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Genetic Algorithm for Optimization of Neural Networks  
for Bayesian Inference of Model Uncertainty 

 
Oscar M. Youngquist* and Lauren P. McIntyre 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

 
Summary* 

The objective of this work was to develop a genetic 
optimization algorithm that can design a neural network 
capable of producing uncertainty estimates along with 
predictions. This algorithm is necessary because the inclusion 
of uncertainty modeling in a neural network greatly complicates 
the network’s design space, making the development of a 
converging model extremely difficult and time consuming. The 
genetic algorithm presented in this work uses a number of value 
ranges for various configurable neural network parameters to 
create a randomly generated population of network 
architectures. The initially generated population is then evolved 
over the course of several generations, with the best performing 
models breeding to produce novel network configurations. 
Mutations are randomly applied to the network designs to 
facilitate the development of adaptations beneficial to the task 
being performed. An experiment was conducted to validate the 
proposed algorithm, in which the genetic optimizer was tasked 
with producing a neural network capable of predicting the 
sound pressure level (SPL) resulting from jet-surface 
interaction (JSI) noise. The data used for this task was generated 
at the NASA Glenn Research Center in the Aero-Acoustic 
Propulsion Laboratory. Starting with an initial population size 
of 35 randomly generated networks, and evolved over the 
course of 10 generations, the genetic algorithm produced a 
design able to predict SPL as a result of JSI noise within 
0.272 dB, on average. 

Acronyms 

CSV comma-separated value 
GPU graphics processing unit 
JSI  jet-surface interaction 
MAE  mean absolute error 
MSE  mean squared error 
SPL  sound pressure level in decibels (dB) 

                                                           
*Summer Intern in Lewis’ Educational and Research Collaborative 
Internship Project (LeRCIP). Undergraduate at Rose-Hulman 
Institute of Technology. 

Introduction 
In recent years, deep learning has revolutionized the use of 

artificial intelligence tools in fields such as biology, medicine, 
physics, and manufacturing (Refs. 1 to 3). Artificial neural 
networks, convolution, dropout, and other deep learning tools 
have emerged as the state of the art in regression and 
classification tasks. However, a shortcoming in traditional deep 
learning methods is the inability to capture model uncertainty. 
This can be a prohibitive factor in the adoption of deep learning 
techniques in many areas of research, including the fields listed 
above. This has led some researchers to adopt Bayesian 
inference techniques as an alternative (Refs. 4 to 6). 

Bayesian probability theory offers researchers 
mathematically grounded techniques capable of performing 
regression and classification tasks, as well as the ability to 
reason about model uncertainty (Ref. 7). Despite this 
advantage, Bayesian modeling usually comes with a prohibitive 
computation cost attached. Therefore, researchers have sought 
the development of a deep learning framework capable of 
estimating model uncertainty. 

To meet this demand, Yarin Gal introduced the mathematical 
basis for equating the use of dropout in neural networks to a 
Bayesian approximation of the well-established Gaussian 
process probabilistic model in his 2015 paper (Ref. 7). In short, 
this technique is accomplished by using dropout layers in a neural 
network to introduce random noise into the model’s predictive 
process. Then, if several predictions are made on the same input, 
the model’s predictions will fit a Gaussian distribution. From this 
distribution, one can calculate the input’s predictive mean (the 
average of the predictions) and predictive uncertainty (the 
variance of the predictions). While this technique allows deep 
learning models to produce uncertainty estimates along with their 
predictions, it also introduces new complications in an already 
difficult design process. 

Designing neural networks by hand—selecting the number of 
hidden layers, number of neurons, activation functions, the 
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optimizer, and more—is extremely challenging. More often 
than not, engineers are forced to rely on intuition and 
experience rather than a fixed and well-understood design 
methodology. This is due to the vast, epistatic, noisy, and 
multimodal design space represented by a neural network’s 
topology and hyperparameters (Ref. 8). It can take experts 
hundreds of hours to design, implement, evaluate, and optimize 
a neural network design. The introduction of noise into the 
model’s predictions adds to the difficulty of this process by 
making it harder for neural networks to converge to an 
acceptably low loss value. Furthermore, this noise can also 
mask underlying issues in the design of the network itself, 
making it more difficult for engineers to discover cause and 
effect relationships in their models. Accordingly, the 
introduction of uncertainty estimation through dropout can 
further increase the time required to design neural networks.  

This work introduces and experimentally validates a method 
to alleviate these challenges via a genetic algorithm that 
optimizes network design through an evolutionary process. 

