This Research Was Sponsored by
The Space Nuclear Propulsion Office - NASA/AEC
Under Grant NsG - 728 -

- A COMPUTER -AIDED CONTROL
TECHNIQUE
FOR A REMOTE MANIPULATOR

1-67-44

by

Jon Terry Beckett ‘.

Dr. H. W. Mergler
Professor of Engineering

Principal Investigator
Grant NsG-728

1967

.

ABSTRACT

A technique for controlling a remote manipulator is
investigated which utilizes a general purpose digital computer

to assist the operator perform complex tasks with a minimum of

-information. An experimental computer-controlled manipulation

system is described and several path and positioning control
algorithms are presented. One position control algorithm
minimizes the manipulator transit time and automatically directs
the manipulator around all predefined obstacles. An executive
program allows the operator to control the manipulator in the
manual mode, to utilize a semi-automatic mode in which
commands are entered through a Teletype console, or to transfer
control to an automatic mode executive routine which reads a

series of commands from paper tape and automatically executes

them.

TOTRRIG PASD GLANK ROT B

e : . NER. H .
BRIV E YRR B I YD By AT A IS N SRV A S |

TABLE OF CONTENTS

ABSTRACT + vt e et e e e e e e e e e e ii
ACKNOWLEDGMENTS + + ¢ vt o v v vt et e et e e e iii
TABLE OF CONTENTS iv
LIST OF FIGURES, vii
LIST OF TABLES i i vt i i i e e e x
Chapter Page
I INTRODUCTION ittt ittt it e 1
I THE EXPERIMENTAL SYSTEM 6
2.1 Introduction v 6
2.2 Mode Definitions 10
2.3 The Manipulator¢.... 12
2.4 Analog Control Section 13
2.4.1 Silicon Controlled Rectifier
(SCR) Amplifier 13
2.4.2 D/A Converter and Bridge Network . . 17
2.4.3 Active Filter 19
2.4.4 Null Dectector 19
2.5 The Computer, 19
2.6 The General Purpose Interface Unit (GPI) .. 20
2.7 The Manipulator Control Logic 21
2.7.1 Buffer Registers 21
2.7.2 Position Measurement (A/D
Conversion) v v v e e 25
2.7.3 Multiplexing Technique 27
2.8 Programming Notes 31
iv

TABLE OF CONTENTS (Continued)

Chapter

III

THE MANIPULATOR CONTROL ALGORITHMS .
3.1 Introduction
3.2.1 Teletype Executive Control Program
3, 2.2 Automatic Mode Executive Control

Program
ontrol Algorithms
3.1 Manipulator Position Control
3.2 Hand Grip and Rotate Control
3.3 Path Control -- Straight Line
3.4 Hand Position Control
Buffer Initialization
Optimization Algorithm
Obstacle Avoidance
3.3.4.3.1 Specification of

Obstacle Bounds . .
3.3.4.3.2 Path Simulation
and Collision
Detection
3.3.4.3.3 Obstacle Evasion .
utomatic Mode,
.4.1 Record Data-Punch Paper Tape
.4.2 AUTO Exec - Read Paper Tape.
.4.3 Coordinate Transformation
3.4.3.1 Recording Relative Hand
Variables
3.4.3.2 Processing '""Relative Hand
Data'"
3.4.3.3 Coordinate Transformation
Equations
3.4.3.4 Future Extensions
Software A/D Conversion
iscellaneous Special Routines
6.1 Type Manipulator or Hand Variables . .
6.2 Output Unscaled Manipulator Values . .
.6.3 Adjust "Effective Hand Length'"
6.4 Control Special Manipulator Modes

C
3.
3.
3.
3.

w w w
W
il
w N -

3.4 A
3
3
3

w W
o N

35
35
36

40
42
42
44
48
53
53
55
75

79

83
86
91
92
93
97

98
99

103
105

106
106
107
108
108

Nl N R s 0N S B Wy m s

TABLE OF CONTENTS (Continued)

Chapter Page
v SUMMARY AND FUTURE TASKS 110
4.1 Introduction 110
4.2 Achievements, 111
4.3 Future Tasks 114
4.3.1 Man-Machine Interface 114
4.3.2 Sensory Feedback. 116
4.3.3 Analog-to-Digital Conversion 118
4.3.4 Algorithm Modifications and
Additionso 118
4.3.5 System Evaluation 119
BIBLIOGRAPHY it it et i e e 121
Appendix I MANIPULATOR COORDINATE SYSTEM
AND SCALING OF MANIPULATOR
VARIABLES 122
Appendix II TELETYPE EXECUTIVE CONTROL
ROUTINE ot it e e 125

Appendix III

SUBROUTINE LIBRARY FOR EXPERIMENTAL
COMPUTER-CONTROLLED MANIPULATOR..131

vi

Figure

2-2

2-4

2-5

2-6

2-1

2-8

2-9

2-11

3-4

3-5

3-6

LIST OF FIGURES

Photograph of Experimental System from

Computer Room, 7
Photograph of Experimental System from

Manipulator Area0 e 8
The Case Manipulator 9
Experimental System Block Diagram 11
Manipulator Arm Dimensions 14
D/A Converter and Bridge Network 18
Simplified Bridge Network 18
Manipulator and GPI Data Formats 22
Typical Information Flow -- Manipulator to

Computer o e 29
Typical Information Flow -- Computer to

Manipulator Lo o oo 30
Typical Programming Hazards 34
TTY Exec Options 39
AUTO Exec Options v v v v it 41
ITMNIP Flow Diagram 45
IGRIP Flow Diagram 46
GRIP Flow Diagram 47
Vector and Hand Orientation Relationships 49

vii

Figure

3-7

3-8

LIST OF FIGURES (Continued)

IDIST Flow Diagram.« v v v v v v v v v oo

VECTOR Flow Diagram

HOPOUT, PHCK, and FLAGGT Flow Diagrams . .
RTHAND Flow Diagram0 oo
ITHAND Flow Diagram
Manipulator and Hand Variable Relationships

Possible Manipulator Configurations for a Specified
Change in the Hand Position

Example of SP, EP Grid and the Grid Time Table.

Examples of SP, EP, and WP Constraints

Optimized Manipulator Configurations for HX

Increments @ ¢ i i i it e e e e e e e e e e e

Path of Manipulator for Examples in Figure 3-16. .

Optimized Manipulator Configurations for HZ

Increments i i e i e e e e e e e e e e e

Path of Manipulator for Examples in Figure 3-18. .

GRID Flow Diagram

Flow Diagrams of Subroutines called by GRID

Example of Possible Collision between the

Manipulator and an Obstacle
Typical Obstacle Bounds

IBOUND Flow Diagram¢......

viii

54
56
57

59

61
65

68

69

70

71

72
73

74

76
80

82

Figure

3-25

A2-1

LIST OF FIGURES (Continued)

DTCT Flow Diagram.« o v v v v v v v v
RDTC Flow Diagram oo o v 0w
Obstacle Evasion Paths Tested by SUBG
SUBG Flow Diagramo

Photographs of Manipulator Paths Generated to
Avoid Obstacleso v v v v v

Values of HX, HY, and HZ for Directing the
Manipulator around an Obstacle

Paper Tape Block Structure
PUNCH Flow Diagram
AUTO EX Flow Diagram
Transformation of WP and SR
IREF Flow Diagram
RELHND Flow Diagram

SAD Flow Diagram v« v v v v v o v v v v ot v o

Master-Slave Position Control

Master Position Measurement

TTY Exec Flow Diagram

ix

88

89

90

91
94
95

96

LIST OF TABLES

Table Page
2-1 Manipulator Specifications 15
2-2 OCP and SKS Instructions 22

A2-1 Teletype Commands 126
X

Chapter 1

INTRODUCTION

Remote manipulators have been designed to enable man to
perform tasks in a hazardous or hostile environment. Obviously,
such devices are indespensible in the handling of radioactive

materials. In fact, the hazards of direct exposure to radiation

are responsible for most of the development of remote manipulation

devices to date. Currently, however, there is a growing interest
in using manipulators for both suboceanic and extra-terrestrial

research activities.

It is desirable to apply recent technical innovations to
improve the design and control of these devices to make them
more suitable for these new activities. The mechanical design
of such a device is partially dependent upon the particular appli-
cation and is also a much more straight-forward problem than the
development of techniques which can be used to control it. As a
result, this report primarily considers the control problem and
the development of a technique which can be applied to future

systems.

.

Manipulators currently available are generally manually
controlled and are classified as either '""Rate-Controlled
Manipulators' or as '"Master Slave Manipulators'' depending upon

the control scheme employed.

The master-slave type of manipulator requires a "master'
unit which is controlled by the operator and which is similar in
shape to the manipulator (termed the ''slave!'), The two units
are mechanically, electrically, or hydraulically linked so that
the slave follows the motions of the master. Generally this link
is also used to provide force feedback in which load forces at the

manipulator are reflected back to the master.

The rate-controlled technique utilizes a control unit which
allows the rate of each axis of the manipulator to be independently
controlled. The control unit generally contains one leverfor each
axis and the rate of motion of the axis is proportional to the

displacement of the lever.

Even though rate-controlled manipulators are generally
capable of handling heavier loads and working in a larger area
than master-slave manipulators, they move at a slow rate and the
necessity of independently controlling the rates of each axis makes

it difficult to perform path control operations (see Section 3. 3. 3).

Master-slave manipulators allow path control operations to
be performed with relative ease; however, the presence of force
feedback can cause operator fatigue, they are awkward to use if the
manipulator moves at a slow rate, and a large working area is

required by the operator to manipulate the master unit,

In contrast to the manual control scheme, several manipu-
lation devices such as the Unimate* allow fully automatic control.
The manipulator motions are recorded while manually performing
the task and the motions can be repeated as often as desired by
using the automatic mode. Although the devices are convenient for
highly repetative operations, they are of limited value for general
non-repetative operations which must frequently be performed by

remote manipulators.

The Case Research Arm Aid(z) also provides both a manual
mode and an automatic mode; however, using the automatic
mode, the operator is allowed to select one of a wide variety of
pre-recorded paths. Several problems encountered with this
system were that it required a very large amount of incremental
pulse data recorded on magnetic tape for each task, several

seconds were consumed while searching for the selected task,

*Manufactured by Unimation, Inc., Bethel, Conn.

it was necessary to initiate and halt all operations at a pre-defined
reference point, and it was necessary to reprogram a task to
compensate for changes in the environment (e.g., if an obstacle

were placed in the path).

A control technique is presented in this report in which a
general purpose digital computer assists the operator in the
execution of complex remote manipulation tasks. The computer's
high computation speed and ability to make decisions rapidly
coupled with its highly flexible internal and input-output structure
enables the following features:

1. A reduction of the amount of conscious attention

required of the operator to control the path or
position of the manipulator.

2. Enhancement of the performance of positioning

operations by optimizing the terminal configuration

of the manipulator.

3. Improvement of the speed and accuracy of path
control operations,

4. Minimization of the amount of data the operator
is required to specify in order to perform a
task.

5. The performance of special purpose computations
such as coordinate transformation.

In addition, recent reductions in the price of small

computers coupled with significant improvements in both speed

and reliability make the utilization of a computer economically

feasible and highly practical.

In order to facilitate the study of the computer technique,
to initiate steps leading to the formulation of a practical control
scheme, and to comparatively evaluate the manual and computer
control techniques, an experimental computer-controlled remote
manipulation facility was developed. This system is described
in Chapter II. Concurrently, a set of path and positioning
control algorithms and a set of executive routines providing
manual, semi-automatic, and fully automatic control modes
were formulated. The resulting programs, described in
Chapter III, demonstrate the merits of the computer-control

technique which are enumerated above.

It is imperative to stress that it is normally impossible to
completely specify in advance all operations which the manipulator
will be required to perform; therefore, the primary function of the

computer is to assist, not replace, the operator.

Chapter II

THE EXPERIMENTAL SYSTEM

2.1 Introduction

An experimental computer controlled remote manipulator has
been developed to aid the investigation of various control techniques.
Photographs of the system are shown in Figures 2-1 and 2-2.
Information which is essential to the user and various highlights
of the system are presented in this chapter. The details of the

. 43)
analog control section are presented by Hammon and the report
by Taylor(7) describes the manipulator, the computer interface, and

the manipulator digital control section.

In order to establish a practical system, a General Mills*
Model 100 manipulator was modified to resemble a PaR* Model
3000 manipulator. This device, shown in Figure 2-3, has nine
degrees of freedom which are denoted as bridge traverse, carriage

traverse, hoist, tube (or shoulder) rotation, shoulder pivot, elbow

>

*Manufactured or distributed by Programmed and Remote
Systems Corporation (Pa R), St. Paul, Minnesota.

Figure 2-1. Photograph of Experimental System from Computer Room

Figure 2-2.

Photograph of Experimental System from Laboratory

HOIST DRIVE

’ HOIST

CARRIAGE
ASSEMBLY
BRIDGE ¥ cammiace

ASSEMBLY b '} MOVEMENT

720° ROTATION
MECHANISM

EXTENSION
48 INCHES

SHOULDER PIVOY

ELBOW PIVOT

WRIST PIVOT

Figure 2-3. The Case Manipulator

"

10

pivot, wrist pivot, hand rotation, and hand grip. These will be
abbreviated as X, Y, Z, SR, SP, EP, WP, HR, and HG in all

future references.

Position feedback control loops have been added to the first

seven of these axes. The last two retain the original relay controls.

A detailed block diagram showing all major sections of the
system is given in Figure 2-4. Basically, the computer transfers
position information to (or from) seven manipulator buffers via a
General Purpose Interface Unit (abbreviated GPI) and the
manipulator control logic. The digital position of a given axis is
converted to an analog set point which is then compared with the
signal from the potentiometer mounted on the corresponding
manipulator axis. The difference, or '"'error', is used to drive

the motor (using a SCR amplifier) until the set point is reached.

2.2 Mode Definitions

Various ""modes' which are referred to in this and the
following chapters are defined as follows:

INPUT MODE (of GPI): The computer is permitted to
"input' information from the GPI data buffer

OUTPUT MODE (of GPI): The computer is permitted
to "output" information to the GPI data buffer

WYHOVIQ %0018 W3ILSAS VAN3WIY3AX3 ‘b-2 3JH§NOId

[d001 WOIdAL o
_ A ALL
yoLow |-OND NV .
UiW A+ SAVI3Y
_ 31VLOY ‘dINO
SNIJWYa aNVH
(vNY3LNI) 119 oL 431NdNOD
43I 1IN diNO9D) vLI9I0
ol
_ ¥315193 | 300
| _
_ _ T w3 118-b
f oY |
_ IAILOV L ﬂ
\ '
| £ [soroma 30V4Y3LNI
N 350d¥nd
. 39VLI0A +
o 4| | HOYY3
| Lazuvios - —3 4 ﬁ
K2 i
| - 91907
. ¥3L¥3IANOD 43INN0CO/4344n8 [T | 0MINOD
“ v/a NOILISOd Lig of | | INNOO aNv
, ¥3IXIILINN
_| I3NVd 1HON 0L

12

MANUAL MODE (manipulator logic): The manipulator
can be controlled exclusively via the manual
control panel

COMPUTER-CONTROL MODE (manipulator logic): The
manipulator servo-loops are enabled to drive all
motors to the positions indicated by the buffers

SAD (software A/D): The clock used to increment or
decrement the position buffers for hardware A/D
conversion is inhibited

RATE-SIMULATED MODE: Rate control of the manipulator
is simulated by the computer. The differences be-
tween the initial and final positions of all axes is
divided into the same number of equal increments
and these are added to the current positions at a
fixed rate until the final positions are reached.

