NASA COMPUTER PROGRAM AIDS AMERICAN DESIGNERS

More than 70 industrial firms, universities, laboratories and government agencies are now using NASTRAN, a NASA-developed computer program, to solve their structural engineering problems.

The program is presently being used in more than 185 different applications, ranging from suspension units and steering linkages on automobiles to the design of power plants and skyscrapers. At least 55 more uses of NASTRAN are currently planned.

-more-

February 23, 1972
NASTRAN (NASA's Structural Analysis Computer Program) is a general purpose digital computer program originally designed to analyze the behavior of elastic structures in the space program. One of its major uses by the National Aeronautics and Space Administration has been in the design of the Space Shuttle.

Since it was first made publicly available in November, 1970, more than 600 engineers have become acquainted with the use of NASTRAN. The computer program is now considered virtually indispensable by many structural and design engineers, who estimate that two-thirds of the projects in which it has been applied would not have been attempted without it.

Primary industrial users include aerospace companies, automobile manufacturers, consulting engineering firms and the construction industry.

Examples of their applications of NASTRAN include the design and analysis of:

- Aircraft fuselages, wings and tail assemblies;
- Automobile frames and other motor vehicle components;
- High Speed railroad tracks;
- Turbine engines; and
- Space vehicles and related launch facilities.

- more -
The engineering division of a major automobile manufacturer using NASTRAN in the design of its 1973 line of light trucks reports a 60 percent improvement in predicting the behavior of components under stress and a time saving of two-thirds in achieving such calculations. Similar savings in time and effort have been reported by most industrial users.

Firms using the new analysis program predict many improvements in product safety, reliability and quality, as direct benefits to their customers.

NASA spent more than $3 million to develop the program at the Goddard Space Flight Center. The Langley Research Center spends about $400,000 annually to update the program for NASA uses and to help new users apply it and learn its possibilities. A survey of 23 users outside the Space Agency indicates that assistance provided by the Langley Center has already saved them more than $2.5 million in start-up costs and other expenses associated with using the computer program.
The NASTRAN program is now being distributed under contract to NASA by the Computer Software Management and Information Center (COSMIC) at the University of Georgia. The program is user-oriented and organized to do much of its work automatically. Written in a versatile computer language, NASTRAN can be used on a variety of computers. A complete set of program tapes and documentation can be purchased through COSMIC for an average $1,700, depending on the options required.

The program's capabilities include the analysis of: (a) static response to various loads, thermal expansion and deformation; (b) dynamic response to transient loads, harmonic loads and random stresses; and (c) solutions for vibration, dynamic stability and elastic stability analysis.

NASA-developed computer programs have proved one of the most important spinoff benefits from the space program. Besides NASTRAN, several hundred other programs are publicly available to United States users as part of the Space Agency's Technology Utilization Program. Only modest charges are made to meet the cost of evaluation, processing and distribution.

- more -
Further information on NASTRAN and other computer program tapes and documentation is available from NASA's Computer Software Management and Information Center (COSMIC), Barrow Hall, University of Georgia, Athens, Ga., 30601; telephone: AC404/542-3265.

Organizations reported as users of NASTRAN are:

Aerojet Solid Propulsion Company Sacramento, Calif.
A. O. Smith Corporation Milwaukee, Wisc.
Argonne National Laboratory Argonne, Ill.
Atlantic Research Corporation Costa Mesa, Calif.
AVCO, Lycoming Division Stratford, Conn.
Bell Aerospace Company Buffalo, N.Y.
Bell Helicopter Fort Worth, Tex.
Bell Telephone Laboratory Whippany, N.J.
Boeing Aerospace Company Seattle, Wash.
Boeing Computer Service Kent, Wash.
CHI Corporation Cleveland, O
Computer Sciences Corporation Richland, Wash.
Computer Sciences Corporation Los Angeles, Calif.
COMSAT Laboratory Clarksburg, Md.
Control Data Corporation Minneapolis, Minn.
Control Data Corporation Chicago, Ill.
COSMIC Athens, Ga.
Esso Production and Research Houston, Tex.
Fairchild Industries Germantown, Md.
Franklin Institute Philadelphia, Pa.
General Dynamics/Convair Fort Worth, Tex.
General Dynamics/Convair San Diego, Calif.

