\‘/ Formal Requirement

/ Flicitation with FRET

Anastasia Mavridou
KBR at NASA Ames Research Center

anastasia.mavridou@nasa.gov

Invited talk at DTU

mailto:anastasia.mavridou@nasa.gov

NASA’s center in Silicon Valley

C‘é%ter‘é v

b -

robust software engineering technical area

NASA - Software V&V

NASA - Software Verification and Validation

Popular repositories

ikos Public

Static analyzer for C/C++ based on the theory of Abstract
Interpretation.

@c++ w19k % 166

CoCoSim Public

Automated Analysis Framework for Simulink/Stateflow
models.

@ VMATLAB 29 %8

homebrew-core Public

Homebrew formulae from NASA - Software Verification and
Validation

@ Ruby ﬁ 4

A2 66 followers @ NASA Ames Research Center, CA 69 https://ti.arc.nasa.gov/tech/rse/

fret Public

A framework for the elicitation, specification, formalization
and understanding of requirements.

JavaScript Y212 % 38

mesa Public

Actor-based Runtime Verification Tool

@®scala W7

AdaStress.jl Public

Reinforcement learning framework to find and analyze the
likeliest failures of a system under test.

@uuia 3

github.com/NASA-SW-VnV

www.nasa.gov/isd-robust-software-engineering

robust software engineering technical area

NASA - Software V&V

A2 66 followers

Popular repositories

ikos Public

Static analyzer for C/C++ based on the theory of Abstract
Interpretation.

@c++ Y19k % 166

CoCoSim Public
Automated Analysis Framework for Simulink/Stateflow
models.

OMATLAB W29 %8

homebrew-core Public

Homebrew formulae from NASA - Software Verification and
Validation

@ Ruby ﬁ 4

NASA - Software Verification and Validation

@ NASA Ames Research Center, CA 69 https://ti.arc.nasa.gov/tech/rse/

(

fret Public

A framework for the elicitation, specification, formalization
and understanding of requirements.

N

JavaScript 212 % 38 p
mesa Public
Actor-based Runtime Verification Tool
@®scala W7
AdaStress.jl Public

Reinforcement learning framework to find and analyze the
likeliest failures of a system under test.

@uuia 3

github.com/NASA-SW-VnV

www.nasa.gov/isd-robust-software-engineering

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in control (not standby) and
the system is supported without failures (not apfail).

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor data is not good.
* The autopilot shall change states from NOMINAL to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot is in control (standby) and
sensor data is good.

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* Exceeding sensor limits shall latch an autopilot pullup

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor data is not good.
* The autopilot shall change states from NOMINAL to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot is in control (standby) and
sensor data is good.

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* Exceeding sensor limits shall latch an autopilot pullup when
the system is supported without failures (not apfail).

* The autopilot shall change states from TRANSITION to STANDBY

* The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor data is not good.
* The autopilot shall change states from NOMINAL to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from MANEUVER to STANDBY when the pilot is in control (standby) and
sensor data is good.

what analysis tools understand

10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

var autopilot: bool = (not standby) and supported and (not
apfail) ;

var pre_autopilot: bool = false -> pre autopilot;

var pre_limits: bool = = false -> pre limits;

guarantee "FSM-001v2" S((((((autopilot and pre_autopilot and
pre_limits) and (pre (not (autopilot and pre_autopilot and
pre_limits)))) or ((autopilot and pre_autopilot and
pre_limits) and FTP)) => (pullup)) and FTP), ((((autopilot
and pre_autopilot and pre_limits) and (pre (not (autopilot
and pre_autopilot and pre_limits)))) or ((autopilot and
pre_autopilot and pre_limits) and FTP)) => (pullup)));

FRET bridges the gap

* Captures requirements in structured natural language with unambiguous semantics.

Explains formal semantics in various forms.
* Formalizes requirements in a compositional (hence extensible) manner.
* Checks realizability of requirements compositionally.