2.3 The Manipulator

In order to allow computer control and also make the General
Mills manipulator resemble the PaR Model 3000, it has been
modified as follows:

1. An upper arm and forearm were added. The limbs
are geared to the motors such that their absolute
angles (measured relative to vertical) are controlled
independently.

2. The relays used to control the X, Y, Z, EP, SP, WP,
and SR motors were discarded and SCR amplifiers
were designed to drive the motors.

3. The printed-circuit switches in the control panel
used to activate the relays for the seven axes were dis-
carded and replaced by potentiometers which allow
continuously variable rate (and direction) control.

13

4. DPotentiometers were mounted on the manipulator
to measure the position of the seven axes listed
above.

5. A repulsion motor which was used to control the
hoist was replaced by a series-wound universal motor
to allow the use of identical servo-loops for all seven
axes.

The arm dimensions are shown in Figure 2-5 and a comparison

between the PaR and the experimental manipulator is given in

Table 2-1.

2.4 Analog Control Section

2.4.1 Silicon Controlled Rectifier (SCR) Amplifier

The SCR amplifier was designed to drive a low-power
series-wound universal motor, the speed and direction of which
corresponds to the magnitude and sign of a DC signal. The
signal controls the phase angle at which the SCR's fire. This in
turn meters the amount of power supplied to the motor. In order
to optimize the performance, the following features are incor -
porated in the amplifier:

1. Four SCR's are used in conjunction with a 220 V,

three wire AC source to drive the motors close
to their rated value for maximum torque.

2. An adjustable ''negative' dead-band has been added

to compensate for the stiction of the motor. This
is accomplished by adding a bias to the signal which

14

("
| 4
| |
| |
l |
o e HOIST MECHANISM
o VERTICAL MOVEMENT
48 INCHES
.-
3
1112
Ll
3 |
o
& — —+} SHOULDER PIVOT — —=
| -/ 110° ROTATION
2"TYR | FROM &
i 12
7
J N | ELeow Pivor— — |
¥/ 135° ROTATION
|.2. TYP—__f— FROM ¢
U | 12 Lrvp
gy g TYP
L da)
@}— — —+ WRIST PIVOT —— — —
140° ROTATION
FROM ¢
L
2
DIA. ~_ 18 ?
3 s L 3 3
I 23
| | 8
S I

Figure 2-5.

Manipulator Arm Dimensions

| T
»— it

Table

Element

Bridge
Travel ..
Velocity . .

Carriage
Travel
Velocity . .

Hoist
Travel
Velocity . .

2-1.

Shoulder Rotation

Travel
Velocity . .

Shoulder Pivot
*Travel ..

Velocity . . .

Elbow Pivot
*Travel
Velocity . .

Wrist Pivot

*Travel ...

Velocity . .

Hand Rotation
Travel ..
Velocity . .

Grip
Opening ..
Velocity . .

.

15

Manipulator Specifications

Case Manip. PaR 3000
14.5 feet These depend on the
8 fpm particular installation
12 feet
10 fpm
4 feet
8 fpm
720° «+se.. Continuous
5rpm 1l.5rpm
+110° ..., #125°
l.5rpm 2.5 rpm
+185° +180°
1.5 rpm ., eee. 2.5rpm
$270° 4305°
l.5rpm 2.5 rpm
Continuous Continuous
50rpm 7rpm
4 in. . ce. 4in.
120 ipm 20 ipm

*Angles are measured from the center line,

16

produces enough power to almost overcome the
stiction.. The synchronizing pulse (used to insure
that all SCR's are turned off before the start of
each cycle) is then extended to just delete the bias
when the signal is zero. When the signal exceeds
this small dead-band, the bias is added to the out-
put signal.

3. The approximate EMF of the motor (produced by
its rotation) is monitored at the amplifier and is
used for first-derivative compensation to improve
the response by reducing the over-shoot.

4. By mounting two diodes near the motor, it is possible
to run only two wires to each motor (plus a ground
wire common to all motors). The diodes are connected
so that the current through the field winding always
flows in the same direction. The direction of current
in the armature thus controls the direction of rotation
of the motor.

5. Limit switches were added to the pivots and shoulder
rotation. They were mounted in series with the motor
wires such that one prevents rotation in one direction
and the other prevents rotation in the opposite direction.
It made it possible to prohibit motion beyond the limits
while allowing motion out of the limits without running
separate wires back to the control logic.

Note: A 15 amp circuit breaker is used to protect the SCR's;
however, it is necessary to stagger the turn-on and turn-
off times of the motors because of the logic current
surges which occur. In general, no.more than one
motar should be turned on or off each 17 m sec.

~

17

2.4.2 D/A Converter and Bridge Network

The D/A converter uses a ''voltage ladder' circuit to
convert the digital position to an equivalent analog signal.
This is then compared with the signal from the potentiometer
mounted on the manipulator by a bridge network. The D/A
circuit and bridge network are shown in Figure 2-6. This
arrangement was chosen because it eliminated the necessity
of using an accurate reference voltage. Also, since no current
flows at the null point, it is unnecessary to use a modulator and
demodulator to prevent DC losses in the relatively long cables.
Nevertheless, it is now necessary to use separate (but very
simple) isolated voltage sources for each axis. Figure 2-7
presents a simplified diagram of the bridge arrangement. From
this it is seen that the error output is zero only when the voltage

between the side of the pot and the wiper, Vm equals ¥V the

DA’

voltage output of the D/A converter referenced to the same line

which goes to the potentiometer.

3%4¥no0s
3OVLI0A

g3aiviosi

18

AWNOIS _ | y31114

-
HOUYI ™ | 3711 9v |

. _
i N " =N Ew G aE G e E E W En EE am Em

q1om3aN 28ptag poryridutg -7 sandig
= - va
:>hw. ETR]] "
: ¥3Ld
j———————
IAILOV *
+
HOYY3

YIomiaN o8ptag pue I9319AU00) YV /d *9-7 2an3t g

324N0S
39VLI0A
a3aiviosi
+dA

e ye

L

ﬁ
AJ

19

2.4.3 Active Filter

The SCR amplifier is essentially a sampling amplifier. As a
result, it is sensitive to synchronous noise -- particularly if the
frequency is equal to or a harmonic of the sampling frequency.
Unfortunately, this case is encountered in this system because the
noise created by the firing of the SCR's can be picked up by the
lines between the controls and the potentiometers. As a result, the
filter was designed to attenuate signals above.20cps. It also is used

to amplify the error signal slightly for the SCR amplifier.

2.4.4 Null Detector

The null detector grounds either the '"positive' or ''negative'
error lines when the output from the active filter exceeds a small

""dead-zone''. These signals are then used by the manipulator

digital control logic.

2.5 The Computer

A DDP-116 low-cost digital computer manufactured by the
Computer Control Division (3C) of Honeywell is used to control the
manipulator. The memory contains 8,192 words, the word length

is 16 bits, the memory cycle time is 1.72 psec and typical

20

instruction execution times are 3.4 yu sec. for addition, 9.5 psec.
for multiplication, and 17 psec. for division (all fixed point). The
Input-Output equipment available includes a magnetic tape transport,
a line printer, a card reader, high-speed paper tape equipment and
a teletypewriter. Only the last two units have been used during the

execution of the manipulator control algorithms.

2.6 The General Purpose Interface Unit (GP])

The GPI controls the flow of data and commands between the
manipulator logic and the computer. It contains a 16 bit data buffer,
control flip-flops and the decoding logic for five external output
command pulses (OCP) and for six external status sense lines (SKS).
Two of the control flip-flops are of prime concern to both the
programmer and to the external device (i.e., the manipulator
control logic). These indicate the ''mode' of the GPI (INPUT or
OUTPUT) and the status (READY or NOT READY). Data transfers
between the computer register and the GPI data buffer are allowed
only when READY is enabled (set). The status of READY is
modified by the following operations:

READY SET -- a. By the computer ona OCP § 1 (set
GPI OUTPUT mode).

b. By the manipulator logic when
additional data transfers are
anticipated.

21

READY RESET -- a. By the computer on a OCP@§ (set
GPI INPUT mode)

b. By the computer after data is
transferred by the computer to or
from the GPI data buffer during
the execution of an INA (input) or
OTA (output) instruction.

Whenever READY is reset, it in effect signals the external
device that the computer has transferred data to the GPI buffer and
it is now available to the external device, or else that the external
device can transfer data to the GPI buffer. As soon as the device

is finished with the data or has filled the buffer, it must transmit a

pulse to set READY.

2.7 The Manipulator Control Logic

The manipulator logic contains seven ten-bit buffers, one
four-bit register, control logic for A/D conversion, and multiplex-
ing logic to allow data transfers with the computer via the single

GPI channel.

All sense (SKS) and command (OCP) instructions recognized
by the GPI and the manipulator logic are listed in Table 2-2. In

addition, the formats for all data transfers are shown in Figure 2-8.

.

22

Table 2-2. OCP and SKS Instructions

OCP@9 Enable GPI INPUT Mode, Reset READY
Immediately force Manual Mode

OCP91 Enable GPI OUTPUT Mode, set READY
Enable Computer Control Mode if no error
(20 cps clock)

OCP0B2 Set SAD Mode
Clear AXIS Counter, Reset START
Set Computer Control Mode if GPl in OUTPUT

Mode
OCP®3 Enable DMC Mode
OCPp4 Set AXIS Counter to one, Set START

Caution: First clear AXIS counter, set
Manual Mode or Computer Control Mode

OCP®5 Reset SAD Mode

OCP@6 If GPI in INPUT Mode, transfer ERROR STATUS
to GPI data buffer
If GPI in OUTPUT Mode, transfer GPI data to
the four-bit register

OCP@7 Reset DMC End of Transmission
SKS@9 Sense READY

SKSg1 Sense no error

SKS@2 Sense Computer-Control Mode
SKS94 Sense not interrupting

Note:* G.P. INTERFACE ADDRESS = '40

MASK BIT = 8
DMC CHANNEL = 3

4
*See Programmer's Reference Manual() for explanation.

23

Word Formats

GPI Buffer

1 2 34 5 6 7 8 91011 1213 141516 Bit Number

NN_OT_‘ T Position Ctl

USED . POSITION Buffer
'TNOTT Zz | Y | X |[SR |WP | EP | SP | Axis Error
LI_J__S_ED -+ - +]- +]- +V- +]1- +1- + |Error Word
E-_—“ ______ HR |HG Hand Ctl
_— m e Buffer
CW—J L—Close
CCw Open
Data Transferred
(Input mode) (Input mode)

Axis Ctr to GPI Buff from GPI Buff

0 Error Hand Control

1 SP SP

2 EP EP

3 WP WP

4 SR SR

5 X X

6 Y Y

i Z Z

Figure 2-8. Manipulator - GPI Buffer Data Formats

24

2.7.1 Buffer Registers

One ten-bit buffer is used for each axis under closed loop
control. These buffers form the main link between the digital and
analog portions of the manipulator controls. In the automatic mode,
the computer outputs the desired position of each axis to the buffers
via the GPI and multiplexing logic. The analog controls convert
this to an analog set-point, compare it with the position indicated
by the manipulator potentiometer and use the resulting error
signal to drive the motor until the error vanishes. The buffers

are also used in the A/D conversion (see Section 2.7.2).

The two motors which control the hand grip and rotation are
actuated by a set of relays. Two relays for each motor control the
direction. The speed is fixed. If both relays controlling a motor

are set, no motion is allowed.

In the Computer Control mode, the appropriate r;alay is
energized whenever a flip-flop in the four bit buffer register is set.
The flip flops are set or reset by an OCP $#6 command when the
AXIS counter is zero and the Computer Control mode is enabled.
The register is always reset by a DC level whenever the Manual

mode is enabled.

‘

25

2.7.2 Position Measurement (A/D Conversion)

The potentiometers which are connected to the manipulator

.axes for position feedback can also be used to measure the current

positions of the axes. Two techniques have been implemented to
perform the measurement. Basically the error signal which
indicates the sign of any difference between the axis buffer and the
position is used to modify the buffer contents instead of driving the
manipulator. The difference between the two techniques is the

method used to modify the buffer contents.

The first method demands that the buffers also function as
bidirectional counters. Whenever the control logic is in the manual
mode, the buffer contents are incremented when the error is
negative and are decremented when the error is positive. Only
when the error is within the dead band of the null detector does

counting cease.

The second technique requires the use of a computer program
to perform the conversion. In this case, the buffer contents are
modified strictly by data transfers from the computer. In order to
perform the '"'software!'' conversion, the computer must be permitted
to examine the error status of each axis. An algorithm, such as

that described in Section 3.5 , first outputs a set of trial values

-

26

to the buffers. The resulting error status of each axis is examined
and is used to output a second trial. The process is repeated until
the error of all axes reaches zero. A conventional binary search
technique requires only one guess for each bit in the position word;
therefore, a maximum of ten trials are necessary in the experi-

mental system.

Both methods have been implemented in the experimental
system. In order to use the software technique it is necessary to

enable the SAD mode to prevent counting the buffer.

The conversion speed in the experimental system is limited
because of a lag introduced by the active filter. The attenuation
beyond 20 cps results in a delay of approximately 50 m sec. after

each output before the error signal is meaningful.

The hardward technique is of value because of its ability to
"track'! the position of each axis as it is driven under manual
control; however, for large errors, up to 20 seconds can be
consumed before a null is reached. Conversely, the software mode
requires a maximum of ten trials; thus, the conversion speed of

approximately 0.5 secis independent of the magnitude ofthe error.

The tracking mode has been convenient to use in the

.

27
experimental system, however, the time consumed when the
manipulator is first turned on and when the operator interupts the
Computer Control mode becomes annoying. As a result, the SAD
mode appears to be most practical because of savings in digital
logic and the fixed conversion time. With improvement in the

conversion speed, it will become even more appealing.

