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Abstract

A new equivalent plate analysis formulation
is described which 1is capable of modeling
aircraft wing structures with a general planform
such as cranked wing boxes. Multiple trapezoidal
segments are used to represent such planforms. A
Ritz solution technique is used in conjunction
with global displacement functions which
encompass all the segments. This Ritz solution
procedure is implemented efficiently into a
computer program so that it can be used by
rigorous optimization algorithms for application
in early preliminary design. A direct method to
interface this structural analysis procedure with
aerodynamic programs for use in aeroelastic
calculations is described. This equivalent plate
analysis procedure is used to calculate the
static deflections and stresses and vibration
frequencies and modes of an example wing
configuration. The numerical results are
compared with results from a finite element model
of the same configuration to illustrate typical
levels of accuracy and computation times
resulting from use of this procedure.

Nomenclature

a,b,c,e,f,g Planform dimensions (see Figure 3)
A Area of rib or spar cap

Ci Coefficient of polynomial

displacement function
Orthotropic plate stiffnesses

[
e

Modulus of elasticity
Concentrated force at point i

[N

Wing box depth

Stiffness matrix

Coordinate along length of
rib or spar cap

Length of rib or spar cap
Distributed mass

Mass matrix

Concentrated mass at point i

RS mm O

Distributed load or pressure

Applied load vector

Thickness of cover skin layer
Q,T Energy terms (see equation (3))
Wing deflection
Displacement function

X EXn<cuog 2B

>y Global chordwise and spanwise
coordinates, respectively
Y Polynomials in x and y for

defining displacement functions
£,n Local nondimensional chordwise and
spanwise coordinates, respectively

#
Senior Research Engineer, Interdisciplinary
Research Office, Structures Directorate,
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Introduction

One of the major tasks in the design of
aircraft wing structures is the sizing of the
structural members to give the desired strength,
weight, and stiffness characteristics.
Mathematical optimization algorithms have been
coupled with structural analysis programs for use
in this sizing process. An extensive review of
the literature dealing with this subject area is

sprovided in references 1 and 2. A recent survey
of papers which describe structural optimization
Wwith aerocelastic constraints that have been
published since 1975 is contained in reference 3.
This survey indicates that in such work a trade-
off exists between the detail of the structural
model used for analysis and the scope and rigor
of the optimization approach.

For detailed finite element models, the
optimization procedures are often based on
heuristic but efficient techniques such as fully-
stressed-design. A demonstration of the
application of mathematical optimization
procedures to the strength design of a large
finite element wing structural model is described
in reference 4. Such finite element models are
capable of representing detailed stresses in
structures with complex geometry but they may be
cumbersome if used in studies where constraints
on dynamic behavior, such as flutter, are
congidered or the configuration geometry is
changing during the optimization process. To
provide a more comprehensive analysis capability,
including effects of static and dynamic
aeroelasticity and shape design variables,
usually requires that optimization algorithms be
employed in conjunction with simplified beam or
plate models of the structure.

An example of such modeling is the
equivalent plate model of the wing for structural
analysis purposes which is incorporated in the
TSO (Aeroelastic Tailoring and Structural
Optimization) computer program described in
references 5 and 6. This program is intended for
use early in the aircraft design cycle and has
had widespread use for aeroelastic tailoring of
composite wings, e.g., reference 7. However, the
structural analysis formulation used in TSO is
limited to trapezoidal planforms.

The present paper describes a new equivalent
plate analysis formulation which is capable of
modeling aircraft wing structures with general
planform geometry such as cranked wing boxes.
The planform geometry of such wing boxes is
defined by multiple trapezoidal segments. The
order of the polynomials used to define the wing
depth and cover skin layer thicknesses can be
specified by the analyst. This new formulation
provides a significantly improved structural
modeling capability, and the analysis procedure



has been Implemented efficiently so that it can
be used by rigorous optimization algorithms for
application in early preliminary design.

This paper contains a description of the new
analytical formulation along with the methods
used for efficient implementation of these
analysis procedures into a computer program.
This equivalent plate analysis procedure is
applied to an example wing configuration to
calculate static deflections and stresses and
vibration frequencies and modes. The numerical
results are compared with results from a finite
element model of the same configuration to
illustrate typical levels of accuracy and
computation times resulting from use of this
procedure.