* Connects with analysis tools:

* Exports formalizations in SMV language.
e Exports Lustre code.

e Exports specifications for runtime monitoring.

welcome to FRET

-
Total Projects
<>
Hierarchical Cluster

™
Liquid_mixer
B lgN
DeepTaxi

Total Requirements

356

Formalized Requirements

80.34-

SemanticsPaper
Q CUbETH
S o8
OPI
00 900000 i
20000 .
0000
@
® O
® ® o
®
LM_requirements TEST
o
000
FOL_Rover
GPCA_with_modes
Demo-FSM
TestRequirements

.. InfusionManager ARB"E’;.
TEST-RI

IZABILITY

System Components Requirement Size

52 29378 bytes

Recent Activity

AOS UAV-1
In flight mode, the battery shall always satisfy voltage > 9

LiquidMixer LM-003
when liquid_level_1 the liquid_mixer shall until
emergency_button satisfy if ! liquid_level_2 then valve_1

TEST TEST-TCND-N
when occurred(7,persisted(2,fault)) the sw shall
immediately satisfy q

TEST
when not in m mode when p the sw shall always satisfy r

LM_AUTOPILOT AP-003b
In rollhold mode RollHoldReference shall immediately
satisfy abs(rollangle)<6 => rollholdreference = 0

TEST TEST-BNDD-RSPNSE
if P the sw shall within 5 ticks satisfy R

TEST-ONLY-IN
only in m, when p, shall the software satisfy pc

TEST TEST-TRIGGER-COND-NEXT
Upon Trig when Cond the sw shall at the next timepoint
satisfy Resp

AOS AOS-R2U2-2
after new_waypoint_targeted, the vehicle shall, within 3
seconds, satisfy new_heading_achieved

github.com/NASA-SW-VnV/fret

Team: Andreas Katis, Anastasia Mavridou, Tom
Pressburger, Johann Schumann, Khanh Trinh

Alumni: David Bushnell, Dimitra Giannakopoulou,
Nija Shi

Interns: Milan Bhandari, Tanja DeJong,
Kelly Ho, George Karamanolis, David Kooi, Jessica
Phelan, Julian Rhein, Daniel Riley, Gricel Vazquez

And many other collaborators..

capturing, explaining, and formalizing requirements

let’s speak FRETish

[JoN | FRET

TEMPLATES

Create Requirement

Ready to speak FRETish?

Requirement ID Project

AP-Test Parent Requirement ID HAMLET_SW
Please use the editor on your left to write your requirement or

pick a predefined template from the TEMPLATES tab.

Rationale and Comments

Rationale

Comments
When in cruising mode, the altitude hold autopilot shall maintain altitude
whenever altitude_hold is selected.

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated
with "*"_ For information on a field format, click on its corresponding bubble.

G (o)) | i

FRETish fields

In cruising mode, the autopilot shall always satisfy if altitude _hold then maintain_altitude

SCOPE |in, before, after, notin, onlyln, onlyBefore, onlyAfter, null (global)

null} regular
TIMING | always,\never, eventually, immediately, for, within, after, until, before

RESPONSE satisfaction

compositional generation of LTL formulas

In cruising mode, the autopilot shall always satisfy if altitude_hold then maintain_altitude

. FiM = MODE and (FTP or previous (not MODE))
scope in: [LEFT, RIGHT) = [FiM, LiM)

LiM = not MODE and previous MODE

NOTIN . NOTIN ‘ NOTIN

AFTER

BEFORE ’

] IN ‘ ’ IN]

FTP tl'l tl tz t2+1 t3‘1 t; td t4+1 LAST

compositional generation of LTL formulas

In cruising mode, the autopilot shall always satisfy if altitude _hold then maintain_altitude

. _) FiM = MODE and (FTP or previous (not MODE))
scope in: [LEFT, RIGHT) = [FiM, LiM)

LiM not MODE and previous MODE
timing always: BASEFORM — RES

historically (RIGHT implies previous (BASEFORM since inclusive required LEFT))

scope: in, condition: null, timing: always, response: satisfaction
historically (LiM implies previous (RES since inclusive required FiM))

optimize historically (MODE implies RES)
translatetoSMV (H (MODE — RES))

instantiate (H (cruising — (altitude hold — maintain altitude)))

related papers

Automated Formalization of Structured Natural
Language Requirements

Dimitra Giannakopoulou®*, Thomas Pressburger®, Anastasia Mavridou®,
Johann Schumann®