2.7.3 Multiplexing Technique

All data transmitted between the computer and the manipulator
buffers is multiplexed and passes through a single computer I/0
unit -- the General Purpose Interface (GPI). A three-bit counter
is used to gate the information between the GPI buffer and each of

the buffers in the control logic.

Consider a typical operation in which the computer outputs
information to the seven position buffers. The computer must
first output an OCP @ 2 to clear the axis counter and initialize
the multiplex logic; next an OCP @ 1 is used to set the output mode
in the GPI; and then an OCP @ 4 sets the axis counter to ''1''. When
the computer outputs the first word, this is automatically gated into
buffer '"1" and then the axis counter is incremented. The process

continues until finally the seventh word is transferred. It is gated

28

into buffer ''"7'", the axis counter is reset, and the multiplexing logic
is conditioned to ignore all further position information until an

OCP § 4 is executed again.

The data always appears in a fixed sequence. Currently, the
order is SP, EP, WP, SR, X, Y, and Z as shown in Figure 2-8.
Although it is possible to transfer a partial set of information, only
the data at the end can be ignored. For example, to change the
value of SR, it is necessary to output values of SP, EP, and WP
as well as SR but the X, Y and Z values can be ignored. For
such a partial transfer, it is mandatory that an OCP §2 be executed

as described in Section 2. 8.

Seven states (1-7) of the axis counter are used to control
data transfers with the position buffers and the remaining state is
used to output data transfers to the four bit buffer and to input the

error status of each axis depending upon the mode of the GPI.

The general sequence of operations required to input and

output information is shown in Figures 2-9 and 2-10.

29

INPUT POSITIONS

INPUT ERROR

OCP §2 OCP ¢2
AXIS CTR =0 AXIS CTR « 0
SAD SET SAD SET
START RESET START RESET

Y
OCP 99 OCP 09

GPI <« INPT MODE
READY RESET

GPI « INPT MODE
READY RESET

! v
OCP ¢4 OCP 96
AXIS CTR <« 1 GPI BUFFER «ERROR
START SET READY SET
\' (
>GPI BUFF « AXIS BUFFER INA 19

READY SET

Y

A REG <« GPI BUFFER
READY RESET

AXIS «AXIS +1

Y

OVERFLOW?
No Yes

[START RESET|
|

OCP @5
SAD RESET

INA 19
A REG <4 GPI BUFFER
READY RESET

Yes

y

-~ (START SET?)

No

OCP 95
RESET SAD

RETURN

RETURN

Figure 2-9. Typical Information Flow --
Manipulator to Computer

Output Positions

{

OCP 09
GPIINPT Mode

+

OCP 92
Axis Ctr«0
SAD Set
Start Reset

|

OCP f1
GPI«Qutput Mode
Ready Set

SKS 92
Computer Ctl Mode Set
Yes

OCP 94
Axis Ctr « 1
Start Set

——

OTA $¢
GPI Buffer « Reg A
Ready Reset

'

Axis Buffer«GPl Buffer

Ready Set
¥
| Axis<Axistl
o

Yes

OCP 95
SA.D Reset

Return

Figure 2-10,

No
Wait

Qutput Hand
Grip/ Rotate Command

$

OCP ¢
GPI-INPT Mode

1

OCP p2
Axis Ctr«0
SAD Set
Start Reset

!

OCP ¢1
GPIL«OQutput Mode
Ready Set

Q SKS 92
omputer Ctl Mode Set
Yes

OTA. 99
GPI Buffer « Reg A
Ready Reset

OCP p6
Hand Buffer+«GPI Buff
Ready Set

4

OCP 05
SAD Reset

v

Reset

Typical Flow of Information

From Computer to Manipulator Logic

Wait

—

31

2.8 Programming Notes

The SKS and OCP instructions utilized by the manipulator
logic and interface unit are listed in Table 2-2. Due to the limited
number of external OCP commands available, the OCP ¢2
instruction performs several functions. As a result, it is
occasionally necessary to follow or precede this command with
one or two instructions to disable any undesirable modes. For
example, to clear the AXIS counter, it may be necessary to execute
an OCP @@ first, then the OCP @2, and finally an OCP 5. The
first instruction insures that the Computer Control mode will not
be forced, the second instruction clears the AXIS counterand sets

SAD, and the third instruction resets the SAD mode.

Several side effects arise from the multiplexing technique
and the programmer must exercise caution to prevent any damage
to the system and to insure that the proper information is
transferred between the computer and the manipulator control logic.
In general, the following rules should be observed:

1. After an INA or OTA instruction, wait at
least ten psec before using an OCP instruction.

2. Before changing modes in the GPI, execute an
OCP @2 to clear the AXIS counter.

32

3. After executing an OCP @1 (GPI Output mode),
wait until the Computer Control mode is
established (test with an SKS §#2) before
executing an OCP @4 to initialize the counter.
Note that the Computer Control Mode is set by
a 20 cps clock.

The side effects which will occur can be predicted from a
brief consideration of the multiplexing technique. A "START!" {flip-
flop in the multiplexing logic is set when the AXIS counter is
initialized (OCP @4) and is reset when the counter overflows or
by an OCP §2. If the GPI READY flip-flop is reset and START
is set, the following operations will occur on the next clock pulse
(200 KC clock):

1. Leading edge of clock pulse

a. Data is transferred to (from) manipulator

buffer (selected by current value of AXIS
counter) from (to) GPI data buffer

b. READY is set.
2. After a slight delay, the axis counter is incremented
by one (if value was seven, it is cleared and
START is reset).
The above operations require up to ten p sec and the
sequence occurs after all INA and OTA instructions (unless the
AXIS counter is zero). It is imperative to wait for their completion

before executing any instructions which change the mode or the

axis counter contents (OCP @@, OCP ¢1, OCP 92, OCP 94).

33

Two examples of problems which will occur if the above

rules are not observed are shown in Figure 2-11.

Case I

!
Given:
Axis Ctr =7
Start Set
GPI in Qutput Mode

¥

OCP ¢¢
GPI«Input Mode
Ready Reset

Data - GPI Buff
Ready Set
Axis « Axis +1

r&‘

'

OCP ¢4
Axis Ctr « 1
(Start Set)

Problem:

SP«?
EP<«Axis 1
WP<«Axis 2
SR+Axis 3
X«+Axis 4
Y<«Axis 5
Z<Axis 6

Figure 2-11.

34

Case II

Given:
GPI in INPT Mode
(Ready Reset)
Axis Ctr = 0
Start Reset

OCP)y 4

Axis Ctr «1
Start Set

Automatically

Executed by

Multiplexing =7 ___y

Logic

Data - GPI Buif

Ready Set
Axis+Axis + 1

!

OCP 91
GPI+—~Qutput Mode

1

Problem:

SP-+Axis 2
EP-Axis 3
WP-Axis 4
SR-+Axis 5
X+Axis 6
Y—-Axis 7
Z-+1,08t

Two Programming Hazards

Chapter III

THE MANIPULATOR CONTROL ALGORITHMS

3.1 Introduction

Several position and path control algorithms have been
developed and are presented in this chapter. These algorithms
have been implemented in the experimental system, and they
demonstrate the ability of a computer to effectively control a
manipulator by only a few strategic input commands together with

a minimum of accompanying data.

Several special programs have also been written to execute
miscellaneous functions such as typing the contents of the seven
manipulator buffers, performing software analog to digital con-
version, and enabling various modes to facilitate system

maintenance,

System versatility is insured by an executive routine which
allows the operator to select any of the control routines or special
functions at random via the teletype console. In addition, a second
executive routine allows pre-recorded operations to be executed

automatically.

35

36

The coordinate system used in the position and path control

algorithms is defined in Appendix I.

All subroutines available are listed in Appendix III. The flow
(1)

diagrams and program listings appear in a separate document

3.2.1 Teletype Executive Control Program

The '""Teletype Executive Control Program' (abbreviated TTY
Exec) provides the basic link between the computer and the operator.
All subroutines are initially loaded into the memory of the computer
and program execution is started in the TTY Exec. This program
waits for the operator to specify the operation desired. Upon
receipt of a command, control is transferred to the appropriate
subroutine. Generally, the subroutine accepts additional required
information and executes the command. If one of the basic
positioning or path control algorithms is specified, however, a
subroutine is first called which accepts all additional data required
by the algorithm and stores it in the appropriate buffers. Then
control is transferred to another subroutine which actually executes
the command. This feature is included to allow control from both

the TTY Exec and the AUTO Exec (described in the next section).

37

The following two examples illustrate the selection
technique:

Example I: Instruct the computer to type the seven
current manipulator variables (scaled).

1. The operator first types a "T'" -- the
TTY Exec transfers control to the
TYPE subroutine.

2. The operator types a ''5'" -- this instructs
the TYPE subroutine to type the current
manipulator variables.

3. The TYPE routine then inputs the current
manipulator variables, scales them into
inches and degrees to conform to the co-
ordinate system, and types the resulting
values.

Example II: To direct the manipulator 7.5 inches in a
straight line along a vector formed by the
hand orientation.

1. The operator types a "V" -- the TTY Exec
first calls the "IDIST'" subroutine.

2. The IDIST routine types DIST: then waits
for the operator to specify the distance (in
inches).

3. The operator types 7.5 followed by a
carriage return.

4, The IDIST routine stores this in the DIST
memory buffer. ‘

5. The TTY Exec calls the VECTOR subroutine.
which outputs a series of increments to drive
the manipulator the specified distance.

38

Figure 3-1 presents a list of the major functions controlled
by the TTY Exec. In addition, Appendix II contains a flow diagram
of the TTY Exec, an exhaustive list of all options available, and a

list of all additional information required by each option.

Another important feature of the TTY Exec is that it permits
the operator to interrupt the execution of any subroutine in case of
an emergency. After a command is accepted by the TTY Exec, but
before transferring control to the proper subroutine, the hardware
interrupt feature of the computer is conditioned to immediately
transfer program execution to the TTY Exec if the operator
depresses any key on the console. If this occurs, the GPI Input
Mode is enabled, further interrupts are inhibited, and the TTY
Exec awaits the next command. All manipulator motion ceases
when the GPI Input Mode forces the Manual Mode in the manipu-
lator control logic. In order to allow additional information to be
requested and accepted, the teletype input and output subroutines
temporarily suspend TTY interrupts; however, in case erroneous
information was typed, the interrupt feature can be simulated by

setting Sense Switch four on the computer console.

39

Interrupt

TTY

3 Error
Exec |

<

> Control Manipulator Position

Control Hand Position
Optimize & Avoid Obstacles

Control Hand Path

Straight Line

Record Commands and Data

for Automatic Control

Transfer Program Control to
AUTO Exec

- Input Reference Data for

Coordinate - Transformation

———> Specify Obstacle Bounds

> Extend Effective Hand Length

> Set/Reset Rate-Simulation Mode Flag

SAD
Set < Manual Mode
Computer Control

Type Manipulator or Hand Variables

Figure 3-1. TTY Exec Options

40

3.2.2 Automatic Mode Executive Program

The operation of the Automatic Mode Executive Program

(abbreviated AUTO Exec) is quite similar to that of the TTY

Exec.

In fact, the primary difference is that the AUTO Exec

reads the basic commands and accompanying information from

paper tape rather than accepting data directly from the operator

via the Teletype. The control algorithms available via the AUTO

Exec are listed in Figure 3-2. This figure also indicates how the

program is called from the TTY Exec. Once called, it retains

control until one of the five following conditions occurs:

l.

2.

The "TTY Return' Code is encountered.
An "ORIGIN'" Code is encountered (see Sect. 3.4.3).
The operator forces a program interrupt.

An error condition is encountered during
execution of the algorithms.

Sense Switch three on the computer console is set.

In order to use the AUTO Exec, it is necessary to prepare

the paper tape in advance as described in Section 3.4.1. The tape

is punched in blocks consisting of a flag which specifies the control

algorithm and all data required by the algorithm.

41

——FKrror

TTY Exec . Interrupt

\
[AUTO Exec

3= Control Manipulator Position

—> Control Hand Grip and Rotation

Control Hand Path

Control Hand Position (Absolute)

1

Control Hand Position (Relative)

Wait

Request Object

Reference Points

~Return to TTY Exec

Figure 3-2. AUTO Exec Options

>

42

When the AUTO Exec is called from the TTY Exec, it reads
a block of data from the tape. The command is decoded, the
information is stored in the appropriate buffers, and the specified
subroutine is executed. All subsequent blocks of data are
similarly processed without operator intervention until one of the

conditions listed above relinquishes control to the TTY Exec.

3.3 Control Algorithms

3.3.1. Manipulator Position Control

The most basic control algorithm allows the direct appli-
cation and control of the X, Y, Z, SP, EP, WP, and SR positions.
The desired positions are stored (in scaled form) in the FMV (final
manipulator variables) buffer. The "FBUF' subroutine converts
the scaled values to ten-bit manipulator position values and stores
them in an output buffer (OBUF). The '""OMANIP!" subroutine
then outputs the seven variables from the OBUF buffer to the
manipulator buffers, allowing about 17 msec between each output
to prevent turning all motors on simultaneously. The "ETST!'" sub-
routine then tests the error status to determine when the final

positions have been reached by all axes.

The AUTO Exec routine fills the information from tape into

43

the FMV buffer and then calls these three subroutines. When the
error reaches zero, it automatically reads and processes the next

block.

The TTY Exec calls the "ITMNIP!" to input the terminal
manipulator position and fill the FMV buffer. It then calls the

three control subroutines listed above to output the buffer contents.

In addition, the three control subroutines are used by the
VECTOR and Hand Position Control subroutines described in the

following sections.

The flow diagram for the ITMNIP subroutine appears in
Figure 3-3. The operator first selects either an absolute or an
incremental mode in which all subsequent position data will
represent either the absolute position or an increment relative to
the present position. The operator then specifies one or more axes
followed by the desired position or change in position. A special
command terminates the list and all unspecified axes will retain

their current values.

Unless the ope rator desires to control the exact position of
the manipulator, this algorithm is of limited value via the TTY

Exec because of the time required for the operator to specify the

44

desired variables in comparison with the time required to control
them directly with the manual controls. Obviously, the algorithm's
value is much greater when used in conjunction with the more
complex positioning and path control algorithms and also when used

by the AUTO Exec.

3.3.2 Hand Grip and Rotate Control

This hand grip and rotation control routine demonstrates the
method by which the two "open-loop'' variables are controlled by
the computer. The grip and rotate commands are outputed to the
manipulator logic as described in Section 2.7.1. After the time
specified by the operator has elapsed, the manipulator is forced

into the Manual mode, thereby halting all motion.

The teletype input routine,'IGRIP,'is shown in Figure 3-4 and

the control routine appears in Figure 3-5.

