
Formal Requirement
Elicitation with FRET

Anastasia Mavridou
KBR at NASA Ames Research Center

anastasia.mavridou@nasa.gov

Invited talk at DTU

mailto:anastasia.mavridou@nasa.gov

NASA’s center in Silicon Valley

Aerial image of NASA Ames Research Center
Credits: NASA

robust software engineering technical area

github.com/NASA-SW-VnV

www.nasa.gov/isd-robust-software-engineering

robust software engineering technical area

github.com/NASA-SW-VnV

www.nasa.gov/isd-robust-software-engineering

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in control (not standby) and
the system is supported without failures (not apfail).

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in control (standby) and
sensor data is good.

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in control (not standby) and
the system is supported without failures (not apfail).

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in control (standby) and
sensor data is good.

Every time these conditions hold or only when they become true?

how developers write requirements
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• Exceeding sensor limits shall latch an autopilot pullup when the pilot is not in control (not standby) and
the system is supported without failures (not apfail).

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• The autopilot shall change states from NOMINAL to MANEUVER when the sensor data is not good.

• The autopilot shall change states from NOMINAL to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from MANEUVER to STANDBY when the pilot is in control (standby) and
sensor data is good.

• …

Instantly, or within a time limit?

what analysis tools understand
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

FRET bridges the gap

• Captures requirements in structured natural language with unambiguous semantics.

• Explains formal semantics in various forms.

• Formalizes requirements in a compositional (hence extensible) manner.

• Checks realizability of requirements compositionally.

• Connects with analysis tools:

• Exports formalizations in SMV language.
• Exports Lustre code.
• Exports specifications for runtime monitoring.

welcome to FRET

github.com/NASA-SW-VnV/fret

Team: Andreas Katis, Anastasia Mavridou, Tom
Pressburger, Johann Schumann, Khanh Trinh

Alumni: David Bushnell, Dimitra Giannakopoulou,
Nija Shi

Interns: Milan Bhandari, Tanja DeJong,
Kelly Ho, George Karamanolis, David Kooi, Jessica
Phelan, Julian Rhein, Daniel Riley, Gricel Vazquez

And many other collaborators..

capturing, explaining, and formalizing requirements

let’s speak FRETish

FRETish fields

in, before, after, notin, onlyIn, onlyBefore, onlyAfter, null (global)

always, never, eventually, immediately, for, within, after, until, before

null, regular

satisfaction

SCOPE

CONDITION

TIMING

RESPONSE

In cruising mode, the autopilot shall always satisfy if altitude_hold then maintain_altitude

compositional generation of LTL formulas

In cruising mode, the autopilot shall always satisfy if altitude_hold then maintain_altitude

FiM = MODE and (FTP or previous (not MODE))

LiM = not MODE and previous MODE
scope in: [LEFT, RIGHT) → [FiM, LiM)

compositional generation of LTL formulas

In cruising mode, the autopilot shall always satisfy if altitude_hold then maintain_altitude

historically (LiM implies previous (RES since inclusive required FiM))

timing always: BASEFORM → RES

FiM = MODE and (FTP or previous (not MODE))

LiM = not MODE and previous MODE
scope in: [LEFT, RIGHT) → [FiM, LiM)

historically (RIGHT implies previous (BASEFORM since inclusive required LEFT))

historically (MODE implies RES)

scope: in, condition: null, timing: always, response: satisfaction

translate to SMV

optimize

(H (MODE → RES))

instantiate (H (cruising → (altitude_hold → maintain_altitude)))

related papers

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann (2021). Automated formalization of structured
natural language requirements, Information and Software Technology (IST) Journal, 137, 106590, Special Section on REFSQ’20, 2021.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann. Generation of Formal Requirements from
Structured Natural Language, REFSQ 2020.

https://www.sciencedirect.com/science/article/abs/pii/S0950584921000707
https://www.sciencedirect.com/science/article/abs/pii/S0950584921000707
https://link.springer.com/chapter/10.1007/978-3-030-44429-7_2
https://link.springer.com/chapter/10.1007/978-3-030-44429-7_2

checking realizability of requirements

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• Input state: TRANSITION

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• Input state: TRANSITION

• Condition 1: standby

• Condition 2: supported & good_sensor_data

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• Input state: TRANSITION

• Condition 1: standby

• Condition 2: supported & good_sensor_data

even simple requirements can be conflicting
10 Lockheed Martin Cyber-Physical System Challenge, component FSM:

• The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control (standby).

• The autopilot shall change states from TRANSITION to NOMINAL when the system is supported and
sensor data is good.

• Input state: TRANSITION

• Condition 1: standby

• Condition 2: supported & good_sensor_data

• Output state 1: STANDBY

• Output state 2: NOMINAL

why realizability?

• Defining requirements is a challenging, error prone task
• Realizability checking >> consistency checking
• We want to ensure requirement consistency for all inputs
• And we want to do it efficiently

An AG contract is realizable if there exists a system implementation that
satisfies the contract guarantees for all assumption-complying stimuli
provided by the environment.