Algorithm Description 
The method presented in this work uses a genetic algorithm to 

evolutionarily build, evaluate, and optimize the design of 
multilayer feed-forward neural networks for the Bayesian 
approximation of model uncertainty. This evolutionary process is 
accomplished by providing the algorithm with a dictionary of 
configurable neural network parameters and their associated 
acceptable values, as well as a few control variables. The 
algorithm uses these parameters to construct a population of 
randomly configured network designs that are evolved over the 
course of a prescribed number of generations. The implementation 
of this work is in Python and relies on the Keras API using the 
TensorFlow backend (Refs. 9 and 10). Additionally, this work 
was inspired, in part, by the DeepEvolve project developed by Jan 
Liphardt at Stanford University (Ref. 11). 

Inputs and Outputs 

There are 11 inputs for this algorithm: N, population_size, 
max_population_size, nn_param_choices, output_dir, mutate_ 
chance, select_chance, k, epochs, training_data, and 
testing_data.  

The N input is simply the number of generations over which 
the initial population of randomly generated networks will 
evolve. Population_size is the size of the initially generated 
population. For example, if this value is set to 50, then the first 
generation will have a population of 50 unique network designs. 
Likewise, max_population_size is the maximum size to which 
future generations are allowed to grow. This value is necessary 
because in this algorithm, the populations of future generations 

are allowed to grow in order to include potentially beneficial 
child networks. 

The nn_param_choices input is a Python dictionary of 
configurable neural network design parameters and their 
corresponding acceptable values. The parameters available for 
configuration in nn_param_choices are as follows: 
 
• nb_neurons: number of neurons in a layer (a distinct 

nb_neurons value is selected for each layer) 
• nb_layers: number of hidden layers in the network 
• activation: activation functions (the same activation is 

used for each layer) 
• optimizer: list of potential optimizers 
• lr: learning rate for the optimizer 
• clipnorm: the clipping value used by the optimizer 
• dropout_prob: dropout probability 
• w_decay: the weight decay value 
• batch_size: number of samples per batch 

 
The value of output_dir determines the location where all the 

outputs generated by the algorithm will be saved, and 
mutate_chance is the percent likelihood a point mutation will 
occur in a network’s design. The parameter k is the percentage 
of the networks that will be carried over to the next generation. 
If k = 0.25, then the top 25 percent, or 75th percentile, of 
networks—based on their fitness score—will be carried over to 
the next generation of networks automatically. Select_chance is 
the percent likelihood a network not in the kth percentage will 
be carried over into the next generation. Finally, epochs is the 
number of epochs for which each network will be trained before 
being scored, and training_data and testing_data are simply the 
data on which the neural networks will be trained and evaluated. 

There are two types of output from this algorithm. The first 
is a log file containing information about each generation of 
networks evaluated, namely, the generation’s population size 
and the average performance across the population. Second is a 
folder that is generated for each network design that is 
evaluated. Each of these folders contains five additional files, 
one of which is an instance of the trained model, saved as an 
.h5 file type, that is associated with that folder. There are also 
two comma-separated value (CSV) files, one containing the 
model’s training history, and the other containing values used 
to scale the network’s inputs. Lastly, the folder contains two txt 
files, one describing the network’s parameter configuration and 
one containing the network’s evaluation score. 

Evolutionary Algorithm 

This section details the functional flow of the algorithm. An 
overview of this process can be seen in Figure 1. After providing 
the algorithm with the necessary inputs, the algorithm constructs 
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the first generation’s population by randomly selecting a value 
for each of the parameters from nn_param_choices for each 
candidate design. These values are then used to instantiate a 
neural network with the corresponding characteristics. After the 
entire population is created, the algorithm then evaluates each 
candidate design. The networks are trained one at a time, with 
each training on the user-provided training data for the number 
of epochs specified by the value of epochs. The size of the input 
and output layers is automatically calculated from the size of the 
input and target data. After training, each network is then 
evaluated on a held out test set, also provided by the user. The 
fitness of each network is calculated via mean squared error 
(MSE). The top kth percentage of these networks are selected to 
be carried over to the next generation. Additionally, the 
remaining networks in the population are iterated over and each 
network has a percent likelihood, predetermined by the value of 
select_chance, of also being selected to be carried over to the next 
generation. From the pool of carried-over networks, two designs 
at a time are randomly selected to be bred. 

The breeding process involves the recombination of the two 
parent networks into two new child networks. Recombination, 
also called crossover, is the process in sexual reproduction in 
which entire sections of the parents’ genomes are swapped. 
This leads to novel genetic configurations and is the main 
advantage of sexual reproduction. In our case, recombination is 
accomplished in the following steps: 

 
1. One parameter is randomly selected as the “breakpoint” for 

recombination from the list of network parameters (as 
described in the Inputs and Outputs section). 