45
ITMNIP
Call TASR
No Type Return to
UAIM T TTY Exec
4 Yes
[Store in Mode |
For K=lto 7
Temp(K)«Flag
r . r
Call IASR
TYPE
G.E, W, R X, Y,2,T? J—>1//n
Call IANG

Call INPT |

Call IMVR
(Fill IMV)

K+l

—~

Temp(K) :Flag} =

¥

LrT emp(K)+~ACCUM J

[FMV(K)IMV(K)

1A

Return

Figure 3.3 ITMNIP Flow Diagram

(Time 0

Type "T:"

Y

| Call INPT |

Time~ACCUM*60

46
| Call TASK j
4
mg;B& Tree |,
)
Yes
[Time-1 <% 0-8
CMND - ACCUM

Y
Return

Return to
TTY Exec

Figure 3-4. IGRIP Flow Diagram

47
GRIP
- Type Return to
Time : 0 nGp" TTY Exec
I Time*—éOJ
y

Reset RTC Overflow F.F.
Clear AXIS Counter

!

[Set GPI OUTPUT Mode |
" No

(Computer Control Mode ?)'——‘ (wait)

Yes

RTC+ -Time

| Index REG-CMND |
Y

ACCUM<«Command (index into command table)

Y
Output ACCUM to

GPIl Buffer

Transfer GPI Buffer
to Manipulator Register

&

CRTC Overflow Set?)——' (wait)

Yes
| Set GPI INPUT Mode |

Return

Figure 3-5. GRIP Flow Diagram

.

48

3.3.3. Path Control -- Straight Line

The path control algorithm demonstrates the relative ease
with which the computer can precisely control the path of the
manipulator. This forms a sharp contrast with the problems
encountered by the operator in manually controlling the rate of

each axis of the manipulator to form the desired path.

The algorithm which has been implemented allows straight-
line path control along a vector formed by the orientation of the
'""hand'' of the manipulator. The only input data required by the
routine is the traverse distance. The TTY Exec calls the "IDIST"
subroutine, Figure 3-7, which requests the distance, accepts it,
and stores it in the DIST buffer. The AUTO Exec transfers the
distance information from the tape to the DIST buffer. Both

executive routines then call "VECTOR" to execute the algorithm.

From Figure 3-6, the relationship among the specified

distance, the hand orientation, and the linear manipulator axis are:

AX = D sinWPcos SR
AY = D sin WPsin SR
AZ = -DcosWP (1)

Figure 3-6.

49

wP

Vector and Hand Orientation Relationships

50

To form a straight line path, AX, AY, and AZ are all

divided into an equal number of relatively fine increments. As shown

in the flow diagram, Figure 3-8, these increments are added to the
current manipulator position at a constant rate. The resultant path
will be a close approximation to a straight line if the increments
are sufficiently small; moreover, only the maximum speed of the

motors limits the rate at which the manipulator is driven.

T o manually generate a straight-line path, it is necessary to
adjust the rates RX, RY, and RZ, such that the equation

AX _ AY _ Az 2)
RX ~ RY RZ

is satisfied. Consequently, the opérator must control the rates of
three axes simultaneously. To do so with any degree of precision

even at relatively slow rates is nearly impossible. The generation
of a more complex path (such as a circular arc) would be far more
difficult because of the need to simultaneously control the rates

and/or changes in rates of several axes.

It is far easier to control complex paths using a master-slave
manipulator; nevertheless, considering the difficulty encountered
by most people in drawing a straight line or a circle free hand, it
is unlikely that a master-slave unit can be used for precise path

control operations.

51

IDIST

l

Type "DIST:"

y
CALL INPT

/
DIST¢ACCUM

|

RETURN

Figure 3-7. IDIST Flow Diagram

- aE .l

52

VECTOR
¥
Call IMVR
Input Manipulator Variables
Store in IMV Buffer

!

DLTX<«DIST*sinIWP*cos ISR
DLT Y<DIST*8inIWP*sinISR
DILTZ<«-DIST*cosIWP

]

Loop«-]DIST/INCRI (Integer part)
)

NCX<« - DLTX/ Loop
[NCY<« -~ DLTY/Loop
[INCZ<«- DLTZ/ Loop

¥
[FMVaMy
r
FMX<«FMX+INCX
FMY<«FMY+INCY
FMZ<FMZ+INCZ
Y
[Call FBUF |
Y

Call OMANIP

[Loop«Loop+1]

FMXAMX+DLTX
FMY<«IMY+DLTY
FMZAJIMZ+DLTZ

Y

[Call FBUF |

[Call OMANIP |
Y
Call ETST

RetYJ.rn

Figure 3-8. VECTOR Flow Diagram

R el W N am N

53

3.3.4 Hand Position Control

The Hand Position Control algorithm most effectively
demonstrates the ability of the computer to perform a complex
operation with only one command and a minimum of accompanying
data. The operator must specify only five variables which indicate
the desired hand position (FHX, FHY, and FHZ) and orientation

(Azimuth, Elevation).

A terminal manipulator position is computed which satisfied
the five specified variables. Generally, it is the one requiring the
least transit time; however, the projected path is tested by a
special obstacle avoidance algorithm to insure that the manipulator
will not collide with any predefined obstacles. If a potential
collision is detected, a new configuration is specified or, if
necessary, a set of intermediate positions are automatically

selected to avert the collision.

The flow diagram of the "HOPOUT'" (Hand Optimization,

Obstacle Avoidance, and Output Routine) is shown in Figure 3-9,

3.3.4.1 Buffer Initialization

Three buffers must be initialized before calling the "HOPOUT"

uIniay [BWJION

- 1

uznjay [ewIouqy

-

sweilerq mold LODVTII pue ‘SIDHJ ‘LNOJOH ‘6-¢ vandry

uInysy (eUWION

ﬁ # uotstI{I0D

mo«:: P AWIL

> uP2IsSnNeyxy a1qe Ly,

IS1d 11D

adAT

uo1sI[I0D

+I-1

T+9LND-Y1LND

. I-9INd
(119 ID-FWIL

54

INIL: (DT LD

SLe- ~¥IND
asvd -1
dSvVd -9 INd

1

T
{
i

i . DVIZ-~-FNWIL
| D¥IJ-(HINd) 191D

-

IDOVIA

_ MOHd 11eD g

dINVWO (18D

4

o3y X1LL
uiniay #
aoueysissy uinjay
10jeradp %
ON isanbay
4 a1d®e}sqo
punoaxe tyjed put g
- DdNns 11ed
paisneyxy *

1

spow woljeinuwis-ajes-jnding

uoijern3yjuod 1ayjoue 1o}
319®) p1ad yoreag

pu®y jo yyeq
autt dreays j3say

LDSI 1teD

uo13d38 333U
ON

LIDDVIA 118D

ALVY 118D wangoy
uo1s1100
0 uo1sT{10D ﬁ

SUO1ISI[]0D 10}
3poWr UOIIBINUIS - 9}RI 33T,
LDad 1ed

uo1s1[]0D
b (e}

SUO1S1[[0D 10] apows
ndino 1eurzou jo yred 3sa
: LOLA 1red

f

MDOHd

uIn)ay jeurIonN
UoisHioD oN

P232939p UOTISI[[OD OU j1 3nding
Su01s1}joo aiqissod 1oy syjed 3sa]
ADHJ 11D

I1oymod g Lo 3I8g
(I41D) 21q®) swny puan TIIg
uoljean3yuos rojeindiuews Teuturaal azruiidp

argd 1ed
i

LNOdOH

uo181{10D g

55

subroutine. These indicate the present manipulator variables
(IMV), the present hand variable (IHV), and the desired hand

variables (FHYV).

The AUTO Exec reads the desired hand variables from tape
stores them in the FHV buffer, then calls "CIHV' to fill the IMV

and IHV buffers.

The TTY Exec allows two input modes. The "RTHAND"
subroutine, Figure 3-10, requests all variables, accepts the
terminal positions, and stores them in the FHV buffer. "CIHV"
is called to fill the IMV and IHV buffers. The "ITHAND' sub-
routine is nearly identical to "ITMNIP'" and is shown in Figure
3-11. This allows the operator to specify a partial set of
variables in either an absolute or an incremental mode and fills

the three buffers,

The "RELHND'" subroutine described in Section 3.4. 3 also
calls the "HOPOUT" subroutine, but fills the buffers before calling

it.

3.3.4.2 Optimization Algorithm

During the execution of many tasks, the operator is primarily

56

RTHAND

!

Type '"Final Hé.nd Variables"

[es]

I

Figure 3-10.

N

Type “X:\"Y:4°Z:"

\
| call INPT |

L FHV(K)«AGCUM |

IK K+1|
SGD

>
[Type ”W.P:"]

4

[Call IANG |

FHV(1)<ACCUM |

y

Type "SR:"

I Call IANG |

| FHV(2)«ACCUM |

[Call CIHV |

)
Return

RTHAND Flow Diagram

57

ITHAND

[can 1asR |

y
A or I?

No

' TYPE
IIAIII

Store in MODE

!

For K=1 to 5
TEMP(K)«FLAG

Return to
TTY EXEC

[Call IASR |
A

(W,R,X, Y, z, T?)—20°

H/ /?ll

TYPE

W

Kel

R

Z

T

Call CIHV
(Fill IMV, IHV)

4

K<2

K«3

K«4

]
= TEMP(K): FLAG =—

Call JANG

4

TEMP(K)«

ACCUM

Call INPT

I — (Test MODE)—

FHV(K)«IHV(K)

4

FHV(K)«IHV(K)+TEMP(K)

FHV(K)«TEMP(K)

—
KK+l

Sq-{—.sk>

Figure 3-11.

2/

> Return

ITHAND Flow Diagram

59
q tz‘
AT ~|—
// -l B /\ — \/
o~ SR ‘ L}~ -~ Shoulder Pivot
-~ -l X (MX, MY, MZ)
— /

‘ /]
@ ! Elbow Pivot

EP \ Wrist Pivot
| A \
\ N Hand Position
WP

\N 5%/\/ (HX,ZHY, HZ)

| Elevation

Figure 3-12. Manipulator and Hand Variable Relationships

PAECEDING PAGE BLANK NOT FILMED.

60

problem to the specification of two independent variables belonging
to the set MX, MY, MZ, EP, and SP and then using Equation (3)

to compute the remaining three variables.

In order to enhance the performance of the system, it is
possible to couple the specification of the two independent
variables to a set of optimizing criteria (e.g., minimum time,
minimum momentum, minimum energy, etc.). The algorithm
implemented in the experimental system is based upon minimum
time considerations. Figure 3-13 shows a few of the manipualtor
configurations which can be assumed for a specified set of hand
variables and the time required to reach each configuration from
the initial position. Note that (c) is the minimum time solution
computed by the algorithm. In effect, the principal concern of
the algorithm is to find values for SP and EP such that the
resulting AMX, AMY, or AMZ variable which requires the
longest transit time is reduced to the point that it is equal to or

exceeded by the transit time of another axis.

Since it is not imperative to compute the absolute minimum
time solution, two basic simplifying assumptions have been made.
The first one is that the manipulator motion is so slow that the

dynamics of the system can be neglected. The second is that

61

uorjisod puey ayj ur sZueyd parjioads e 103 suorjeandijuoo zojerndrurw S[qIssod *¢-¢ 2andr g

o1-

n0l-=ZHV
u0E=XHV 4
o1~
X0 0¢ ot q
e\ /
m \ / uotjisod
. . zojendiuew
®
P . AN Tentu]
\ >3 \
®- —9 .
— —— °
o
[)
. ToIINIOSs SUIT] WINWITUT A«
o 02 A
... 61 | 0 o Joi-Joc o
® o1 | s¥ ST { o |se|p
. | ot | sz o9 | ¢ |st]ox
. ' 91 | el | so1 | o1 01|49
: | 0z | 591} sz {ofole
])
. | o¢ |prOTI T ISV IEV IV XV
@
[]
[]
¢ A

-

.‘-n----—.-

62

the motors drive the axes at a constant rate. Of the two, the
second will produce the greatest error. This is due to the

fact that series-would universal motors are used to drive the
manipulator and that their speed is strongly dependent upon the
load. Experimentally, this assumption has produced no adverse
effects; however, if necessary, it would be possible to modify
the algorithm to select one of several rates for each axis
dependent upon the load, the initial manipulator position, and

the final manipulator position.

Based upon the two assumptions, the time required by

each axis of the manipulator is given by

TMX = |(FMX-IMX)/RX|

TMY = |(FMY-IMY)/RY|

TMZ = |(FMZ-IMZ)/RZ| (5)
and

TSP = |(FSP-ISP)/RSP|

TEP = |(FEP-IEP)/REP| (6)
where the prefixes T, R, F, and I denote time, rate, final
values, and initial values respectively. The WP and SR times
are not considered since the terminal values of 'these angles

are unique,

63

From Equation (5), Equation (3) can be rewritten as
TMX = |KO-K3(L sin FSP + M sin FEP) |

TMY = |K1-K4(L sin FSP+ M sin FEP)|

TMZ = |K2+K5(L cos FSP + M cos FEP)| (7)
where
KO = (FHX - IMX - N sin FWP cos FSR)/RX
Kl = (FHY - IMY - N sin FWP sin FSR)/RY
K2 = (FHZ - IMZ + N cos FWP)/RZ
K3 = (cos FSR)/RX
K4 = (sin FSR)/RY
K5 = 1/RZ (8)

The optimization algorithm utilizes a grid technique to
find the minimum time solution. This method was chosen
because it avoids problems with local minimum values, is easily
implemented, allows pivot and boundary constraint tests, and is
compatible with the obstacle avoidance routines described in the

next section.

The EP and SP angles were selected as the two independent
variables since they already appear as functions of MX, MY, and
MZ in Equation (3). A grid is formed by restricting the values of

EP and SP to an integral multiple of 15 degrees throughout their

64

entire range. The grid for the experimental system is shown in
Figure 3-14. For each intersection on the grid, the times
required by the X, Y, Z, EP, and SP axes to travel from
their initial positions to those which satisfy Equation (3) for

the EP, SP values are computed. The greatest of these times
represents the time required to reach the terminal point
(excluding TWP and TSR). As each of the intersections is con-
sidered, the transit time is stored in a ''grid" table for future
use by the obstacle avoidance routine. The time is also compared
with the smallest time previously encountered. If equal or
larger, it is ignored; otherwise, its value and the grid inter-
section pointer are preserved. The combination which remains
after all intersections have been tested is then chosen as the

"minimum time'' solution.

