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ABSTRACT

A study to determine the effects of pin elasticity, friction, and
clearance on the stresses near the hole in a pin-loaded orthotropic
plate is described. The problem is modeled as a contact elasticity
problem using compliex variable theory, the pin and the plate being two
elastic hodies interacting through contact. This modeling is in con-
trast to pr=vious works, by other investigators, which have assumed that
the pin is rigid or that it exerts a known cosinusoidal radial traction
on the hole boundary. Neither of these approaches explicitly involves a
pin. A collocation procedure and iteration were used to obtain numeri-
cal results for a variety of plate and pin elastic properties and vari-
ous levels of friction and clearance. Collocation was used to enforce
the boundary conditions at a finite number of points around the hole
boundary and iteration was used to find the contact and no-slip regions
on the boundary. Details of the numerical scheme are discussed. The
study shows that pin elasticity is not as important as clearance, fric-
tion, or the elastic properties of the plate in determining contact

stresses.
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Introduction

Because of the widespread usage of fiber-reinforced composite mate-
rials in structures, there have been a number of studies to determine
the stress distribution around a hole in a pin-loaded orthotropic plate
[1-16]. The studies have been two dimensional plane stress analyses
aimed at understanding the behavior of pinned and bolted connectors made
of fiber-reinforced composite materials. While the plate has been mod-
eled various ways, including finite-element [1,5-8,10,12,14-16] and
elasticity [2-4,9,11,13] approaches, none of the studies have directly
addressed tne pin, or more importantly, pin/hole interaction. For the
most part the investiyations have assumed that either the pin was per-
fectly rigid [1-9,13-15], or that the pin produced a known cosinusoidal
radial traction on the hole boundary [11,12,16]. This latter assumption
was first used by Bickley [17] in his study of isotropic plates. Al-
though this has been shown to be a good approximation for isotropic
plates [18], its applicability to orthotropic plates has not been
checked. MNeither approach requires an explicit pin model and each an-
alysis reduces to a boundary value problem involviny a single body,
namely the plate., The purpose of the work reported on here was to ex-
plicitly model the pin and its interaction with the hole when determin-
ing the stresses around a hole in a pin-loaded orthotropic plate. The
pin model includes pin elasticity, and friction and clearance between
the pin and the hole, The problem invoives two elastic bodies in con-
tact and is much more difficult than the single body problem. One major
difficulty is that the reygions of contact and no contact between the pin
and hole are unknown a priori and must be solved for as part of the an-

alysis. In addition, the presence of friction complicates the problem



because the slip and no-slip regions must also be determined as part of
the analysis. While pin elasticity [10], friction [2,3,5,7,13,14], and
<learance [2,3,5,15] have been included in previous analyses of this
problem, no analysis has examined all three simultaneously. The one an-
alysis which did include pin elasticity used finite elements to repre-
sent the pin and the plate, the pin transmitting forces to the plate
throuah springs connecting the nodes of the pin and plate. In that
study the effects of pin elasticity were never established.

The analysis here is pased on formulating the elasticity problem in
terms of complex variatle theory. Both the pin and the plate are line-
arly elastic and the plate is infinite in extent. The pin loads the
plate througn a body force acting on the pin. A solution to the problem
is obtained by a numerical scheme, namely a collocation procedure and
iteration. The collocation procedure enforces interface and boundary
conditions at the pin/hole boundary at a finite number of points. The
iteration procedure is used to find the contact and no-slip regions.
This paper begins hy formally stating the problem. The key steps in the
method of solution, which depends on having elasticity solutions for the
plate and pin to somewhat arbitrary boundary tractions, are then out-
lined. Following that the major components in the elasticity solutions
are presented. Next the details of the collocation and iteration pro-
cedures are described. The number of collocation points, the iteration
technique, the number of iterations, and solution accuracy are di-
scussed. Finally, numerical results are presented. These results illus-
trate the effect of nin elasticity on the stresses around the hole and
also indicate the importance of pin/ hole friction and clearance on the

stress calculations. The effects of the plate's elastic properties on



the stresses are illustrated with the computations. The paper closes

with a brief discussion.

Statement of the Problem

The plate's principal material axes are aligned with an x-y coordi-
nate system. The origin of the x-y system is the center of the hole, as
is the origin of a cylindrical r-9 coordinate system used in the analy-
sis. The hole is of unit radius and the plate is of unit thickness. The
pin loading the hole is isotropic and the net force the pin exerts on
the hole is in the x-direction. The pin radius is 1 - x and, due to
loading the hole, the center of the pin moves a distance 6. Figure la
depicts the geometry and coordinate systems used in the analysis. Fig-
ure 1b illustrates the parameters X and 6. The case of A equal to zero
represents a perfectly fitting pin. As will be seen, this is a special
case. A + is in the direction of the +x axis. Here § is considered
the independent loading parameter.

As the pin moves to the right, it contacts a portion of the hcle,
The extent of the contact region is unknown and the half contact arc is
denoted as 8. Due to friction within the contact arc there is a region
of slip and a region of no slip. The half no-slip arc is denoted as a.
Qutside the region of contact there is a no-contact region, Figure 2
illustrates the various regions on the pin/hole boundary. Coulomb fric-
tion is assumed to act in the contact region. The coefficient of fric-
tion is denoted as w. It is assumed a priori that there is one contact
region and within that region there is one no-slip region. It is con-
ceivable that there might be multiple regions of contact and no-contact,

or slip and no-slip. However, when the stresses are actually computed



ORIGINAL PAGE IS
OF POOR QUALITY

tr: results can be examined for this possibility., If there are multiple
regions of contact, tensile radial stresses will most likely develop in
those regions where contact is erroneously assumed, For the cases con-
sidered there has been no evidence of this sort of behavior in the re-
sults. Also, examining the friction-induced shear stresses and their
relation to the radial stresses will indicate whether multiple no-slip
regions might occur. There has been no evidence of this behavior
either. It is assumed that the coefficient of friction is independent
of circumferential location. This assumption may not be as valid for
composite materials as it would be, say, for metal.