Analytical Modeling

The wing box structure is represented as an
equivalent plate in this formulation. Planform
geometry of this equivalent plate is defined by
multiple trapezoidal segments as illustrated by
the two-segment box in Figure ta. A separate
local coordinate system is assoclated with each
segment. These local coordinates are
nondimensionalized such that g refers to a
fraction of the local chord and n refers to a
fraction of the span for a given segment as
indicated in Figure 1b. The subscripts on the §
and n coordinates, shown in Figure 1 to refer to
a particular segment, are omitted in the
remainder of this paper since the development of
the analysis method is described for a typical
segment .

The cross-sectional view of a typical
segment shown in Figure 2 illustrates the
analytical modeling of the wing box structure.
The depth of the structural box varies over the
planform of each segment and is expressed as a
polynomial in the nondimensional coordinates §
and n.

. 2 .o mn
hJ(E.n) = h00+h10£+h205 +h01 n+ +hmn£ n (1)

The coefficients hmn are constants which are

defined by the analyst for each segment. The
cover skins consist of orthotropic layers with
the thickness of each layer being defined
independently by the analyst again in the
polynomial form

2 mn
tj(i.n) = t00+t105+t205 +to1n+" +tmn§ n (2)

The properties of the layers can be defined to
represent wing skins which are stiffened panels
or composite laminates. Orientation of the
stiffness properties, along with the thickness,
is specified for each layer and the layer
orientations and thicknesses can be different in
different planform segments. The upper and lower
skins, and hence corresponding layers, are
assumed to be symmetric about the mid-plane of
the wing. The degree of the polynomials in

equations (1) and (2) are specified by the
analyst.

Rib and spar caps are represented as axial
elements which are continuously attached to the
skin. These caps may be positioned arbitrarily
within a segment by specifying the locations of
their end points. The axial stiffness of each
cap can have a linear varjiation along its length.

For static analysis, loading is applied to
the wing box as concentrated forces or
distributed loads. Mass properties for dynamic
analysis are defined by concentrated or
distributed quantities.

The specification of model characteristics
as continuous distributions in polynomial form
requires only a small fraction of the volume of
input data for a corresponding finite element
structural model where geometry and stiffness
properties are speciried at discrete locations.
The resulting reduction in model preparation time
is important during early preliminary design when
many candidate configurations are being assessed.
Also, the geometric locations of the rib and spar
caps, the mass quantities, and the applied
loadings can be independently defined, i.e., they
are not referenced to a set of joint locations as
in a finite element model. The ease of
relocating these quantities without disrupting
other aspects of the model is important during
early preliminary design when such changes often
oceur, Finally, the polynomial description of
model characteristies lends itself to use with
optimization algorithms since the polynomial
coefficients can be used directly as design
variables.

Ritz Solution Technique

The Ritz method is used to obtain an
approximately stationary solution to the
variational condition on the energy of the wing
box structure and applied loading. This method
is a classical approach in structural analysis
and details of its application to a single
segment trapezoidal wing planform are described
in reference 5, Herein, a brief outline of the
general technique is given and the particular
methods used to handle planforms with multiple
segments are discussed more thoroughly.

The total energy, E, associated with the
analytical model used is

E = V+Q-T (3)

where V = potential energy of the structure in
bending

Q = potential energy of the lateral loads
moving through the bending deflections

and T = kinetic energy associated with masses

These energy terms can be expressed as a
function of the bending deflection of the wing
structure, W, as shown in Table 1. 1In this
application of the Ritz approach, the wing
deflection, W, is assumed to be the sum of



contributions, Ci' from a set of specified

displacement -functions, wi.

W= c1w1 + c2w2 + c3w3 + sos 4 cnwn (4)

The Ritz solution procedure is used to determine
the numerical values of the set of unknown
coefficients, Ci’ which minimizes the total

energy, E. The total energy, E, is a function of
the wing deflection, W, and hence can be
expressed in terms of the unknown coefficients,
Ci' The extremum principle which states that E

is stationary with respect to Ci' expressed as
dE/dCi=0, produces a system of n simultaneous

equations. These equations are expressed in
matrix form as

[Kl{c,} + w’TMIiC,} ~ (P,} = O (5)

The stiffness and mass matrices, [K] and [M], are
produced from the energy expressions V and T
shown in Table 1. Substitution of the expression
for deflection given in equation (4) into the
expresiions for V and T gives a quadratic form of
the displacement functions and associated
coefficients, ) | cicjwiwj. Differentiation of

! g
the en?rgies, dV/dCiand dT/dCi, produces the

stiffness and mass matrices [K] and [M]
corresponding to the number of displacement
functions used. Each term in these matrices
corresponds to a product of displacement
functions wiwj and associated stiffness or mass

quantities. These terms are produced by
evaluating the integral expressions shown in
Table 1. To complete the matrices, these
calculations are repeated for all combinations of
displacement functions. The energy expression,
Q, is a linear form of Ci and differentiation,

dQ/dCi, produces a load vector, [Pi}, with each

term corresponding to a displacement function.

