
Oscar M. Youngquist and Lauren P. McIntyre
Glenn Research Center, Cleveland, Ohio

Genetic Algorithm for Optimization
of Neural Networks for Bayesian
Inference of Model Uncertainty

NASA/TP—2020-220385

April 2020

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientific and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Oscar M. Youngquist and Lauren P. McIntyre
Glenn Research Center, Cleveland, Ohio

Genetic Algorithm for Optimization
of Neural Networks for Bayesian
Inference of Model Uncertainty

NASA/TP—2020-220385

April 2020

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

I would like to thank Clifford Brown and Christopher Miller of the Acoustics Branch at the NASA Glenn Research Center for
supporting this work as subject matter experts in acoustics and providing the training and evaluation data. I would also like to
thank Calvin Robinson and Herbert Schilling of the Scientific Computing and Visualization team at NASA Glenn for supporting
this project and giving me the opportunity to perform research this summer. This work was supported by the NASA Advanced
Air Vehicle Program Commercial Supersonic Technology (CST) Project.

Available from

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by expert reviewer(s).

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

This work was sponsored by the Advanced Air Vehicle Program
at the NASA Glenn Research Center

NASA/TP—2020-220385 iii

Contents
Summary.. 1

Acronyms ... 1
Introduction ... 1
Algorithm Description .. 2

Inputs and Outputs .. 2
Evolutionary Algorithm ... 2

Experimental Validation .. 4
Dataset .. 4
Experimental Setup .. 4

Results ... 4
Conclusions ... 5
References ... 6

NASA/TP—2020-220385 1

Genetic Algorithm for Optimization of Neural Networks
for Bayesian Inference of Model Uncertainty

Oscar M. Youngquist* and Lauren P. McIntyre
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary*

The objective of this work was to develop a genetic
optimization algorithm that can design a neural network
capable of producing uncertainty estimates along with
predictions. This algorithm is necessary because the inclusion
of uncertainty modeling in a neural network greatly complicates
the network’s design space, making the development of a
converging model extremely difficult and time consuming. The
genetic algorithm presented in this work uses a number of value
ranges for various configurable neural network parameters to
create a randomly generated population of network
architectures. The initially generated population is then evolved
over the course of several generations, with the best performing
models breeding to produce novel network configurations.
Mutations are randomly applied to the network designs to
facilitate the development of adaptations beneficial to the task
being performed. An experiment was conducted to validate the
proposed algorithm, in which the genetic optimizer was tasked
with producing a neural network capable of predicting the
sound pressure level (SPL) resulting from jet-surface
interaction (JSI) noise. The data used for this task was generated
at the NASA Glenn Research Center in the Aero-Acoustic
Propulsion Laboratory. Starting with an initial population size
of 35 randomly generated networks, and evolved over the
course of 10 generations, the genetic algorithm produced a
design able to predict SPL as a result of JSI noise within
0.272 dB, on average.

Acronyms

CSV comma-separated value
GPU graphics processing unit
JSI jet-surface interaction
MAE mean absolute error
MSE mean squared error
SPL sound pressure level in decibels (dB)

*Summer Intern in Lewis’ Educational and Research Collaborative
Internship Project (LeRCIP). Undergraduate at Rose-Hulman
Institute of Technology.

Introduction
In recent years, deep learning has revolutionized the use of

artificial intelligence tools in fields such as biology, medicine,
physics, and manufacturing (Refs. 1 to 3). Artificial neural
networks, convolution, dropout, and other deep learning tools
have emerged as the state of the art in regression and
classification tasks. However, a shortcoming in traditional deep
learning methods is the inability to capture model uncertainty.
This can be a prohibitive factor in the adoption of deep learning
techniques in many areas of research, including the fields listed
above. This has led some researchers to adopt Bayesian
inference techniques as an alternative (Refs. 4 to 6).

Bayesian probability theory offers researchers
mathematically grounded techniques capable of performing
regression and classification tasks, as well as the ability to
reason about model uncertainty (Ref. 7). Despite this
advantage, Bayesian modeling usually comes with a prohibitive
computation cost attached. Therefore, researchers have sought
the development of a deep learning framework capable of
estimating model uncertainty.