Formaily the boundary and interface conditions between the plate
and the pin can be stated as follows:

In region 1, the no-slip region, -a €< § < a:

u. =u, +8§C0S O - A (1)
plate pin

u =u -6sing . (2)
® plate 9 pin

In region II, the slip regions, ¢ < 8 < g and - B < 0 < = g

u. =u, +5€C05 0 - A (3)
plate pin

ltegl = ulopl. (4)

In region [II, the no-contact region, B < 6 < 2n - B:

r re* (?%;



In the above the radial and tangential elastic displacements of the

pin and plate are given, respectively, by

rpin Opin’ urplate’ ueplate.

Equations 1 and 3 express continuity of radial displacements in the
contact region and eq. 2 expresses continuity of tangential displace-
ments in the no-slip region. Equation 4 is the Coulomb friction law.
Equations 5 and 6 express the traction-free conditions in the no-contact
region. Because of the nature of friction, assumptions have to be made
regarding the sign of Tge The problem can be solved assuming § is

increasing. This corresponds to a positive T Alternatively, the

a.
problem can be solved assuming § is decreasing. This corresponds to a
negative ¢ . Only the former condition will be discussed here.

Method of Solution

Due to equilibrium considerations the boundary tractions acting on
the pin are identical to the boundary tractions acting on the hole. As
formulated hzre the problem reduces to finding these boundary tractions.
Once the tractions are known the stresses in the plate can be deter-
mined. Here the unknown boundary tractions are represented in the form

of a complex Fourier series with unknown coefficients Ak' The series is

given by

§

. i \ . ike
(3T) b = (N pppe = L A e, all o (7)

where, following the convention of [19],



N

the normal, or radial, traction g, on the boundary, and

T

tangential, or shear, traction t__, on the boundary.

roe
Because the tangential tractions are odd functions of 6 and the normal

tractions are even functions of @, the Ak are real.

ko

Since each is a legitimate t action, each term e1 in the series

produces a unique set of stresses and displacements in the plate and in

the pin, In the next sections the stresses and displacements in the pin

ke

and plate due to traction e1 will be found. If the boundary traction

is A e‘ke, then the stresses and displacements in the plate and pin

will he weighted by Ak' If, for example, the radial displacement due to

ko

N-iT = e] is denoted as (ur)k, then the radial displacement due to

traction N-iT = A, e]ke is given by Ak(ur)k . Considering all terms in
eq. 7, the radial displacement u, would be the weighted sum of the ef-

fects of the individual tractions alke. That 1is,

u =k-2 Ak(ur)k . (8)

If all Ak were known, then upn could be calculated., The same can be said

of the tangential displacement, namely

vg = 1 Alug) (9)

where (ue)k is the tangential displacement due to traction N-iT = eike.

No distinction has yet been made between the plate and the pin, The re-

sponses of the plate due to N-iT = e1ke are different than the responses

nf the pin due to N-iT = elke. Thus the notation



ORIGINAL PAGE ig
OF PCOR QUALITY

u = 7 A(u)) iou = A {u.) (10)
r pin k=-~» K rlk pin o pin k=-2-m k*"o'k pin ’
(11)
u = 7 A (u) ;v = 7 A (u,) (12),
r plate - K rk plate o plate k=-o k*"o'k plate
(13)

distinguishes between pin and plate responses. It is important to point

out that since they are a result of traction e1ke, the quantities

(up)y » (ug)y » (u) » ard (ugj,

pin pin plate plate

are assumed to be known, The problem will reduce to finding Ak'
To continue with the formulation of the problem, the stresses in

the pin and plate are given by

o = z A (c.) ; © = X A, (o.) (14),
r pin 2l KTK pin r plate k=-o k 2o’k plate
(15)
o = 3 A (o)) i o = 7 Ao,
9pin k== k ekpin eplate k=-w k ekplate
(16),
(17)
T = 7 A (z.) H T = ¥ Alz,.) .
B oin kemw & MKy, O plate  k=-o K 0K jiate
(18),
(19)
The quantities (Or)k s eees (zre)k are the stresses in the pin

pin ike plate
and plate due to traction N-iT = e "~~, They are also considered known,

To determine the unknown coefficients A, a ~ollocation technique
and iteration are used. Instead of using infinite sums in eqs. 10-19,

finite sums are used. Instead of satisfying the boundary conditions
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given by eqs. 1-5 at each point on the circular boundary, (i.e., at an
infinite number of points) the boundary conditions are satisfied at a
finite number of points. The number of terms in the truncated series is
relaced to the number of collocation points on the boundary. The itera-
tive portion of the solution involves finding the contact and no-siip
arcs, « and g. They, like the Ak, are unknown. However, if specific
values are assumed for « and g, a solution to the problem with those
values of ¢ and B can be found. The specific values may not yield a
solution which satisfies all the boundary and interface conditions, but
iteration can be used to find valves which do satisfy all the conditions
of the problem. The iteration procedure will be further discussed.
First, the collocation procedure is explained,

By using finite sums in eqs. 10-19 and substituting those sums into
the boundary conditions for the various regions, eqs. 1-6, the method
for determining the A 's becomes evident. Substituting the finite sums
into eqs. 1-6 results in:

For the no-slip region;

N N
Y OA(u) = 7 Afu) + 6 C0S 6 - A (20)
k=-N krk plate k=-N KErik pi:
) )
A (u) = A {(u.) ~ 8§ sing ., (21)
k=-N k*7e%k plate k=-N k*"o’k pin

