Bridging the Gap Between Requirements and
Simulink Model Analysis

Anastasia Mavridou™?, Hamza Bourbouh!-?, Pierre-Loic Garoche'?3, Dimitra
Giannakopoulou', Tom Pressburger’, and Johann Schumann'-?

INASA Ames Research Center, 2SGT, Inc., 2Onera, The French Aerospace Lab

Abstract. Formal verification and simulation are powerful tools for the
verification of requirements against complex systems. Requirements are
developed in early stages of the software lifecycle and are typically ex-
pressed in natural language. There is a gap between such requirements
and their software implementations. We present a framework that bridges
this gap by supporting a tight integration and feedback loop between
high-level requirements and their analysis against software artifacts. Our
framework implements an analysis portal within the FRET requirements
elicitation tool, thus forming an end-to-end, open-source environment
where requirements are written in an intuitive, structured natural lan-
guage, and are verified automatically against Simulink models.

1 Introduction

The safety critical industry imposes a strict development process according to
which requirements are written in the early phases of the software lifecycle,
and are refined into models and/or code, while keeping track of traceability
information. Verification and validation (V&V) activities must ensure that the
development process properly preserves these requirements (for example, see [8])
Requirements are typically written in natural language, which is well-known to
be ambiguous and as such, not amenable to formal analysis. Frameworks like
Stimulus [7] or FRET (Formal Requirements Elicitation Tool) [5] address this
problem by enabling the capture of requirements in restricted natural languages
with formal semantics. FRET additionally supports automated formalization of
requirements in temporal logics.

To support V&V activities, it is necessary to associate high-level require-
ments with software artifacts in terms of architectural information such as com-
ponents and signals. For formulas generated by FRET for example, the atomic
propositions that make up a formula must be connected to variable values or
method executions in the target Simulink model. To this end, we have devel-
oped an end-to-end, open-source requirements analysis framework that supports
a tight integration and feedback loop between high level requirements and the
V&V of models or code against these requirements. Our framework is available,
open source, within FRET !; it currently connects FRET with the cCOCOSIM model
verifier, with plans on extending it to support a variety of analysis tools.

1 https://github.com/NASA-SW-VnV/fret

https://github.com/NASA-SW-VnV/fret

2 A. Mavridou et al.

Simulink model

Our framework provides: 1) automat-
ic extraction of Simulink model infor-
mation and association of requirements
with target model signals and compo-
nents; 2) translation of FRET temporal
logic formulas into synchronous dataflow
COCOSPEC [1] specifications as well as
Simulink monitors, to be used by verifica-
tion tools; and 3) interpretation of coun-

FRETish

step 0

C

step 1

\
) @chitectural mappl@

step 2

Y
CoCoSpec monitors &)
Traceability data

pmLTL

FRET

A\ 2 step 3

terexamples produced by verification back

at model and requirement levels.
Similarly to [11,10], our framework

checks formal properties against Simulink

Lustre code + spec)

v

Simulink model with
connected monitors

| Kind2, Zustre | step 4

| SLDV |

T

| |

step 5 * *
Counterexamples

Fig. 1: Requirement analysis frame-
work.

models, but unlike [11], it does not involve
translation by hand, and unlike [10], prop-
erty propositions do not need to match
model variables. Moreover, in our frame-
work, analysis results can be traced back
to requirements.

CoCoSim

2 Our framework step-by-step
Figure 1 shows the workflow of our requirement analysis framework. The con-
tributions of this paper are represented by continuous arrows. In step 0, re-
quirements written in FRETISH are translated into pure Past Time Metric LTL
(pmLTL) formulas. In step 1, data is used from the model under analysis, to pro-
duce an architectural mapping between requirement propositions and Simulink
signals. In step 2, the pmLTL formulas and the architectural mapping are used
to generate monitors in COCOSPEC, which is an extension of the synchronous
dataflow language Lustre [6] for the specification of assume-guarantee contracts.
In step 3, the generated COCOSPEC monitors and model traceability data are im-
ported into cOCOSIM [2] along with the Simulink model under analysis. COCOSIM
automatically generates and attaches monitors on the Simulink model. From the
complete model (initial model and attached monitors), COCOSIM also generates
equivalent Lustre code. As a result, the complete model can be analyzed by both
Simulink-based (e.g., Simulink Design Verifier (SLDV)) and Lustre-based (e.g.,
Kind2, Zustre) verification tools in step 4. Counterexamples generated during
the analysis can be traced back to COCOSIM or FRET for simulation in step 5.
The next sections illustrate each workflow step in detail, using a requirement
from the Lockheed Martin Cyber Physical Systems (LMCPS) challenge [3]. The
LMCPS challenge is representative of flight-critical systems and is publicly avail-
able.? Requirement [FSM-001] (Figure 2) partly describes the required behavior
of an advanced autopilot system with an independent sensor platform.