ANASA Ames Research Center, CA, USA
PKBR, NASA Ames Research Center, CA, USA

Abstract

The use of structured natural languages to capture requirements provides a
reasonable trade-off between ambiguous natural language and unintuitive for-
mal notations. There are two major challenges in making structured natural
language amenable to formal analysis: 1) formalizing requirements as formu-
las that can be processed by analysis tools and 2) ensuring that the formulas

conform to the semantics of the structured natural language. FRETISH is a

structured natural language that incorporates features from existing research

and from NASA applications. Even though FRETISH is quite expressive, its

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann (2021). Automated formalization of structured
natural language requirements, Information and Software Technology (IST) Journal, 137, 106590, Special Section on REFSQ’20, 2021.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann. Generation of Formal Requirements from
Structured Natural Language, REFSQ 2020.

https://www.sciencedirect.com/science/article/abs/pii/S0950584921000707
https://www.sciencedirect.com/science/article/abs/pii/S0950584921000707
https://link.springer.com/chapter/10.1007/978-3-030-44429-7_2
https://link.springer.com/chapter/10.1007/978-3-030-44429-7_2

checking realizability of requirements

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from to NOMINAL when the system is supported and
sensor data is good.

* |nput state:

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY

* The autopilot shall change states from to NOMINAL when the system is supported and
sensor data is good.

* |nput state:
e Condition 1:

e Condition 2: supported & good sensor_data

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY

* The autopilot shall change states from to NOMINAL when the system is supported and
sensor data is good.

* |nput state:
 Condition 1: /
e Condition 2: supported & good sensor_data ‘/

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in control (standby).

* The autopilot shall change states from to NOMINAL when the system is supported and
sensor data is good.

* |nput state:

* Condition 1: standby /

e Condition 2: supported & good sensor_data /
* Qutput state 1: STANDBY

* Qutput state 2: NOMINAL

why realizability?

e Defining requirements is a challenging, error prone task
 Realizability checking >> consistency checking
* We want to ensure requirement consistency for all inputs

* And we want to do it efficiently

An AG contract is realizable if there exists a system implementation that
satisfies the contract guarantees for all assumption-complying stimuli
provided by the environment.

We proposed a novel approach for compositional realizability checking.

compositional realizability

Partial AG contracts:

AG

AG,

2 ‘

O <

checking realizability within FRET

File View Help

= fRET

.-
a
" VARIABLE MAPPING REALIZABILITY
N
| S
 — T eou C
= FSM . . f ’
Compositional [] Monolithic 900 (CHECK HELP
<>
cco cc1 cc2
N
i b L3
ID 1 Summary
0 FSMO001 FSM shall always satisfy (limits & !'standby & !apfail & supported) => pullup

Rows per page: 10 ~ 1-10 of 13 >

related papers

From Partial to Global Assume-Guarantee

Contracts: Compositional Realizability Analysis
in FRET

Anastasia Mavridou!, Andreas Katis', Dimitra Giannakopoulou?, David
Kooi?, Thomas Pressburger?, and Michael W. Whalen*

! KBR, NASA Ames Research Center, CA, USA
¢ NASA Ames Research Center, CA, USA
{anastasia.navridou, andreas.katis, dimitra.giannakopoulou,
tom.pressburger}@nasa.gov
* University of California, Santa Cruz, CA, USA dkooi®ucsc.edu
4 University of Minnesota, MN, USA whalen@cs.umn.edu

Abstract. Realizability checking refers to the formal procedure that
aims to determine whether an implementation exists, always comply-
ing to a set of requirements, regardless of the stimuli provided by the
system’s environment. Such a check is essential to ensure that the spec-
ification does not allow behavior that can force the system to violate
safety constraints. In this paper, we present an approach that decom-
poses realizability checking into smaller, more tractable problems. More

Capture, Analyze, Diagnose: Realizability
Checking of Requirements in FRET

Andreas Katis![0000-0001-7013-1100] * Apnastasia Mavridou!, Dimitra

Giannakopoulou?*, Thomas Pressburger?, and Johann Schumann!

