NASA Contractor Report 182505

43¢

Computers in Spaceflight

The NASA Experience

James E. Tomayko

CONTRACT NASW-3714
MARCH 1988

(NASA-CR-182505) COMPUTERS IN SPACEFLIGHT: X88-10180
THE NASA EXPERIENCE (Wichita State Uaiv.)

409 p LIMIT USGA
Unclas

B3/60 - 0130186

NASN

NASA Contractor Report 182505

Computers in Spaceflight

The NASA Experience

James E. Tomayko

Wichita State University
Wichita, Kansas

Prepared for
National Aeronautics and Space Administration
under Contract NASW-3714

NASA

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

.

Table of Contents

B OTEWOT (s xanarsssmnnsasssrrnmpessmnsnssmoniios 3 5565 555055555553 43055 4TSRS SRS SRS RS vil
Preface....uvviieiiie ettt X
ACKNOWISAGEISTILS .. <u505 535051 s sxs ssmmamansossucnrs sovswnsnws svomssssmavasssasassassassess X1
Computing and Spaceflight: An Introduction.............ccooceeenincnenn 1

Part I: Manned Spacecraft Computers

Introduction to Part One...........cocccevvciiiiiiiiiiiiniiiiiiin e 7
Chapter One:

The Gemini Digital Computer: First Machine in Orbit.................... 9
Chapter Two:

Computers On Board The Apollo Spacecraft...........cocooeeiiiennenn 27
Chapter Three:

The Skylab Computer SYStel: seu mwnmwmmsmssonsss smmessasesasmssmss 65
Chapter Four:

Computers in the Space Shuttle Avionics SyStem..........ccccecuevenenne. 85

Part II: Computers On Board Unmanned Spacecraft

Introduction to Part TWO........cccccceeviiinieiniieiiiiiicicciecnicneeens 135
Chapter Five:

From Sequencers to Computers: Exploring the Moon

and the Inner Planets.ormssmsmmmmaessssmn semammasmesamassss seommasass 139
Chapter Six:

Distributed Computing On Board Voyager and Galileo.................. 171

Part Three: Ground Based Computers for Space Flight Operations

Introduction to Part Three..........coooiiriiiiiiiniiiice e 205
Chapter Seven:

The Evolution of Automated Launch Processing..........cccccceeeeeenes 207
Chapter Eight:

Computers in Mission Control..........cccccovviiviiiiiiiiiniiiiiiiiene, 241
Chapter Nine:

Making New Reality: Computers in Simulations

and TMage ProCSSIIID s suxssmoussvans s e sommss s s rassseas smss somees 269
Epilogue:

Themes in NASA’s Computing Experience...........ccccoevviviiiiiinnnnn. 299
SOUICE NOLES....eeuvieeiieirierieeieerte ettt ettt cbe e s s es st sae 303
Bibliographic NOte.........cccceviiiiiiiiiiniiiiiii 363
Appendix I: Glossary of Computer Terms...........ccccooveeiiiiniinn. 377
Appendix II: HAL/S, A Real-Time Language for Space Flight....... 393
Appendix III: GOAL: A Language for Launch Processing.............. 399

Appendix IV: Mariner Mars 1969 Flight Program........................... 403

Foreword

The Editors have taken the unusual step of devoting an entire Supple-
ment volume of the Encyclopedia to a single topic: "Computers in
Spaceflight: the NASA Experience." The reason will hopefully be-
come apparent upon reading this volume. NASA’s use of computer
technology has encompassed a long period starting in 1958. During
this period, hardware and software developments in the computer field
were progressing through successive generations. A review of
spaceflight applications of these developments offers a panoramic in-
sight into almost two decades of change in the computer industry and
into NASA’s role.
NASA'’s role is summarized at the conclusion of this volume:

"NASA never asked for anything that could not be done with
the current technology. But in response, the computer industry
sometimes pushed itself just a little in a number of areas. Just a
little better software development practices made onboard
software safe, just a little better networking made the Launch
Processing System more efficient, just a little better operating
system made mission control easier, just a little better chip makes
image processing faster. NASA did not push the state of the art,
but nudged it enough times to make a difference."

This report could not be compressed to typical article size without
destroying its usefulness and interest. We trust that the readers will
find this work to be as fascinating as did the editors.

Allen Kent

James G. Williams

Preface

NASA'’s use of computers in spaceflight operations is a very impor-
tant and large topic. Any attempt to tell the complete story of the
people, calculating machines, and computer programs involved in
spaceflight would fill many volumes, if, in fact, it could be told at all.
The book you are about to read is a subset of all that could be said.
This is the explanation of why some things appear here and others do
not, and why the book is organized as it is.

When Monte Wright, then director of the NASA History Office,
and I first discussed the outline for this project in 1981 and 1982, it
seemed that he thought NASA had had a terrific impact on the
development of computer technology. Many others shared his view,
reasoning that since NASA used computers more extensively than al-
most any other organization, the Agency must have prodded the com-
puter industry by making challenge after challenge to its computer
contractors. One good reason, then, for writing a book on NASA’s use
of computers was to study the impact of NASA’s demands. At the
time, I did not know enough to hypothesize one way or another.

Obviously, the book required limits. Since the use of computers
in administrative work paralleled that of private industry, and since
the chief technological advances occurred in the flight program, we
agreed to limit the project to an examination of computer systems
used in actual spaceflight or in close support of it. Computers and sys-
tems used in administration and in aeronautical and other research not
directly related to spaceflight were ignored.

Despite these restrictions, the amount of material and the number
of systems involved remained enormous. Any thought of a
chronological history had to be abandoned, because keeping the
various threads running in order and in parallel was too difficult. In-
stead, I wrote a topical history, each chapter dealing with either a
specific program, such as the Gemini or Apollo onboard computers, or
a closely related set of systems, such as launch processing or mission
control. This episodic organization made it possible to adapt the writ-
ing of the book to the present state of the subject area, and also to
NASA'’s structure. One disadvantage to this approach is that, at first
glance, the book has the appearance of a serial description of systems
with no obvious relationship to one another. In fact, the decision to or-
der the three major parts of the book as they are was strictly arbitrary.
And yet, this organization actually reflects reality. Nearly all the sys-
tems described here were developed independently, by different
teams, at different sites. Continuity occured only when a series of sys-
tems were built under the auspices of a single center, such as the
Gemini, Apollo, and Shuttle systems through the Johnson Space

x COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Flight Center. In the rare instances that some technological exchange
occurred, it is highlighted. Despite the independent development of
the various systems, some common problems and experiences
provided threads with which to bind the chapters. These are presented
in the Introduction and developed throughout the book where they
apply.

By nature, the subject of computers is technically intensive. Many
times things must be discussed that require concentration on the
design and engineering attributes of a system. Often the main charac-
ters in this history are the machines themselves, and not their creators.
A glossary of computer terms and frequent explanatory material in the
text should be enough to help those not familiar with computers to un-
derstand the story. Additionally, technical material too important to
be left out of this history but not crucial to following the flow of
events is set apart in boxes. I have retained the technical material in an
attempt to fulfill the second objective of the NASA internal history
program:

Thoughtful study of NASA history can help agency managers
accomplish the missions assigned to the agency. Understanding
NASA'’s past aids in understanding its present situation and il-
luminates possible future directions.

Hopefully, my choice of the level of the material does not interfere
with the first objective, which is the wide "dissemination of infor-
mation concerning its activities and the results thereof." I believe that
at this time a book on this subject that is more expository than in-
terpretive in nature is of greater use to the agency and the historical
community. No one before me had waded through this material, there-
fore, much of my job was the identification of the best sources and the
recording of the most useful experiences. Now that this groundwork
has been done, more selective and incisive histories can be written.
One final note: often in corporations and government agencies in-
dividual achievement is buried within the institution. NASA is no ex-
ception. It was exceedingly difficult to get people both in the agency
and in contractor organizations to identify who did what, or even take
personal credit where appropriate. Wherever I was able to assign
responsibility, I did so, but, unfortunately, those instances seem less
common than the times I had to credit the development to the institu-
tion. Hopefully those who are not mentioned but should have been can
take pride that their collective achivements are now part of history.

James E. Tomayko
Pittsburgh, Pennsylvania

April, 1987

Acknowledgements

No author can fool himself into thinking that his work is entirely of
his own making. In a project of this size and length, many people,
both within NASA and outside it, contributed mightily or it would
never have been either finished or of its present quality.

In the NASA History Office, Sylvia D. Fries as Director was a
great help not only in accommodating several schedule changes but in
actively critiquing early chapters. Her best management decision was
assigning Michal McMahon as the editor. He treated the volume as his
own and spent many hours turning turgidity into something resem-
bling smooth text. Monte Wright, former Director, is to be thanked for
granting the contract in the first place, and Edward C. Ezell, for his
help in Houston during the proposal phase when he was head of the
History Office at the Johnson Space Center.

At The Wichita State University, my department chair, Mary
Edgington, tried to keep excessive demands from overwhelming me
during the 3 years I was funded under the contract. Lawrence Smith of
the research office took care of the paperwork. Five assistants helped
at one time or another in the research or writing phase. Dana Hamit
acted as keeper of the bibliography for a year, and created the initial
data bases I used while writing. Kim Allen took over from her and
prepared the final version of the notes from the first three chapters, as
well as acting as first editor. Linda Manfull brought the bibliographic
data base into final shape and did the notes for Chapter Four. Maria
Dreisziger helped with the notes for Chapters Five and Six, and iden-
tified terms for the glossary. Tamera Klausmeyer typed the notes for
Chapters Seven through Nine, as well as finishing identifying terms
for the glossary.

In my travels during the research phase I was privileged to meet
and work with a large number of NASA and contractor personnel.
Those listed in the bibliographic note as granting interviews usually
shared rare materials from their files as well. Some were asked to do
technical reviews of individual chapters or sections of chapters to help
eliminate as many errors of fact and interpretation as possible. Those
who did this double duty included Bill Bailey, Ed Blizzard, Frank
Byme, Bill Chubb, Sam Deese, Dwain Deets, Bob Ernull, Jack Gar-
man, Ray Hartenstein, Helmut Hoelzer, Carl Johnson, Ted Kopf, Ken
Mansfield, Russ Mattox, Ann Merwarth, Bob Nathan, Henry Paul,
Dick Rice, Bill Stewart, Tom Taylor, Bill Tindall, Chuck Trevathan,
Paul Westmoreland, John Wooddell, and John Young.

At each site individuals opened doors for me and found office
space where none was available. I want to especially thank Wanda
Thrower of Johnson Space Center, Bob Sheppard of Marshall Space

xii COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Flight Center, Harriet Brown and Mike Konjevich of Kennedy Space
Center, and Andrew Danni of the Jet Propulsion Laboratory for their
hospitality. Frank Penovich of Kennedy was especially helpful in ob-
taining a tour of the Shuttle facilities.

After the termination of the actual contract, I spent a year and a
half at the Software Engineering Institute (SEI) located at Carnegie-
Mellon University. The SEI was kind enough to permit use of their
equipment to assist in preparing the final drafts of the manuscript. My
assistants Katherine Harvey and Suzanne Woolf did yeoman work
editing and formatting the text for laser printing.

My thanks also goes to my wife, who lovingly never let me give
up.

d A final, required, word from our sponsor: This work was mostly
done under NASA Contract NASW-3714.