For the slip regions;

N N
Yy A (u)) = ¥ A(u)) + 8 COS 0 ~ A (22)
k=-N k*rk plate k=-N ke pin

N
-ZN A((zpgly = wlog)y) = 0 . (23)
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For the no contact region;

N
Y A(a) =0,
k=-N k' r’k

N
} OA(<.) =°0.
k=-N k*“re’k

(24)

(25)

There are 2N+1 terms in ecach sum., If the boundary conditions are satis-

fied at 2N+1 discrete points around the circular boundary, a set
linear algebraic equations can be formed from which to solve for
Since the proper symaetry conditions have been incorporated into
solution, the 2N+1 discrete points need only he distributad over
half the hole circumference, 0 < 8 < n. The assuined values of «

determine over what range of 6 eqs. 20 and 21 are enforced, over

of 2ZN+1
the Ak'
the
one-
and B

what

other range eqs. 22 and 23 are enforced, and over what range eqs. 24 and

25 are enforced, Since the tractions on the plate and pin are identi-

cal, neither the plate nor the pin is called out specifically in eys. 24

and 25. Though it is not specifically noted, attention must be given to

signs in eq. 23. In addition, strictly speakiny, by eq. 7

(o = (g.) = cos{kp)
rk pin rk plate
at the

and boundary

(Tre)k = (Tre) = - sin(ko) .

pin k plate

Equations 23-25 thus can be written as

(26)

(27)
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N
) XN A, (sin(ke) + u cos(ke)) =0 . (23)a
N
Y A cos(ko) = 0 (24)a
=N
N
] A sin(ke) =0 . (25)a

Expanding eqs. 20-22 and 23a-25a, evaluating them at 2N+i circumferen-
tial (8) locations, rearranging slightly, and putting them into matrix

notation ieads to equations of the form

{cl{A} = {B]. (28)a

Expanding, these equations can be written as



@9
'E
<
& o
~4 pe
<O
=0
\mp
X u.
2¢ [
0
0
L 0
a{&2)
¥-(9)s02 ¢
{B)uys -
X-(9)s02 ¢
.

o

N+,

zl

{

uyd
{

b

uyd
{ }

utd aye|d

{enuys} ee {{o)uys}) {(e)uys-} {0}

{(en)soa} * ¢ ¢ ¢ {(9)s03} {(e)s03) H

[(ew)soom + (eN)uis)} * * * * {(@)soot 4 (e)uys) {(0)5097 & (8)uys-} {n}

N - TN Py P B gy T ) oy P

d d d d d d
N(8n) - Ny v o v - ﬁe, 10 Riad’ 1(%n)] _:, 1= (On) el 1= (8n))} *cw L Rt © (%))

aeld uyd ajeid uid, a3eqd, _ ugd a1e(d
ZAL:V - ZA.:;— s e s » * ~AL-; . —AL:v_ * 1 n._.:v . 1 ALSV~ _. Oakav Oﬂgzv-
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The terms in the top two lines in the coefficient matrix [C] and in
the vector (3} represent terms evaluated at various © locations in the
no-slip zone, the terms in the second two lines represent terms evalua-
ted at various 6 locations in the slip zone, and the last two lines rep-
resent terms evaluated at varioss 6 locations in the no-contact zone.

It is important to point out that with a perfectly fitting pin A = 0 and
each element on the rignt-hand-side of eq. 28 changes, for example, by a
factor of twc when & is doubled., Each Ak simply doubles and the spatial
variatior of N-iT, with g, remains unchanged. Thus a« and g are unaf-
ferted by 5. With A # 0, doubling & does not result in a doubling of
the rignt-hand-side of eq. 28. FEach A, changes by a different amount
and thus the spatial variation of N-iT varies. This translates into §
directly affecting a and g. The perfect fit case is therefore quite
special and is often referred to as the linear case.

To impliement the solution procedure the responses of the plate and

pin to boundary traction e'ke, namely (ur)k . (ur)k sesesy MUSE
pin plate

be found. This follows.

. i
Response of Pin to e ko

In reality, the pin transmitts a load to the hole boundary because
it is loaded by some external mechanism, Commonly the pin is in double
shear, being loaded by two other plates paraliel to and on either side
of the plate under discussion., This is shown in fig. 3a. To be sure,
there are bending stresses in the pin and the exact determination of
stresses in the pin requires a three-dimensional analysis. However, for
the seyment of pin within the thickness of the plate the situation shown

in fig. 3b is quite accurate. This segment of the pin, shown as a disk,
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is loaded by shear stresses from portions of the pin on either side of
the plate, and by the contact stresses. Compared to the length of the
pin, ™ region of the pin within the thickness of the plate is small.
However, the fact that the pin actuaiiy .22 'enath does influence the
deformation of the pin within the thickness region. Here the pin is as-
sumed to be in a state of plane deformation and the shear stresses in
fig. 3b are assumed to bYe spatially uniform over the pin cross-sectional
area. Furthermore, for purposes or analysis, the effects of the uniform
shear traction are assumed to be equivalent to a uniformly distributed
body force acting in the x direction within the pin. An alternative pin
model would be to assume the disk representing the pin is loaded at its
cencer by a concentrated force. This model was not considered because
it was felt to be too harsh an idealization of the forces actually
transmitted to the portion of the pin within the thickness of the plate.
A concentrated force model was adapted by Rao [20] in a study of iso-
tropic plates.

With the model adopted here, the equilibrium equations for the pin

are
do D1t 6. -0 Ho ot 1

r, 1 re r 0 1 0 ro re
PO —_ R 4 = — =
ar ' r o8 T T r b =0, %35 *or * T P00

(29)a,{29)b
where br and b9 are the components of the body force. Milne-Thompson
[21] discusses the complex variable approach for the case of a body
force and so ontly the primary features of the analysis are presented
here,

To effectively use complex variables, it is convenient to express

the body force components in terms of a scalar potential, V, i.e.