! Employed by KBR; NASA Ames Research Center, CA, USA
? NASA Ames Research Center, CA, USA

Abstract. Requirements formalization has become increasingly popular
in industrial settings as an effort to disambiguate designs and optimize
development time and costs for critical system components. Formal re-
quirements elicitation also enables the employment of analysis tools to
prove important properties, such as consistency and realizability. In this
paper, we present the realizability analysis framework that we devel-
oped as part of the Formal Requirements Elicitation Tool (FRET). Our

Andreas Katis, Anastasia Mavridou, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann. Capture, Analyze, Diagnose:
Realizability Checking of Requirements in FRET, CAV 2022.

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen. From Partial to Global
Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET, FM 2021.

https://link.springer.com/chapter/10.1007/978-3-031-13188-2_24
https://link.springer.com/chapter/10.1007/978-3-031-13188-2_24
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_27
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_27

connection with analysis tools

generation of Simulink monitors

FRETish:
when in roll_hold_mode autopilot shall immediately satisfy if roll_angle > 3 then roll_hold_reference =3

Lustre specification:

-= AP-003c-v3 requirement in CoCoSpec

guarantee H((roll_hold and (FTP cor (pre (not roll_hold))))
=> abs(roll_angle) > 30 =>
roll_hold_reference = 30 * sign(roll_angle))

Simulink monitor rol_hol

;

AND

E
—

OR

=l W

30

A==>B > In1 Guarantee guarantee [}

Guarantee

[4

Proll_hold_reference]

¢

[roll_angle] » [

model checking Simulink models

| roll_angle

» HDG Mode

»|APENg

P roll_hold_reference

Contract

valid >

2 R

<airspeed>

APEN
D

»

HDG Mo
2

HDG Ref

D)

Turn Knob

»

Phi

Psi

p

HdgMode_cmd

TAS

AP Eng

PhiRef_cmd

HDG Mode

HDG Ref

Turn Knob

o)

Aileron Cmd

»(3

HdgModeCmd

>

PhiRef_cmd

Roll_Autopilot

Contract

Assume ==me

Assume

A==>B [—p

In1

Guarantee ouantee

assume1

AP-003c

Guarantee-

Guarantee

1 valid

Validator

valid

model checking PLC code

PLCverif GUl app
File Preferences Help Search

DE | OIS | Bt B

i Project Explorer =t]
= \='=:"> Y PLCverif project...
& SCLfile... Bl Verification case...

8
8

v 2% onoff

> [src-gen
44 builtin.scl
48 CPC_BASE_Unicos.scl
43 CPC_FB_ONOFF.scl
44 CPC_GLOBAL_VARS.scl
[FRET_Requirement.vc3

5= Outline =L ()

There is no active editor that provides an
outline.

v Bl vits o

Bl FRET_Requirement.vc3 (verification case) £3

Verification case

v Metadata

General description of the verification case.
D: %
Name: I if the ONOFF object is in "Manual mode" and the condition "Auto Auto Mode Request” is TRUE, the ONOFF object shall eve|
Description:

Checking transition between Manual Mode and Aute Mode

; Edit in FRET

= (]
'v Requirement l
Description of the requirement to be verified.
Requirement type: FRET requirement v

When (instance.MMoSt & instance. AuAuMoR) the CPC_FB_OnOff shall eventually satisfy instance.AuMoSt & PLC_END

Fretish requirement:

v Source files
Here the scope of the veri

Source files:

fication (i.e., the included source files) needs to be selected.

[] CPC_BASE_Unicos.scl

[J CPC_FB_ONOFF.scl

[J CPC_GLOBAL_VARS.scl

[builtin.scl

*scl (all scl files in this project's root)

Language frontend: STEP 7

Entry block: | CPC_FB_ONOFF

v Verification backend

Selection and configuration of the external verification tool to be used.