Computing and Spacetlight:

An Introduction

2 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

When the National Aeronautics and Space Administration came into
existence in 1958, the stereotypical computer was the "UNIVAC," a
collection of spinning tape drives, noisy printers, and featureless
boxes, filling a house-sized room. Expensive to purchase and operate,
the giant computer needed a small army of technicians in constant at-
tendance to keep it running. Within a decade and a half, NASA had
one of the world’s largest collections of such monster computers, scat-
tered in each of its centers. Moreover, to the amazement of anyone
who knew the computer field in 1958, NASA also flew computers in
orbit, to the moon, and to Mars, the latter machines running un-
attended for months on end. Within another 10 years the giant ground-
based mainframe would be supplanted by clusters of medium-sized
computers in spaceflight operations, and the single on-board computer
would be replaced by multiple machines. These remarkable changes
mirror developments in the commercial arena. Where there were giant
computers, small computers now do similar tasks. Where there were
no computers, such as on aircraft or in automobiles, computers now
ride along. Where once the only solution was the large, centralized
computing center, distributed computers now share the load.

Since NASA is well known as an extensive user of computers—
mainly because spaceflight would not be possible without them—
there is a common sense that at least part of the reason for the rapid
growth and innovation in the computer industry is that NASA has
served as a main driver due to its requirements. Actually, the situation
is not so straightforward. In most cases, because of the need for
reliability and safety, NASA deliberately sought to use proven equip-
ment and techniques. Thus, the agency often found itself in the posi-
tion of having to seek computer solutions that were behind the state of
the art by flight time. However, in other cases, some use of nearly
leading edge technology existed, mostly for ground systems, but oc-
casionally when no extensively proven equipment or techniques were
adequate in a flight situation. This was especially true on unmanned
spacecraft, because the absence of human pilots allowed greater
chances to be taken. Thus generalizations cannot be made, other than
that there was no conscious attempt on the part of NASA in its flight
programs to improve the technology of computing. Any ways in
which NASA contributed to the development of computer techniques
were side effects of specific requirements.

NASA uses computers on the ground and in manned and un-
manned spacecraft. These three areas have quite different require-
ments, and the nature of the tasks assigned to them resulted in varying
types of computers and software. Thus, the impact of NASA on com-
puting differs in extent as a result of the separate requirements for
each field of computer use, which is one reason why the three fields
are considered in separate parts of this volume.

Computers are an integral part of all current spacecraft. Today
they are used for guidance and navigation functions such as rendez-

COMPUTING AND SPACEFLIGHT: AN INTRODUCTION 3

vous, re-entry, and mid-course corrections, as well as for system
management functions, data formatting, and attitude control.
However, Mercury, the first manned spacecraft, did not carry a com-
puter. Fifteen years of unmanned earth orbital and deep space mis-
sions were carried out without general-purpose computers on board.
Yet now, the manned Shuttle and the unmanned Galileo spacecraft
simply could not function without computers. In fact, both carry many
computers, not just one. This transition has made it possible for cur-
rent spacecraft to be more versatile. Increased versatility is the result
of the power of software to change the abilities of the computer in
which it resides and, by extension, the hardware that it controls. As
missions change and become more complex, using software to adjust
for the changes is much cheaper and faster than changing the
hardware.

On-board computers and ground-based computers store data and
do their calculations in the same way, but they handle processes and
input and output differently. A typical ground computer of the early
1960s, when the first computers flew on manned spacecraft, would
process programs one at a time, right after each other. This sort of
processing, in which the entire program must be loaded into memory
and data must be available in discrete form, is called "batch." Over
time, computer systems were changed to make them more efficient
than batch computing allowed. In a batch process, if the computer is
doing a calculation, the input and output devices are idle. If it is using
a peripheral device, the calculating circuits are not used. One way to
improve on efficiency of the batch process would be to develop an
operating system for computers that could permit one program to use
resources currently unneeded by another program. Another method is
to limit each program to a fraction of a second running time before
going on to the next program, running it for a fraction and then going
on until the original program gets picked up again. This cyclic, time-
sliced method permits many users to be connected to the computer or
many jobs to run on the computer in such a way that it appears that
the machine is processing one at a time. The computer is so fast that
no one notices that his or her job is being done in small segments.
Each of these methods presupposes that data for the program are
available and processed, and then the program stops. So even though
lots more programs are run through the system in a period of time,
each is still handled as a batch process. When the computer runs
through all the processes waiting for execution, it stands idle.

Spacecraft computers operate in a radically different processing
environment. They are in "real-time" mode, handling essentially
asynchronous inputs and outputs and continuous processing, similar to
a telephone operator who does not know on which line the next call
will come. For example, computers used for controlling the descend-
ing Shuttle can hardly process commands to the aerodynamic surfaces
in batch mode. The spacecraft would go out of control or at least lose

4 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

track of where it was if data were only utilized in small bunches. The
requirement for real-time processing leads to other requirements for
spacecraft computers not normally found on earth-based systems.
Software must not "crash" or have an abnormal end. If the software
stops, the vehicle ceases to be controllable. Hardware must also be
highly reliable, or reliability can be obtained through redundancy. If
the latter course is chosen, overhead in the form of redundancy
management hardware and software will be high. Memories must be
nonvolatile in most applications, so if power is lost then the program
in storage will not disappear. Since modern semiconductor, random-
access memories are usually volatile, older technology memories such
as ferrite core continue to be used on spacecraft. Weight, size and
power are other considerations, just as with all components on a
spacecraft.

Even though both manned and unmanned spacecraft have similar
requirements, until very recently they could not use the same com-
puters. No computer with sufficient calculating capability to control
the Shuttle flew on an unmanned spacecraft. Conversely, the Shuttle
computers are so large and power hungry they would overwhelm the
power supply of a deep space probe. Modern powerful microproces-
sors make it possible to overcome these deficiencies, but systems
described herein predate most microprocessor technology Also, com-
puters on manned spacecraft are oriented toward relatively short-term
missions lasting up to a few weeks (which will change in the Space
Station and Mars Mission eras). Computers on unmanned earth orbital
missions and deep space probes need to run reliably for years, yet
must have low power requirements. Even though both need to be
trustworthy, the different mission conditions dictate how reliability is
to be attained.

NASA'’s challenge in the 1960s and 1970s was to develop com-
puter systems for spacecraft that could survive the stress of a rocket
launch, operate in the space environment, and thus provide payloads
with the increased power and sophistication needed to achieve in-
creasingly ambitious mission objectives. NASA found itself both en-
couraging new technology and adapting proven equipment. In manned
spacecraft the tendency was to use what was available. On unmanned
spacecraft innovation had a freer hand.

In contrast, NASA'’s ground computer systems reflected the need
for large-scale data processing similar to many commercial applica-
tions, but in a real-time environment, until recently not normally a re-
quirement of business computing. Therefore, commercially available
computers could be procured for most of the ground-based processing,
with any innovation confined to software that handled the real-time
needs. Preflight checkout, mission control, simulations, and image
processing all have used varying combinations of standard mainframe
and minicomputers. So NASA’s impact on computing driven by
ground support requirements was largely in the area of operating sys-

COMPUTING AND SPACEFLIGHT: AN INTRODUCTION 5

tems and other software and not as much in hardware, whereas many
of the on-board computers had to be custom built. Some of the
software innovations needed on the ground have naturally had greater
impact on the wider world than those made for on-board computers.
The techniques of software development learned by NASA while do-
ing both flight and support programming have advanced the state of
the art of software engineering, which comprise the management and
technical principles that make it possible to build large, reliable
software systems.

Even though the requirements and solutions to computing
problems in the manned on-board, unmanned on-board, and ground
arenas are different, several common themes bind the three together.
In nearly all cases, NASA managers failed to adequately allow for
system growth, often causing expensive software and hardware ad-
ditions to be made to meet scaled-down objectives. More positively,
recent developments are designed to enable proven computer systems
and techniques to fly or support more than one mission, reducing the
costs associated with customized solutions. Also, there is a continuing
reliance on multiple smaller computers operating in a network as op-
posed to large single computers, enabling task distribution and more
economical means of ensuring reliability. This last trend also under-
scores the dependence on communications that has characterized
NASA’s far-flung flight operations since the beginning. These themes
appear in varying strengths throughout the stories of the individual
projects.

Regardless of NASA’s impact on computing, its many uses of
computing technology from 1958 on provide valuable examples of the
growth in power, diversity, and effectiveness of the applications of
computers. The late 1950s marked the beginning of the computer in-
dustry as an indispensable contributor to American science and busi-
ness. NASA’s insatiable desire to make the most of what the industry
could offer resulted in many interesting and innovative applications of
the ever-improving technology of computing.

Figure A: The first manned spaceflight program to use computers continuously in all
mission phases was Apollo. Here mission controllers watch computer-driven displays
while astronauts explore the lunar surface after a computer-controlled descent.

PRECEDING PAGE BLANK NOT FILMED

Part One:

Manned Spacecraft Computers

In the first 25 years of its existence, NASA conducted five manned
spaceflight programs: Mercury, Gemini, Apollo, Skylab, and Shuttle.
The latter four programs produced spacecraft that had on-board digital
computers. The Gemini computer was a single unit dedicated to
guidance and navigation functions. Apollo used computers in the
command module and lunar excursion module, again primarily for
guidance and navigation. Skylab had a dual computer system for at-
titude control of the laboratory and pointing of the solar telescope.
NASA'’s Space Shuttle is the most computerized spacecraft built to
date, with five general-purpose computers as the heart of the avionics
system and twin computers on each of the main engines. The Shuttle
computers dominate all checkout, guidance, navigation, systems
management, payload, and powered flight functions.

NASA'’s manned spacecraft computers are characterized by in-
creasing power and complexity. Without them, the rendezvous tech-
niques developed in the Gemini program, the complex mission
profiles followed in Apollo, the survival of the damaged Skylab, and
the reliability of the Shuttle avionics system would not have been pos-
sible.

When NASA began to develop systems for manned spacecraft,
general-purpose computers small and powerful enough to meet the re-
quirements did not exist. Their development involved both commer-
cial and academic organizations in repackaging computer technology
for spaceflight.

1

The Gemini Computer:

First Machine 1n Space

10 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Project Mercury was America’s first man-in-space effort. The
McDonnell-Douglas Corporation developed the Mercury spacecraft in
the familiar bell shape. It was barely large enough for its single oc-
cupant and had no independent maneuvering capability save attitude
control jets. Its orbital path was completely dependent on the accuracy
of the guidance of the Atlas booster rocket. Re-entry was calculated
by a real-time computing center on the ground, with retrofire times
and firing attitude transmitted to the spacecraft while in flight. There-
fore, it was unnecessary for the Mercury spacecraft to have a com-
puter, as all functions required for its limited flight objectives were
handled by other systems.

Gemini both continued the objectives of the Mercury program
and served as a test bed for the development of rendezvous techniques

critical to lunar missions!. At first glance, the Mercury and Gemini
spacecraft are quite similar. They share the bell shape and other
characteristics, partially because Gemini was designed as an enlarged
Mercury and because the prime contractor was the same for both craft.
The obvious difference is the presence of a second crew member and
an orbital maneuvering system attached to the rear of the main cabin.
The presence of a second crewman meant that more instrumentation
could be placed in Gemini and that more experiments could be per-
formed, as an extra set of eyes and hands would be available.
Gemini’s maneuvering capability made it possible to practice rendez-
vous techniques. The main rendezvous target was planned to be the
Agena, an upper stage rocket with a restartable liquid-propellant en-
gine that could be launched by an Atlas booster. After rendezvous
with an Agena, the Gemini would have greatly increased maneuvering
capability because it could use the rocket on the Agena to raise its or-
bit.