Energy Expressions

Expressions of the energies that are used in
this analysis are given in Table 1. Evaluation
of these integral expressions using the assumed
displacement functions, wi, produce the terms in

k1], M3, and {Pi}. The Dij terms in the

expression for the plate are the anisotropic
plate bending stiffnesses. These bending
stiffness ternms, Dij’ are polynomials which are

calculated from the depth and thicknesses given
in equations (1) and (2) along with the
orthotropic material properties of the composite
layers. These properties are defined for each
plate segment, and the integral expressions are
evaluated over the planform area of each segment.

The displacement derivative terms w'xx' w,yy, and

w’xy are calculated from the assumed displacement

functions which are used in the Ritz analysis.
The choice of the displacement functions is
discussed subsequently in this section. The

integral expressions for the rib and spar caps
are evaluated over the length of the caps. The
cap area, A, can vary linearly along the length.

The energy of the applied loads and masses
are functions of the values of these quantities
and the displacement functions, wi. The

distributed quantities are integrated over the
appropriate areas and the concentrated quantities
are summed with the displacement function being
evaluated at the locations of the individual
forces or masses.

Displacement Functions

In the present formulation, the assumed
displacement functions are specified as products
of polynomials in the x-direction with
polynomials in the y-direction of the global
(x,y) coordinate system

wi = Xi(x) Yi(y) (6)

This approach differs from that in reference 5
where the displacement functions are expressed in
the local trapezoidal system (£,n). The global
expression for the displacement functions
automatically satisfies the continuity
requirements across common boundaries of multiple
segments, but does not necessarily satisfy the
natural boundary conditions along the tip and
leading and trailing edges of the wing box. This
approach relies on the minimization of energy to
provide an approximation to the boundary
conditions at these locations.

An alternative approach to handling multiple
segments 1s to specify sets of displacement
functions for each segment and develop a method
to insure continuity of the functions and their
derivatives across adjacent boundaries. Such an
alternative would resemble the Global Element
Approach as discussed in reference 8. Such an
alternative was not pursued in this study, since
it appeared that a more simple approach of using
global displacements functions would result in a
more efficient program. One of the main purposes
of this paper is to determine if the level of
accuracy of results is satisfactory for design
purposes when global displacement functions are
used over multiple segments.

Another aspect of the formulation involved
selecting the type of polynomials to be used to
form the displacement functions. At one stage in
the development of this method, the
implementation allowed the analyst to select or
input the set of polynomials to be used. The
first set of polynomials tested were the Legendre
polynomials from reference 5. Using these
polynomials, the number of terms in the
displacement functions containing the higher
degree polynomials becomes large because of the
product of all the terms in the x-direction with
all the terms in the y~direction. This number of
terms is compounded since the structural energy
expressions contain the displacement function
derivatives to the second power.



Use of sets of terms from a power series,

i.e., (xo, x1, xz, oun ,xN) for Xi(x) and (yo,

Y‘. yz. aee yM) for Yi(y), for forming the

displacement functions was also evaluated.
Several alternative implementation methods were
tried in an attempt to achieve a high level of
computational efficiency using both Legendre
polynomials and power series terms. Comparison
of numerical results and computaticnal times from
this study, led to the selection of terms from a
povwer series for use as the assumed displacement
functions. This selection was based on the
increased computational efficiency which can be
obtained, compared to Legendre polynomials, by
taking advantage of the obvious simplifications
in calculations that occur with only one term,

xnym, in each displacement function. However,
this selection results in an upper limit on, the
degree of the power series terms which can be
specified because of ill-conditioning of the
resulting set of equations. This ill-
conditioning is manifested when the higher degree
terms produce nearly linear dependent equations.
The upper limit is reached when the library
subroutines used for solution of these equations
terminate with a message to indicate excessive
numerical error. Typical upper limits were found
to be 5th degree in x and 8th degree in y for
static solutions and 4th degree in x and Tth
degree in y for vibration solutions. The levels
of accuracy of results obtained with these
degrees of globally-defined power series terms
are presented in a subsequent section.