Backend: [NuSMV 0

Algorithm: 1C3 (nuXmv only)

[+ Advanced settings

Reload source files

((G (((! (instance.MMoSt and instance.AuAuMoR)) and (X (instance. MMoSt and instance.AuAuMOoR))) --> (X (F

(instance.AuMoSt and {PLC_END}))))) and ((instance.MMoSt and instance.AuAuMoR) --> (F (instance.AuMoSt and
101 C FNDY

TL requirement:

J

» Requirement - advanced
» Reporters
» Advanced settings (0)

v Verify
Everything is ready? Buckle up and hit the 'Verify' button!

Verify!
Last result: N/A
Last execution: N/A
Last duration: N/A

Open report

» Diagnostics

model checking PLC code

PLCverif GUl app

File Preferences Help Search
HQE| IS Bt Bi%iE
i Project Explorer = |

= 4 % [@ PLCverif project...
& SCLfile...

Q
g
8

v (5 OnOff

> [src-gen
44 builtin.scl
48 CPC_BASE_Unicos.scl
43 CPC_FB_ONOFF.scl
44 CPC_GLOBAL_VARS.scl
B FRET_Requirement.vc3

Bl Verification case...

5= Outline =L ()

There is no active editor that provides an
outline.

e HE Lo
v §l ity

Bl FRET_Requirement.vc3 (v

Verification case

v Metadata

General description of the vg

1D: F

Name:

Description: e

v Source files
Here the scope of the verific

Source files:

Language frontend:
Entry block: [C

v Verification backend
Selection and configuration

Backend: N

Algorithm: lid

[+ Advanced settings

Update Requirement

Requirement ID

FRET_Requirement

Parent Requirement ID

Project

Rationale and Comments

Rationale

if the ONOFF object is in "Manual mode" and the condition "Auto Auto Mode
Request” is TRUE, the ONOFF object shall eventually be in "Auto Mode" at the

end of the PLC cycle

Comments

Checking transition between M

anual Mode and Auto Mode

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional uniess indicated
with "*"_ For information on a field format, click on its corresponding bubble.

(SCOPE) (ONDITION) GOMPONENT) SHALL* RESPONSES*

eventually satisfy instance. AuM

1ce. AuAuMoR) the CPC_FB_OnOff shall

0St & PLC_END

SEMANTICS

ASSISTANT TEMPLATES GLOSSARY

Q im|@
S

~N

Component
CPC_FB_ONOFF

Variable type display satisfy instance.AuMoSt & PLC_END

Mode Input Output Internal Undefined

ance.AuAuMoR))) --> (X (F

CPC_DB_VERSION.Baseline_version R) --> (F (instance.AuMoSt and

CPC_GLOBAL_VARS.First_Cycle

Fretish requirement:

TL requirement:

J

CPC_GLOBAL_VARS.UNICOS_Counter1
CPC_GLOBAL_VARS.UNICOS_LiveCounter
CPC_GLOBAL_VARS.UNICOS_TimeSmooth
instance.Al

instance.Al_old

instance.AlB

instance.AIBW
instance.Alinc
instance.AlSt
instance.AlUnAck
instance.AlUnAck_old
instance.AuAlAck
instance.AuAlAckR_old
instance.AuAuMoR
instance.AuAuMoR_old
instance.AulhFoMo
instance.AulhFoMoSt
instance.AulhMMo
instance.AulhMMoSt
instance.AuMoSt
instance.AuMoSt_aux
instance.AuMoSt_old

AT AR AR AR AR AT AR AER T AR AR AR AR AR AR AT AT AT AR AT AT AT AR A

runtime monitoring

X-System

examples of case studies/projects that use FRET

|galois|

High Assurance Rigorous Digital
Engineering for Nuclear Safety

(HARDENS)

eme: Driving FM to Practice
eywords: digital engineering, model-based engineering, software engineering,
ardware engineering, safety engineering, requirements engineering, formal
prification, rigorous runtime verification, Cryptol, SAW, ACSL, SysML, FRET, RISC-V

is work is supported by the U.S. Nuclear Regulatory Commission (NRC), Office of
uclear Regulatory Research, under contract/order number 31310021C0014.

related papers

Zsofia Adam, Ignacio D. Lopez-Miguel, Anastasia Mavridou, Thomas Pressburger, Marcin Bes, Enrique Blanco Vifiuela, Andreas Katis, Jean-
Charles Tournier, Khanh V. Trinh, Borja Fernandez Adiego. From Natural Language Requirements to the Verification of Programmable Logic
Controllers: Integrating FRET into PLCverif, NFM 2023.