Successful rendezvous required accurate orbital insertion, com-
plex catch-up maneuvering, finely tuned movements while making the
final approach to the target, and guidance during maneuvers with the
Agena. Safety during the critical powered ascent phase demanded
some backup to the ascent guidance system on the Titan II booster
vehicle. The Gemini designers also wanted to add accuracy to re-entry
and to automate some of the preflight checkout functions. These
varied requirements dictated that the spacecraft carry some sort of ac-
tive, on-board computing capability. The resulting device was the
Gemini digital computer.

The Gemini computer functioned in six mission phases:
prelaunch, ascent backup, insertion, catch-up, rendezvous, and re-
entry. These requirements demanded a very reliable, fairly sophis-
ticated digital computer with simple crew interfaces. IBM built such a
machine for the Gemini spacecraft.

By the early 1960s, engineers were searching for ways to
automate checkout procedures and reduce the number of discrete test
lines connected to launch vehicles and spacecraft. Gemini’s computer

ORIGINAL PAGE IS
OF POOR QUALITY] THE GEMINI DIGITAL COMPUTER 11

Figure 1-1. First orbital rendezvous: Gemini VI keeps station after using its on-
board computer to maneuver to position near Gemini VII. (NASA photo
S-65-63175)

did its own self checks under software control during the prelaunch
phase. It also accepted parameters needed for the flight during the last
150 minutes before launch?. During ascent, the computer received in-
formation about the velocity and course of the booster so that it would
be ready to take over from the Titan’s computers if they failed.
Switch-over could either be automatic or manual. The computer could
then issue steering and booster cutoff commands to the Titan3. Even
if the updated parameters were not necessary to boost guidance, they
were useful in the calculation of additional velocity needed after the
Titan’s second-stage cutoff to achieve the proper orbit. That velocity
difference was displayed to the crew so that they could use the
spacecraft’s own propulsion system to reach insertion velocity?.

12 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Rendezvous operations required an on-board computer because
the ground tracking network did not "cover" all parts of the Gemini
orbital paths. Thus, it would be impossible to provide the sort of con-
tinuous updates needed for rendezvous maneuvers. For example,
Gemini XI was planned as a first-orbit Agena rendezvous, with some
of the critical maneuvers conducted outside of telemetry range>. That
same mission also featured a fully computer-controlled re-entry,
which resulted in a splashdown 4.6 kilometers from the target®. In
computer-controlled descents, the roll attitude and rate are handled by
the computer to affect the point of touchdown and re-entry heating.
The Gemini spacecraft had sufficient lift capability to adjust the land-
ing point up to 500 miles on the line of flight and 40 miles laterally
respective to the line of flight. Five minutes before retrofire, the com-
puter was placed in re-entry mode and began to collect data. It dis-
played velocity changes during and after the retrofire. During the time
the spacecraft traveled from an altitude of 400,000 feet to when it

reached 90,000 feet, the computer controlled actual attitude”’.
HARDWARE

IBM Corporation received the contract for the Gemini digital
computer on April 19, 1962, amounting to $26.6 million. It provided
for the construction of the on-board computer and for integration with
other spacecraft systems®. The first machine was in its final testing
phase by August 31, 1963, and IBM delivered the last of 20 such
machines by December 1965%. Engineers at IBM believe that the
main reason why their company received the contract was the success-
ful development of a core memory used on the Orbiting Astronautical
Observatorym. One of them, John J. Lenz, said that the contract for
Gemini came just at the right time. The best of the engineering teams
of the IBM Federal Systems Division plant in Owego, New York were
between assignments and were put on the project, increasing its
chance for success.

Restrictions on size, power, and weight influenced the final form
of the computer in terms of its components, speed, and type of
memory. The shape and size of the computer was dictated by the
design of the spacecraft. It was contained in a box measuring 18.9
inches high by 14.5 inches wide by 12.75 inches deep, weighing 58.98
pounds!!. An unpressurized equipment bay to the left of the Gemini
commander’s seat held the computer, as well as the inertial guidance
system power supply and the computer auxiliary power supply. The
machine consisted of discrete components, not integrated circuits!2.
However, circuit modules that held the components were somewhat
interchangeable. They were plugged into one of five interconnection

THE GEMINI DIGITAL COMPUTER 13

ORIGINAL PAGE IS
OF POOR QUALITY

— ATIIUDC DISAAY INDICATOR \
v BN
FUGHT DILECTCR CONTROLLA / \\

AC POWER SILECTOR

MANUAL DATA
INSERTION UNN

ATHITUDE DISAAY INDIC ATOR

D

\=. (ounTis CONTICLS AND INDICATORS

\ — PLATFORM CONTECRS ANO INDICATORS
INCROMENTAL VELOCITY INOICATOR

\— FUGMI DIRECIOR CONTROLLER

INSTRUMENT PANELS ’

\— IMEENAL GUIDANCE 3YSTUM POWER SUPRY

SN e
AN K’\K

SYSTLM EUCTRONICS

\
\ \ /
N
o AUX I IAZY COMRTFR POWER UNIT

Figure 1-2. Locations of key components of the Gemini Guidance System. (From
McDonnell Corp., Gemini Familiarization Manual)

boards, and it took 510 of the modules to build the logic section

alone!3. The computer had no redundant circuits, which meant that
failures in the computer canceled whatever activity needed to be con-
trolled by it. For example, a failure in the power switch three quarters
of the way through the Gemini IV mission caused cancellation of the
planned computer-controlled re-entry. It was possible to fly the
Gemini computer without a backup because whatever the computer
did erroneously could be either abandoned (such as rendezvous) or
handled, albeit more crudely, in other ways (such as re-entry using
Mercury procedures).

The machine had an instruction cycle of 140 milliseconds, the
time it required for an addition. Multiplication took three cycles, or

14 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

420 milliseconds, with division requiring double that time!4. The
arithmetic bit rate was 500 kilocycles, and the memory cycle rate half
that!>. The computer was serial in operation, passing bits one at a
time, which explains the relatively slow processing speeds, slower
than some vacuum tube computers such as the Whirlwind. Also, its
fixed decimal point arithmetic unit design limited the precision of the
calculations but greatly reduced complexity. The Gemini digital com-
puter used ferrite cores for its primary memory. Core memories store
one bit in each ferrite ring by magnetizing the ring in either a clock-
wise or counterclockwise direction. One direction means a one is
stored and the opposite direction is a zero. Each core is mounted at a
perpendicular crossing of two wires. Thousands of such crossings are
in each core plane, consisting of rows of wires running up and down
(the x wires) and others running left and right (the y wires). Therefore,
to change the value of a bit at a specific location, half the voltage re-
quired for the change is sent on each of two wires, one in the x direc-
tion and one in the y direction. This way only the core at the intersec-
tion of the two wires is selected for change. All the others on the same
wires would have received only half the required voltage. By the use
of a third wire it is possible to "sense" whether a selected core is a one
or a zero. In this way, each individual core can be read.

The ferrite core memory in the Gemini computer had a unique
design. It consisted of 39 planes of 64 by 64-bit arrays, resulting in
4,096 addresses, each containing 39 bits. A word was considered to be
39 bits in length, but it was divided into three syllables of 13 bits. The
memory itself divided into 18 sectors. Therefore, it was necessary to
specify sector and syllable to make a complete address. Instructions
used 13 bits of the word, with data representations of 26 bits. Data
words were always stored in syllables 0 and 1 of a full word, but in-
structions could be in any syllable. This means that up to three in-
structions could be placed in any full word, but only one data item
could be in a full word!9.

The arithmetic and logic circuit boards and the core memory
made up the main part of the Gemini computer. These components in-
terfaced to a plethora of spacecraft systems, most of which were con-
cerned with guidance and navigation functions. This system was the
Gemini digital computer through the Gemini VII mission. Beginning
with Gemini VIII, the computer included a secondary storage system,
which had impact on the spacecraft computer systems built by IBM
and flown on the Skylab and Shuttle.

During the 1950s and well into the 1960s, the most ubiquitous
method of providing large secondary storage for computers was the
use of high-speed, high-density magnetic tape. By 1980, tape was
used mainly to store large blocks of data unneeded on a regular basis
or to mail programs and data between sites. Disk systems have con-
siderably faster access times and have rapidly increased in storage

THE GEMINI DIGITAL COMPUTER 15

ORICINAL PAGE IS
OF POOR QUALITY,

Figure 1-3. Cores like these were used in Gemini’s memory. (IBM photo)

capacity, rivaling or even exceeding tape, and thus supplanting it in
common use. In 1962, disk systems were large, expensive, and far
from fully reliable. When the software for the Gemini computer
threatened to exceed the storage capacity of the core memory, IBM
proposed an Auxiliary Tape Memory to store software modules that
did not need to be in the computer at lift-off. For example, programs
that provided backup booster guidance and insertion assistance would
be in the core memory for the early part of the flight. The re-entry
program could be loaded into the core shortly before it was needed,
thus writing over the programs already there. This concept, fairly
common in earth-bound computer usage, was a first for aerospace
computing.

IBM chose the Raymond Engineering Laboratory of Middletown,
Connecticut to build the device!”. The unit weighed 26 pounds and
filled about 700 cubic inches of space in the adapter module of the
Gemini spacecraft!8. The tape memory increased the available storage

of the Gemini computer by seven and one-half times with its capacity
of 1,170,000 bits. Programs loaded from the tape would fill syllables 0

16 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Sy(; ﬁ

\ ‘_,L”//

Figure 1-4. Layout of the Gemini Digital Computer core memory. (From
McDonnell Corp., Gemini Familiarization Manual)

ORIGINAL PAGE IS
OE POOR QUALITY,

THE GEMINI DIGITAL COMPUTER 17

and 1 of the core memory locations!®. It took 6 minutes to load a
program from the tape drive into core20,

NASA’s natural insistence on high reliability in manned
spaceflight operations challenged the computer industry of the early
1960s. Tape error rates were 1 bit in 100,000 and IBM wanted to raise
this rate to 1 bit in 1,000,000,0002!. The method used was to triple
record each program on the tape, pass each set of three corresponding
bits through a voter circuit, and send the result of the vote to the core
memory22. This scheme was later used on the Shuttle.

Gemini VII was the first mission with the Auxiliary Tape
Memory on board. Shortly after a successful rendezvous with an
Agena, the combined spacecraft began to spin out of control. Mission
Control decided to disengage the Agena and bring the Gemini down,
as large amounts of attitude control thruster fuel had been wasted try-
ing to regain control of the spacecraft. Thus, the first attempt to load a
program from the tape was made while the spacecraft was spinning.
Even though the Auxiliary Tape Memory design parameters specified
low vibration levels,?3 the re-entry program was successfully loaded
and used in the subsequent descent.

IBM obtained this sort of reliability beyond the original specifica-
tions as a result of an extensive testing program. For example, the
Auxiliary Tape Memory had failed prequalification vibration tests, so
IBM added a brass flywheel and weights on the tape reels to increase
stabilization?*. This ensured a successful program load under adverse
conditions. There were also problems with transistors shorting out due
to loose particles too small to be seen on x-rays but which shook loose
during acceleration??. Increased cleanliness in manufacturing was one
solution to this problem.