- more -
<table>
<thead>
<tr>
<th>Organization</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Dynamics Corporation</td>
<td>Pomona, Calif.</td>
</tr>
<tr>
<td>General Motors Research Laboratory</td>
<td>Warren, Mich.</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
<td>Atlanta, Ga.</td>
</tr>
<tr>
<td>Goodyear Aerospace Corporation</td>
<td>Akron, O.</td>
</tr>
<tr>
<td>B. F. Goodrich</td>
<td>Akron, O.</td>
</tr>
<tr>
<td>Grumman Aerospace Company</td>
<td>Bethpage, N.Y.</td>
</tr>
<tr>
<td>Hercules</td>
<td>Magna, Utah</td>
</tr>
<tr>
<td>Hercules</td>
<td>Cumberland, Md.</td>
</tr>
<tr>
<td>Itek Corporation</td>
<td>Lexington, Mass.</td>
</tr>
<tr>
<td>JET Propulsion Laboratory</td>
<td>Pasadena, Calif.</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>Silver Spring, Md.</td>
</tr>
<tr>
<td>Lockheed Georgia Company</td>
<td>Marietta, Ga.</td>
</tr>
<tr>
<td>Lockheed California Company</td>
<td>Burbank, Calif.</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>Los Alamos, N.M.</td>
</tr>
<tr>
<td>LTV Aerospace Corporation</td>
<td>Dallas, Tex.</td>
</tr>
<tr>
<td>MacNeal - Schwendler</td>
<td>Hampton, Va.</td>
</tr>
<tr>
<td>Martin-Marietta Corporation</td>
<td>Denver, Colo.</td>
</tr>
<tr>
<td>McDonnell-Douglas Aircraft Corp.</td>
<td>St. Louis, Mo.</td>
</tr>
<tr>
<td>McDonnell-Douglas Automation Co.</td>
<td>St. Louis, Mo.</td>
</tr>
<tr>
<td>McDonnell Douglas</td>
<td>Huntington Beach, Calif.</td>
</tr>
<tr>
<td>McDonnell Douglas</td>
<td>St. Louis, Mo.</td>
</tr>
<tr>
<td>NASA Goddard</td>
<td>Greenbelt, Md.</td>
</tr>
<tr>
<td>NASA Ames</td>
<td>Moffett Field, Calif.</td>
</tr>
<tr>
<td>NASA Houston</td>
<td>Houston, Tex.</td>
</tr>
<tr>
<td>NASA Lewis</td>
<td>Cleveland, O.</td>
</tr>
<tr>
<td>NASA MSFC</td>
<td>Huntsville, Ala.</td>
</tr>
<tr>
<td>NASA Kennedy</td>
<td>Cape Kennedy, Fla.</td>
</tr>
<tr>
<td>NASA Langley</td>
<td>Langley, Va.</td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td>Warminster, Pa.</td>
</tr>
</tbody>
</table>
Naval Ship Research and Development Center
North American Rockwell Space Div.
Northrop Services Incorporated
Old Dominion University
Perkin Elmer Corporation
Pioneer Services Incorporated
Pratt & Whitney Aircraft
Raytheon Company
Research Analysis Corporation
Sandia Laboratories
SCI-Tech.
Sperry Rand
Structural Dynamics Research Corp.
Teledyne Brown
Teledyne Ryan
Teledyne Computer Center
Texas Instruments
TRW Systems
United Aircraft Sikorsky Division
Watervliet Arsenal
Westenhoff & Novick
Westinghouse Telecomputer
Westinghouse Defense and Space Center
Westinghouse, Research and Development Center

Washington, D.C.
Downey, Calif.
Huntsville, Ala.
Norfolk, Va.
Danbury, Conn.
Chicago, Ill.
West Palm Beach, Fla.
Sudbury, Mass.
McLean, Va.
Albuquerque, N.M.
Wilmington, Dela.
Huntsville, Ala.
Cincinnati, O.
Huntsville, Ala.
San Diego, Calif.
Toledo, O.
Dallas, Tex.
Redondo Beach, Calif.
Stratford, Conn.
Watervliet, N.Y.
Chicago, Ill.
Pittsburgh, Pa.
Baltimore, Md.
Pittsburgh, Pa.

- end -