Joseph Kiniry, Alexanders Bakst, Simon Hansen, Michal Podhradsky, and Andrew Bivin. The HARDENS Final Report, Galois Inc Technical Report.

Thomas Pressburger, Andreas Katis, Aaron Dutle, Anastasia Mavridou. Authoring, Analyzing, and Monitoring Requirements for a Lift-Plus-Cruise
Aircraft, REFSQ 2023.

lvan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, Dimitra Giannakopoulou. Automated Translation of Natural Language
Requirements to Runtime Monitors, TACAS 2022.

Hamza Bourbouh, Marie Farrell, Anastasia Mavridou, Irfan Sljivo, Guillaume Brat, Louise A. Dennis, Michael Fisher. Integrating Formal
Verification and Assurance: An Inspection Rover Case Study, NFM 2021.

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Tom Pressburger, Pierre-Loic Garoche, Johann Schumann. The Ten Lockheed
Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained, RE 2020, Industry track.

Anastasia Mavridou, Hamza Bourbouh, Pierre Loic Garoche, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann. Bridging the Gap
Between Requirements and Simulink Model Analysis, REFSQ 2020, Poster Paper.

Full list: https://github.com/NASA-SW-VnV/fret/blob/master/PUBLICATIONS.md

https://link.springer.com/chapter/10.1007/978-3-031-33170-1_21
https://link.springer.com/chapter/10.1007/978-3-031-33170-1_21
https://link.springer.com/chapter/10.1007/978-3-031-29786-1_21
https://link.springer.com/chapter/10.1007/978-3-031-29786-1_21
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_21
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_21
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_4
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_4
https://ieeexplore.ieee.org/abstract/document/9218211
https://ieeexplore.ieee.org/abstract/document/9218211
https://github.com/NASA-SW-VnV/fret/blob/master/https:/ceur-ws.org/Vol-2584/PT-paper9.pdf
https://github.com/NASA-SW-VnV/fret/blob/master/https:/ceur-ws.org/Vol-2584/PT-paper9.pdf
https://github.com/NASA-SW-VnV/fret/blob/master/PUBLICATIONS.md

source code

FRET: https://github.com/NASA-SW-VnV/fret
CoCoSim: https://github.com/NASA-SW-VnV/CoCoSim

Ogma: https://github.com/nasa/ogma

PLCverif: https://gitlab.com/plcverif-oss

https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/nasa/ogma
https://gitlab.com/plcverif-oss

acknowledgements

Zs6fia Adam, Alexanders Bakst, Swee Balachandran, Milan Bhandari, Marcin Bes,
Enrique Blanco Vinuela, Geoffrey Biggs, David Bushnell, Maxime Artaud, Hamza
Bourbouh, Guillaume Brat, Esther Conrad, Louise A. Dennis, Tanja Delong, Michael
Dille, Aaron Dutle, Marie Farrell, Borja Fernandez Adiego, Michael Fisher, Pierre-
Loic Garoche, Dimitra Giannakopoulou, Alwyn Goodloe, Simon Hansen, Kelly Ho,
Michael Jeronimo, George Karamanolis, Andreas Katis, Joseph Kiniry, David Kooi,
lgnacio D. Lopez-Miguel, Carlos Mao de Ferro, Patrick J. Martin, Francisco Martins,
Amalaye Oyake, Ivan Perez, Jessica Phelan, Tom Pressburger, Julian Rhein, Daniel
Riley, Johann Schumann, Nija Shi, Irfan Sljivo, Laura Titolo, Jean-Charles Tournier,
Khanh V. Trinh, Gricel Vazquez, Tim Wang, Michael W. Whalen, Alexander Will.

Thank you!