2. For all the parameters up until the breakpoint, Child 1 
receives all its parameters from Parent 1, and Child 2 from 
Parent 2. 

3. From the breakpoint to the end of the parameter list, Child 
1 receives all its remaining parameters from Parent 2, and 
Child 2 from Parent 1. 

 
The process of recombination increases the likelihood that 

beneficial sequences of genes, in this case network parameters, 
from both parents will be incorporated into a single, better 
adapted genome. 

After two new children are produced from the parent 
networks, each child is then randomly mutated. This mutation 
is random in that it is not a guarantee that the children will be 
mutated. The likelihood that each child will be mutated is 
governed by value of mutate_chance. Furthermore, if a child is 
mutated, the gene, or parameter, that is mutated is randomly 
selected. When a parameter is mutated, the value of that 
parameter is replaced by a randomly selected value from the list 
stored in nn_param_choices. Next, each child is checked for 
 

 

 

 
Figure 1.—Flowchart representing the genetic algorithm 

presented in this work. 
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uniqueness. The algorithm keeps track of the network 
configuration of all evaluated networks, and the new children 
are checked against this list. This is done to avoid wasting time 
training and evaluating a configuration that has already been 
scored. If a child is found to be a duplicate, it will be randomly 
mutated until a unique design is generated. 

The breeding process is continued until the next generation’s 
population size is at least equal to that of the previous 
generation, but is still less than the value of max_population_ 
size. Any children created that exceed the max_population_size 
are discarded. 

This entire process is repeated N times. After the Nth 
iteration, the generation number, model number, score, and 
network configuration of the top five most fit networks are 
printed to the log file. 

Experimental Validation 
Dataset 

The performance of this algorithm was evaluated on a 
regression task using a jet-surface interaction (JSI) noise 
dataset. This dataset was collected from experiments conducted 
in the Aero-Acoustic Propulsion Laboratory at the NASA 
Glenn Research Center (Ref. 12). The JSI dataset consists of 
42,165 records, each with 18 features and 87 target values. The 
18 features represent various design parameters of the nozzles 
of jet engines as well as assorted experimental conditions. The 
targets are the sound pressure level (SPL), or “loudness,” in 
decibels of the JSI noise at 87 unique frequencies. 

Experimental Setup 

The goal of this regression task is to use the 18 features to 
predict the SPL at the 87 target frequencies. Domainexpertise-
informed feature engineering was applied to the given features 

to produce a total of 66 features. The full dataset was split into 
60 percent training, 20 percent validation, and 20 percent 
testing sets. The network parameter values supplied to the 
algorithm in this experiment are as follows: 

 
1. nb_neurons: 16, 32, 64, 128, 256, 512, 768, 1,024 
2. nb_layers: 1, 2, 3, 4 
3. activation: relu, elu, tanh, sigmoid 
4. optimizer: rmsprop, adam, sgd, adagrad, adadelta, adamax, 

nadam 
5. lr: 0.0001, 0.001, 0.01, 0.1 
6. clipnorm: 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 

3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0 
7. dropout_prob: 0.005, 0.01, 0.05, 0.1 
8. w_decay: 1×10–9, 1×10–8, 1×10–7, 1×10–6, 1×10–5, 1×10–4 
9. batch_size: 16, 32, 64, 128, 256, 512 

 
Additionally, N was set equal to 10, population_size equal to 

35, and max_population size equal to 50. Lastly, mutate_chance 
was set to 0.2, select_chance was set equal to 0.1, k to 0.1, and 
epochs equal to 100. After the genetic optimization process, the 
top-performing model is retrained and evaluated on the same 
training, validation, and testing data subsets.  

However, in this training phase the epoch count was not 
limited; the model would train until it reached a validation loss 
of 0.2 or below. This procedure was followed in order to fully 
evaluate the genetically constructed network architecture. 

Results 
Using the genetic algorithm, the duration of the experiment 

was 35 h, 45 min, and 32 s. The hardware used to perform the 
task was a NVIDIA Tesla (NVIDIA Corporation) P100 
graphics processing unit (GPU) with 12 GB of memory. The five 
top-performing network configurations can be seen in Table I. 