We proposed a novel approach for compositional realizability checking.

compositional realizability

Partial AG contracts:

checking realizability within FRET

related papers

Andreas Katis, Anastasia Mavridou, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann. Capture, Analyze, Diagnose:
Realizability Checking of Requirements in FRET, CAV 2022.

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen. From Partial to Global
Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET, FM 2021.

https://link.springer.com/chapter/10.1007/978-3-031-13188-2_24
https://link.springer.com/chapter/10.1007/978-3-031-13188-2_24
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_27
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_27

connection with analysis tools

generation of Simulink monitors
FRETish:

when in roll_hold_mode autopilot shall immediately satisfy if roll_angle > 3 then roll_hold_reference = 3

Lustre specification:

Simulink monitor

model checking Simulink models

model checking PLC code

model checking PLC code

runtime monitoring

examples of case studies/projects that use FRET

related papers
Zsófia Ádám, Ignacio D. Lopez-Miguel, Anastasia Mavridou, Thomas Pressburger, Marcin Bęś, Enrique Blanco Viñuela, Andreas Katis, Jean-
Charles Tournier, Khanh V. Trinh, Borja Fernandez Adiego. From Natural Language Requirements to the Verification of Programmable Logic
Controllers: Integrating FRET into PLCverif, NFM 2023.

Joseph Kiniry, Alexanders Bakst, Simon Hansen, Michal Podhradsky, and Andrew Bivin. The HARDENS Final Report, Galois Inc Technical Report.

Thomas Pressburger, Andreas Katis, Aaron Dutle, Anastasia Mavridou. Authoring, Analyzing, and Monitoring Requirements for a Lift-Plus-Cruise
Aircraft, REFSQ 2023.

Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe, Dimitra Giannakopoulou. Automated Translation of Natural Language
Requirements to Runtime Monitors, TACAS 2022.

Hamza Bourbouh, Marie Farrell, Anastasia Mavridou, Irfan Sljivo, Guillaume Brat, Louise A. Dennis, Michael Fisher. Integrating Formal
Verification and Assurance: An Inspection Rover Case Study, NFM 2021.

Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Tom Pressburger, Pierre-Loic Garoche, Johann Schumann. The Ten Lockheed
Martin Cyber-Physical Challenges: Formalized, Analyzed, and Explained, RE 2020, Industry track.

Anastasia Mavridou, Hamza Bourbouh, Pierre Loic Garoche, Dimitra Giannakopoulou, Thomas Pressburger, Johann Schumann. Bridging the Gap
Between Requirements and Simulink Model Analysis, REFSQ 2020, Poster Paper.

Full list: https://github.com/NASA-SW-VnV/fret/blob/master/PUBLICATIONS.md

https://link.springer.com/chapter/10.1007/978-3-031-33170-1_21
https://link.springer.com/chapter/10.1007/978-3-031-33170-1_21
https://link.springer.com/chapter/10.1007/978-3-031-29786-1_21
https://link.springer.com/chapter/10.1007/978-3-031-29786-1_21
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_21
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_21
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_4
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_4
https://ieeexplore.ieee.org/abstract/document/9218211
https://ieeexplore.ieee.org/abstract/document/9218211
https://github.com/NASA-SW-VnV/fret/blob/master/https:/ceur-ws.org/Vol-2584/PT-paper9.pdf
https://github.com/NASA-SW-VnV/fret/blob/master/https:/ceur-ws.org/Vol-2584/PT-paper9.pdf
https://github.com/NASA-SW-VnV/fret/blob/master/PUBLICATIONS.md

source code

FRET: https://github.com/NASA-SW-VnV/fret

CoCoSim: https://github.com/NASA-SW-VnV/CoCoSim

Ogma: https://github.com/nasa/ogma

PLCverif: https://gitlab.com/plcverif-oss

https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/nasa/ogma
https://gitlab.com/plcverif-oss

acknowledgements

Zsófia Ádám, Alexanders Bakst, Swee Balachandran, Milan Bhandari, Marcin Bęś,
Enrique Blanco Viñuela, Geoffrey Biggs, David Bushnell, Maxime Artaud, Hamza
Bourbouh, Guillaume Brat, Esther Conrad, Louise A. Dennis, Tanja DeJong, Michael
Dille, Aaron Dutle, Marie Farrell, Borja Fernandez Adiego, Michael Fisher, Pierre-
Loic Garoche, Dimitra Giannakopoulou, Alwyn Goodloe, Simon Hansen, Kelly Ho,
Michael Jeronimo, George Karamanolis, Andreas Katis, Joseph Kiniry, David Kooi,
Ignacio D. Lopez-Miguel, Carlos Mao de Ferro, Patrick J. Martin, Francisco Martins,
Amalaye Oyake, Ivan Perez, Jessica Phelan, Tom Pressburger, Julian Rhein, Daniel
Riley, Johann Schumann, Nija Shi, Irfan Sljivo, Laura Titolo, Jean-Charles Tournier,
Khanh V. Trinh, Gricel Vazquez, Tim Wang, Michael W. Whalen, Alexander Will.

Thank you!