The only in-flight failure of a computer component was on the
48th revolution of the Gemini IV mission, when astronaut James
McDivitt tried to update the computer in preparation for re-entry. The
machine would not turn off, and it could not be used for the planned
"lifting bank" re-entry26. IBM could not duplicate the failure on the
ground, but the manufacturers did install a manual switch that
bypassed the failure for Gemini V27,

SOFTWARE

In 1962, hardware was still the pacing factor in computer applica-
tions. Everything associated with computers— processors, memories
and input/output (I/O) peripherals— was expensive. Many considered
software development an incidental part of the overall applications of
computing. Specialists wrote most of the software, usually in arcane
assembly languages. FORTRAN, a high-level language, had only

18 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 1-5. Auxiliary Tape Memory in test. (IBM photo)

ORIGINAL, PACE

T!
OF POOR A1:s . - ,'S

THE GEMINI DIGITAL COMPUTER 19

been available for a few years. Although its use in technical applica-
tions was rapidly spreading, it was still considered too inefficient for
use on computers like the Gemini digital computer. Many thought its
compiler-produced machine code to be less effective in utilizing
machine resources than machine language programs written by
humans. Experts therefore developed applications programs for
Gemini using the tiny set of 16 instructions that the computer could

execute28. This sort of programming was considered to be more of an
art than a science. Whereas the design and construction of computer
hardware followed conventional engineering principles, software
development was largely haphazard, undocumented, and highly
idiosyncratic. Many managers considered software developers to be a
different breed and best left alone. This concept of software is a myth,
and although it persists in some companies and with some people
today, by and large software is now considered as an engineered
product, little different from a rocket engine or computer.

Although the term "software engineering" did not come into com-
mon use until 1968, programmers had applied its basic tenets to both
large and small software projects for at least 15 years. Software en-
gineering has evolved as programmers learned which techniques
worked, which did not, and what actually occurred in the development
of software products. The SAGE (Semi-Automatic Ground

Environment) air defense system?2%, the IBM 360 operating system3Y,
and NASA'’s requirements for both spacecraft software and ground-
based software were instances of major software projects that directly
contributed to the evolution of software engineering.

Software engineers recognize that software follows a specific
development cycle, from formal specification of the product, through
the design and coding of the actual program, and then to testing of the
product and postdelivery maintenance. This cycle lasts for many years
in the case of programs such as operating systems, or a short period of
time in the case of specialized, single-use programs. During this
development process, strict standards of documentation, configuration
control, and managing changes and the correction of errors must be
maintained. Also, breaking down the application into smaller, poten-
tially interchangeable parts, or modules, is a primary technique. Com-
munication between programming teams working on different but in-
terconnected modules must be kept clear and unambiguous. It is in
these areas that NASA has had the greatest impact on software en-
gineering.

Development of the Gemini software was a learning experience
for both NASA and IBM. It was, of course, the first on-board software
for a manned spacecraft and was certainly a more sophisticated sys-
tem than any that had flown on unmanned spacecraft to that point.
When the time came to write the software for Gemini, programmers
envisioned a single software load containing all the code for the flight,

20 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

with new unique programs to be developed for each mission3!. Soon
it became obvious that certain parts of the program were relatively un-
changed from mission to mission, such as the ascent guidance backup.
Designers then introduced modularization, with some modules be-
coming parts of several software loads.

Another reason for modularization is the fact that the programs
developed for Gemini quickly exceeded the memory available for
them. Some were stored on the Auxiliary Tape Memory until needed.
The problem of poor estimation of total memory requirements has
plagued each manned spacecraft computer system. In the case of
Gemini, changed requirements and attempts to squeeze the programs
into the allotted space resulted in nine different versions of the
software32. The different versions were referred to by the name
"Gemini Math Flow."

Tracing the development of the math flows shows how identify-
ing new functions caused initial memory estimates to be wrong and
how the project handled changes. Math Flow One consisted of just
four modules: Ascent, Catch-up, Rendezvous, and Re-entry. Math
Flow Two was proposed to add orbital navigation and re-entry in-
itialization, but it caused the overall load to exceed the memory size
and the Gemini program office canceled the additions33. This version
of the software flew on spacecraft Il in January 1965. By Math Flow
Four, the re-entry initialization program had been successfully added,
but the load took up 12,150 of 12,288 available words. The plan had
been to use this program on spacecraft III and others, but a NASA
directive of February, 1964 changed the guidance logic of the re-entry
mode to a constant bank angle rather than a proportional bank angle
and constant roll rate. Math Flow Five incorporated this change, but it
filled the memory and was scrubbed in favor of a modified Math Flow
Three on spacecraft III and IV, followed by Math Flow Six containing
some changes on spacecraft V through VII34. The final version, Math
Flow Seven, was used on spacecraft VIII through XII, all of which in-
corporated the Auxiliary Tape Memory. It had six program modules
with nine operational modes. The six program modules of Math Flow
Seven were Executor, Prelaunch, Ascent, Catch-Up, Rendezvous, and
Re-Entry35. The Executor routine selected other routines depending
upon mission phases.

The specification procedure for the software required
McDonnell-Douglas to prepare the Specification Control Document
(SCD). This was forwarded to the IBM Space Guidance Center in
Owego, which developed a FORTRAN program to validate the
guidance equations. The use of simulations such as the FORTRAN
program was endemic to the Gemini software effort and was later ap-
plied to software development for other spacecraft computers.

Gemini used three levels of simulations, beginning with the
equation-validation system. The second was a man-in-the-loop

THE GEMINI DIGITAL COMPUTER 21

simulation to help define I/O requirements, procedures, and displays.
The third level was a refined digital simulation to determine the per-
formance characteristics of the software, useful in error analysis. This
third level was carried out in the Configuration Control Test System
(CCTS) laboratory, which contained a Gemini computer and crew in-
terfaces. This Mission Verification Simulation (MVS) ensured that the
guidance system worked with the operational mission program. Fur-
ther tests of the software were done at McDonnell-Douglas and at the
pad36. NASA and IBM emphasized program verification because
there was no backup computer or backup software. The verification
process and the tools developed for it were later applied to military
projects in which IBM became involved37.

Even if the software is perfect, errors may occur because of tran-
sient hardware or software failures during operation due to power
fluctuations or unforeseen demands on real-time programs. Some of
these can be spotted by diagnostic subroutines interleaved in the

software and used for fault detection38. Such routines were put in the
Gemini software and are now a part of all IBM computer systems.

The software produced during the Gemini program was highly
reliable and successful. Techniques of specification development,
verification, and simulations developed for Gemini were later applied
to other IBM and NASA projects. NASA was certainly better
prepared to monitor software development for the much more difficult
Apollo program.

CREW INTERFACES TO THE GEMINI DIGITAL COMPUTER

Gemini’s digital computer had three sets of interfaces: the
computer’s controls, the Manual Data Insertion Unit (MDIU), and the
Incremental Velocity Indicator (IVI). The controls consisted of a
mode switch, a start button, a malfunction light, a computation light,
and a reset switch. The mode switch had seven positions for selection
of one of the measurement or computation programs. The start button
caused the computer to run the selected program loaded in its
memory. The reset switch caused the computer to execute its start-up
diagnostics and prepare itself for action. The MDIU consisted of two
parts: a 10-digit keyboard and a 7-digit register. The first two digits of
the register, a simple odometerlike rotary display, were used to in-
dicate a memory address. Up to 99 such logical addresses could be ac-
cessed. The remaining five digits displayed data. Errors caused all
zeroes to appear. Negative numbers were inserted by making the first
digit a nine; the other digits contained the value. The IVI displayed
velocity increments required for, or as a result of, a powered
maneuver. It had three-digit feet-per-second displays for each of

forward-and-back, up-and-down, and left-to-right axes39.

22 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

P
|

[
(0 (B

I

]
[

ADDRESS MESSAGE

CEEEEEE

o)
/\C;‘

¥
\l,
=2
)
Q0
4J)
N

o

—

®

)

5N

o)

|

o

T{J
1% A
@ﬁ@a o

@

LEGEND

NOMENCLATIRE

PURPOSE

ADDRESS AND MESSAGE DISPLAY DEVICES

DISPLAY ADORESS AND MESSAGE SEMT TO CCMPUTER DURING
ENTER OPERATION, DISPLAY ADCRESS SENT TO, AND MESSAGE
RECEIVED FROM COMPUTER DURING READCUT CPERATION

ENTER PUSAH 3UTTON SWITCH

PROVIDES MEANS FOR Cali3ItNG MESSAGE SENT TO COMPUTER
DURING ENTER OPERATION TO Bk STCORED iN MEMORY .

CLEAR PUSH-BUTTON SWITCH

PROVIDES MEANS FOR CAUSING ADDRESS AND MESSAGE SET
UP BY MDK TO BE CLEARED CR CANCELED.

RCAD QUT PUSH-BUTTON SWITCH

PROVIDES MEANS FOR CAUSING MESSAGE TC BE READ OUT
OF COMPUTER AND DISPLAYED BY MESSAGE DISPLAY DEVICES.

PNR (POWER) TCGGLE SWITCIH

PROVIDES MEANS FOR COMNTRCLLING APPLICATION Of
POWER TO MDK AND MDR

R REEIE

DATA INSERT PUSH-BUTTCN S/ iTCHES

Figure 1-6. Manual Data Insertion
Familiarization Manual)

PROVIDE MEANS FOR CAUSING ADDRESS AMND MESSAGE TC
BE SENT TC COMPUTER AND TC 3E DISPLAYED 3Y ADDRESS
AND MESSAGE DISPLAY DEV'CES.

R ITIN AELE GTr gry

Unit. (From McDonnell Corp., Gemini

ORIGII\TAL DA

GE
OF POOR Q 8

UALITY

THE GEMINI DIGITAL COMPUTER 23

P 1]

5

LEGEND

NOMENCLATLRE PURPOSE

FwD ‘FOR'WARD) DIRECTION INDICATION LAMP iNDICATES THAT PLUS X AXIS VELOCITY IS INSUFFITIENT,

INDICATES AMOUNT OF INSUFFIZIENT VELOZITY FOR PLUS

FORWARD -AFT DISPLAY DEVICE OR MINUS X AXIS

L (LEFN DIRECTION INDICATION LAMP INDICATES THAT MINUS Y AXIS VELOCITY IS INSUFFICIENT.

INDICATES AMCUNT OF !NSUFFICIENT VELOCITY FOR PLUS

F e
LEFT-RIGHT DISPLAY DEVICE OR MINUS Y AXIS

R (RIGHT) DIRECTION INDICATION LAMP INDICATES THAT PLUS Y AXIS VELOCITY IS INSUFFICIENT

INDICATES AMOUNT OF INSUFFICIENT VELCZ!ITY FOR

UP-DCOWN DISPLAY DEVICE PLUS OR MINUS 2 AXIS.

UP DIRECTION INDICATION LAMP INDICATES THAT MINUS Z AXIS VELOCITY IS INSUFFICIENT

DN ‘DOWN) DIRECTICN INDICATION LAMP INDICATES THAT PLUS Z AXI5 VELOCITY IS INSUFFICIENT

PROVIDES VE ANS FOR MANUALLY SETTING UP T AXi3

ON-UP 2CTARY SV TCh VELCCITY ERICR C* UP-DCWN DISPLAY DEVICE

PROVICES AMEANS FCR MANUALLY SETTING UP ¥ akl3

<X ROTAR VA Tk
L-RROTARY SV TCH VELOGITY ERRCR ON LEFT RIGHT DISPLAY DEVICE

PRCVIDES MEAMNS FOR MANUALLY $ETTING UP « AxIS

AFT-FWD ROTARY SWITCH VELOC!TY ERROR ON FORWARD -AFT DISPLAY DEvICE

AFT DIRECTICN INDICATION LAMP INODICATES THAT MINUS X aXIS VELOCITY IS INSUFFICIENT

(elolelelelolellolERla]:

Figure 1-7. Incremental Velocity Indicator. (From McDonnell Corp., Gemini
Familiarization Manual)

24 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

On a typical mission the computer would be in operation during
ascent as the backup to the booster. On orbit, if no powered
maneuvers were imminent, it could be shut down to save electrical
power. Due to the nature of core memory, programs and data stored
magnetically in the cores would not disappear when the power was
off, as in present day semiconductor memories. This made it possible
to load the next set of modules, if necessary, from the Auxiliary Tape
Memory, enter any needed parameters, and then shut down the
machine until shortly before its next use. It took 20 seconds for the
machine to run its start-up diagnostics upon restoration of power.
After the diagnostics ran successfully, the current program load was
ready for use, all parameters intact.