Evaluation of Integrals

Plates. The terms in the stiffness matrix,
[K], of equation (5) are produced by evaluating
the integral expressions from the structural
energy, V, in Table 1 as described earlier in the
general discussion of the Ritz solution
technique. The evaluation of the integral
expressions for the plate requires that the
displacement functions be expressed in terms of
the local coordinate system of each plate segment
by applying the coordinate transformations

X = e+ af + (f-e)n + (c-a)gn (1)
y=g+bn (8)

The coordinate transformation of the differential
area is given by the determinant of the Jacobian
as

dxdy = [ ab * (c-a)bn ] d&dn (9)

The planform variables for each segment that
are used in these transformations are shown in
Figure 3. The anisotropic plate bending

stiffnesses, Djj, are also polynomials in £ and

n. Hence, the terms in the integrand of the

expression for plate energy (products of Dij with

the transformed displacement derivatives and
differential area) are given by power series
expressions in £ and n. These expressions can be

integrated over each segment using exact, closed-
form expressions to produce the plate segments
contributions to the stiffness matrix.

Rib and Spar Caps. The coordinates (x,,yl)

and (x ) and corresponding cross-sectional

2'¥2
areas, A1
each rib and spar cap. The expression for energy
of the caps 1s given in Table 1. Coordinate
transformation equations between the global (x,y)
system and the local coordinate, %, along the
length of a cap are

and A2, are specified at the ends of

x = x1 + (L/L)(x2~-x1) (10)
y = y1 + (&/L)(y2-y1) (11)

The curvature along the length of a cap is
expressed as

s (€2, (@20 dx dy
Wogy = W (G0 4 (G 5, (D GD 02

where dx/df = (xz- x1)/L and dy/di = (y2- yi)/L.

The cap area is taken to vary linearly along the
length, A = A1 + (Z/L)(AZ- A,). The depth of the

wing, h, is expressed in terms of £ and 1 in
equation (1). Expressing the depth, h, in the
local coordinate system of the cap results in a
complicated (not simple power series) integral
equation. Therefore, evaluation of the integral
expressions for the caps are approximated using
the trapezoidal rule with the number of intervals
used for numerical integration along the cap
length specified by the analyst.

Mass Properties. Mass properties associated
with the analytical model are defined as being
distributed over the wing planform and/or
concentrated at specified points. Distributed
masses are often defined directly as a function
of £ and n, e.g., the mass per unit area of the
cover skin is given by the product of the
material density and the skin thickness given in
equation (2). Evaluation of the ‘integral
expressions for such distributed masses is
performed using the same exact, closed-form
expressions that are used for the plate stiffness
integrals. Contributions of the concentrated
masses to the mass matrix are the products of
each mass with the quadratic form of the
displacement functions which have been evaluated
at the location of that particular mass.

Applied Loads. The expressions of energy
for distributed and concentrated applied loads
are similar to the expressions for masses except
the loading expressions are linear functions of
the wing deflection, W. Application of the Ritz
method to this linear form results in a load
vector for each set of applied loads. For
ajircraft wings, the distribution of aerodynamic
loading is usually calculated as a table of
pressure coefficients at a specified set of chord
stations and semispan stations. These pressures
can be converted to a set of concentrated loads
by multiplying each pressure coefficient by its
associated area. These concentrated forces are
then multiplied by the values of each
displacement function at the point of load



application to give the appropriate terms in the
load vector. The continuous definition of the
displacement functions expedites this process
since the values of displacements can be
calculated directly at the desired points of the
aerodynamic grid. Hence, the transformation
process that must be performed between the
aerodynamic grid and structural joints when
finite element structural modeling is used is not
required. This continuous definition of
displacement functions provides a direct method
to interface this equivalent plate structural
analysis procedure with aerodynamic programs for
use in aeroelastic calculations.

Implementation of Method

Implementation of this Ritz solution method
into a computationally efficient computer program
is an important facet of this development.
Clearly, the terms associated with calculating
coefficients of a stiffness matrix are
algebraically cumbersome and tedious to
manipulate. This is especially true for an
anisotropic plate segment. Therefore, several
alternative strategies for organizing and
performing the calculations were explored before
reaching the following methods of implementation.