Step 0 : FRETISH to pmLTL A FRETISH requirement contains up to six
fields: scope, , component*, shall*, timing, and response*. Manda-
tory fields are indicated by an asterisk. component specifies the component that

2 https://github.com/hbourbouh/lm_challenges

https://github.com/hbourbouh/lm_challenges

Bridging the Gap Between Requirements and Simulink Model Analysis 3

NL: “FEzceeding sensor limits shall latch an autopilot pullup when the pilot is not in
control (not standby and the system is supported without failures (not apfail)”

FRETish: FSM shall always satisfy (sensorLimits & autopilot) = pullup

pmLTL: H((sensorLimits & autopilot) =—> pullup)

Fig. 2: FSM-001 in Natural Language (NL), FRETISH, and pmLTL forms.

the requirement refers to. shall is used to express that the component’s behav-
ior must conform to the requirement. response is a Boolean condition that the
component’s behavior must satisfy. scope specifies the period when the require-
ment holds. The optional condition field is a Boolean expression that further
constrains when the response shall occur. timing, e.g., always, after/for N time
units, specifies when the response shall happen, subject to condition and mode.

The manually written FRETISH version of requirement [FSM-001], shown
in Figure 2, uses the component, shall, timing, and response fields. Since
scope and condition fields are omitted, the requirement holds universally. The
autopilot proposition was used by the requirements engineer to simplify the re-
quirement; it equals (! standby & ! apfail & supported). For each require-
ment, FRET generates a pmLTL formalization, e.g., see Figure 2 for the pmLTL
of [FSM-001]. H refers to the Historically pmLTL operator [9].

Step 1 : Architectural Mapping To gen-
erate monitors and automatically attach them
at the right hierarchical level of the model, we — wwewenens Fou
need architectural data from the model. For
instance, for [FSM-001], we need information ‘
about the hierarchical level, i.e., the path, of ssotmts input
the model component that corresponds to the
FSM component mentioned in FRETISH. Addi-
tionally, we need information about the sig- e

nals of the component, e.g., name, type (e.g., standby oancer [JURBATE
input, output), datatype (e.g., boolean,
double, bus) that correspond to the propo-
sitions mentioned in [FSM-001].Our framework provides a mechanism to auto-
matically extract the required data from a Simulink model.

Once model data is imported, the architectural mapping procedure starts,
which includes mapping every component and proposition mentioned in a re-
quirement to a model component and a signal, respectively. There are two ways
to do the architectural mapping: in the fortunate case that the same names are
used both in the requirements and in the model, our tool automatically con-
structs the desired mapping. From our experience however, this is usually not
the case. Different engineers work on requirements and on models, and these
two parts are hardly ever aligned. For this reason, we provide an easy-to-use
user interface, through which the user can pick the path of the corresponding
model component or port from a drop-down menu and map it with a requirement
component or proposition (see Figure 3 for the mapping of the sensorLimits

Update Variable

M ponent
fsm_12B

None

apfail

Fig. 3: sensorLimits mapping.

4 A. Mavridou et al.

proposition of FSM, to the 1imits signal of the £sm_12B model component). Then
our tool automatically identifies all the other required information (data types,
dimensions, etc) to generate correct-by-construction monitors and corresponding
traceability data. Alternatively, a user may provide the required data manually.