GT-IV was following such a procedure in preparing for re-entry
on June 7, 1965. The computer was placed in the RNTY mode, and
the crew received and entered updated parameters given to them when
they were in contact with the ground stations. But when they tried to
turn the machine off, the manual on/off switch did not function. The
power had to be cut off by another means, and the re-entry handled
manually*0.

Using the computer for catch-up and rendezvous was a relatively
simple task. The difference between catch-up and rendezvous is that
catch-up maneuvers are executed to put the spacecraft into position to
make an orbit-change maneuver. After the orbit change the spacecraft
is prepared to rendezvous with the target*!. Crews began the catch-up
by entering the ground-calculated rendezvous angle desired into ad-
dress 83. The rendezvous angle indicated how much farther along in a
360-degree orbit the rendezvous was to take place. For example, if the
crew desired rendezvous one-third orbit ahead, 12000 was entered
into address 83 using the MDIU. The interval at which the pilot
wanted to see updates was then entered in address 93. For example, if
04000 was entered, the computer would display on the IVI any re-
quired velocity changes at 120 degrees from the rendezvous point (the
start), 80 degrees to go, and 40 degrees to go. If the IVI indicated that
the. computer had calculated that such a rendezvous was possible
within the designated fuel limits, the astronauts pressed the START
button and the I'VI displayed the first set of velocity differentials. The
pilot then fired the thrusters until the displays were all at zero
(Astronaut John Young reported that there was a tendency to
"overshoot" in trying to burn to zero#2.). After that, nothing was done
unless the next update indicated a need for more velocity
adjustments*3. The astronauts also did paper-and-pencil calculations
of the velocity changes as a backup by using special nomographs
based on time and angles to the target**. These backup calculations
were compared with the ground-calculated solution as well as the
computer solution. However, the figures computed on-board were
considered the primary solution for the terminal-phase intercept

THE GEMINI DIGITAL COMPUTER 25

maneuver®?. In the rendezvous mode, the radar would feed infor-
mation to the computer, which used it to calculate the velocity adjust-
ments needed for final approach?6.

These examples of the use of the computer on a typical flight
demonstrate that it was a relatively straightforward assistant in
guidance and navigation. It permitted the Gemini astronauts to be in-
dependent of the ground in accomplishing rendezvous from the
terminal-phase intercept maneuver to station keeping, a valuable re-
hearsal for the lunar orbit rendezvous required for the Apollo
program. The astronauts participated in both the hardware and
software design of the computer and its interfaces, and they were able
to go to Owego and be put in the man-in-the-loop simulations. By
flight time, like everything else in the cockpit, use of the computer
was second nature.

THE IMPACT OF THE GEMINI DIGITAL COMPUTER

The Gemini Digital Computer was a transitional machine. Dale
F. Bachman of IBM characterized it as the "last of a dying breed. It

was an airborne computer, ruggedized, special purpose, and slow"47.
Nonetheless, its designers claim an impressive list of firsts:

e The first digital computer on a manned spacecraft.

e The first use of core memory with nondestructive
readout. The machine was designed in an era of rotating
drum memories, its designers considered it a step
forward*s.

e [BM’s first completely silicon semiconductor

computer??.

e The first to use glass delay lines as registers?.

e Technologically advanced in the area of packaging
density>!.

e The first airborne or spaceborne computer to use an

auxiliary memory>2,

Development of the Gemini computer helped IBM in significant
ways. It contributed more than anything else to the hardware and
software of the 4Pi series of computers33. This series eventually
produced the computer used on Skylab and the AP-101 used in the
Shuttle. It also helped to develop IBM’s reputation for delivering reli-
able and durable spaceborne hardware and software’*. One Gemini
computer restarted successfully after being soaked in salt water for 2

26 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

weeks. Another used system went on to NASA’s Electronics Research
Laboratory in Boston for use on vertical and short takeoff and landing

projects3. Coupled with IBM’s involvement in the real-time comput-
ing centers used to monitor Mercury and Gemini missions, the com-
pany established itself as a major contributor to America’s space
program as it had been to the military research and development ef-
fort. Out of early military work came computer systems such as the
Harvard Mark I, the 701, and SAGE computers used in air defense.
However, even though identification with the space program has been
maintained through several high-visibility projects, no significant
commercial hardware products resulted as spinoffs.

For NASA, Gemini and its on-board computer proved that a reli-
able guidance and navigation system could be based on digital com-
puters. It was a valuable test bed for Apollo techniques, especially in
rendezvous. However, the Gemini digital computer itself was totally
unlike the machines used in Apollo. With its Auxiliary Tape Memory
and core memory, the Gemini computer was more like the Skylab and
Shuttle general purpose computers. It is in those systems where its im-
pact is most apparent.

2

Computers on Board

the Apollo Spacecratt

28 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

THE NEED FOR AN ON-BOARD COMPUTER

The Apollo lunar landing program presented a tremendous managerial
and technical challenge to NASA. Navigating from the earth to the
moon and the need for a certain amount of spacecraft autonomy dic-
tated the use of a computer to assist in solving the navigation,
guidance, and flight control problems inherent in such missions. Be-
fore President John F. Kennedy publicly committed the United States
to a "national goal” of landing a man on the moon, it was necessary to
determine the feasibility of guiding a spacecraft to a landing from a
quarter of a million miles away. The availability of a capable com-
puter was a key factor in making that determination.

The Instrumentation Laboratory of the Massachusetts Institute of
Technology (MIT) had been working on small computers for
aerospace use since the late 1950s. Dr. Raymond Alonso designed
such a device in 1958—1959!. Soon after, Eldon Hall designed a com-

puter for an unmanned mission to photograph Mars and return?. That
computer could be interfaced with both inertial and optical sensors. In
addition, MIT was gaining practical experience as the prime contrac-
tor for the guidance system of the Polaris missile. In early 1961,
Robert G. Chilton at NASA-Langley Space Center and Milton
Trageser at MIT set the basic configuration for the Apollo guidance
system3. An on-board digital computer was part of the design. The
existence of these preliminary studies and the confidence of C. Stark
Draper, then director of the Instrumentation Lab that now bears his
name, contributed to NASA’s belief that the lunar landing program
was possible from the guidance standpoint.

The presence of a computer in the Apollo spacecraft was justified
for several reasons. Three were given early in the program: (a) to
avoid hostile jamming, (b) to prepare for later long-duration
(planetary) manned missions, and (c) to prevent saturation of ground
stations in the event of multiple missions in space simultaneously?.
Yet none of these became a primary justification. Rather, it was the
reality of physics expressed in the 1.5-second time delay in a signal
path from the earth to the moon and back that provided the motivation
for a computer in the lunar landing vehicle. With the dangerous land-
ing conditions that were expected, which would require quick decision
making and feedback, NASA wanted less reliance on ground-based
computing’. The choice, later in the program, of the lunar orbit ren-
dezvous method over direct flight to the moon, further justified an on-
board computer since the lunar orbit insertion would take place on the
far side of the moon, out of contact with the earth®. These considera-
tions and the consensus among MIT people that autonomy was
desirable ensured the place of a computer in the Apollo vehicle.

Despite the apparent desire for autonomy expressed early in the

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 29

program, as the mission profile was refined and the realities of build-
ing the actual spacecraft and planning for its use became more im-
mediate, the role of the computer changed. The ground computers be-
came the prime determiners of the vehicle’s position in three-
dimensional space "at all times" (except during maneuvers) in the
missions’. Planners even decided to calculate the lunar orbit insertion
burn on the ground and then transmit the solution to the spacecraft
computer, which somewhat negated one of the reasons for having it.
Ultimately, the actual Apollo spacecraft was only autonomous in the
sense it could return safely to earth without help from the ground?.

Even with its autonomous role reduced, the Apollo on-board
computer system was integrated so fully into the spacecraft that desig-
ners called it "the fourth crew member"®. Not only did it have naviga-
tion functions, but also system management functions governing the
guidance and navigation components. It served as the primary source
of timing signals for 20 spacecraft systems!0. The Apollo computer
system did not have as long a list of responsibilities as later spacecraft
computers, but it still handled a large number of tasks and was the ob-
ject of constant attention from the crew.

MIT CHOSEN AS HARDWARE
AND SOFTWARE CONTRACTOR

On August 9, 1961, NASA contracted with the MIT Instrumen-
tation Lab for the design, development, and construction of the Apollo
guidance and navigation system, including software. The project
manager for this effort was Milton Trageser, and David Hoag was the
technical director!l. MIT personnel generally agree that they were
chosen because their work on Polaris proved that they could handle
time, weight, and performance restrictions and because of their pre-
vious work in space navigation!Z, In fact, the Polaris team was moved
almost intact to Apollol3. Despite their experience with aerospace
computers, the Apollo project turned out to be a genuine challenge for
them. As there were no fixed specifications when the contract was
signed, not until late 1962 did MIT have a good idea of Apollo’s
requirements!4. One of the MIT people later recalled that

If the designers had known then [1961] what they learned later,
or had a complete set of specifications been available...they
would probably have concluded that there was no solution with
the technology of the early 1960s1.

Fortunately, the technology improved, and the concepts of computer
science applied to the problem also advanced as MIT developed the
system.

30 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

NASA’s relationship with MIT also proved to be educational.
The Apollo computer system was one of NASA’s first real-time, large
scale software application contracts!®. Managing such a project was
completely outside the NASA experience. A short time after making
the Apollo guidance contract, NASA became involved in developing
the on-board software for Gemini (a much smaller and more control-
lable enterprise) and the software for the Integrated Mission Control
Center. Different teams that started within the Space Task Group, later
as part of the Manned Spacecraft Center in Houston, managed these
projects with little interaction until the mid-1960s, when the two
Gemini systems approached successful completion and serious
problems remained with the Apollo software. Designers borrowed
some concepts to assist the Apollo project. In general, NASA person-
nel involved with developing the Apollo software were in the same
virgin territory as were MIT designers. They were to learn together
the principles of software engineering as applied to real-time
problems.

THE APOLLO COMPUTER SYSTEMS

The mission profile used in sending a man to the moon went
through several iterations in the early 1960s. For a number of reasons,
planners rejected the direct flight method of launching from the earth,
flying straight to the moon, and landing directly on the surface. Be-
sides the need for an extremely large booster, it would require flaw-
less guidance to land in the selected spot on a moving target a quarter
of a million miles away. A spacecraft with a separate lander would
segment the guidance problem into manageable portions. First, the en-
tire translunar spacecraft would be placed in earth orbit for a revolu-
tion or two to properly prepare to enter an intercept orbit with the
moon. Upon arriving near the moon, the spacecraft would enter a
lunar orbit. It was easier to target a lunar orbit window than a point on
the surface. The lander would then detach and descend to the surface,
needing only to guide itself for a relatively short time. After comple-
tion of the lunar exploration, a part of the lander would return to the
spacecraft still in orbit and transfer crew and surface samples, after
which the command module (CM) would leave for earth.