All quantities in this equivalent plate
formulation are represented as polynomials
containing the sum of a sequence of terms
composed of a coefficient and two variables with
integer exponents. These polynomials are
represented as matrices of the coefficients; each
coefficient is located with the row index being
one greater than the exponent of the first
variable and the column index being one greater
than the exponent of the second variable. The
shifting by one is necessary to handle the
constant terms (variables to the zero power).
These matrices are stored as vectors with the
first two entries containing the total number of
rows -and number of columns in the matrix. This
representation allows the computations to be
independent of the order and type (e.g. power
series, Legendre, etc.) of polynomials used to
represent wing box depth, thicknesses of the
cover skin layers, and assumed displacement
functions.

A special library of subroutines was
developed to perform all mathematical operations
on these polynomials. These operations include
addition, subtraction, multiplication,
differentiation, integration, and evaluation at a
point of polynomials representing quantities in
two dimensions. This library of subroutines is
used to generate the terms in matrix equation (5)
by forming and evaluating the integral and
summation expressions of Table 1 in the manner
described in the previous section.

The matrix representation of the polynomials
and the special mathematical library of
subroutines for operating on the polynomials are
key tools used for efficient implementation of
the equivalent plate analysis procedure.

However, a detailed description of how these
tools were actually represented and applied to

form a computer program for this particular
application is beyond the scope of this paper.

Typical Application and Results

Analytical Modeling

The planform of the wing box which is used
to evaluate this new formulation is shown in
Figure 4. This example is representative of a
typical fighter aircraft wing box and provides a
model with two plate segments. The configuration
provides a good test case since twisting behavior
is dominant in the inner segment, and bending
behavior is dominant in the outer segment. The
numerical results from this model indicate how
well the single, global set of displacement
functions represents the structural response of
this c¢ranked wing box.

The wing box depth has a different linear
spanwise variation in each segment and the depth
is constant in the chordwise direction. The
cover skin is a single layer of constant
thickness aluminum. Clamped boundary conditions
are applied to the wing bex at the aircraft
centérline.

Results from the equivalent plate analysis
are compared with corresponding results from the
EAL finite element analysis program, reference 9.
The EAL model is built up of membrane rib, spar,
and cover elements with the grid of cover
elements shown in Figure Y4 giving 1320 degrees of
freedom in the finite element analysis.
Displacement functions used in the equivalent
plate analysis contained exponents from 0 to 4 in
the chordwise (x) direction (5 terms) and
exponents from 2 to 7 in the spanwise (y)
direction (6 terms) resulting in 30 unknown
coefficients which correspond to generalized
degrees of freedom.

Numerical Results

Static Analysis. For numerical testing of
this method, a uniform pressure loading is
applied to the wing box. The resulting static
displacements along the leading and the trailing
edges of the wing box are shown in Figure 5; the
solid lines indicate results from the equivalent
plate analysis and the individual symbols
indicate data from the finite element analysis.
Displacements from the two analysis methods agree
within one percent throughout the wing box.

The distribution of stresses across the wing
chord are shown in Figures 6-8 for three
different semispan locations (y = 54, 90, and 134
as indicated in Figure 4). 1In general, the
agreement in stresses is good except in the
region of the trailing edge; at and inboard of
the wing box crank. As would be expected, both
techniques provide a good representation of
stresses in the outboard portion of the wing box
where the stress gradients are small, but both
techniques are less accurate in the inboard
region where larger gradients occur from the
crank in the trailing edge and clamped boundary
conditions at the wing root.



Based on the comparison of displacements, it
appears that the equivalent plate analysis should
provide an adequate level of accuracy of the
overall structural stiffness characteristics for
static aeroelastic calculations and their
incorporation into an aeroelastic tailoring
procedure. Stresses from the equivalent plate
analysis could be used directly in early design
phases to provide an initial approximation to the
strength constraints. As the design is refined,
the level of accuracy of these constraints could
be improved through correlation with results
obtained from a finite element structural
analysis.

Vibration Analysis, Natural vibration
frequencies and mode shapes for the cranked wing
box are calculated using both the equivalent
plate analysis and the finite element analysis.
A comparison of the first seven natural
frequencies is given in Table 2. The percent
difference is small (1,2%) for the first
frequency and this difference increases with
increase in frequency. The displacements along
the leading and trailing edges of the wing box
for the sixth vibration mode are presented in
Figure 9. This mode shape is dominated by
torsion of the wing, and the agreement between
results from the equivalent plate analysis and
finite element analysis is excellent. Therefore,
vibration results from the equivalent plate
analysis should provide an adequate
representation of the dynamic characteristics of
the structure needed to calculate dynamic
constraints, such as flutter velocity, in an
optimization procedure.