. _av(r,e) _ 1lav(r,e)
Dr ar and b9 = -3 (30)
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Dafininy a stress function F(r,0) as

2 2
ar-%g’:: 1.9 ,ce=£+\l, (31)a,b
r2 362 ar
2 2
ro = Lot '1,: o (31)c
r2 302 arae

automatically satisfies the equilibrium equations. YUsing Hooke's Law
for an isotropic material, with Poisson's ratio v, and substituting the
strains in terms of the stresses into the only nontrivial compatibility

equation leads to the following equation for F ard V:

V*F + V2V = 0, (32)
whera
€ = (1 - 2v)/(1 - v). (33)
Defininy
vV = 92, (34)

where 9 is another scalar function, eq. 32 becomes

VH(F + «Q) =0 . (35)
Defining

Z=Xx+ iy = rele, (36)

the solution for F can be expressed in terms of two complex functions,

¢ and y, and Q as



15 ORIGINAL PAGE S
OF POOR QUALITY

F =2 [2002) + 2(2) + xl2) + (D)) - wz,2). (37)

The first and second fundamental stress combinations are written as

Fo = 2(a(2) + (D) + (8 - ax) XYL (38)
328z

Y

- 2 = .
oy - o, * 2t = 2(28'(2) + ¥(2) - % ELQé};glJ 218 (39)
z

and the elastic displacements are yiven as

(uet wuy) = %§~((3 - &v))olz) - zp'{2) - ¢(2) + 2 Qgﬁgle)e°]e. {40)
o¥4

o)

In the above the prime, ', denotes differentiation with respect to the

argument, G is the material's shear modulus, and
@'z} = ¢'(2) , ¥z) = ¢'(2) , and ¢(2) = x'(2). (41)a,b,c

The averbar, , denotes complax conjugate,

At the boundary

1
=
\
wad
-
i
~
p-J
1]
.

(42)

- %
“r " "Tro

k:.‘m

Therefore the stress con. ination most useful for matching traction
boundary cenditior s obtained by subtracting eq. 39 from eq. 38. Tne
result is
; . 3 ) 218
op = dt., = #(2) + 8(2) - (26'(2) + ¥(2))e

r r

2 7 2 7 1
+ ::(2 - K) \’?.._Q(.Z__J;)_ + ¢ ol (Z‘:!:). 9129. (43‘1

AzdZ 32z
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Since the pin domain is simply connected, ¢(z) and ¥Y(z) can be repre-

senten by
o(z) = ) a2 = ) arfe™ (44)a
k=0 k=0
¥(z) = } bkzk ) bkrke'ke, (44)b
k=0 k=0

3, and bk being constants, possibly complex.
To complete the pin analysis, Q needs to be determined. Milne-
Thompson [21] presents a derivation of Q for a more general body force

and those results can be reduced to the situation here. The result is

(>4

G = -5 (22 + (22), (45)

where b, is the body force in the x direction, bx being given by

b, =V b +bZ . (46)

Substituting eqs. 44 and 45 into eqs. 38-40, the stresses and displace-
ments can be determined in terms of a , by and b,. Specifically the

stress combination of eq. 43 evaluated on the boundary is

Rkelkﬁ + 2

ak ke-1ku
0 k=0

akR

N S T I L (a7)
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Here R is the radius of the pin. Since the hole in the plate is of unit

radius and the clearance between the pin and hole is a,
R=1-2xr. (48)

Using eq. 47 and setting all Ak's to zero except one, and settiny

that A, equal to one, constants a, and bk can be found by matching terms

k
on the left and right sides of ey. 47. The solution of the pin to trac-
tion N -iT = elke is now available, Table 1 shows the result of match-

ing terms. The values of a, and bk from Table 1 can be substituted into

eg. 44 and those results into eq. 40 to find explicit expressions for

(ur)k and (ue)k . These expressions, in turn, are used in eq. 28.
pin pin
It should be mentioned that bX is not an independent constant. The

body force and the boundary tractions must be in equilibrium. Except

for k = +1, boundary tractions of the form e]ke dc not produce a net

force on the boundary. Therefore, b, is identically zero except for the

case when Al is nonzero, For the boundary traction A1e10,
2A1
X (49)

[t should also be mentioned that in determining the results of Table 1,

the imayinary part of a, was arbitrarily assumed to be zero.

i
Response of Plate to e ko

The plate is assumed to be in a state of plane stress with trac-

tions of the form

N-iT= T Aol
k=

-0



nonzero
A

'>
=
W
—

T
+
~
]
[a—
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Table 1

Coefficients of the stress functions & and ¢ for pin,

nonzero

nonzero
b's
all b's =0
all b's =0
all b's = 0
b, = -1
by = -1
2
b1='ﬁ
1
bl--i
b, , = =tk =1)
k-2 k-2
R
-1
b2 = %7



19
oR'AINAL TrT Y

it

OF POOR QUi
acting on the hole boundary. These surface tractions are in equilibrium
with vanishingly small stresses at infinity. The plate's principal ma-

terial axes are aligned with the x and y axes and so the constitutive

behavior can be written as

1 Yxy h
€x E, " E, 0 Oy
v
= |.-xx 1
€y E £ 0 °y . (50)
X y 1
Yy L
X
| L ¥

Here Ex and E, are Young's moduli in the x and y directions, respective-

Yy
ly, Vyy is the Poisson's ratio relating contraction in the y direction

to the extension in the x direction caused by a tensile stress in the x
direction, and Gy is the shear modulus in the x-y plane. The equilib-

Y
rium equations in the principal material system are

o]} ot o1 dg
X oy [} 4 oy
Defining a stress function as
d’F d2F A2F
6, = — g, = — T, = = o (52)
X ay? Y ax2 Xy oxay

the equilibrium equations are satisfied. Using the constitutive
equations and the stress function, tne only nontrivial compatibility

equation can be used to determine F. This equation is

m

e
r

4 n
O, X9 Ly, (53)
dx23y2 y axh
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Lekhnitskii [22] and Milne-Thompson [21] discuss the general solution to
this equation and associated boundary conditions, while dedong [4,9,13],
Oplinger and Gandhi [2,3], and Mangalgiri [7] discuss the solution in
the context of a plate with a hole. Therefore, details of the solution
are omitted here.