To meet this demand, Yarin Gal introduced the mathematical
basis for equating the use of dropout in neural networks to a
Bayesian approximation of the well-established Gaussian
process probabilistic model in his 2015 paper (Ref. 7). In short,
this technique is accomplished by using dropout layers in a neural
network to introduce random noise into the model’s predictive
process. Then, if several predictions are made on the same input,
the model’s predictions will fit a Gaussian distribution. From this
distribution, one can calculate the input’s predictive mean (the
average of the predictions) and predictive uncertainty (the
variance of the predictions). While this technique allows deep
learning models to produce uncertainty estimates along with their
predictions, it also introduces new complications in an already
difficult design process.

Designing neural networks by hand—selecting the number of
hidden layers, number of neurons, activation functions, the

NASA/TP—2020-220385 2

optimizer, and more—is extremely challenging. More often
than not, engineers are forced to rely on intuition and
experience rather than a fixed and well-understood design
methodology. This is due to the vast, epistatic, noisy, and
multimodal design space represented by a neural network’s
topology and hyperparameters (Ref. 8). It can take experts
hundreds of hours to design, implement, evaluate, and optimize
a neural network design. The introduction of noise into the
model’s predictions adds to the difficulty of this process by
making it harder for neural networks to converge to an
acceptably low loss value. Furthermore, this noise can also
mask underlying issues in the design of the network itself,
making it more difficult for engineers to discover cause and
effect relationships in their models. Accordingly, the
introduction of uncertainty estimation through dropout can
further increase the time required to design neural networks.

This work introduces and experimentally validates a method
to alleviate these challenges via a genetic algorithm that
optimizes network design through an evolutionary process.

Algorithm Description
The method presented in this work uses a genetic algorithm to

evolutionarily build, evaluate, and optimize the design of
multilayer feed-forward neural networks for the Bayesian
approximation of model uncertainty. This evolutionary process is
accomplished by providing the algorithm with a dictionary of
configurable neural network parameters and their associated
acceptable values, as well as a few control variables. The
algorithm uses these parameters to construct a population of
randomly configured network designs that are evolved over the
course of a prescribed number of generations. The implementation
of this work is in Python and relies on the Keras API using the
TensorFlow backend (Refs. 9 and 10). Additionally, this work
was inspired, in part, by the DeepEvolve project developed by Jan
Liphardt at Stanford University (Ref. 11).

Inputs and Outputs

There are 11 inputs for this algorithm: N, population_size,
max_population_size, nn_param_choices, output_dir, mutate_
chance, select_chance, k, epochs, training_data, and
testing_data.

The N input is simply the number of generations over which
the initial population of randomly generated networks will
evolve. Population_size is the size of the initially generated
population. For example, if this value is set to 50, then the first
generation will have a population of 50 unique network designs.
Likewise, max_population_size is the maximum size to which
future generations are allowed to grow. This value is necessary
because in this algorithm, the populations of future generations

are allowed to grow in order to include potentially beneficial
child networks.

The nn_param_choices input is a Python dictionary of
configurable neural network design parameters and their
corresponding acceptable values. The parameters available for
configuration in nn_param_choices are as follows:

• nb_neurons: number of neurons in a layer (a distinct

nb_neurons value is selected for each layer)
• nb_layers: number of hidden layers in the network
• activation: activation functions (the same activation is

used for each layer)
• optimizer: list of potential optimizers
• lr: learning rate for the optimizer
• clipnorm: the clipping value used by the optimizer
• dropout_prob: dropout probability
• w_decay: the weight decay value
• batch_size: number of samples per batch

The value of output_dir determines the location where all the

outputs generated by the algorithm will be saved, and
mutate_chance is the percent likelihood a point mutation will
occur in a network’s design. The parameter k is the percentage
of the networks that will be carried over to the next generation.
If k = 0.25, then the top 25 percent, or 75th percentile, of
networks—based on their fitness score—will be carried over to
the next generation of networks automatically. Select_chance is
the percent likelihood a network not in the kth percentage will
be carried over into the next generation. Finally, epochs is the
number of epochs for which each network will be trained before
being scored, and training_data and testing_data are simply the
data on which the neural networks will be trained and evaluated.

There are two types of output from this algorithm. The first
is a log file containing information about each generation of
networks evaluated, namely, the generation’s population size
and the average performance across the population. Second is a
folder that is generated for each network design that is
evaluated. Each of these folders contains five additional files,
one of which is an instance of the trained model, saved as an
.h5 file type, that is associated with that folder. There are also
two comma-separated value (CSV) files, one containing the
model’s training history, and the other containing values used
to scale the network’s inputs. Lastly, the folder contains two txt
files, one describing the network’s parameter configuration and
one containing the network’s evaluation score.