Step 2 : COCOSPEC Monitors and Traceability Data To translate
pmLTL into COCOSPEC, we created a library of pmLTL operators in COCOSPEC:

--0Once --Historically
node 0(X:bool) returns (Y:bool); node H(X:bool) returns (Y:bool);
let let
Y = X or (false -> pre Y); Y = X -> (X and (pre Y));
e HEL
--Y since X --Y since inclusive X
node S(X,Y: bool) returns (Z:bool); node SI(X,Y: bool) returns (Z:bool);
let let
Z = X or (Y and (false -> pre Z)); Z =Y and (X or (false -> pre Z));
eIk BEIL

The semantics of the unary pre and the binary initialization -> operators is
as follows. At time t = 0, pre p is undefined for an expression p, while for each
time step ¢t > 0 it returns the value of p at t—1. At time ¢ = 0, p => ¢ returns the
value of p at t = 0, while for ¢ > 0 it returns the value of ¢ at ¢. The correctness
of the COCOSPEC generated code was checked with extensive testing; we omit
the details due to space limitation. Here is the [FSMO01] COCOSPEC monitor:

contract FSMSpec(apfail:bool; sensorLimits:bool; standby:bool; supported:bool
;) returns (pullup: bool;);

let

var autopilot:bool=supported and not apfail and not standby;

guarantee "FSMOO1" H ((sensorLimits and autopilot) => (pullup));

tel

The generated traceability data include the mapping of FRETISH propositions
to the absolute path of Simulink signals and they are provided in JSON format.

Step 3 : Simulink Monitor Generation COCOSIM attaches COCOSPEC mon-
itors to Simulink subsystems. This process relies heavily on coCoSIM’s Lustre-
to-Simulink compiler. The first compilation step is performed by LustreC [4], an
open-source Lustre compiler, which produces information necessary to extract
the model structure. The second step transforms the produced structure into
Simulink blocks through the Simulink API. Each COCOSPEC construct (e.g., as-
sume, guarantee) is compiled and translated: their equivalent Simulink blocks
are provided by a dedicated cocosiM library [2]. Mathematical operators are
translated into equivalent Simulink blocks. The pre operator is implemented as
a Simulink Unit delay block. Figure 4 shows the generated Simulink monitor for
[FSM-001]. Once the monitor is generated, COCOSIM automatically attaches it
on the Simulink model based on the traceability data from step 2.

Step 4: Verification of the complete model At this step, verification can
be performed either at the Simulink level using e.g., the Simulink Design Verifier
or at the Lustre level using e.g., Kind2. Since requirements are initially given
to us in natural language, their semantics is often ambiguous. For instance, our
interpretation of requirement [FSM001], where all conditions must be satisfied
at the same time for pullup to be activated, in FRETISH was shown to be invalid.
After revisiting the requirement, we thought that potentially there is a time step

Bridging the Gap Between Requirements and Simulink Model Analysis 5

’—‘1
sensorLimits
autopilot

supported

4{ In1 guarantee I

puflup

Fig.4: Generated Simulink monitor for requirement [FSM001].

Il
_

Inputs T
standby F
apfail F
T
T

supported
sensorLimits
Outputs
pullup F T F F

S RS les ()

(a) Counterexample.

(b) Simulation of [FSM-001v2].

difference between 1limits = true and the activation of pullup. Thus we wrote
the following second version, which however was also shown to be invalid.

[FSM-001v2: FSM shall immediately satisfy pullup]

Step 5: Counterexample simulation Simulation of counterexamples is help-
ful for identifying weaker properties and producing meaningful reasoning sce-
narios. For instance, let us consider requirement [FSM-001v2], for which Kind2
returned the counterexample shown in Table 5a. It is clear that even though
pullup was activated the first time sensorlLimits hold, it was not activated
at the second occurrence of sensorLimits. To better understand the behavior
of the model, we performed a simulation based on this counterexample. Figure
ob illustrates a scenario when sensorLimits occurs multiple times during the
autopilot operation, during which condition autopilot must be true. Based on
this simulation, we found that pullup is latched only when sensorLimits holds
in the previous step and has not been true for at least three steps before that.