The solution to eq. 53 has the form

F=d[u(z) + W,(z,) + W(3) * W(z,)] , (54)
where

Zy = X+ uy and 2, = X + BoY (55)

and iy and n, are two roots of the characteristic equation associated

with eq. 53, namely

E E
R 2, Ju? + 7=0. (56)
Xy y

(There are four roots to this equation but they occur in complex conju-
gate pairs, i.e. Wy = Iy and My = “2)° The functions wl and wz are to-
be-determined functions of the two transformed variables ) and Z5.

With the definitions of eq. 55

z, =y 2+ 5k2, k=1,2, (57)

k
where
) 1- Ty 1+ Tay

— and & =

Y« = 2 k ) (58)

The first and second fundamental stress combinations are
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op + 0y = 116 HY(2)) * vp8,05(2,) * v18,W3(Z)) +
and

oy = Op * Zi'tr0 = (y%W{(zl) + y% W;(Zz) + 5% N"(El)

))e'?® (60)

The displacements are

% 1y ' ' = s 3 [ ‘ie
(up + dug) = gipWi(z)) + P, W5(2,) + 5, (Z)) + Gp¥5(Z,)]e” 7, (61)

with )
v M . v
G AN SV B N A
Py = - e b — (- n?)
1T TR W M
2
v " . v
- Xy , 2,1 _,1 _xy
Py = - et (- u3) (62)
2" "E TE Tl TE
- Vxy oo xy -
G =-gte (e
X X \J X
1 R
- Yy B i1 Yy L
PR Sl Sehiead ol el U
X X Ho y Y

The stress combination op - i‘re can be formed, as was done with
the pin, to match the traction N - iT at the boundary. However 6 the
definitions of eq. 55 transform the problem from the z plane to the zy
and z, planes. These transformations distort the unit circle (hole) of
the z plane into ellipses in the 4] and z, planes. The boundary condi-
tions are not defined in these planes. A second set of transformations

which map the zy and Z, elliptical boundaries into unit circles is
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necessary. These transformations map the , plane onto the cl plane and

the z, plane onto the cz plane. These transformations are

D ————

2 .
N A aliad s o'
: 2y1
—_—— (63)
2 _
. - Z, + / Z5 4y262
2 272
L:] i0 .
As can be seen, when z = e °, g, =, = e, thus preserving the shape
of the unit boundary. The inverse transformations are
!
2y = mgy) =gy * T,
(64)
%
Zy = MylLy) = vplp * T, "

With the change of variables, new nomenclature can be introduced,

nanely,
We(z,) = N;(zk(ck)) = 29, (¢, ), k=1,2. (65)
With this
. ) Gk
Nk(zk) = 2¢k(ck) a;;', k =1,2 . (66)
The functions ¢,(z ) are of the form
© a
k
01(Cq) = aglney + I
k=1 Cl
(67)
@ b,
0(8p) = Bolncy + 1 s

~N X

=2 L
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~here the ak's and bk's are constants, The logrithmic terms reflect the
fact that there is a net force on the boundary of the singly connected
plate.
For the plate the analog to eq. 43, evaluated on the hole boundary,
is

. * = T Stfy ' \ ize
(o= Tepg)) _io™ (B181(81) *+ 3293(25) - {vyo1(2y) + vp0p(cp))e ™)

(68"
Using eqs. 42 and 67, eg. 68 becomes
P ike _ - ,- i6 ¢ = i(k+1)e
E A T =8 (ae - T kae ) )
k=-o k=1
s e 10 3 = i(k+l)s i 9 -i(k-1)6
8,(bye - kzl kb, e (k+1) ) - vlage " - kzl ka e (k-1) )
9 ¢ -i{k-1)6
’Vz(boe - Z kbke ) . (69)

As in the procedure for the pin, setting all Ay to zero except one gives
equations for determining a, and b, and hence the response of the plate
to traction N=iT = eik6 on the hole. However, with the plate the pro-
cedure is sliyghtly different. No matter which Ak is being considered,
eq. 69 always yields an equation for 3, and by, in addition to other

equations involving other a's and b's, This equation is

1, when A, =1

1
0, all other cases,

§,a + &b - ylao - yzb (70)

170 20 0

More information is needed to determine a, and by. The information can

be obtained by examining the displacements,
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Because of the logrithmic term, there is the issue of single val-
uedness of the displacements. Using eq. 65 in eq. 61 and evaluating eq.

61 at 6 = 0 and @ = 2g, the following equation results:

= (plao + Py - 6150 - aZBO)Zni + (ur + iue) (71)

(u. + iu
r 0=0

)
® 9=27

For single valuedness, the expression in parenthesis must be zero, i.e.
P2, * p2b0 - 5150 - azbo =0 . (72)

Equations 70 and 72 provide the necessary equations to determine a, and

b Except for k =1, a_ and bo are zero, For the case k = 1, eqs. 70

0°* 0

and 72 were solved for numerically. Table 2 lists the coefficients a,
and b, for various values of k. With Table 2 the solution to the plate,
namely the responses (u ), and (ue) are available for use in

plate plate
eq. 28.