Evolutionary Algorithm

This section details the functional flow of the algorithm. An
overview of this process can be seen in Figure 1. After providing
the algorithm with the necessary inputs, the algorithm constructs

NASA/TP—2020-220385 3

the first generation’s population by randomly selecting a value
for each of the parameters from nn_param_choices for each
candidate design. These values are then used to instantiate a
neural network with the corresponding characteristics. After the
entire population is created, the algorithm then evaluates each
candidate design. The networks are trained one at a time, with
each training on the user-provided training data for the number
of epochs specified by the value of epochs. The size of the input
and output layers is automatically calculated from the size of the
input and target data. After training, each network is then
evaluated on a held out test set, also provided by the user. The
fitness of each network is calculated via mean squared error
(MSE). The top kth percentage of these networks are selected to
be carried over to the next generation. Additionally, the
remaining networks in the population are iterated over and each
network has a percent likelihood, predetermined by the value of
select_chance, of also being selected to be carried over to the next
generation. From the pool of carried-over networks, two designs
at a time are randomly selected to be bred.

The breeding process involves the recombination of the two
parent networks into two new child networks. Recombination,
also called crossover, is the process in sexual reproduction in
which entire sections of the parents’ genomes are swapped.
This leads to novel genetic configurations and is the main
advantage of sexual reproduction. In our case, recombination is
accomplished in the following steps:

1. One parameter is randomly selected as the “breakpoint” for

recombination from the list of network parameters (as
described in the Inputs and Outputs section).

2. For all the parameters up until the breakpoint, Child 1
receives all its parameters from Parent 1, and Child 2 from
Parent 2.

3. From the breakpoint to the end of the parameter list, Child
1 receives all its remaining parameters from Parent 2, and
Child 2 from Parent 1.

The process of recombination increases the likelihood that

beneficial sequences of genes, in this case network parameters,
from both parents will be incorporated into a single, better
adapted genome.

After two new children are produced from the parent
networks, each child is then randomly mutated. This mutation
is random in that it is not a guarantee that the children will be
mutated. The likelihood that each child will be mutated is
governed by value of mutate_chance. Furthermore, if a child is
mutated, the gene, or parameter, that is mutated is randomly
selected. When a parameter is mutated, the value of that
parameter is replaced by a randomly selected value from the list
stored in nn_param_choices. Next, each child is checked for

Figure 1.—Flowchart representing the genetic algorithm

presented in this work.

NASA/TP—2020-220385 4

uniqueness. The algorithm keeps track of the network
configuration of all evaluated networks, and the new children
are checked against this list. This is done to avoid wasting time
training and evaluating a configuration that has already been
scored. If a child is found to be a duplicate, it will be randomly
mutated until a unique design is generated.

The breeding process is continued until the next generation’s
population size is at least equal to that of the previous
generation, but is still less than the value of max_population_
size. Any children created that exceed the max_population_size
are discarded.

This entire process is repeated N times. After the Nth
iteration, the generation number, model number, score, and
network configuration of the top five most fit networks are
printed to the log file.

Experimental Validation
Dataset

The performance of this algorithm was evaluated on a
regression task using a jet-surface interaction (JSI) noise
dataset. This dataset was collected from experiments conducted
in the Aero-Acoustic Propulsion Laboratory at the NASA
Glenn Research Center (Ref. 12). The JSI dataset consists of
42,165 records, each with 18 features and 87 target values. The
18 features represent various design parameters of the nozzles
of jet engines as well as assorted experimental conditions. The
targets are the sound pressure level (SPL), or “loudness,” in
decibels of the JSI noise at 87 unique frequencies.