With a lunar orbit rendezvous mission, more than one computer
would be required, since both the CM and the lunar excursion module
(LEM) needed on-board computers for the guidance and navigation
function. The CM’s computer would handle the translunar and tran-
searth navigation and the LEM’s would provide for autonomous land-
ing, ascent, and rendezvous guidance.

NASA referred to this system with its two computers, identical in
design but with different software, as the Primary Guidance, Naviga-

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 31

tion, and Control System (PGNCS, pronounced "pings"). The LEM
had an additional computer as part of the Abort Guidance System
(AGS), according to the NASA requirement that a first failure should
not jeopardize the crew. Ground systems backed up the CM computer
and its associated guidance system so that if the CM system failed, the
spacecraft could be guided manually based on data transmitted from
the ground. If contact with the ground were lost, the CM system had
autonomous return capability. Since the lunar landing did not allow
the ground to act as an effective backup, the LEM had the AGS to
provide backup ascent and rendezvous guidance. If the PGNCS failed
during descent, the AGS would abort to lunar orbit and assist in ren-
dezvous with the CM. It would not be capable of providing landing
assistance except to monitor the performance of the PGNCS. There-
fore the computer systems on the Apollo spacecraft consisted of three
processors, two as part of the PGNCS and one as part of the AGS.

EVOLUTION OF THE HARDWARE:
Old Technology versus New: Block I and Block I Designs

The computer envisioned by MIT’s preliminary design team in
1961 was a shadow of what actually flew to the moon in 1969. There
always seem to be enough deficiencies in a final product that the
designers wish they had a second chance. In some ways the Apollo
guidance computer was a second chance for the MIT team since most
worked on the Polaris computer. That was MIT’s most ambitious at-
tempt at an "embedded computer system," a computer that is intrinsic
to a larger component, such as a guidance system. Although the
Apollo computer started out to be quite similar to Polaris, it evolved
into something very different. The Apollo guidance computer had two
flight versions: Block I and Block II. Block I was basically the same
technology as the Polaris system. Block II incorporated new technol-
ogy within the original architecture.

Several factors led from the Block I design to Block II. NASA’s
challenges to the MIT contract and the decision to use the rendezvous
method instead of a direct ascent to the moon were decisive. A third
factor related to reliability. Finally, the benefits of the new technology
influenced the decision to make Block II.

Before NASA let the contract to MIT, but after it was known that
the Instrumentation Laboratory would be accorded "sole source"
status, several NASA individuals began studying ways to consolidate
flight computer development. In June 1961, Harry J. Goett of God-
dard Space Flight Center recommended that the computers needed for
the Orbiting Astronomical Observatory (OAO), Apollo, and the
Saturn launch vehicle be the same. He cited an IBM proposal for $5

32 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

million to do just that!7. On the same day Goett’s recommendation,
RCA proposed the use of a 420-cubic-inch computer with only an 80-
watt power consumption and 24-bit word size as a general-purpose
spaceborne computer!®. This proposal got nowhere and NASA’s
Robert G. Chilton challenged Goett’s idea, showing that the expected
savings would not materialize. Even though the projected cost of the
Apollo computer would decrease to $8 million from $10 million, the
OAO development costs would rise from $1.5 million to $5 million!9.
[ronically, in the same month, Ramon Alonso from MIT met with
Marshall Space Flight Center personnel about the use of the Apollo
computer in the Saturn.29 Although MIT got the Apollo contract and
[BM got the contract for the Saturn computer, the idea of a duplicate
system did not die. Two years later, when the deficiencies of the
Polaris-based system were obvious and the solutions offered by the
new technology of the Block II version still unproved, David
W. Gilbert, NASA manager for Apollo guidance and control,
proposed replacing the MIT machine with the one IBM was building
for SaturnZ!. It did not occur because Gilbert wanted NASA to accept
the reprogramming costs, and the existing configuration of the IBM
computer would not fit in the space allotted for it in the CM.
Nevertheless, MIT would still have to deal with NASA misgivings
about the hardware design as late as May 1964, when Maj. Gen.
Samuel C. Phillips, deputy director of the Apollo Program, reported
on a meeting to discuss the use of the triple modular redundant Saturn
launch vehicle computer in Apollo?2.

The decision to have a separate CM and the LEM influenced the
transition to Block II by providing a convenient dividing point in the
Apollo program. The early Apollo development flights were to use
the CM only. Later flights would include the LEM. Since Block I
design and production had already proceeded, planners decided to use
the existing Block I in the unmanned and early manned development
flights (all relatively simple earth-orbital missions) and to switch to
Block II for the more complex combined CM~LEM missions23.

Reliability was another force behind Block II. During early plan-
ning for the guidance system, redundancy was considered a solution
to the basic reliability problem. Designers thought that two computers
would be needed to provide the necessary backup; however, they
dropped this scheme for two reasons. The ground had primary respon-
sibility for determining the state vector (the position of the craft in
three-dimensional space) in translunar, lunar orbit, and transearth
flight?4. Moreover, none of the variations of the two-computer or
other redundancy schemes could meet the power, weight, and size
requirements.2> One way to provide some measure of protection is to
make the computer repairable in flight. The Block I design, due to its
modularity, could be fixed during a mission that carried appropriate
spares. At any rate, its predicted mean time between failures (MTBF)

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 33

was 4,200 hours, about 20 times longer than the longest projected
missionZ0. But Block I’s repair capability became a negative factor
when sealing the computer began to be considered more important to
reliability than the ability to repair it?7. Aside from packaging, over-
all malfunction detection was improved in the Block II design, further
increasing reliability28.

The most important reason for going to Block II was the
availability of new technology. The Block I design used core transis-
tor logic. It had several disadvantages:

e [t could not be complemented, a very important basic
operation in computer arithmetic that changes a one to a
ZEero or vice versa.

e It had the characteristic of "destructive readout,” in which
a datum read from a flip-flop using core transistor logic
loses the datum; that forces the inclusion of a circuit to
rewrite the datum if it is to be retained after the read
cycle.

e Memory cycle time could not be fixed: in Block I it was
an average of 19.5 milliseconds, which was quite slow for

computers at the time, and the varying cycle caused

timing problems within the machine2?,

These disadvantages led MIT to begin studying, as early as 1962,
the possible use of integrated circuits (ICs) to replace core transistor
circuits. ICs, so ubiquitous today, were only 3 years old then and thus
had little reliability history. It was therefore difficult to consider their
use in a manned spacecraft without convincing NASA that the ad-
vantages far outweighed the risks.

To accomplish this, the MIT team chose a direct-coupled transis-
tor logic (DCTL) NOR gate with a three-input element,30 consisting
of three transistors and four resistors. NOR logic inverts the results of
applying a Boolean OR operation to the three inputs. It took nearly
5,000 of these simple circuits to build an Apollo computer. Using a
variety of circuits would have simplified the design since the com-
ponent count would have been reduced, but by using the NOR alone,
overall simplicity and reliability increased3!. Also, the time it took the
machine to cycle became fixed at 11.7 milliseconds, a double bonus in
that speed increased and cycle time was consistent32.

Aside from these advantages, MIT believed that the lead time to
the first flight would permit reliability to be established and the cost of
the ICs to come down33. At the time, the production of such circuits
was low, and they were more expensive than building core transistor
circuits. To place the production rate in perspective, MIT chose the
NOR ICs in the fall of 1962 and by the summer of 1963, 60% of the

34 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

total U.S. ou?)ut of microcircuits was being used in Apollo prototype
construction34. This is one of the few cases in which NASA’s require-
ments acted as a direct spur to the computer industry. When MIT
switched to ICs, it kept the Apollo computer as "state of the art" at
least during its design stage. It would be hopelessly outdated tech-
nologically by the time of the lunar landing 7 years later, but in 1962,
using the new microcircuits seemed to be a risk. This view is con-
tested by one member of the MIT team, who later said that the deci-
sion "wasn’t bold; it was just the easy thing to do to get the size and
power and other requirements"3°.

With the ICs fully incorporated in the Apollo computer and the
transition from Block I to Block II complete, NASA possessed a
machine that was more up to date technologically. It had double the
memory of the largest Block I, more I/O capability, was smaller, and
required less powe:r.36 Besides, it was also more reliable, which was,
as always, the major consideration.

THE APOLLO GUIDANCE COMPUTER: HARDWARE

Overall Configuration and Architecture

The Apollo Guidance Computer was fairly compact for a com-
puter of its time. The CM housed the computer in a lower equipment
bay, near the navigator’s station. Block II measured 24 by 12.5 by 6
inches, weighed 70.1 pounds, and required 70 watts at 28 volts DC.
The machine in the lunar module was identical.

Crew members could communicate with either computer using
display and keyboard units (DSKY, pronounced "disky"). Two
DSKYs were in the CM, one on the main control panel and one near
the optical instruments at the navigator’s station. In addition, a "mark"
button was at the navigator’s station to signal the computer when a
star fix was being taken. A single DSKY was in the lunar module. The
DSKYs were 8 by 8 by 7 inches and weighed 17.5 pounds. As well as
the DSKYs, the computer directly hooked to the inertial measurement
unit and, in the CM, to the optical units.

The choice of a 16-bit word size was a careful one. Many scien-
tific computers of the time used 24-bit or longer word lengths and, in
general, the longer the word the better the precision of the calcula-
tions. MIT considered the following factors in deciding the word
length: (@) precision desired for navigation variables, (b) range of in-
put variables, and (c) the instruction word format3”. Advantages of a
shorter word are simpler circuits and higher speeds, and greater preci-
sion could be obtained by using multiple words.38. A single precision
word of data consisted of 14 bits, with the other 2 bits as a sign bit
(with a one indicating negative) and a parity bit (odd parity). Two ad-

COMPUTERS ON BOARD THE APOLLLO SPACECRAFT 35

jacent words yielded "double precision” and three adjacent, "triple
precision.” To store a three-dimensional vector required three double
precision words3?. Data storage was as fractions (all numbers were
less than one)#V. An instruction word used bits 15-13 (they were
numbered descending left to right) as an octal operation code. The ad-
dress used bits 12—-1. Direct addressing was limited, so a "bank
register” scheme (discussed below) existed to make it possible to ad-
dress the entire memory*!.

The Apollo computer had a simple packaging system. The com-
puter circuits were in two trays consisting of 24 modules. Each
module had two groups of 60 flat packs with 72-pin connectors. The
flatpacks each held two logic gates*2. Tray A held the logic circuits,
interfaces, and the power supply, and tray B had the memory, memory
electronics, analog alarm devices, and the clock, which had a speed of
one megahertz43. All units of the computer were hermetically
sealed*4. The memory in Block II consisted of a segment of erasable
core and six modules of core rope fixed memory. Both types are dis-
cussed fully below.

The Apollo computer used few flip-tlop registers due to size and
weight considerations?’, but seven key registers in the computer did
use flip-flops:

e The accumulator, register 00000, referenced as "A".
e The lower accumulator, 000001, "L".

¢ The return address register, 000002, "Q".

e The erasable bank register, 000003, "EB".

e The fixed bank register, 000004, "FB".

e The next address, 000005, "Z".

e The both bank register, 000006, "BB" (data stored in EB
and FB were automatically together here)*0.