Details of the Numerical Scheme

The collocation procedure included the points 6=0 and 6=n. Because

of symmetry, the elasticity solutions for the pin and the plate due to

traction N-iT = o 'k@ automatically yielded

(u,) = (u ) =00 0=0, k=0,t1,...,*N . (73)
® kpin 0 kplate
and
= 0 @ 9=1[, k=0,t1,-oo,tN . (74)

()
pin re kplate
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Table ?
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Coefficients of the stress functions 6 and ¢, for the plate

nonzero nonzero nonzero
Ak a's b's
Ro = 1 “‘1:5"625 by =3 615
2"1 T %172 172 ~ %M
8 13
A, =1 a, = 2 b, = 1
-1 2" 2(81) - 817, 2 2(8)7p - 8yvq)
A+1 =1 soln to eq. 70 and 72
5 &
A_z = 1 a3 = 3 6 2 6 )- b3 = 3T-—“L6——_T
3(8,7) - 8177 5172 = %57y
Y2 5!
A,=1 A, T ————— b, = ——
*2 1837 - 57 Lodvp - 8my
. 6 . 6
A =1 a = 2 b = 1
A, = 1 Y2 b N
+k T -1 " (k-l){BZYl - 51727 k-1~ (k-l)(élyz - 'SZYI)
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These two conditions led to two columns and rows of eq. 28 being zero,
The collocation procedure included points at 6=0 and 9=n because there

was one other condition at each point that had to be enforced, namely

(9)pin = (Up)piate - & at 820 (75)
and

c.=00@00=x, (76)

Thus the two rows and columns representing eqs. 73 and 74 were elimina-
ted from the set of linear equations, eq. 28. Failure to do this re-
sulted in a singular matrix. The number of equations and unknown Ak's
solved for was reduced to 2N-1,

Values for «, B, and & were chosen. The system of 2N-1 equations
was solved for the Ak's. In all likelihood the values of « and g chosen
did not satisfy all the interface and boundary conditions for that spe-
cific value of 6. An iterative process then began to find values of
o and g that did. The key to the iteration process was the satisfaction
of conditions which were a combination of a restatement of the condi-
tions stipulated by egs. 4-6 and statements regarding the physical

realities of the problem. These conditions were:

{ . < 0, all @ (77)a

Op = Tpg ® 0,B<0<n (77)b

at the hole edge < Gp = Tpp * 0,0=8 (77)c
Itrel < plor|, 0<6<e (77)d

\ |tr9| = plopl, 0= a. (77)e
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Equation 77a states that the radial tractions had to be either compres-
sive or zero, everywhere. Equation 77b states the tractions had to be
zero in the no-contact zone, Equation 77c¢ states that at the end of the
contact zone the tractions had to be zero. Equation 77d states that the
friction-induced shear traction had to be less than the Coulomb limit in
the no-slip zone. Equation 77e states that at the end of the no-slip
zone, the friction induced shear stress was exactly the Coulomb limit,
Equations 77¢ and 77e are written explicitly ' ecause behavior of o, at

@ =8 and ¢, at © = a were the most powerful indicators of convergence.

ro
To obtain a solution, the value of ¢ was set to a value correspond-
ing to the first collocation point away from 6 = 0. Attention was fo-
cused on g by selecting a realistic value. Depending on whether the
value of B chosen was larger or smaller than the correct value, the o
vs. 0 relation had very distinctive characteristics near 8 = 8. Fiyure
4 illustrates the nature of the solution for three values of g. The
correct value of g is denoted g*. If the value of g chosen was larger
than g*, say B = Bys op Was tensile near 6 = By If the value of 8
chosen was smaller than g*, say g = By, then o was not zero at 6 = Bye
By recognizing what the character of the o, VS. 0 meant relative to the
assumed value of g, within 3 or 4 iterations a value of B could be ob-
tained which satisfied eqs. 77a-c. Iteration for ¢ then began. This
iteration procedure was similar in that the Teg VS. @ relation showed
distinct characteristics near 0 = ¢. These characteristics depended on
whether the value of a chosen was larder or smaller than the co. ‘ect «.
The characteristics near 9 = ¢ are shown in fig., 5. The correct value

of « 1is denoted as q*. If the value of a chosen was larger than

a*, say a,, then at o = @ ltrel exceeded "larl' If the value of «



chosen was smaller than g*, say a = ys then at 0 = s 'trei was less
than plo.|. Within 3 or 4 iterations a solution for « was obtained
which satisfied eqs. 77d and ¢c. The value of B was then rechecked and
adjusted if necessary. Generally there was little coupling between the
two variables.

For smaller values of p (e.g. p = 0.2) the no-slip region was found
to be small. Often the no-slip region was smaller than the spacing be-
tween the collocation point at 6 = 0 and the point next to it. In these
cases the no-slip condition was satisfied only at 6 = 0. Since by the
symmetric nature of the solution there was no relative tangential motion
at 6 = 0 anyway, the no-slip region could only be determined to be less
than the collocation point spacing.

Overall, the convergence of the solution was found to be dependent
on the location and number of collocation points used to satisfy the
boundary conditions. It was important to have the collocation points
close to being equally spaced around the hole. Forty collocation points
around the half-circle were used to obtain the numerical results pre-
sented in the next section. Thus the results to be presented used 78
unknown Ak's in the series representing N-iT. The 78 terms were divided
evenly between negative k and positive k. Twenty to 30 collocation
points gave reasonable results when compared to similar ceses from pre-
vious investigations. Forty points represented the upper limit of the
interactive computer used in the analysis. Fewer than 20 points result-

ed in pour agreement with established work.
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Nuserical Results

Numerical results were obtained in order to assess the effects of
the various parameters on the stresses around the hole. The numerical
study considered plates with varying degrees of orthotropy. The results
for four different plates are presented here. In the context of fiber-
reinforced composite plates, these four plates represent four different
laminates. The material properties of each plate ~re indicated in Table
3, as are the laminates they represent. The plate properties considered
coincide with the basic properties used by Crews et al. [10] and repre-
sent a graphite-epoxy material.