Experimental Setup

The goal of this regression task is to use the 18 features to
predict the SPL at the 87 target frequencies. Domainexpertise-
informed feature engineering was applied to the given features

to produce a total of 66 features. The full dataset was split into
60 percent training, 20 percent validation, and 20 percent
testing sets. The network parameter values supplied to the
algorithm in this experiment are as follows:

1. nb_neurons: 16, 32, 64, 128, 256, 512, 768, 1,024
2. nb_layers: 1, 2, 3, 4
3. activation: relu, elu, tanh, sigmoid
4. optimizer: rmsprop, adam, sgd, adagrad, adadelta, adamax,

nadam
5. lr: 0.0001, 0.001, 0.01, 0.1
6. clipnorm: 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75,

3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0
7. dropout_prob: 0.005, 0.01, 0.05, 0.1
8. w_decay: 1×10–9, 1×10–8, 1×10–7, 1×10–6, 1×10–5, 1×10–4
9. batch_size: 16, 32, 64, 128, 256, 512

Additionally, N was set equal to 10, population_size equal to

35, and max_population size equal to 50. Lastly, mutate_chance
was set to 0.2, select_chance was set equal to 0.1, k to 0.1, and
epochs equal to 100. After the genetic optimization process, the
top-performing model is retrained and evaluated on the same
training, validation, and testing data subsets.

However, in this training phase the epoch count was not
limited; the model would train until it reached a validation loss
of 0.2 or below. This procedure was followed in order to fully
evaluate the genetically constructed network architecture.

Results
Using the genetic algorithm, the duration of the experiment

was 35 h, 45 min, and 32 s. The hardware used to perform the
task was a NVIDIA Tesla (NVIDIA Corporation) P100
graphics processing unit (GPU) with 12 GB of memory. The five
top-performing network configurations can be seen in Table I.

TABLE I.—TOP-PERFORMING GENETICALLY PRODUCED MODELS
Model Layersa activation optimizer learning rate clipnorm dropout_prob w_decay batch_size MSEb

1 128, 512 sigmoid adamax 0.01 2.25 0.005 1×10–8 32 0.31

2 128, 512 sigmoid adamax .01 1.75 .005 1×10–6 16 .32

3 128, 512 sigmoid adamax .01 2.75 .005 1×10–9 16 .32

4 128, 512 sigmoid adamax .01 3.25 .005 1×10–8 16 .32

5 128, 512 sigmoid adamax .01 2.25 .005 1×10–9 16 .33
aValues for nb_neurons and nb_layers are condensed into Layers column.
bMean squared error.

NASA/TP—2020-220385 5

Figure 2.—Average fitness per generation and fitness of most

fit model per generation; y-axis is inverted and log scaled.
MSE, mean squared error.

Figure 2 shows the average fitness of each generation as well

as the fitness of the most fit model per generation. Figure 3
shows the fitness of the most fit model per generation in
isolation in order to show the progression of the most fit model
in more detail.

One interesting observation that can be made from these
results is that all of the top-performing networks have several
parameters in common. Moreover, the structural layers
parameter—the parameter that determines the network’s
“physical” architecture—is the same across all the top
networks, with each network having two hidden layers with 128
and 512 neurons, respectively. Furthermore, all the networks
have the same activation function, optimizer, learning rate, and
dropout probability. Most likely this is due to the recombination
approach to producing child networks during the evolution
process. As stated in the Evolutionary Algorithm section, the
purpose of recombination is to encourage large, epistatic
adaptations from multiple configurations to merge into a single
genome. Therefore, because all but one of the shared
parameters occur sequentially in the genome, or network
configuration dictionary, it is likely that one network with these
traits was produced—likely in generation four, based on
Figure 3—which was then recombined with an arbitrary
number of other networks. Networks with these traits then
performed so well that configurations that modified these
values were almost always outperformed.

These findings suggest that the shared network parameters
are some of the most important, if not the most important,
parameters in determining the performance of a neural network
when solving this problem. Likewise, the observation that the
variation experienced between the top five models for the other
parameters results in very little difference in the fitness of these
models would suggest that these parameters are less important
in determining the network’s success.

Figure 3.—Fitness of most fit model per generation. MSE,

mean squared error.

Retraining and evaluating the top-performing network

configuration (model 1 in Table I) results in an MSE score of
0.151 and a mean absolute error (MAE) score of 0.272 on the
test set. The MAE score indicates that the network designed by
the genetic optimization algorithm can predict JSI noise within
0.272 dB, on average. This accuracy falls well within the
0.5-dB tolerance of the experimental equipment of the Aero-
Acoustic Propulsion Laboratory, making this model viable for
design analysis purposes.