During the computation and selection sequence, two special
constraint tests are performed. The first one compares the MX,
MY, and MZ positions resulting from the SP and EP values
with the physical bounds of the manipulator working area. If
they are exceeded, the time value is flagged by setting it to the
maximum value permitted by the computer. The second test
is used to insure that the relative angles between each limb of the

arm are within the allowable range and also that the configuration

°1q®L SWL pPIID 9Y3 pue pray JH ‘dS Jo odwexy ‘§l-¢ aInft g

Q.HQ@_.H. QSmrH. @.H.N.O WQO._UUOmoHOuGH TA.HO ﬂHm .mm
06 9 o¢ uom-ow-oo-
! ! i]
n 081-
own * 0G1-
0 | 0zt~
: 06~
, Owﬂl mN.I O@I
" 081+ A
N : ~_ o¢-
0 _ dS e~
081- 06- 0¢
081+ i 09
G591+ | 06
. ‘ 021
G91-
081~ SOI- 051
08T
dd ds &

66

will not cause damage to the hoist assembly or to any part of the
motor platform. Examples of these constraints are shown in
Figure 3-15. In order to indicate the permissible pivot
combinations, a special table has been formulated to indicate
upper and lower wrist pivot limits for each EP, SP grid inter-
section. If the wrist pivot is not within these limits, the transit
time is flagged and the next intersection point is tested. Under
a few circumstances (e. g., when the relative angle is less than
450), the EP, SP combination is not permitted for any WP value,
In these cases, a special zero flag is stored in the constraint
table. This table is prepared in advance and is loaded into the

memory of the computer with the optimization program.

Figures 3-16 and 3-18 demonstrate several terminal
manipulator configurations computed by the optimization routine
for various increments in the X and Z hand positions
respectively. In addition the transit times required by the
manipulator are listed and are compared with the times which

would be required if EP and SP were not incremented.

Figures 3-17 and 3-19 show the paths followed by each
pivot and the hand position for the examples shown in

Figures 3-16 and 3-18. Note that there is an abrupt change

67

in the paths as each axis reaches the terminal positions.

Before calling the optimization routine, it is necessary
to fill the IMV, IHV, and FHV buffers. In addition, the
following buffers are loaded into computer's memory with the
optimization routine-*

1. The constraint table.

2. The X, Y, Z manipulator boundary table.

3. Tables containing the values of L sin FSP,

L cos FSP, M sin FEP, M cos FEP (for
allowed values of FSP, FEP).

The sine and cosine terms were determined in advance to
reduce the computation time required by the algorithm (approxi-

mately 80 msec).

The algorithm fills the grid time table, the grid inter-

section pointer, the FMV buffer, and the transit time, TMAX,

The flow diagram of the optimization algorithm is shown
in Figure 3-20 and the individual subroutines appear in Figure

3-21.

SJUTRIISUOD JM PuUe ‘ JH ‘g9 jo sopdwexsy ‘gl-¢ 2andi g

aqnj 3urjllTy Woaj puey 1030w FUTIIY WOI]
jusaaid 031 PAUIRIISUOD 3qQ ISNW JM puey jusasxd 0] pauIeIISUOD 3Q ISNW M
SITWI] 9Infosqe 3¢ JJ pue S °q jTwary je ([81) 4A e

68

.

sjuswaidutl XH 03 suoijeangrjuod rojelndwew pazruundQ ‘97-¢ 2andr g
KL FE
L J
L]
’
U ’
uotjisod 4
zojendrurw [RIJTUT \\
' 4
' 4
Ca o w-h ab ‘
X] |
0¢ 0¢-
o %
N o\ I
P | 0T
[]
7 . |
[J
f . '
[]
_ . ' i€ 9t | os- | °
|
- " i 02 4 52 01 ov- q
L]
— . i 61 L 0¢- e
L J
L]
. ' xwvilxuvi| xv
®
| _
Z

91-€ 34NOId NI SITdWVXI 4304 YOLVINAINVW 40 SHLIVd °ZLl-€ 33Nn9Old

0€—=XHV P

0S—=XHY ->

70

Ov—=XHV 9

71

N\

- 10 C

e ¢ &'.....
Y
|
|
|
|
|
¢

i . {
Z' : A Z -Axis |
°*y manipulator

' D \ .. '

130 p4 \ limit I

!

! . -l |
>

X -Axis
manipulator
limit

70 80

AZ | TAHZ|TAMZ]
K al 20 6 12
K b| 30 9 187%
- -10 * c| 40 11 23%
dl 50 18 29%
*Manipulator limits are
exceeded
— -20

Initial manipulator position

Figure 3-18. Optimized manipulator configurations for

HZ increments

8l-€ 34NSOId NI SITdWVXI 404 Y4OLVINAINVW 40 SHLIVd °"61l-¢€ 34N9OId

0S=ZHV °P Ov=ZHV °> 0€=ZHV 9 0Z=ZHVY °p

72

73

GRID

'

FWP AZIMUTH
FSR ELEVATION

Call FSRT
Limit |FSR-ISR| to<180° if possible
[Constrain FSR to -1800<FSR <+540°

Call TTES |
Tabulate EP,SP transit times for
all allowed EP,SP values

[

: Call BXYZ

Compute TX,TY, TZ boundary time limits

In effect, constrains -80"<MX<80"
-72"€MY &+72"
-34"$MZ 34"

Call KINT
Compute KO through K

5

\

Call CMMT
Scan all grid points
Test constraints
Form grid time table
TMAX<min [max(TX,TY, TZ, TS, TE)|
PNTR=<EP,SP Grid Location

!

Call CFES
Compute FEP, FSP
Compute FMX, FMY, FMZ

Return

Figure 3-20. GRID Flow Diagram

All .points

constrained

anrgo 4g parled saupnoaqng jo sweaderq morg '1z-f sandig

uInayg

1

(d4S1 ‘dML1 'd3I ‘dSL ‘Z1 ‘ALl 'XI1) XYW~ XVYWL

dMJ s05 N + dFJ $0° W + dS4 500 T+ZHI+ZWI
YSIS02:{d M I UTS N+ F WIS WHd SIUTS T)- AHI+AWI
USIs024(d M Uls N+td T J UISW+J ST UTS T)- XHI-XWI

[S AlmN) 28803yl]~ 484

aamey S3ID

Z¥/(ZWI-ZdnPz1n
X9 /(AWI-Aday-ALln
X¥ /(XWNI-XdA)Z1n
Z¥ /(ZWI- ZOTrZ 11
A/ (ANWI-AOTIALT
XA HXNI- XKOT)X LT

I

ZXXd

74

uIinjay
paurerjsuocd

<
—(__ost+iama

oSt+d dd~d A
T+H INd~HINd

AWII~(YLNd)qI¥D

uanyay
TewIoN

ZINSZWLsZ11 v

i

1 (234 so> N+dSIS00T) =M+ EH-ZNL |

oN

I [n.* >
I ?Eiomz.ﬁ; SWIL{ANLT)

ECHE
@=C

AL 5 AN 5 ALT
i (34 uts WedSIuIsT) 3- DI~AWL]

i

A0

@4P X105 XNL > X17)

i

[Gaams zimhﬁwdmx.ox;xﬂ_cI@

sio |

28uey (¥ LNJ)erea1suon Ad M)
30 IO 7

ovya-anir

@ o081 = d 34

0901~ »dS3
0~d.LNd
DVTI-XVINL

ﬁ

LIWWD

oAxHZ&qumuui

uInis y

t

uInjey

78 /1-°3%

Ay /(usd ws) -y

X¥ /(45 509) ~F31

Zza/f{dma $03+N+ ZWI- ZHA =3t
AY/(dsguts m\shin%z.\wZT\w:hTf

INIM

L

oS50l-~+dS
0~d INd

1+4 LNd~¥ INd
LS AT

__da¥fdar-aa) ~{uiNd)dal)

0081-~d 3

0 +3 LNd s21l

[¥S.3)NDIS009¢ - usA~uS T |

i CPS3¥SA 50081~

§3%

[(NIZV-MSTINDIS 00 9¢ + WIZ V854 |

081° WIZV - dSI

v

rysd

75

3.3.4.3 Obstacle Avoidance

One of the major tasks which was deferred until the completion
of the initial phase of the experimental system was the inclusion of
a feedback path to inform the computer when the manipulator was
within close proximity to an obstacle. Without this feedback, the
operator was required to carefully observe the manipulator's
motions wheh under computer control to insure that no part of the
manipulator would collide with any obstacles. Unfortunately, this
task was considerably more difficult than when using the manual
control mode for two reasons. First, with computer control, the
seven independent servosystems drive all motors simultaneously
and at their maximum rate until the desired coordinates are
reached -- manually, this is rarely done. Second, the operator
did not always know the terminal configuration of the manipulator
and even when it was known, the exact path of the manipulator
could not always be accurately visualized in advance; hence, a
number of collisions occurred before the operator was aware of
the danger. For example, Figure 3-22a demonstrates the path
of the manipulator when the hand position optimization algorithm
was directed to move the hand to a location 40 inches to the left

of the initial position. Note that the table would have been hit if

76

Figure 3-22.

a. First path generated by Optimization routine

b. Path allowed by Obstacle Avoidance routine

Example of a possible collision between the manipulator and an obstacle

77

it had been located directly under the hand even though both the
initial and terminal manipulator configurations would be

acceptable.

The collision detection subroutines were formulated to
recognize potential hazards such as that described above. In
addition, a subroutine was formulated which tries to automatically
select an acceptable path over or around the obstacle. Figure
3-22b demonstrates the path generated to prevent the manipulator

from striking the table.

In order to facilitate the development of the subroutines, the
following assumptions were made:

1. All obstacles have the same shape and orientation
(see next section).

2. All obstacles remain stationary (due to lack of
sensory feedback).

3. The table accommodates only four obstacles (but
can easily be enlarged).

4. All obstacle dimensions specified by the operator
are enlarged (see next section).

5. Additional operator assistance is required if more
than one obstacle is encountered en route to the
specified destination (see Section 3. 3. 4. 3. 3)

6. The routines are called only by the Hand Position
Control algorithm (see below).

78

In spite of the restrictions, the subroutines have increased the
value of the computer control technique by a significant amount.
The collision detection routine has drastically reduced the number
of collisions encountered by the experimental manipulator and the
obstacle evasion capability dramatically illustrates how the system
performance can be enhanced. In the semi-automatic mode, it
reduces the amount of information which the operator must specify
to direct the manipulator around an object. In the automatic mode,
it allows obstacles to be placed into or removed from the mani-

pulator task area without modifying any pre-recorded data.

Since the obstacle bounds are enlarged, the routines are
primarily used to supervise the gross motions of the manipulator
and they are called only by the Hand Position Control Algorithm.
The remaining path and position control algorithms must be
used (cautiously) to work within the obstacle bounds under
computer control. In the future, the experimental system will be
modified to provide a feedback path which will inform the computer
when the manipulator is in close proximity to an obstacle. A set
of routines can then be formulated which allow the manipulator to
work within the gross obstacle bounds but which do not require

detailed operator supervision to avert a collision. These can be

79

coupled with the obstacle avoidance routines presented below to

form a comprehensive obstacle detection and avoidance scheme.

3.3.4.3.1 Specifications of Obstacle Bounds

Due to the lack of sensory feedback from the manipulator to
the computer, it is necessary for the operator to specify all
obstacle bounds via the TTY console. The bounds must conform
to the following restrictions:

1. The shape must be reduced to a rectangular
parallelopiped.

2. The sides extend to the floor.

3. The sides are parallel to the X and Y axes.

4, The effective bounds will be enlarged five to ten

inches beyond those specified by the operator.

Figure 3-23 demonstrates how several arbitrary geometrical
s hapes can be bounded to satisfy the first three restrictions. The
second item was included for programming ease but is justified by
the fact that the manipulator travels on overhead rails. The third
item was included to reduce the programming complexity during

the formulation and evaluation of the obstacle avoidance routines.

The last restriction most severely limits the utility of the

i

80

Figure 3-23., Typical obstacle bounds

§
1
/

s s T

81

algorithm but is necessary because of two problems. First, the
collision detection scheme considers the projected path of the
manipulator. This path is only an approximation and the load-
speed characteristics of the motors can cause the actual path to
deviate from the simulated one. It would be possible to eliminate
this problemby transmitting a series of small path increments to
the manipulator in a manner similar to the path control algorithm.
Second, it is both difficult and time consuming to insure that all
parts of the manipulator will not hit the obstacle. In order to
minimize the computation time and reduce the complexity of the
algorithm, only the positions of the shoulder pivot, elbow pivot,
wrist pivot, and hand are compared with a set of ""effective
obstacle bounds'. The effective bounds are the bounds specified
by the operator plus five to ten inches to conservatively
accommodate the area occupied by the motor platform and the

limbs of the arm.

The "IBOUND'" subroutine is called by the TTY Exec and
allows the operator to specify the obstacle bounds. As shown in
the flow diagram, Figure 3-24, it requests and accepts the X and

Y bounds and the top (Z) of the obstacle.

82
IBOUND
Call IASR
Yes (A LR, T? 0 Type "/ /"
T
N Type OBSTACLE —
Name and effective bounds
R | Call Remove specified obstacle
IASR’ from table
Compress table —
OBS<OBS-1
A
Y

Request and accept obstacle name
Request and accept bounds
(order: LX,UX,LY,UY, Z)

Insure that UX> LX
and UY> LY

Modify bounds
Sub 10 in. from LX, LY
Add 10 in. to UXx, UY
Add 5 in. to Z

Store modified bounds in table

OBS«+ OBS+1

Figure 3-24. IBOUND Flow Diagram

Return to
TTY Exec

S S EE el

83

3.3.4.3.2 Path Simulation and Collision Detection

The collision detection subroutines accept the initial and final
manipulator configurations and project the path of the three pivot
points and the hand. The paths are divided into increments of up
t o one inch and, at each increment, the positions of the hand and
the pivots are compared with the effective obstacle bounds. If
any point is within the constrained area, a special ''collision"
exit is taken to indicate that the FMV values are not acceptable.
The manipulator can be driven in both the normal and rate-
simulated modes, and since they frequently produce quite
different paths, the two collision detection subroutines shown in

Figures 3-25 and 3-26 have been written to test each mode.

When an obstacle is encountered, it is possible for these
routines to be executed many times for a single command. Thus,
in order to minimize the effective computation time when an
obstacle is likely to be encountered, the testing of the path is
staggered such that the routine first checks the mid-point, next
the 1/4 and 3/4 points, then the 1/8, 3/8, 5/8, and 7/8 points,
etc. until an obstacle is encountered or until the path has been

sufficiently segmented to insure that no obstacles will be hit.