Plate A represents an extreme in degree of orthotropy. The plate
is much stiffer in the load direction than it is perpendicular to the
load direction. This represents a graphite-epoxy plate made with all
the fibers in the direction of the load. Plate B represents the other
extreme, being much softer in the load direction than perpendicular to
the load direction. Plate B represents a graphite-epoxy plate with all
the fibers perpendicular to the load direction. Plate C represents a
plate with properties representative of laminates which have the same
inplane stiffness in all directions. Such laminates are referred to as
quasi-isotropic laminates. Plate D represents a moderately orthotropic
laminate, being three times stiffer in the load direction than it is
perpendicular to the load. These four plates will be used to illustrate
the effect of pin flexibility and the plate's elastic properties on the
stresses around the hole. Plate D then will be used to illustrate the

effect of friction, clearance, and pin displacement on stresses.
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Table 3

Material Properties of Plates

Plate Ey Ey ny vxy representative
Msi Msi Msi laminate*
A 21.3 1.58 0.930 V.38 0°
8 1.58 21.3 0.930 0.028 90°
c 8.49 8.40 3.20 0.310 (0°/+45°/€0°)
] 12.4 3.73 3.21 0.667 (0°,/+45°)

*fiber angles relative to +x direction

Figures 6-9 show the effects of pin flexibility and plate material
properties on the stresses around the hole. The three pin flexibilities
used were: a rigid pin, a steel pin (E = 30 x 10° psi), and an aluminum
pin (E = 10 x 10% psi). Poisson's ratio of the pin had very little ef-
fect on the numerical results and a value of 0.3 was used. In each of
figs. 6-9 the coefficient of friction between the plate and the pin was
assumed to be 0.2. This represents a reasonable value for metal on
graphite-epoxy. The non-dimensional clearance between the pin and
plate, A/R, was 0.0l and the nondimensional pin displacement, §/R, was
0.035. Realistic values of pin/hole clearance vary from application to
application but A/R = 0,01 is representative. Each figure has the same
scale, for easy comparison, and each figure illustrates the three stres-
ses at the hole edge, i.e. the radial stress d., the circumferential

stress Tgo and the friction-induced shear stress Trg® The stresses have
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been nondimensionalized by the bearing stress and the behavior of the
stresses with circumferential location is illustrated. The bearing
stress is defined as the pin load, P, divided by the product of plate
thickness and hole diameter. Also shown in figs. 6-9 is the cosinusoid-
al radial stress distribution often assumed. Thus the figures illustrate
the two assumed pin/hole interactior models used in previous investiga-
tions, i.e. rigid and cosinusoidal, as well as the current more realis-
tic one. As a check on the numerical solution, the stresses o,
and T Were integrated around the hole edge to determine the total
load acting on the hole. The integration was always within 0.01% of P.
When examining figs. 6-Y, three conclusions are obvious. First, it
is clear pin flexibility 1s not a big factor in determining the stresses
at the hole edge. Until now, no investigation has shown this explicit-
ly. Second, the degree of orthotropy strongly influences the peak
stresses and the distribution of the stresses around the hole. The
highly orthotropic plate A in fig. 6 has a stress concentration factor
of 2 for the circumferential stress compared to the 1.2 of the quasi-
isotropic plate C in fig. 8. Third, the often-assumed cosinusoidal dis-
tribution is not generally accurate. It is a serious misrepresentation
for plate B and, due to pin/ hole clearance effects, does not properly
represent the contact region in any situation. It will be seen that the
character of °. near 0 = 0 is determined by friction while the character
of o, near 90° is determined by pin/hole clearance. Tnus for particular
friction and clearance levels, the cosinuscidal distribution could be a
good representation. However, in all cases, the rigid pin assumption is
better. In all the cases shown in figs. 6-8, the circumferential

stress o, is negative at 0 = 0. This is somewhat counter to intuition
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but the result, as will be seen shortly, is due to frictional effects,
This was found in Wilkinson's [5] analysis and it has been measured
[23]. The decrease in the magnitude of . as 0 » 0, in plate A for
example, is also due to friction.

Table 4 irdicates the contact and no-slip angle determined by the
iterative procedure for figs. 6-9 and for figures to be discussed. The
location of the maximum hoop stress is also indicated in the table. The
location of the maximum hoop stress, while generally occurring near the
end of the contact region, depends on the plate's elastic properties. A
plate representing a laminate with fibers at +45° and -45° relative to
the load direction experiences a maximum hoop stress at roughly ¢ = 45°.

Figure 10 illustrates the effect of friction on the stresses at the
hole edge of plate D. Three values of friction were examined for the
case of a steel pin with clearance A/R = 0.01 and displacement §/R =
0.035. The values of friction examined were: p =0, 0.2, and 0.4. The
i1st and 3rd values of p represent extremes and were chosen to bracket
the effects of friction., The most significant effect of friction, be-
sides influencing the level of shear stress, is its influence on peak
stresses. Increasing friction tends to decrease the maximum radial
stress at 6 = 0. This effect occurred for all situations studied,
Friction also increased the maximum circumferential stress near the end
of the contact region. Friction had some effect on the actual contact
zone. Because of the effect of friction at 6 = 0, the cosinusoidal rep-
resentation (not shown) is closer to the frictionless case than the
other cases, In fact, with no friction and no clearance, the cosinusoid-

al assumption is close for this particular plate.