Conclusions
In this work, a genetic algorithm for the evolutionary

optimization of a neural network for the Bayesian approximation
of model uncertainty was introduced. This algorithm is necessary
because the inclusion of uncertainty modeling in a neural
network greatly complicates the network’s design space, making
the development of a converging model extremely difficult. An
experiment was performed in which the genetic algorithm was
tasked with producing network designs to predict the jet-surface
interaction (JSI) noise of 87 frequencies based on 18 input
features. After 10 generations with an initial population of 35
candidate designs, the genetic algorithm produced a design that
was able to accurately predict JSI noise within 0.272 dB.

The experimental results found in this study demonstrate this
algorithm’s ability to produce highly successful, converging
network designs in a complex and noisy design space. This
algorithm has several potential benefits, not just in modeling
JSI noise, but in any deep learning or machine learning project
that requires uncertainty estimates. Therefore, this algorithm
enables the wider adoption of neural networks in many fields.
Furthermore, because this algorithm handles the network
design process itself, a relatively novice user can take this tool
and develop neural networks without being an expert in
network design.

NASA/TP—2020-220385 6

There are some potential drawbacks to the approach
presented in this work, however. One potential disadvantage is
that this algorithm in its current state only designs variations of
simple multilayer feed-forward neural networks. While this
type of network is capable of performing at state-of-the-art
levels on most regression and classification tasks, highly
specialized applications could require the use of convolutional
or other neural network types. However, with fairly
straightforward modifications, one could easily enable the
algorithm to design any other style of neural network that is
required. A second potential disadvantage is that genetic
optimization makes no guarantee as to the global optimality of
the designs it produces. Despite this, the genetic approach may
be preferred because it is orders of magnitude faster than grid
or random search methods and, on average, noticeably faster
than Bayesian optimization routines (Ref. 13).

References
1. Ching, T., et al.: Opportunities and Obstacles for Deep

Learning in Biology and Medicine. J. R. Soc. Interface,
vol. 15, no. 141, 2018.

2. Pang, Long-Gang, et al.: An Equation-of-State-Meter of
Quantum Chromodynamics Transition From Deep
Learning. Nat. Commun., vol. 9, no. 210, 2018.

3. Wang, Jinjiang: Deep Learning for Smart Manufacturing:
Methods and Applications. J. Manuf. Syst., vol. 48, 2018,
pp. 144–156.

4. Herzog, Stefan; and Ostwald, Dirk: Experimental Biology:
Sometimes Bayesian Statistics Are Better. Nature, vol.
494, 2013, p. 35.

5. Trafimow, David; and Marks, Michael: Editorial in Basic
Applied Social Psychology. Basic Appl. Soc. Psychol., vol.
37, 2015, pp. 1–2.

6. Zdeborová, Lenka; and Krzakala, Florent: Statistical
Physics of Inference: Thresholds and Algorithms. Adv.
Phys., vol. 65, no. 5, 2016, pp. 453–552.

7. Gal, Yarin; and Ghahramani, Zoubin: Dropout as a
Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. Cornell University, Ithaca,
NY, 2015. arXiv:1506.02142v6 Accessed Feb. 6, 2020.

8. Miller, Geoffrey F.; Todd, Peter M.; and Hegde, Shailesh
U.: Designing Neural Networks Using Genetic Algorithms.
Proceedings of the Third International Conference on
Genetic Algorithms, 1989, pp. 379–384.

9. Abadi, M., et al.: TensorFlow: A System for Large-Scale
Machine Learning. Presented at the 12th USENIX
Symposium on Operating Systems Design and
Implementation, Savannah, GA, 2016, pp. 265–283.

10. Keras: The Python Deep Learning Library. 2015.
https://keras.io Accessed Feb. 6, 2020.

11. Liphardt, Jan: GitHub Repo. DeepEvolve, 2017.
12. Brown, Clifford: Jet-Surface Interaction Test: Far-Field

Noise Results. ASME GT2012–69639, 2012, pp. 357–369.
13. Mori, Naoki; Takeda, Masayuki; and Matsumoto,

Keinosuke: A Comparison Study Between Genetic
Algorithms and Bayesian Optimize Algorithms by Novel
Indices. Proceedings of the 7th Annual Conference
on Genetic and Evolutionary Computation, 2005,
pp. 1485–1492.

https://keras.io/

	TP-2020-220385
	Summary
	Acronyms

	Introduction
	Algorithm Description
	Inputs and Outputs
	Evolutionary Algorithm

	Experimental Validation
	Dataset
	Experimental Setup

	Results
	Conclusions
	References