The use of bank registers enabled all of the machine’s memory to
be addressed. The largest number that can be contained in 12 bits is
8,192. The fixed memory of the Apollo computer contained over four
times that many locations. Therefore, the memory divided into
"banks" of core, and the addressing could be handled by first indicat-
ing which bank and then the address within the bank. For example,
taking the metaphor "address" literally, there are probably hundreds of
"100 Main Street" addresses in any state, but by putting the ap-
propriate city on an envelope, a letter can be delivered to the intended
100 Main Street without difficulty.

The computer banks were like the cities of the analogy. The eras-
able bank register held just 3 bits that were used to extend the direct

36 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

addressing of the erasable memory to its "upper" region, and the fixed
bank register held 5 bits to indicate which core rope bank to address.
In addition, for the addresses needing a total of 16 bits, a "super bank
bit" could be stored and concatenated to the fixed bank data and the
address bits in the instruction word*’. This scheme made it possible to
handle the addressing using a 16-bit word, but it placed a greater bur-
den on the programmers, who, in an environment short of adequate
tools, had to attend to setting various bit codes in the instructions to
indicate the use of the erasable bank, fixed bank, or super bank bit.
Although this simplified the hardware, it increased the complexity of
the software, an indication that the importance of the software was not
fully recognized by the designers.

To further reduce size and weight, the Apollo computer was
designed with a single adder circuit, which the computer used to up-
date incremental inputs, advance the next address register, modify
specified addresses, and do all the arithmetic*3. The adder and the 16
I/O channels were probably the busiest circuits in the machine.

Memory

The story of memory in the Apollo computer is a story of increas-
ing size as mission requirements developed. In designing or purchas-
ing a computer system for a specific application, the requirements for
memory are among the most difficult to estimate. NASA and its com-
puter contractors have been consistently unable to make adequate
judgments in this area. Apollo’s computer had both permanent and
erasable memory, which grew rapidly over initial projections.

Apollo’s computer used erasable memory cells to store inter-
mediate results of calculations, data such as the location of the
spacecraft, or as registers for logic operations. In Apollo, they also
contained the data and routines needed to ready the computer for use
when it was first turned on. Fixed memory contained programs that
did not need to be changed during the course of a mission. The cycle
times of the computer’s memories were equal for simplicity of
operation4?.

MIT’s original design called for just 4K words of fixed memory
and 256 words of erasable (at the time, two computers for redundancy
were still under consideration)®?. By June 1963, the figures had

grown to 10K of fixed and 1K of erasable!. The next jump was to
12K of fixed, with MIT still insisting that the memory requirement for
an autonomous lunar mission could be kept under 16K>2! Fixed
memory leapt to 24K and then finally to 36K words, and erasable
memory had a final configuration of 2K words.

Lack of memory caused constant and considerable software

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 37

development problems, despite the increase of fixed memory 18 times
over original estimates and erasable memory 16 times. Part of the
software difficulties stemmed from functions and features that had to
be dropped because of program size considerations, and part because
of the already described addressing difficulties. If the original desig-
ners had known that so much memory would be needed, they might
not have chosen the short word size, as a 24-bit word could easily
directly address a 36K bank, with enough room for a healthy list of in-
struction codes.

One reason the designers underestimated the memory require-
ments was that NASA did not provide them with detailed specifica-
tions as to the function of the computer. NASA had established a need
for the machine and had determined its general tasks, and MIT
received a contract based on only a short, very general requirements
statement in the request for bid. The requirements started changing
immediately and continued to change throughout the program.
Software was not considered a driving factor in the hardware design,
and the hardware requirements were, at any rate, insufficient.

The actual composition of the memory was fairly standard in its
erasable component but somewhat unique in its fixed component. The
erasable memory consisted of coincident-current ferrite cores similar
to those on the Gemini computer, and the fixed memory consisted of
core rope, a high-density read-only memory using cores of similar
material composition as the erasable memory but of completely dif-
ferent design. MIT adopted the use of core rope in the original Mars
probe computer design and carried it over to the Apollo®3 Chief ad-
vantage of the core rope was that it could put more information in less
space, with the attendant disadvantages that it was difficult to
manufacture and the data stored in it were unchangeable once it left
the factory (see Box 2-1).

38 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 2-1: Core Rope: A Unique Data Storage Device

Each core in an erasable memory could store one bit of information,
and each core in the core rope fixed memory could store four words of
information. In the erasable memory, cores are magnetized either clock-
wise or counterclockwise, thus indicating the storage of either a one or a
zero. In fixed memory, each core functions as a miniature transformer,
and up to 64 wires (four sets of 16-bit words) could be connected to each
core. If a wire passed through a particular core, a one would be read. If a
particular wire bypassed the core, a zero would be read. For example, to
store the data word 1001000100001111 in a core, the first, fourth, eighth,
and thirteenth through sixteenth wires would pass through that core, the
rest would bypass it. A 2-bit select code would identify which of the four
words on a core was being read, and the indicated 16 bits would be sent
to the appropriate register>*. In this way, up to 2,000 bits could be stored
in a cubic inch35.

The computer contained core rope arranged in six modules, and
each module contained 6,144 16-bit words3®. The modules further
divided into "banks" of 1,024 words. The first two banks were called the
"fixed-fixed memory" and could be directly addressed by 12 bits in an
instruction word. The remaining 34 were addressable as described in the
text, using the 5-bit contents of the fixed bank register and the 10 bits in
an instruction word>’.

The use of core rope constrained NASA’s software developers.
Software to be stored on core rope had to be delivered months before
a scheduled mission so that the rope could be properly manufactured
and tested. Once manufactured, it could not be altered easily since
each sealed module required rewiring to change bits. The software not
only had to be finished long in advance, but it had to be perfect.

Even though common sense indicates that it is advantageous to
complete something as complex and important as software long be-
fore a mission so that it can be used in simulators and tested in various
other ways, software is rarely either on time or pertect. Fortunately for
the Apollo program, the nature of core rope put a substantial amount
of pressure on MIT’s programmers to do it right the first time. Unfor-
tunately, the concept of "bug'-free software was alien to most
programmers of that era. Programming was a fully iterative process of
removing errors. Even so, many "bugs" would carry over into a
delivered product due to unsophisticated testing techniques. Errors
found before a particular system of rope was complete could be fixed
at the factory58, but most others had to be endured. Raytheon, the sub-
contractor that built the ropes, could eliminate hard-wiring errors in-
troduced during manufacture by testing the rope modules against the

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 39

1 o 1 1 1 O
O ° 1 1 1 21 0
O 0o ¢ 3 1 ¢ o
o O o o 1 1 A R'J
— — M M =
SELECT L] L 1R
!—4

Figure 2—1. This diagram shows the principle behind core rope. Suppose that the
data shown above the cores in the drawing is to be stored in the specific core.
Thus 1000 is stored in the first core on the left by attaching the top wire from the
select circuit to the core and bypassing it with the next three wires. When that
core is selected for reading, the wire attached to the core will indicate a "one"
because all cores in a rope are permanently charged as ones; the wires bypassing
the core will indicate zeroes.

delivery tape of the programs. The company built a device to do
this>®.

Production Problems and Testing

Development and production of the Apollo guidance, navigation,
and control system reflected the overall speed of the Apollo program.
Design of the system began in the second quarter of 1961, and NASA
installed a Block I version in a spacecraft on September 22, 1965.
Release of the original software (named CORONA) was in January
1966, with the first flight on August 25, 196690, Less than 3 years
after that, designers achieved the final program objective. Even
though fewer than two dozen spacecraft flew, NASA authorized the
building of 75 computers and 138 DSKYs. Fifty-seven of the com-
puters and 102 of the crew interfaces were of the Block II design®!.
This represents a considerable production for a special-purpose com-
puter of the type used in Apollo. The need to quickly build high-
quality, high-reliability computers taxed the abilities of Raytheon.

Through AC Electronic Circuits (contractor for the entire
guidance system), Raytheon was chosen to build the computers MIT
had designed largely because of its Polaris experience, but it had

40 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

never built a computer as complex as the one for Apollo. The Polaris
machine was much simpler. Despite the use of experienced Polaris
personnel, Raytheon’s production division for the Apollo computer
went from 800 to 2,000 employees in a year’s time in order to handle
the increased difficulties and speed of production®2.

Rapid growth, underestimation of production requirements, and
reliability problems dogged Raytheon throughout the program.
Changes in design made by MIT in late 1962 caused the company its
initial trouble. The original request for proposal had featured Polaris
techniques, so Raytheon bid low, expecting to use the same tools and
production line for the Apollo machine. The changes in component
types and memory size caused cost estimates to nearly double, result-
ing in considerable friction with NASA®3. NASA was also worried
when two comguters and fully 50% of the Block I DSKYs failed
vibration tests®. These failures turned out to be largely caused by
contaminated flat packs and DSKY relays. Particles would shake
loose during vibration testing®>. The Block II computers would not
work at first due to excessive signal propagation time in the
micrologic interconnection matrix. The solution was to switch from
nickel ribbon connectors to a circuit board, causing an increase of
$500,000 in production costs%0.

These sorts of problems caused the Manned Spacecraft Center to
authorize a complete design review of the AGC in February 1966. The
lack of adequate support documentation was found to be the most sig-
nificant fault of the Block II computer®’. This sort of problem is
usually the result of speeding up development to the point at which
changes are not adequately documented.

Continuous and careful attention to reliability led to the discovery
of problems. Builders flight-screened components lot by 1ot®8. Post-
production hardware tests included vibration, shock, acceleration,
temperature, vacuum, humidity, salt fog, and electronic noise.%9 As
D.C. Fraser, an engineer on the project, later remarked, "reliability of
the Apollo computer was bought with money"79.

THE APOLLO GUIDANCE COMPUTER: SOFTWARE

Development of the on-board software for the Apollo program
was an important excercise both for NASA and for the discipline of
software engineering. NASA acquired considerable experience in
managing a large, real-time software project that would directly in-
fluence the development of the Shuttle on-board software. Software
engineering as a specific branch of computer science emerged as a
result of experiences with large-size military, civilian, and spaceborne
systems. As one of those systems, the Apollo software effort helped

S

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 41

provide examples both of failure and success that could be incor-
porated into the methodology of software engineering.

In the Apollo program, as well as other space programs with mul-
tiple missions, system software and some subordinate computer
programs are only written once, with some modifications to help in-
tegrate new software. However, each mission generates new opera-
tional requirements for software, necessitating a design that allows for
change. Since 1968, when designers first used the term software en-
gineering, consciousness of a software life cycle that includes an ex-
tended operational maintenance period has been an integral part of
proper software development.

Even during the early 1960s, the cycle of requirements definition,
design, coding, testing, and maintenance was followed, if not fully ap-
preciated, by software developers. A Bellcomm report prepared for
the Apollo program and dated November 30, 1964 could serve as an
excellent introduction to the concept today’!. The important dif-
ference from present practice was the report’s recommendation that
modules of code be limited to 200 to 300 lines, about five times larger
than current suggestions. The main point of the report (and the thrust
of software engineering) was that software can be treated the same
way as hardware, and the same engineering principles can apply.
However, NASA was more used to hardware development than to
large-scale software and, thus, initially failed adequately to control the
software development. MIT, which concentrated on the overall
guidance system, similarly treated software as a secondary
occupation’?. This was so even though MIT manager A.L. Hopkins
had written early in the program that "upon its execution rests the ef-
ficiency and flexibility of the Apollo Guidance and Navigation
System"73. Combined with NASA’s inexperience, MIT’s non-
engineering approach to software caused serious development
problems that were overcome only with great effort and expense. In
the end NASA and MIT produced quality software, primarily because
of the small-group nature of development at MIT and the overall
dedication shown by nearly everyone associated with the Apollo

program/’4,
Managing the Apollo Software Development Cycle

One purpose of defining the stages in the software development
cycle and of providing documentation at each step is to help control
the production of software. Programmers have been known to in-
advertently modify a design while trying to overcome a particular
coding difficulty, thus making it impossible to fulfill the specification.
Eliminating communication problems and preventing variations from
the designed solution are among the goals of software engineering. In

O

42 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

the Apollo program, with an outside organization developing the
software, NASA had to provide for quality control of the product. One
method was a set of standing committees; the other was the accep-
tance cycle.

