates the chosen action to others, logs the issue, and monitors the flight path
- Software supports prediction, monitoring, and execution

The maximum number of windows is four. The user can drag and drop the controller at center (indicated by a gray circle) to resize all windows simultaneously.

Starting with the top left quadrant and going clockwise:

- Visual Route Planning for assisted optimization

- Vertiport Situational Awareness for monitoring
- Flight monitoring
- Fleet Communications

To change the number of windows, right-click on the controller (indicated by a gray circle). A menu appears allowing users to toggle on/off each of the four windows. Toggling off a window results in a three window view as in the example above. Toggling two windows off results in a split view as shown in the example above. Users may toggle on/off windows as necessary.

Flight Awareness Collaboration Tool

 \bigwedge

Next Steps

- Additional UI design
- Sent Gap Analysis to Uber
- May be interested in collaboration later in the year

Questions?