3 Preliminary results

Table 1 summarizes preliminary results from applying our approach to the LM-
CPS challenge 3. Our framework is generic and can use the strengths of several
analysis tools. For example, our case study uses Kind2 and SLDV: Kind2 was
able to return an answer (decided) by using abstractions of non-linear functions
such as trigonometric functions, in comparison with SLDV that mostly returned
undecided for these cases. Due to its architectural mapping, our framework allows
us to deploy COCOSPEC specifications at different levels of the model behavior.
For instance, for the FSM component, we generated three different contracts

3 The complete case study can be found at https://tinyurl.com/fretForREFSQ

https://tinyurl.com/fretForREFSQ

6 A. Mavridou et al.

that we deployed at three different hierarchical levels of the model. This is im-
portant for complex models where verification does not scale for global scopes.
We applied modular verification to 20 out of the 69 requirements.

4 Conclusion

We described an end-to-end
framework in which require-
ments written in a restricted
natural language can be equiv-
alently transformed into mon-
itors and be analyzed against
Simulink models by Simulink-
based and Lustre-based veri-
fication tools. Our framework
ensures that requirements and

[Name [Nz|D/UN[D/UN]
Triplex Signal Monitor (TSM) 6] 6/0 | 6/0
Finite State Machine (FSM) 13| 13/0 | 13/0
Tustin Integrator (TUI) 3] 3/0 | 3/0
Control Loop Regulators (REG) 10| 6/4 | 1/9
Nonlinear Guidance (NLG) 71 0/7 | 0/7
Feedforward Neural Network (NN)[4 [0/4 | 0/4
Control Effector Blender (EB) 31 0/3] 0/3
6DoF Autopilot (AD) 3 [8/0 | 8/0
System Safety Monitor (SWIM) 31 3/0 [1/2
Euler Transformation (EUL) 71 7/0 1 1/6

[Total [64[46/18[33/31]
Table 1: LMCPS results. Ng: #analyzed
requirements, D: Decided, UN: undecided.

analysis activities are fully

aligned: Simulink monitors are derived directly from requirements (and not hand-
crafted), and analysis results are traced back to requirements. The features of
our framework are generic and can be used to integrate other requirement elic-
itation and analysis tools. In the future, we plan on providing additional ways
of providing feedback from analysis tools to requirement engineers, to support
them in correcting requirements. We also plan on extending our framework with
additional types of analysis that can be performed at the level of requirements,
e.g., realizability checking.

References

1.

2.

11.

Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: A mode-aware
contract language for reactive systems. In: Proc. SEFM 2016, pp. 347-366 (2016).
CoCo-team: CoCoSim — Automated Analysis Framework for Simulink. https://
github.com/coco-team/cocoSim2

Elliott, C.: An example set of cyber-physical V&V challenges for S5. S5 (2016).
http://mys5.org/Proceedings/2016/Day_2/2016-55-Day2_0945_Elliott.pdf
Garoche, P., Kahsai, T., Thirioux, X.: LustreC, https://github.com/coco-team/
lustrec

Giannakopoulou, D.; Pressburger, T., Mavridou, A., Schummann, J.: Generation
of formal requirements from structured natural language. REFSQ (2020)

. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow

programming language Lustre. Proc. IEEE 79(9), 1305-1320 (1991)

Jeannet, B., Gaucher, F.: Debugging Embedded Systems Requirements with STIM-
ULUS: an Automotive Case-Study. In: Proc. ERTS (2016).

RTCA: DO-178C: software considerations in airborne systems and equipment cer-
tification. (2011)

Baier, Christel., Katoen, Joost-Pieter.: Principles of model checking.

. D. Balasubramanian., G. Pap., H. Nine., G. Karsai., M. Lowry., C. Pasareanu.,

T. Pressburger.: Rapid property specification and checking for model-based for-
malisms. RSP (2011).

Nejati, Shiva., Gaaloul, Khouloud., Menghi, Claudio., Briand, Lionel C., Foster,
Stephen., Wolfe, David.: Evaluating Model Testing and Model Checking for Find-
ing Requirements Violations in Simulink Models (2019).

https://github.com/coco-team/cocoSim2
https://github.com/coco-team/cocoSim2
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
https://github.com/coco-team/lustrec
https://github.com/coco-team/lustrec

	Bridging the Gap Between Requirements and Simulink Model Analysis