Computation Times. A comparison of the
computational times required for the equivalent
plate analyis and the finite element analysis is
given in Table 3. The number of CPU seconds is
given for selected major tasks involved in a
static and vibration analysis. An accumulation
of these incremental times is also given. All
calculations were performed on a CDC Cyber-173
computer. Comparison of the total time required
to produce displacements and stresses from a
static analysis indicate that the equivalent
plate analysis is a factor of 30 faster than the
finite element analysis. For vibration analysis,
the corresponding comparison is a factor of 60.
The times for the equivalent plate analysis did
not include the 7.89 CPU seconds required to
generate the integral tables. These tables are
independent of the stiffness orientation and
thickness of layers in the cover skins and do not
change during an optimization process. The
tables can be generated in a separate computer
run and saved for subsequent use.

The computer times are for a wing deflection
expression with 30 unknown coefficients (degrees
of freedom) corresponding to assumed displacement
functions which contained terms up to 4th power
in x and 7th power in y. These times are reduced
when fewer displacement functions are used but
some loss in accuracy is incurred. Although it
is problem dependent, the upper limit on
displacement functions was found to be about
seventh degree without encountering ill-
conditioning problems on CDC (60-bit words)
computers., Since the computer times for 30

degrees of freedom are relatively small, use of
approximately this number of displacement
functions is recommended.

In addition to providing desirable
computational speed, the equivalent plate
analysis computer program has moderate memory
requirements. Implementation methods which keep
memory requirements small are important for
effective Interactive operation of the resulting
computer program or for effective coupling of the
analysis procedure with an optimization
procedure.

Concluding Remarks

A description is given of a new equivalent
plate analysis formulation which is capable of
modeling aircraft wing structures with general
planform geometry such as cranked wing boxes.
Methods are discussed for implementing these
general procedures into a computer program which
is simply organized and computationally
efficient, hence desirable for use in early
preliminary design.

Some typical numerical results are presented
from application of the procedure to a cranked
wing box. Comparison of these results with
corresponding results from a finite element
analysis program indicate that good agreement,
generally less than 5% difference, is obtained
for both static displacements and vibration
frequencies and mode shapes. In general, the
agreement in stresses is good except in the
region of the trailing edge; at or inboard of the
wing box crank. The computation time required by
the equivalent plate analysis to generate these
results is a factor of 30 less than a
corresponding finite element analysis for a
static analysis and a factor of 60 less for a
vibration analysis.

In summary, application of the new
equivalent plate analysis formulation to a
cranked wing box is shown to produce results with
levels of accuracy approaching that of a finite
element analysis in significantly less
computation time. Hence, this formulation
provides the desired structural analysis
capability for combination with aerodynamic
analyses and rigorous optimization procedures to
perform aeroelastic tailoring of cranked wing box
structures.
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Table 1. Energy expressions used in Ritz analysis.
Quantity Energy Expression
Plate V= 172/ (D, W, 2+2D W, W, +D__W, >
A 11 7xx T 127 %xx 'yy 22 'yy
+4D xyw,xx+u026w,xyw,yy
2
+uD66 ’xy)dA
Rib or Spar Cap Vv = 1/2f Eah W,zﬁdl
Distributed Load Q = -Jf pWdA
A
N
Concentrated Load Q=-7 Fiwl
s X. .Y
i=1 '™
2 2
Distributed Mass T = 1/2w J/ mW"dA
2N 5
Concentrated Mass T=1/2w 2 M.W |
1 xi'yi




Table 2. Comparison of natural frequencies from vibration analysis.

Number | Finite Equivalent % Difference
Element Plate
1 14,58 cps 14.76 cps 1.2 %
2 48.52 49.10 1.2
3 97.22 99.99 2.9
L} 113.99 117.53 3.1
5 174.73 181,22 3.7
6 212.72 220.14 3.5
7 277.38 294.80 6.3

Table 3. Comparison of computer times.

Task Equivalent Plate Finite Element

Increment Total Increment Total

Form Stiffness 2.28 2.28 86.07 86.07

Matrix

Static Solution 1.21 3.49 30.58 116.65

Displacements 1.25 4,74 9.84 126.49

and Stresses

Vibration 2.73 T.47 352.33 478.82

Analysis ‘
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