Iy B G G N Gn N BN AN N S S S @SR S Sy EaEm m

84

DTCT

i

LOOP+~TMAX/TINC Min. number of points to test

T2«-TMAX/2 Initial midpoint
J« 1
ForI=1to7
DRTN(I)«~FMV(I) - IMV(I) Direction of travel
TEMP(I) ~ | DRTN(I)/ RATE(I)| Traverse time of each axis
|
i 4
Time « T2 Set midpoint of first segment
Ke+-J Number of segments
Te
I«1

)
TIME: TEMP(1) }——<

4

[BUFF(1)~FMV(1)| BUFF(I)«IMV(I)+[sign(DRTN(I))*TIME*RATE(I)]I
| | .

|I~—I+1 I

—ap

Call TEST | Collision Return

<K+l I

%1,

AN

.b) | TIME < TIME + T1
. Boost to midpoint of next segment

>

L

<
2
@-—» Normal Return

<

ANl

b

Tl«T2 New segment length

T2«T2/2 Midpoint of segment

Figure 3-25. DTCT Flow Diagram

85

RDTC
¥
LOOP TMAX/INV Number of points to test
J<1
For I =1to7, T2(I)«(FMV()-IMV()) /2
Set length of initial segments
1 Ke-J Number of midpoints to test
For I1=1to7, BUFF(I)«IMV(I)+T 2(I)

Set midpoints of first segments

HIT

Call TEST |——— COLLISION RETURN

4
@D-» BUFF(I)« BUFF(I)+T1(I)

< For I=1 to 7

Boost to midpoints of next segments

J+=J*2

Double Number of segments

%

>
(J: LOOP)}—» return
<

For I=1to7, Tl(IT2(I) Length of new segments
¥
For I=1to7, T2(1)<T2(I)/2

Midpoints of first segments

Figure 3-26. RDCT Flow Diagram

86

3.3.4.3.3 Obstacle Evasion

If a collision is detected, several efforts are made to evade
the obstacle without requesting assistance from the operator.
First, the straight line connecting the initial and terminal hand
positions is tested for an intersection with the X and Y effective
bounds of all obstacles. If no intersection is detected, "FLAGGT"
is called to search the Grid Time Table for other possible terminal
manipulator configurations, then "PHCK'" is used to test the
corresponding paths for obstacles. The table search continues
until the table is exhausted or until a configuration is found which
does not result in a collision. If an acceptable set of variables are
found, they are used to actuate the manipulator; otherwise, the
operator's assistance is requested. If the straight line connecting
the initial and terminal hand positions intersected with a set of

obstacle bounds, the ''"SUBG" routine is called.

The SUBG routine can direct the manipulator around only
one obstacle at the present time and requests assistance if more
than one obstacle was intersected. Further extensions of the
routines were deferred until a sensory feedback loop is added to the
system and a more comprehensive obstacle evasion technique can

be developed.

- R TE S &8 Em e
.

87

When only one obstacle is encountered, the SUBG routine
determines a set of intermediate hand variables which direct the
manipulator over or around the obstacle, computes the approxi-
mate transit time required by each path, and selects the most
promising one to output to the manipulator. A sketch of the
three possible paths is shown in Figure 3-27. The hand variables
at each of the intermediate points are selected as follows:

1. Over the obstacle

a. First intermediate goal
HX,HY = X, Y values of first intersection point
HZ = top of obstacle plus one inch
WP = INP+(FWP-IWP)/3
SR = ISR+(FSR-ISR)/3

b. Second intermediate goal
HX,HY = X, Y values of second intersection point
HZ = top of obstacle plus one inch

WP = IWP+2(FWP-IWP)/3
SR ISR+2(FSR-ISR)/3

1"

2. Around the obstacle
Paths are tested in both a clockwise and a counter-
clockwise direction around the obstacle. The mani-
pulator is directed to each corner in turn until the
path to the desired hand position is clear. If N
intermediate goals must be specified, the values of
WP and Z at the MtE point will be
Z =IHZ+M(FHZ-IHZ)/N
WP = INP+M(FWP-IWP)/N

The values of HZ,HY and HZ are dependent upon the
corner and are as shown in Figure 3-28.

88

Initial Wrist position

Initial Hand position

Final Wrist Positioun

2
\/

Figure 3-27.

Final Hand
position

Effective obstacle bounds

Obstacle evasion paths tested by SUBG

89
SUWBG
(. . 2 2 Return to
Test number of intersections }——»Request help TTY EXEC
< A
No | Call EDGE
9
@re both IHV,FHV below obstacle? }——- Go over edge of obitacle
Yes i @
Compute intermediate points to Out of
go CCW around obstacle Boonic—"LLCCW «FLAG
TCWeapprox. time required
~
Compute intermediate points to Out of
go CW around obstacle Bounds » TCW<FLAG
TCW« approx. time required
Compute intermediate points to Out of
go over obstacle Bounds +~—TTOP«FLAG
TTOP«approx. time required '
Jj "
k
> r@ccw:*rcw)—-<
> > i

—={ TCW:TTOP)4 TCCW:TTOP }—¢
\

) N\
4 (TTOf’.FLAGJ

\

Select CW Select path Select CCW Request
Path over obstacle path help
B ¥]

Control manipulator | yReturn Return to
(test for obstacles) TTY EXEC

Figure 3-28. SUBG Flow Diagram

90

a. Path over obstacle

Figure 3-29.

b. Path around obstacle

Photographs of manipulator paths generated to avoid obstacles

.

91
Y

4 3 Corner HX HY SR
HY EFFECTIVE 1 LOX-1| LOY-1 45
OBSTACLE 2 HIX+l | LOY-1 | 135
LY | __|BOUNDS 3 HIX+l | HIY+1 225
1 2 o 4 LOX-1| HIY+l 315

LX HX

Figure 3-30 Values of HX, HY, and HZ for Directing
the Manipulator Over or Around an Obstacle
A flow diagram of the "SUBG" routine appears in Figure 3-28
and the photographs in Figure 3-29 demonstrate the path followed
by the manipulator when directed over and around obstacles by

the SUBG routine.

3.4 Automatic Mode

The Automatic Mode allows the operator to record or pre-
program a complete task, segments of a task, and highly
repetative operations. When it is desired to execute one of these
tasks, program control is transferred from the TTY Exec to the
AUTO Exec. The AUTO Exec then executes the recorded

operations without any further operator assistance.

As shown in Figure 3-2, the AUTO Exec is permitted to call
the four control algorithms described in Section 3.3 after trans-

ferring all information required by the algorithm to the proper

92

buffers. The "WAIT'" command requires the AUTO Exec to
wait for a specified time before executing the next command, and
the TTY Return command transfers computer control back to

the TTY Exec.

The remaining two commands allow the hand variables to be
related to a specific object in the manipulator task area rather
than specifying them in terms of the manipulator coordinates.
The programs, described in Section 3.4.3 demonstrate that a
general purpose computer can be utilized to preprocess specified

information before calling the basic control algorithms.

The programs which have been implemented require the use
of paper tape for recording and executing a task. In the future,
they should be expanded to allow highly repetative tasks to be
named and stored in the core memory of the computer. It would
also be possible to store pre-programmed information on cards

or magnetic tape.

3.4.1 Record Data -- Punch Paper Tape

This routine allows the operator to program a series of

operations for use by the AUTO Exec routine. The information

93

for the control algorithms can be specified by the operator via the
TTY console or the current position of the hand or manipulator
can be recorded as an operation is executed by the operator under

m anual or semi-automatic control.

The paper tape is punched in blocks as shown in Figure 3-31.
Each block consists of a start code, a flag to indicate the
operation to be performed, the number of data words following,
the data, and a check sum. The next character causes the block
to be ignored if it is not blank. The flow diagram of the "PUNCH"

routine appears in Figure 3-32.

3.4.2 AUTO Exec -- Paper Tape Read Routine

This routine reads a block of paper tape, transfers the
recorded information to the proper buffers, then calls the appro-
priate control algorithm or subroutine. Unless one of the exit
conditions listed in section 3. 2.2 occurs, a new block is read and
processed upon completion of the previous command. A.
special entrance to the routine allows the previous operation to be
repeated without reading a new block of tape in case a special
condition transferred control to the TTY Exec before completing

the command. A flow diagram of the routine appears in Figure 3-33.

Figure 3-31.

94

Pl START CODE

BLOCK TYPE (2sMANIP. VARIABLES)
AMOUNT OF DATA (7 WORDS)

sp

EP
wP

SR

PARITY

BLANK (OK)

START CODE

BLOCK TYPE (1sHAND VAR. - ABS.)
AMOUNT OF DATA (5 WORDS)
ELEVATION

AZIMUTH

e e0v e 00000 e i

vaceoe

PARITY

i BLANK (OK)

START CODE

BLOCK TYPE (3=HAND VAR. - REL.)

AMOUNT OF DATA (5 WORDS)
ELEVATION

AZIMUTH

PARITY
NOT BLANK-IGNORE PRECEEDING BLOCK

START CODE
BLOCK TYPE (5=RETURN TO TTY EXEC)
AMOUNT OF DATA (0 WORDS)
PARITY
BLANK (OK)
START CODE
BLOCK TYPE (6=WAIT)
AMOUNT OF DATA (1 WORD)

WAIT TIME
(300/60)s5 SEC.

PARITY
BLANK=(OK)
START CODE
BLOCK TYPE (7= HAND GRIP, ROTATE)
AMOUNT OF DATA (2 WORDS)

COMMAND - ASCII CODE

2=0PEN HAND
TIME DURATION
(210/60)=3.5 SEC. ‘

PARITY

BLOCK TYPE (8=STRAIGHT LINE PATH)
AMOUNT OF DATA (1 WORD)
DISTANCE= 12 INCHES

PARITY
BLANK (OK)

e s e s e 000000000000 0.0

Paper Tape Block Structure

Return to

Figure 3-32,

PUNCH Flow Diagram

95
PUNCH
¥
Call IASR
error
CI‘est and Branc@——-TYPE“PN” +—— Return to TTY Exec
. |
G, Call CIHV » BUFF<IHV Flagl
H Word<«b
Call RTHAND BUFF<FHV
L -
Call RTMNIP (> BUFF<FMV Flagez
M Tcall IMVR BUFF<IMV Words7
R, Call CIHV FHV<IHV Flag«3
Wordeb
S.{call RTHAND - BUFF«FHV
y
FHV (X, Y, Z)«<FHV(%Y, Z)-FORG(X, Y, Z)
N .
> Call RXYZ L>~IFORG(X, Y, Z)<FHV(X, Y, 2) > Flag<4
‘ Word<3
{O.[canl ctnv P{FORGI(X Y, 2)<IHV (X, Y, z) | BUFF~FORG
T o Flag«b [,
" [Word«0
TEMP<«ACC*60 Flag«b N
L lrypE T >{can iNpT |~ BUFF<TEMP - [Word+l
Flag«7
I TEMP<~CMND
P> e e e -,
Call IGRIP TEMP+1<TIME N 2 EMP
A% Flag<8
» Call IDIST I BUFF<«DIST = Wordel
X | Punch one Punch one block
" | ‘non-blank code L of tape
TY Exec

REDRPT AUTOEX

Read one block of data
RCMD « FLAG

Size « Number of data words | pari¢
Data Buffer « DATA

;l

1= RCMD=8?

Yes
1 For I=1 to 5 ; Call [Call __.@
FHV(I)~DATA(I) CIHV HOPOUT
o] ForI=1lto?7 Call Call Call
FMV (1)« DATA(I) IMVR SETMAX OUTMAN
3 X
ForI=1to5 Call 2 Call 3
FHV(I)«-DATA(I) RELHND ETST
4 Request reference points >
for coordinate transformation
5
6 No (wait)
*|Reset RTC —'LRTC — DATA(I) HRTC Overflow set?
Overflow FF. Yes
7 __|CMND«DATA(1) Call é
TIME - DATA(2) GRIP
Yes
5 E—— O
a
DIST < DATAC(1) Vector No

Figure 3-33, AUTOEX Flow Diagram

97

3.4.3 Coordinate Transformation

The coordinate transformation routines extend the utility of
the automatic mode. These routines permit the specification of
hand variables relative to a specific object rather than in terms of
the manipulator coordinates. For example, this allows the pre-
programming of tasks such as the removal of various components
of a nuclear rocket engine without specifying the exact location of
the engine. After the engine is placed in the disassembly area,

s everal reference points (used in the preprogramming phase) are
specified in terms of the manipulator coordinates and a trans-
formation matrix is computed. All subsequent ''relative' references
to the object are automatically transformed to the manipulator
coordinates. The transformation will occur only when the special
"relative hand variable' block is encountered; consequently, it is
permissible to intermingle all options available under fully

automatic control.

The methods of recording and executing these operations are

presented in the following sections.

98

3.4.3.1 Recording Relative Hand Variables

The relative hand variables may be programmed directly
from a set of drawings or by recording the position of the
manipulator as it is being controlled using the manual or semi-
automatic mode. In either case, it is necessary to define a
cartesian coordinate system relative to the moveable object.

The location of the origin and the three reference points should

be marked since their positions must be specified in terms of the
manipulator coordinates after the object is placed in the manipulator
task area. The subroutines written require the three reference
points to be located on the positive X,Y, and Z axes eight inches
from the origin. Only a slight modification would be necessary to
change the distance requirement; however, as explained in

Section 3. 4. 3.3, several additional subroutines would be required

to allow arbitrary placement of the reference points.

During the recording operation, the location of the origin of
the object coordinate must first be punched (specify Po=(0, 0, 0) if
entering the positions via the TTY console). When the actual
manipulator positions are recorded, the X,Y, and Z axes of the
object coordinate system must be parallel to those of the mani-

pulator coordinate system.

99

3.4.3.2 Executing '"Relative Hand Data'"

Before executing any relative hand variables, it is mandatory
that the operator specify the positions of the origin and the three
reference points of the object coordinate system in terms of the
manipulator coordinate system. Then the operator must direct
the computer (via the TTY Exec) to compute the coordinate

transformation matrices as described in the next section.

Whenever a ''relative hand variable'' block is subsequently
encountered, the (X, Y, Z) position of the hand is transformed from
the object coordinate system to the manipulator coordinate system.
In order to transform the Azimuth and Elevation values, the
recorded angular values are used to compute the wrist pivot
position relative to the object coordinates. This position is then
transformed and used to define WP and SR values in terms of

the manipulator coordinates. As shown in Figure 3-34, there are
two possible combinations of the angles. To form a unique
solution the value of WP is restricted to
o
0<WP<180 (9)
Flow diagrams of the transformation routines are shown in

Figure 3-35 and 3-36.