Table 4
Location of Maximum Hoop Stress, Contact and

No-Slip Regions for Various Cases

Plate Fig. fixed variable 1location of contact no-slip
No. conditions condition max A arc, B arc, o
pin
p =0.2 rigid 88° 74° < 5°
A 6 §/R = 0,035 steel 88° 74° < 5°
A/R = 0,01 aluminum 88° 74° < 5°
pin
g =0.2 rigid 74° 74° < 5°
B 7 8/R = 0.035 steel 74° 74° < 5¢
AR = 0.01 aluminum 74° 74° < 5°
pin
p =0.2 rigid 74° 74° < 5°
C 8 /R = 0.035 steel 74° 74° <5
AR = 0,01 aluminum 76° 76° < 5°
pin
u =02 rigid 74° 74° < 5°
D 9 6/R = 0,35 steel 74° 74° < 5°
A/R = 0,01 aluminum 76° 75° < 5°
M
steel pin 0 76° 71° -
D 10 §/R = 0.035 0.2 74° 74° < 5°
A/R = 0,01 0.4 77° 17° 10°
A/R
n =0.2 0 86° 86° < 5°
D 11 steel pin 0.01 74° 74° < 5°
§/R = 0,35 0.02 69° 56° < 5°
§/R
u =0.,2 J.02 66° 61° < ge
) 12 steel pin 0.035 74° 74° < 5°

A
W
<

A/R = 0,01 0.05 78° 78°
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Figure 11 illustrates the effect of pin/hole clearance on the hole-
edge stresses in plate D, The three levels of clearance illustrated
are A/R = 0.0, 0,01, 0.02. The value A/R = 0 is often referred to as
the snug-fit, push-fit, or perfect-fit pin. The value of p used was 0.2
and §/R was 0.035. The pin was steel. The most effect pin/hole clear-
ance has is in the location of the peak circumferential stress. In-
creasing the clearance moves the peak stress location toward 6 = 0.

This is a direct consequence of the rapid decrease in contact zone with
increasing clearance. Increasing the clearance also causes more of a
region to experience high circumferential stress. Table 4 quantifies
the effect of clearance on contact angle. As expected, the value of the
peak radial stress is sensitive to the level of clearance. With less
contact area the pin naturally loads the contact region more.

Finally fig. 12 shows the effect of increasing pin displacement on
the stresses. The pin is steel, the coefficient of friction is 0.2, and
the clearance is 0.01. Three values of pin displacement are considered:

8/R = 0,02, 0.035 and 0.05. The most significant effects are with the
contact arc and the location of the peak circumferential stress. With
increasing pin displacement the contact arc increases and the location
of the peak circumferential stress moves toward @ = 90°, Obviously in-
creasing pin displacement increases the maynitude of the actual stres-
ses, However, in the nondimensional sense shown in fig. 12, the stress
magnitudes are not strongly influenced., The peak nondimensional radial
stress actually decreases some with increasing pin displacement due to

the longer contact arc.
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Additional Comments

Two other issues should be addressed before closing. The first is-
sue deals with the functional behavior of the stresses between colloca-
tion points. The second issue deals with friction.

Figures 6-12 were drawn by hand-fairing lines through the numerical
values of the stresses computed at the collocation points. When a
Fourier series representation of a function is used in conjunction with
collocation, there is the issue of behavior of the series representation
between the collocation points, In addition, here there is the issue of
the behavior near the end of the contact zone, where the stress state is
rapidly changing with 6. When the numerical values of A, were substitu-
ted into eq. 7 and N, for example was computed as a function of 8, the
function did indeed oscillate between collocation points. For a typical
situation, for 6 < B the amplitude of the oscillation was less than 2%
of its maximum value. Just beyond 6 = 8 the amplitude of the oscilla-
tion increased, but not markedly. Oscillation to a certain degree was
expected. Wilson and Goree [24] discussed » dual-series approach to a
contact problem which resulted in very little oscillation anywhere.

Such an approach could have been used in this problem, However, nothing
other than minimal oscillations were experienced with the numerical ap-
proach here and so the issue of other numerical schemes did not arise.

Concerning friction, Dundurs and Comninou [25] have shown that at
the transition point between no-slip and slip, the slope of Tpge with
respect to 6, becomes infinite. With the approach here such behavior
would never be realized and thus the results are in error in that re-
gard. An alternative approach would have been to build in a special

friction-induced shear function which did indeed yield an infinite slope
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of the transition point. However, it is felt that the results presented
are not in considerable error for not accurately representing this

effect.,

Concluding Remarks

This paper has used elasticity solutions and a numerical procedure
to study the stress distributions around a hole in a pin-loaded ortho-
tropic plate. In particular, the effects of pin elasticity, friction
and clearance have been studied. In addition, the effects of the
plate's elastic properties on the stress distribution has been assessed.
It can be concluded that, within the context of this study, pin elasti-
city is not an important variable. Pin/hole clearance is an important
variable and friction does effect the stress distributions. Further
studies are warranted in the area of finite-geometry plates, a circum-
ferentially variable coefficient of friction, or alternatively, a more
general (non-Coulomb) friction model. Perhaps experimental investiga-
tions into the slip and no-slip zones are necessary before more general

friction laws are incorporated.
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Fig. 1: a) Geometry and coordinate system used in analysis.
b) Definition of clearance, A, and pin displacement, §.
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Fig, 6: Stresses around hole in plate A.
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Fig. 7: Stresses around hole in plate B.
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Fig. 8: Stresses around hole in plate C.
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ﬁig. 9: Stresses around hole in plate D.
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Fig. 10: Effect of friction on stresses.
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Fig. 11: Effect of clearance on stresses.
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Fig. 12: Effect cf pin displacement on stresses.