 
 

TABLE I.—TOP-PERFORMING GENETICALLY PRODUCED MODELS  
Model Layersa activation optimizer learning rate clipnorm dropout_prob w_decay batch_size MSEb 

1 128, 512 sigmoid adamax 0.01 2.25 0.005 1×10–8 32 0.31 

2 128, 512 sigmoid adamax .01 1.75 .005 1×10–6 16 .32 

3 128, 512 sigmoid adamax .01 2.75 .005 1×10–9 16 .32 

4 128, 512 sigmoid adamax .01 3.25 .005 1×10–8 16 .32 

5 128, 512 sigmoid adamax .01 2.25 .005 1×10–9 16 .33 
aValues for nb_neurons and nb_layers are condensed into Layers column. 
bMean squared error. 
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Figure 2.—Average fitness per generation and fitness of most 

fit model per generation; y-axis is inverted and log scaled. 
MSE, mean squared error. 
 
Figure 2 shows the average fitness of each generation as well 

as the fitness of the most fit model per generation. Figure 3 
shows the fitness of the most fit model per generation in 
isolation in order to show the progression of the most fit model 
in more detail. 

One interesting observation that can be made from these 
results is that all of the top-performing networks have several 
parameters in common. Moreover, the structural layers 
parameter—the parameter that determines the network’s 
“physical” architecture—is the same across all the top 
networks, with each network having two hidden layers with 128 
and 512 neurons, respectively. Furthermore, all the networks 
have the same activation function, optimizer, learning rate, and 
dropout probability. Most likely this is due to the recombination 
approach to producing child networks during the evolution 
process. As stated in the Evolutionary Algorithm section, the 
purpose of recombination is to encourage large, epistatic 
adaptations from multiple configurations to merge into a single 
genome. Therefore, because all but one of the shared 
parameters occur sequentially in the genome, or network 
configuration dictionary, it is likely that one network with these 
traits was produced—likely in generation four, based on  
Figure 3—which was then recombined with an arbitrary 
number of other networks. Networks with these traits then 
performed so well that configurations that modified these 
values were almost always outperformed. 

These findings suggest that the shared network parameters 
are some of the most important, if not the most important, 
parameters in determining the performance of a neural network 
when solving this problem. Likewise, the observation that the 
variation experienced between the top five models for the other 
parameters results in very little difference in the fitness of these 
models would suggest that these parameters are less important 
in determining the network’s success. 

 
Figure 3.—Fitness of most fit model per generation. MSE, 

mean squared error. 
 
Retraining and evaluating the top-performing network 

configuration (model 1 in Table I) results in an MSE score of 
0.151 and a mean absolute error (MAE) score of 0.272 on the 
test set. The MAE score indicates that the network designed by 
the genetic optimization algorithm can predict JSI noise within 
0.272 dB, on average. This accuracy falls well within the  
0.5-dB tolerance of the experimental equipment of the Aero-
Acoustic Propulsion Laboratory, making this model viable for 
design analysis purposes. 

Conclusions 
In this work, a genetic algorithm for the evolutionary 

optimization of a neural network for the Bayesian approximation 
of model uncertainty was introduced. This algorithm is necessary 
because the inclusion of uncertainty modeling in a neural 
network greatly complicates the network’s design space, making 
the development of a converging model extremely difficult. An 
experiment was performed in which the genetic algorithm was 
tasked with producing network designs to predict the jet-surface 
interaction (JSI) noise of 87 frequencies based on 18 input 
features. After 10 generations with an initial population of 35 
candidate designs, the genetic algorithm produced a design that 
was able to accurately predict JSI noise within 0.272 dB. 

The experimental results found in this study demonstrate this 
algorithm’s ability to produce highly successful, converging 
network designs in a complex and noisy design space. This 
algorithm has several potential benefits, not just in modeling 
JSI noise, but in any deep learning or machine learning project 
that requires uncertainty estimates. Therefore, this algorithm 
enables the wider adoption of neural networks in many fields. 
Furthermore, because this algorithm handles the network 
design process itself, a relatively novice user can take this tool 
and develop neural networks without being an expert in 
network design. 
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There are some potential drawbacks to the approach 
presented in this work, however. One potential disadvantage is 
that this algorithm in its current state only designs variations of 
simple multilayer feed-forward neural networks. While this 
type of network is capable of performing at state-of-the-art 
levels on most regression and classification tasks, highly 
specialized applications could require the use of convolutional 
or other neural network types. However, with fairly 
straightforward modifications, one could easily enable the 
algorithm to design any other style of neural network that is 
required. A second potential disadvantage is that genetic 
optimization makes no guarantee as to the global optimality of 
the designs it produces. Despite this, the genetic approach may 
be preferred because it is orders of magnitude faster than grid 
or random search methods and, on average, noticeably faster 
than Bayesian optimization routines (Ref. 13). 
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