100

a. WP> 180°

Hand position

Z
(transformed)— '
—_—

Wrist Pivot position
(transformed)
- Y

b. 0% WP = 180°

Figure 3-34., Transformation of WP and SR

ay B D N B

IREF

}

101

Call IASR

(I No ,
P,R,S,Tj > Type "//"

P___|Print FORG (X,Y,Z), [T], [4] .
R Call IHX¢ FHX
> RXYZ‘_ﬂ IHY « FHY
IHZe FHZ
S Call Call N
IMVR CIHV g
Yes Type /[o
T (1 e-IHX
0 T (2)IHY
T(3)}IHZ
| 2.3 A(I,J)(-IHXT
| ekl J—~ACCUM b A(2,) IHY
A(3,J)¢IHZ
For I=1 to 3
T .| For J=1 to 3 .
AL, Iy [A(1, J)-T(1)}/8 i\

Return to TTY Exec

Figure 3-35. IREF Flow Diagram

102

RELHND

CBUF(X)(—AI 1FHV(X)+A1 2FHV(Y)+A1 3FHV(Z)

CBUF(Y)«A 51 FHV(x)+A2;2FHV(Y)+A23FHV(Z)

CBUF(Z)<-A31 FHV(X)+A32FHV(Y)+A33FHV(Z)
v

FHV(X)CBUF(X)+NORG(X)
FHV(Y)eCBUF(Y)+NORG(Y)
FHV(Z)«CBUF(Z)+NORG(Z)

WPX&SIN(FHWP)*COS(FHSR)
WPYe SIN(FHW P)* SIN (FHSR)
WPZ¢« - COS(FHWP)

CBUF(X)*‘A1 lWPX-t-A1 2WPY+A1 3WPZ[

CBUF(Y)(—AZlWPX+A22WPY+A23WPZ

CUBF(Z)«-A?’1 WPX+A32WPY+A33WPZ

y

FHV(WPK-ARC TAN [/1-CBUF(Z)*CBUF(Z)/CBUF(zﬂ

y

Insure that
0L WP 4 180°

4
FHV(SR¥—ARCTAN (CBUF(Y)/CBUF(X))

Return

Figure 3-36. RELHAND Flow Diagram

103

3.4.3.3 Transformation Equations

An "object'" cartesian coordinate system is defined and all
"relative hand positions'' are specified in terms of this coordinate
system during the recording process. After the object is placed in
the task area, this coordinate system is rotated and translated to
coincide with the manipulator coordinate system. A point
P(X,Y,Z) measured in terms of the obj ect coordinates is then
transformed to the position P'(X', Y', Z') measured in terms of
the transformed (manipulator) coordinates. The standard trans-
formation equation is

P1 = @ P] + [1] (10)
where the matrices [A] and [I] represent the rotation and

translation of the coordinate system respectively.

In order to determine the nine coefficients of [A] and the

three coefficients of [T] , the origin, P and three reference

0)

points are marked on the object. In the routines implemented these

reference points in terms of the object coordinates are located at

PO(XO,YO, ZO) = (0,0,0)
Pl(xl’Yl’Zl) = (8,0,0)
PZ(XZ’YZ’ ZZ) = (0,8,0)
P3(X3,Y3, Z3) = (0,0,8) (11)

104

After the object is placed in the manipulator area, these
four points are located and their positions are specified by the
operator in terms of the manipulator coordinates. Since the
values of P and P' are thus known for these four reference
points, the coefficients can then be determined. From

Equations (10),

[T] =[P]+ [A] [Pg]

[a) [P] =[Py} -[T]

(Al [P =[P,] - [T]

[al Tr,] =1(Pp,] - [T] (12)

Substituting equations (11) into (12),

X'
[T] = Y,
A (13)
and))
_X'l "Xy XXy Xy X'o—
[A] =1/8 Y'1 -Y°0 Y'Z -Y'O Y'3-Y'O
AN AN AN AN z', - z'O (14)

Note that it would be possible to select any set of reference
points which would produce a non-singular matrix; however, unless

they are located along the axes, any other choice would require

105

the solution of three sets of simultaneous linear equations

of three variables.

3.4.3.4 Future Extensions

Several features can be added to these routines to extend their
versatility. First, it is normally inconvenient to mark the three
reference points as required by Equations (11). With the addition
of a program to solve simultaneous equations, it would be possible

to specify an arbitrary set of reference points.

Second, when recording relative hand variables by recording
the manipulator position, it would be possible to initially specify
the three reference points and compute a transformation matrix
for recording the data -- this would allow the object coordinates to
be rotated with respect to the manipulator coordinates before

recording the ''relative' variables.

Third, it would be possible to create a set of tables to
accommodate several objects to which the hand variables can
be related. During recording and execution, it would then be
necessary to specify the object to which the variables are to be

related.

N IR SN WS s =w

\
\
|
|
|

106

3.5 Software A/D Conversion

The "SAD' subroutine, Figure 3-37, demonstrates how the
manipulator position can be determined with the aid of a software
technique rather than using combination buffer/bidirectional
® unters. The program uses a binary search method. A trial
value cuts the possible range in half and the value of the error

indicates which half to subdivide further. Since only ten bits are

used to measure the position, a maximum of ten trials is necessary

to determine the exact position. As mentioned in Chapter II, the
measurement speed is limited by the delay introduced by the active

filters.

3.6 Miscellaneous Routines

Several routines have been written to enable the operator to
test the performance of the system, control special modes, and

execute special functions. A few of these are described below.

3.6.1 Type Position Information

The "TYBEE " subroutine enables the operator to request one

of the following types of information:

107

1. Present manipulator variables (scaled)

2. Present hand variables (scaled)

3. Contents of FMV (final manipulator variables)
4. Contents of FHV (final hand variables)

5. Exact contents of the manipulator buffers
(unscaled -- in octal).

In the first two cases, the computer first inputs the current values
of the manipulator and then scales them. In the second case, the
hand variables are computed from the manipulator variables and

the hand geometry.

3.6.2 Output Unscaled Manipulator Values

This routine allows the operator to type (in octal) the desired
values of all seven manipulator buffers. These are then

transferred to the manipulator logic. The routine is intended

primarily for maintenance.

3.6.3 Adjust "Effective' Hand Length

The '"Hand Position Control" algorithm actually considers an
"effective'' hand position which can be modified by the operator to

compensate for changes in length of various objects or tools held

108

in the hand. This routine allows the operator to specify the
distance which the object protrudes beyond the tip of the finger.
The value should be specified initially and each time an object

is grasped or released.

3.6.4 Control Special Modes

Several options allow the operator to force the Manual Mode,
force the Automatic Mode, set the SAD Mode, or set the Rate-
Simulation Mode. The first three options are primarily included

f or system maintenance.

109

SAD

¥

Set INPT mode
Set SAD mode
ACGC<'1000
BITB«'1000

For I=]1 to 7, ADBF(I) ACC
Set most significant bits

a

OUTPUT trial values (ADBF)

to Manipulator

BIT A<-BITB
BITA-~BITB/2

y
lWait 50 msec |

INPUT ERROR STATUS

None

Y

I«]

at.

| neg

ADBF(I)<ADBF(I)&BITA

\
o Pos
&?t_Et”“) —

¥

ADBF(l)«ADBF(1)®BITB

I<I+1

> 7 <

Figure 3-37.

(I: }

SAD Flow Diagram

Chapter IV

SUMMARY AND FUTURE TASKS

4,1 Introduction

In order to improve the controllability of a remote
manipulator, a scheme was proposed in which a digital computer
accepts a minimum amount of information from the operator and
uses it to drive the manipulator to the proper destination or along
a specified path. The experimental model was designed to allow
the operator to use either the computer control mode or the
manual control mode. Under computer control, the two executive
programs allow the operator to execute one command at a time via
the teletype console or to use the fully automatic mode which reads
and executes an unlimited number of operations without operator

intervention.

The initial phase of the project was to demonstrate the
feasibility of the computer-aided-control scheme. The results
indicate that it is desirable to continue the development of a more

practical system. The next phases of the project should include

110

the following tasks:
1. The addition of sensory feedback.

2. The addition of a special operator console and/or
a master arm unit.

3. Improvement of analog to digital conversion speeds.

4. Modification of the algorithms already developed
as required by the system improvements.

5. Expansion of the algorithm library.
6. Experimental evaluation of operator's performance

using (a) the manual modes and (b) the computer-
control mode.

4,2 Achievements

As a side benefit, the replacement of the relay motor
controls by the SCR drive amplifiers enhanced the system
performance even under manual control. The principal advantage
is that instead of allowing only discrete (2 or 3) motor speeds,
the SCR amplifiers drive the motors at speeds proportional to

the displacement of the levers on the control panel.

The addition of the computer to the control loop produces
two obvious improvements over the manual '"rate-control"
technique. First, it is possible for the computer to actuate all

motors simultaneously and at their maximum speed since it can

112

accurately predict the path which results. In contrast, it is not
only difficult for an operator to operate seven levers
simultaneously but would most likely produce catastropic
results. Second, as demonstrated by the vector approach
routine, it is relatively easy for the computer to control the
path of the manipulator. Conversely, it is virtually impossible
for the operator to perform circular, straight-line, or more
complicated path control operations which require the actuation

of two or more motors simultaneously.

The optimization/obstacle avoidance routines most clearly
demonstrate the value of the computer-control technique. The
only information which the operator must specify is a command
to select this algorithm and the desired terminal hand variables.
The computer then selects an '"optimum!'' terminal configuration,
insures that it does not require motion through any obstacle
bounds, and, if necessary, automatically selects a set of

intermediate points to direct the manipulator around the obstacle,

The AUTO Exec routine demonstrates that it is possible to
record any number of commands in advance and then execute them
in sequence without operator intervention. Furthermore, the

amount of data to be recorded is minimized. For example, only

113

a minute fraction of the data required by the Case Research
ARM AID to perform a task can perform an equivalent task

using the computer-control scheme.

The coordinate transformation routines demonstrate that
special features can easily be incorporated into the computer-

control technique.

The versatility of the computer is demonstrated by the fact
that the computer used in the experiment is also used for a wide
variety of control experiments, for general data processing, and
for the special simulation problems. As a result, the computer
used to control the manipulator can also be used to perform other
tasks when the manipulator is idle. For example, in space appli-
cations it would be feasible to use the same computer for

navigation, data reduction, and controlling a manipulator.

Another interesting result of the investigation is that the
computer consumes comparatively little time performing the
computations and input-output operations necessary to execute
a task. For example, the optimization routine requires less
than 80 msec to compute an optimum configuration; moreoever,

even when it is necessary to perform a lengthy series of

114

computations to select a set of intermediate points in order to

avoid an obstacle, they seldom require more than two seconds.
The rest of the time is simply wasted waiting for the operator

to specify a task or waiting for the manipulator to reach the

specified position.

As a result, it appears that it is quite possible to either
time -share the computer with other tasks or to use the same

computer to control several manipulators.

4.3 Future Tasks

Two tasks were deferred until the completion of the initial
phase of the project. These concern the man-machine interface

and sensory feedback from the manipulator to the computer.

4,3, 1 Man-Machine Interface

Currently, all communications between the operator and
the computer are handled by the teletype unit. Although this has
been adequate for experimental purposes, it is unsatisfactory in a
practical system. The principal difficulties are that it is
awkward and time consuming for the operator to type position

information and also that the operator is required to relate all

115

information to a predefined coordinate system. In addition, it is
desirable to improve the manual control technique to eliminate
some of the problems encountered in path control operations.
The following possibilities should be considered to reduce these
difficulties:

1. Master/slave unit.

2. Calibrated position control knobs on master panel.

3. Joystick positioning.

4, Voice control.

The technique used to control the position of the manipulator
can easily be adapted to allow master-slave control. This would
entail the construction of a master unit such that its motions are
identical to those of the manipulator. A set of potentiometers can
then be mounted to each axis of the master as they were mounted to
the manipulator and they can be wired to the control logic as shown

in Figure 4-1.

With another slight modification, the same master unit can
be used to specify the desired position of all or part of the
manipulator variables. In this case, the A/D conversion
technique is used to measure the position of the master unit. This

is demonstrated in Figure 4-2.

116

The second possibility enumerated above is similar to the
first except that the potentiometers are calibrated and mounted

on a panel rather than being attached to the master unit.

The third actually involves a combination of the first two
techniques. A joystick would be used to control the linear
motions and either a slave arm or a set of knobs can control the

arm or hand orientations.

The last technique demands the development of a device
which can recognize speech in real time. This task is the

subject of another investigation in the Digital Systems Laboratory.

4.3.2 Sensory Feedback

Since there is no sensory feedback in the experimental

system, there is no way the computer can recognize any obstacles.

Thus, without operator intervention, it is quite possible for the
manipulator to be driven into another object or even into itself.
This places most of the burden on the operator if all collisions
are to be prevented and requires visual observance of all
operations. Since it is desired to minimize the operator's control

of the manipulator, this situation is intolerable.

117

A partial splution to the problem has been achieved with
the use of the obstacle avoidance algorithm, however, this is
useful for stationary obstacles only, requires the operator to
enter the bounds in advance, and must consider slightly
enlarged bounds. A much better solution is to mount a set of
sensors around the manipulator which will detect any obstacles
in close proximity to the manipulator. If they are mounted so
that the direction of the obstacle can be determined, the
computer cannot only recognize the obstacles but take evasive

action to avoid it without any intervention by the operator.

A second set of sensors should also be placed in the hand
to control the force used to grip an object. To allow fragile
articles to be handled, the force should be no greater than

required to prevent it from slipping out of the hand.

With the addition of one or both sets of sensors, it is
desirable to modify the current algorithms and perhaps
formulate several more to take full advantage of the increased

system capabilities.

118

4.3.3 Analog to Digital Conversion

It was noted in Section 2.7. 2 that the time lag of the active
filter greatly effects the A/D conversion time. Since the
manipulator logic is in the manual mode at the time of the
conversion and the error is not used to control the SCR
amplifiers, it is likely that the active filter can be by-passed
during the conversion; however, it will still be necessary to
provide high frequency filtering to attenuate noise from the

reed relays in the D/A converter.

4.3.4 Algorithm Modifications and Additions

The algorithm library should be expanded to include
alternate optimization criteria (e.g., minimum energy or
minimum momentum); additional path control routines (e.g.,
circular arc paths), and the automatic mode should allow highly
repetative tasks to be stored and processed using core memory
rather than paper tape. In addition, the adaptive techniques
under development by the Cybernetics Systems Group to improve
control of the Case Research ARM AID should be studied for

possible application to control the remote manipulator.

119

4.3.5 System Evaluation

After the addition of sensory feedback and a more practical
man-machine interface unit, a set of experiments should be
formulated and executed to evaluate the computer-control
technique and to compare an operator's performance using both

the manual and the computer control techniques.

JUDWDINS BN UOIIISOJ JI93se]N ‘Z-F 2andr g

304N0S T :
39VLI10A Hoyyd3
a3ivosl | T 4
wf' ¥aI4 v/a
: | 4
M3ISVN ~ ¥344N8 WOud

120

[0I3U0D UOI}ISOJ 9AB[G-I93SBN °‘[-§ 2Ind1 g

398N0S
39V110A youY3
a3a1vosi - A |
Y314 .vula.w
IS YILSVW

BIBLIOGRAPHY

Beckett, Jon T., Detailed Documentation of the Subroutines
Written for the DDP-116 to Control the Case
Experimental Manipulator, Digital Systems
Laboratory, Case Institute of Technology.

Correll, Robert W., and Maurice J. Wijnschenk, Design
and Development of the Case Research Arm Aid,
Report EDC 4-64-4, Engineering Design Center,
Case Institute of Technology.

Hammond, P. W., A Hybrid Servo-Positioning System for a
Computer Controlled Manipulator, Report 1-66-41,
Digital Systems Laboratory, Case Institute of
Technology.

Honeywell, Incorporated, Computer Control Division,
DDP-116 Programmers Reference Manual,
February, 1966.

Proceedings of the 1964 Seminars on Remotely Operated
Special Equipment, United States Atomic Energy
Commission, Reports CONF-640508 and CONF-641120.

Rarich, Thomas D., Development of SCM-1, A System for
Investigating the Performance of a Man-Computer
Supervisory Controlled Manipulator, M.S. Thesis,
Massachusetts Institute of Technology, 1966.

Taylor, Richard J., A Digital Interface for Computer Control
of a Remote Manipulator, Report 1-66-49, Digital
Systems Laboratory, Case Institute of Technology.

121

Appendix I

MANIPULATOR COORDINATE SYSTEM AND
SCALING OF MANIPULATOR VARIABLES

The programs written for the manipulator assume a cartesian
coordinate system for the linear (X, Y, Z) variables. The origin is
placed at the midpoint of the three manipulator axes. The SP, EP,
and WP angles are measured from the center of symmetry (e. g.,
relative to the negative Z axis). The color coding on the
manipulator is used to specify the sign of the pivot angles. The
sign is positive when the dark (blue) color is on the upper half of
the limb and it is negative when the light (red) color is on the upper
half. The shoulder rotation angle is measured from the positive

X axis to the arm when the pivots are positive (see Figure 2-3).

The operator is required to specify linear and angular variables
in terms of inches and degrees respectively. Motor rates are
specified in terms of feet per minute and revolutions per minute.

The data is specified via the teletype console and both mixed
fractions and integers are permitted. Negative values must be
preceded with a minus sign. Positive numbers may be preceded with

a plus sign but it is not required. For example, the numbers +2, 2,

122

123

2.0,-2, -2.0, .2, 0.2, are all permitted. The numbers are
terminated by actuating the carriage return (CR) key. If any
illegal numbers or characters are specified, a slash is auto-
matically typed and the routines will wait until an acceptable number

is typed.

All variables are converted to signed, scaled, 16 bit numbers.
Linear distances and times contain eight integer bits and seven
bits of fraction. Angular variables contain two integer bits and
thirteen fraction bits (angles are converted from degrees to

revolutions).

The position of each axis of the manipulator is represented by
a ten bit binary number (MPB) which is slightly over zero at one
extreme and slightly under (1777)8 at the other extreme. These
are related to the FMV and IMV buffers by Equations (A.1l) and
(A.2).
IMV(AXIS)= MPB(AXIS)-BIAS(AXIS) *SCAL(AXIS)/(1000)8 (A. 1)

MPB(AXIS= FMV(AXIS)*(I000)8/SCAL(AXIS) +BIAS(AXIS) (A.2)

SCAL(AXIS) represents the value (in inches or fractions of a
revolution) of the variable for a change of the manipulator position

buffer (MPB) of (IOOO)é. BIAS represents the zero point of each

124

axis and is (1000)8 for all axes but SR (the SR bias is the value of
the buffer when SR is zero). The BIAS and SCAL tables are

loaded with the control programs.

C*

F*

g%

H*

I*

126

Table A2.1
Teletype Commands

Set GPI Output Mode
Set GPI Input Mode

Modify axis ratios
(X:,Y:,2:,SP:, EP:, WP:,SR:)

Set SAD Mode
Force Automatic Mode (Set GPI Output Mode, then SAD Mode)

Obstacle Table

I Initialize table (remove all obstacles)

T Type contents of obstacle table

A name, (LX:, HX:, LY:,HY:, Z) add an obstacle to the table
R

name, remove obstacle from the table

Request and accept hand variables; execute hand variables
control algorithm (X:, Y:, Z:,SP:, EP:, WP:,SR:)

Accept mode, axis name, and.hand variables; execute hand

variable control algorithm

I, 3X,Y,Z,W,R,T$$ Incremental mode
A, $$X,Y,Z2,W,R,T$$ Absolute mode

Note: T = terminate list and R = shoulder rotation

Control hand grip and rotation
$T,0,1,2,3,4,5,6,7,8%

if T specified, $0,1,2,3,4,5,6,7,8%, (TIME:)
Note: T =time duration will be specified

= close hand and rotate CCW
= close hand and rotate CW

0 = halt motion
1 = open hand

2 = close hand
3 = rotate CCW
4 = rotate CW
5

6

127

-3
1}

open hand and rotate CCW
open hand and rotate CW

[e2]
1]

J Set rate simulate mode flag
K Reset rate simulation mode flag

L* Specify length of object in hand (adjust effective hand length)
(L)

M* Accept mode, axis name, and manipulator variables; execute
manipulator variable control algorithm
I1,$$X,Y,2,S,E,W,R,T$$ Incremental Mode
A,$$X,Y,2,S,E,W,R, T$$ Absolute Mode
Note: T = terminate list and R = shoulder rotation.

N* Coordinate Transformation Reference Point Data
P Print coefficients of transformation matrices
R, (X:, Y:, Z:),$0,1, 2,3$% Specify position and reference point
S, $0,1,2,3$ Specify reference point (use hand position)
T Compute transformation matrix.

P* Punch paper tape for automatic mode

G Compute present hand variables and punch (absolute)

H, (X:,Y:,Z:,W:,R:) Specify desired hand variables and
punch (absolute)

M Input present manipulator variables and punch

L, (X:,Y:,Z:,W:,R:,S:,E:) Specify desired manipulator
variables and punch

O Compute present hand position (HX,HY,HZ) and punch
origin block

N, (X:, Y:, Z:) Specify object origin and punch

R Compute present hand variables and punch (relative)

S, (X:,Y:,Z:) Specify desired hand variables and punch
(relative)

1, $T7,0,1,2,3,4,5,6,7, 8%

if T, then $0,1,2,3,4,5,6,7,8%, (TIME:)
Punch hand grip and rotate block (see TTY Exec "I"

command for notation)

V, (DIST:) Punch straight line path control block

W, (T:) Punch wait block (T=wait time)

T Punch TTY Exec return code

X Punch. ignore code

Vi

128

Repeat execution of lost block read from paper tape
Transfer control to AUTO Exec
Perform software A/D conversion

Type variables

$0,1,2,3,4,5,6,7%

Note: 0 = Exact contents of 10 bit manipulator buffers
FMV,FHV buffers, scaled

IMV,IHV buffers, scaled

FMYV buffer, scaled

= FHV buffer, scaled

= IMV buffer, scaled

IHV buffer, scaled

FMYV buffer and TMAX, scaled

n u

N O~ W
{

I

Straight line path control (DIST:)

Additional information must be specified by operator
Legend: (subroutine requests data)
$ one additional command is necessary $
$$ an axis name, then a position or increment =
must be specified, list is terminated only by
a special command$$

129

Initialize Interrupt Routine Entrance

|
Type ngn
Y

@ Type ||:|I
R

|canl INPT |
¥

Effective hand 1ength(—vhand length + ACCUM

Y
{2 | Inhibit Interrupts

¥ Yes

Interrupt Entrance

Type ||e_ (_‘II

v
Axis Ctr«0

__{
Set GPI Input mode
Reset SAD mode

z
Set TTY interrupt mask
' L
Call IASR (wait for command)
¥
N No
G through }
Yes

éT Y Intgrrupting)
No

=5

TYPe n/ / H

Figure A2-1. TTY Exec Flow Diagram

0

A

B

130

Set GPI Output Mode}—ﬁ@

D

| Q‘J Call IRTE/

Set GPI Input Model—(5) -

@

G

Set SAD Mode |

Wo

Q

E,I Set GPI Output Mode

Set SAD Mode

Wait for

| FJCall I BOUND{X2)

(TTY Interrupt

Q

H

Call RTHAND [Call CIHV

[jCall HOPOUTHType'OK"

I

Call ITHAND |}

M

Call IGRIP

Call GRIP —;@

] J ;ISet Rate Simulation Mode Flag —)@

K ,I,Re set Rate Simulation Mode Flag

L O

_@

P

Call ITMNIP T*Call SETMAX

[Call OUTMAN[(Call ETST

;M Call IREF 1)

Q

0 fcall ocTouT |-

Call PUNCH —-;@

S

Call REDRPT

| R JCall AUTOEX |

A%

Call SAD}(2

[T aIc.au TYPE _@

®

Call IDIST

Call VECTOR |

U.w, X Y, Z é:%)

Appendix III

SUBROUTINE LIBRARY FOR EXPERIMENTAL
COMPUTER-CONTROLLED MANIPULATOR

The subroutines listed below have been written to implement
the control functions and algorithms described in Chapter III.
Note that an extensive set of Teletype input-output routines have
been included to facilitate commurﬁca’cions between the operator
and the computer. The subroutines are coded in the DAP assembly
language for the DDP-116 and only fixed point arithmetic operations
are used; consequently, the execution times and memory capacity
requirements are minimized. Approximately 5,000 words of
memory are required to concurrently store all programs (including
tables and extensive error diagnostic routines) in the memory of
the computer. A comprehensive description of the subroutines

(1)

appears in a separate report.

131

TTY Exec:

AUTO Exec:

REDRPT:

VECTOR:

GRIP:

PUNCH:

SAD:

IRTE:

IREF:

RELHND:

OCTOUT:

IMVR:

132

a. Accept commands from operator via TTY
console

b. Enable TTY interrupts during execution of
algorithms

Control fully automatic mode

a. Read paper tape

b. Transfer data to proper buffers

c. Transfer computer execution to proper
control routine

Return to AUTO Exec and re-execute last block
of data read

Control path of manipulator such that it
approximates a straight line

Control hand grip and rotation (open loop)

Record commands and data on paper tape for
subsequent processing by the AUTO Exec

Perform software A/D conversion to find
current manipulator position.

a. Request and accept approximate rate of
each axis
b. Compute and tabulate inverse rate.

Accept object coordinate system reference
points, compute transformation matrix, or type
coefficients of transformation matrix.

Transform relative hand variables from object
coordinate system to manipulator coordinate
system.

Request and accept exact manipulator positions
(in octal) and transfer them directly to mani-
pulator buffers.

Input exact manipulator coordinates and scale
into 16 bit computer words (see Appendix I).

CIHV:

FBUF:

OMANIP:

SETMAX:

RATE:

ETST:

OUTMAN:

HOPOUT:

GRID:

CFES:

CFMYV:

FSRT:

IBOUND:

PHCK:

133

Call IMVR, then compute present hand variables

Scale 16 bit computer words into ten-bit mani-
pulator positions (see Appendix I).

Output the ten-bit manipulator positions to the
manipulator buffers

Use initial and final manipulator variables to
compute approximate transit time.

Use initial and final manipulator variables and
transit time to output fine increments to
manipulator for rate mode simulation.

Wait for the manipulator to reach the final
variables. If the transit time is exceeded by a
significant amount, operator assistance is
requested.

Call RATE if rate mode simulation flag is set;
otherwise call FBUF and OMANIP.

Control hand position; optimize terminal mani-
pulator configuration and avoid obstacles.

Optimize terminal manipulator configuration,
fill GRID time table, and compute TMAX.

Use Grid 'time table pointer to compute FSP and
FEP, then call CFMV.

Use FSP, FEP, FWP, and FSR to compute
FMX, FMY, and FMZ.

Use azimuth and ISR and find FSR to minimize
rotation yet not exceed rotation limits.

Add obstacle bounds to table, initialize the table,
delete an obstacle or type effective bounds of all
obstacles in the table.

Call RDTC and DTCT to test for possible

DTCT:

RDTC:

TEST:

FLAGGT:

ISCT:

SUB G:

CADS:

COSsXa2:

SINX 2:

ATNX2:

SRND:

DIV:

RTHAND:

134

collisions -- if none are detected, output
variables to the manipulator.

Test for possible collisions between manipulator
and an obstacle when the normal output mode is
used.

Test for possible collisions between manipulator
and an obstacle when the rate simulation output
mode is used.

Given a set of manipulator variables, compute
portions of shoulder, elbow, and wrist pivots and
the hand with the obstacle bounds.

Flag current time value in Grid time table and
search the table for a new minimum time value --

call CFES to find new manipulator va:riables.

Test line connecting initial and final hand positions
for intersection with the X and Y obstacle bounds.

Test possible paths over and around an obstacle;
select the one requiring the least approximate
transit time.

Use manipulator angular variables and length

of arm limbs to compute the projection of the
upper arm, forearm and hand on the X, Y, and
Z axes.

Compute cosine of specified angle.

Compute sine of specified angle.

Compute angle (between -1/8 and +1/8 revolution)
which satisfies specified arc tangent.

Round result of multiplication or shift operation.
Divide and round the result.

Request and accept terminal hand variables.

GED GEN GHU ONE NN OB OGNS ONe Ouw oud GEN UGN BOU GO NN GEN O e =

RTMNIP:

RXYZ:

ITHAND:

ITMNIP:

IDIST:

IGRID:

IANG:

INPO:

OUTO:

INPT:

OUTP:

TANG:

TYPE:

TYPF:

TIMV:

TIH:

TEMV:

135

Request and accept terminal manipulator variables.

Request and accept X,Y, and Z variables
(stored in FHV buffer).

Accept axis and absolute position or increment
of hand.

Accept axis and absolute position or increment
of manipulator.

Request and accept distance for vector subroutine.
Accept hand grip or rotation command. Allow a ’
time duration to be specified (assume one second

by default)

Accept angular values in degrees, convert to
fractions of a revolution and scale.

Accept an octal number via TTY.

Type an octal number on TTY (suppress leading
Z€TOoSs).

Accept mixed fraction or integer via TTY and
scale as specified.

Output scaled, mixed fraction on TTY.

Convert angular variable to degrees and type
value.

Type contents of IMV,IHV,FMV, FHV or
manipulator position buffers.

Type contents of FMV and TMAX buffers.
Type contents of IMV buffer.
Type contents of IHV buffer.

Type contents of FMV buffer.

TFHV:

IASR:

ouT22:

MSSG:
CRLF:

T2CR:

MAOF:

MARS:

136

Type contents of FHV buffer.

Call MAOF (inhibit TTY interrupt), input one
character from TTY, then call MARS.

Type two characters on TTY (inhibit TTY
interrupts)

Type a message on the TTY.
Execute a carriage return and line feed.

Call CRLF, then type two characters (primarily
for error messages).

Reset TTY interrupt mask to inhibit TTY
interrupts.

Set TTY interrupt maskto allow TTY interrupts.