Three boards contributed directly to the control of the Apollo
software and hardware development. The Apollo Spacecraft Con-
figuration Control Board monitored and evaluated changes requested
in the design and construction of the spacecraft itself, including the
guidance and control system, of which the computer was a part. The
Procedures Change Control Board, chaired by Chief Astronaut
Donald K. Slayton, inspected items that would affect the design of the
user interfaces. Most important was the Software Configuration Con-
trol Board, established in 1967 in response to continuing problems
and chaired for a long period by Christopher Kraft. It controlled the
modifications made to the on-board software’>. All changes in the ex-
isting specification had to be routed through this board for resolution.
NASA'’s Stan Mann commented that MIT "could not change a single
bit without permission"7®.

NASA also developed a specific set of review points that paral-
leled the software development cycle. The Critical Design Review
(CDR) resulted in acceptance of specifications and requirements for a
given mission and placed them under configuration control. It fol-
lowed the preparation of the requirements definition, guidance equa-
tion development, and engineering simulations of the equations. Next
came a First Article Configuration Inspection (FACI). Following the
coding and testing of programs and the production of a validation
plan, it marked the completion of the development stage and placed
the software code under configuration control. After testing was com-
pleted, the Customer Acceptance Readiness Review (CARR) certified
that the validation process resulted in correct software. After the
CARR, the code would be released for core rope manufacture. Finally
the Flight Readiness Review (FRR) was the last step in clearing the
software for flight’7. The acceptance process was mandatory for each
mission, providing for consistent evaluation of the software and ensur-
ing reliability. The unique characteristic of ICs of the Apollo software
appeared at each stage of the software life cycle.

Requirements Definition

Defining requirements is the single most difficult part of the
software development cycle. The specification is the customer’s state-
ment of what the software product is to do. Improperly prepared or
poorly defined requirements mean that the resulting software will
likely be incomplete and unusable. Depending on the type of project,
the customer may have little or a lot to do with the preparation of the

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 43

specification. In most cases, a team from the software developers
works with the customer.

MIT worked closely with NASA in preparing the Guidance and
Navigation System Operations Plan (GSOP), which served as the re-
quirements document for each mission. NASA’s Mission Planning
and Analysis Division at the Manned Spacecraft Center provided
detailed guidance requirements right down to the equation level’8. Of-
ten these requirements were in the form of flow charts to show
detailed logic’?. The division fashioned these requirements into a con-
trolled document that contained specific mission requirements,
preliminary mission profile, preliminary reference trajectory, and
operational requirements for spacecraft guidance and navigation.
NASA planned to review the GSOP at launch minus 18 months, 16
months, 14 months and then to baseline or "freeze" it at 13.5 months
before launch. The actual programs were to be finished at launch
minus 10.5 months and tested until 8 months ahead, when they were
released to the manufacturer, with tapes also kept at MIT and sent to
Houston, North American (CM manufacturer), and Grumman (LEM
manufacturer) for use in simulations. At launch minus 4 months the
core ropes were to be completed and used throughout the mission80.

In software engineering practice today, the specification docu-
ment is followed by a design document, from which the coding is
done. Theoretically, the two together would enable any competent
programmer to code the program. The GSOPs contained characteris-
tics of both a specification and design document. But, as one of the
designers of the Apollo and Shuttle software has said, "I don’t think I
could give you the requirements for Apollo and have you build the
flight software"81. In fact, the plans varied both in what they included
and in the level of detail requirements. This variety gave MIT con-
siderable latitude when actually developing the flight software, thus
reducing the chance that it would be easily verified and validated.

Coding: Contents of the Apollo Software

By 1963, designers determined that the Apollo computer software
would have a long list of capabilities, including acting as backup to
the Saturn booster, controlling aborts, targeting, all navigation and
flight control tasks, attitude determination and control, digital
autopilot tasks, and eventually all maneuvers involving velocity
changes82. Programs for these tasks had to fit in the memories of two
small computers, one in the CM and one in the LEM. Designers
developed the programs using a Honeywell 1800 computer and later
an IBM 360, but never with the actual flight hardware. The develop-

ment computers generated binary object code and a listing33. The tape

44 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

containing the object code would be tested and eventually released for
core rope manufacture. The listing served as documentation of the

coded4.
Operating System Architecture

The AGC was a priority—interrupt system capable of handling
several jobs at one time. This type of system is quite different from a
"round-robin executive." In the latter, programs have a fixed amount
of time in which to run before being suspended while the computer
moves on to the remaining pending jobs, thus giving each job the
same amount of attention. A priority—interrupt system is always ex-
ecuting the one job with the highest priority; it then moves on to
others of equal or lower priority in its queue.

The Apollo control programs included two related to job schedul-
ing: the Executive and the Waitlist. The Executive could handle up to
seven jobs at once while the Waitlist had a limit of nine short tasks8>.
Waitlist tasks had execution times of 4 milliseconds or less. If a task
ran longer than that, it would be promoted by the Waitlist to "job"
status and moved to the Executive’s queue30. The Executive checked
every 20 milliseconds for jobs or tasks with higher priorities than the
current ones87. It also managed the DSKY displays88. If the Execu-
tive checked the priority list and found no other jobs waiting, it ex-
ecuted a program called DUMMY JOB continuously until another job
came into the queue8?.

The Executive had other duties as part of controlling jobs. One
solution to the tight memory in the AGC was the concept of time-
sharing the erasable memory?0. No job had permanent claim to any
registers in the erasable store. When a job was being executed, the Ex-
ecutive would assign it a "coreset" of 12 erasable memory locations.
Also, when interpretive jobs were being run (the Interpreter is ex-
pldined below), an additional 43 cells were allocated for vector ac-
cumulation (VAC). The final lunar landing programs had eight
coresets in the LEM computer and just seven in the CM. Both had
five VACs?1. Moreover, memory locations were given multiple as-
signments where it was assured that the owning processes would
never execute at the same time. This approach caused innumerable
problems in testing as software evolved and memory conflicts were
created due to the changes.

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 45
Programming the AGC

One can program a computer on several levels. Machine code, the
actual binary language of the computer itself, is one method of
specifying instructions. However, it is tedious to write and prone to
error. Assembly language, which uses mnemonics for instructions.(e.
g., ADD in place of a 3-bit operation code) and, depending on its
sophistication, handles addressing, is at a higher level. Most program-
mers in the early 1960s were quite familiar with assembly languages,
but such programs suffered from the need to put too much respon-
sibility in the hands of the programmer. For Apollo, MIT developed a
special higher order language that translated programs into a series of
subroutine linkages, which were interpreted at execution time. This
was slower than a comparable assembly language program, but the
language required less storage to do the same job?2. The average in-
struction required two machine cycles—about 24 milliseconds—to
execute?3,

The interpreter got a starting location in memory, retrieved the
data in that location, and interpreted the data as though it were an
instruction4. Instead of having only the 11 instructions available in
assembler, up to 128 pseudoinstructions were defined®>. The larger
number of instructions in the interpreter meant that equations did not
have to be broken down excessively?0. This increased the speed and
accuracy of the coding.

The MIT staff gave the resulting computer programs a variety of
imaginative names. Many, such as SUNDISK, SUNBURST, and
SUNDIAL, related to the sun because Apollo was the god of the sun
in the classical period. But the two major lunar flight programs were
called COLOSSUS and LUMINARY. The former was chosen be-
cause it began with "C" like the CM, and the latter because it began
with "L" like the LEMY7. Correspondence between NASA and MIT
often shortened these program names and appended numbers. For ex-
ample, SOLRUMSS was the 55th revision of SOLARIUM for the
AS501 and 502 missions. BURST116 was the 116th revision of
SUNBURST?8. Although these programs had many similarities,
COLOSSUS and LUMINARY were the only ones capable of navigat-
ing a flight to the moon. On August 9, 1968, planners decided to put
the first released version of COLOSSUS on Apollo 8, which made the

first circumlunar flight possible on that mission®?.
Handling Restarts

One of the most significant differences between batch-type com-

46 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

puter systems and real-time systems is the fact that in the latter, an ab-
normal termination of a program is not acceptable. If a ground-based,
non-real-time computer system suffers a software failure ("goes
down") due to overloads or mismanagement of resources, it can
usually be brought up again without serious damage to the users.
However, a failure in a real-time system such as that in an aircraft
may result in loss of life. Such systems are backed up in many ways,
but considerable emphasis is still placed on making them failure proof
from the start. Obviously, the AGC had to be able to recover from
software failures. A worst-case example would be a failure of the
computer during an engine burn. The system had to have a method of
staying "up" at all times.

The solution was to provide for restarts in case of software
failures. Such restarts could be caused by a number of conditions:
voltage failures, clock failure, a "rupt lock” in which the system got
stuck in interrupt mode, or a signal from the NIGHT WATCHMAN
program, which checked to see if the NEWJOB register had not been
tested by the EXECUTIVE, indicating that the operating system was
hung up in some way 100,

An Apollo restart transferred control to a specified address, where
a program would begin that consulted phase tables to see which jobs
to schedule first. These jobs would then be directed to pick up from
the last restart point. The restart point addresses were kept in a restart
table. Programmers had to ensure that the restart table entries and
phase table entries were kept up to date by the software as it
executed!0l. The restart program also cleared all output channels,
such as control jet commands, warning lights, and engine on and off
commands, so that nothing dangerous would take place outside of
computer control192,

A software failure causing restarts occurred during the Apollo 11
lunar landing. The software was designed to give counter increment
requests priority over instructions!03, This meant that if some item of
hardware needed to increment the count in a memory register, its re-
quest to do so would cause the operating system to interrupt current
jobs, process the request, and then pick up the suspended routines. It
had been projected that it 85,000 increments arrived in a second, the
effect would be to completely stop all other work in the system!04,
Even a smaller number of requests would slow the software down to
the point at which a restart might occur. During the descent of Apollo
11 to the moon, the rendezvous radar made so many increment re-
quests that about 15% of the computer systems’ resources were tied
up in responding!05. The time spent handling the interrupts meant that
the interrupted jobs did not have enough computer time to complete
before they were scheduled to begin again. This situation caused res-
tarts to occur, three of which happened in a 40-second period while
program P64 of LUMINARY ran during descent!00. The restarts

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 47

caused a series of warnings to be displayed both in the spacecraft and
in Mission Control. Steven G. Bales and John R. Garman, monitoring
the computer from Mission Control, recognized the origin of the
problem. After consultation, Bales, reporting to the Flight Director,
called the system "GO" for landing!07. They were right, and the res-
tart software successfully handled the situation. The solution to this
particular problem was to correct a switch position on the rendezvous
radar which, through an arcane series of circuitry, had caused the
analog-to-digital conversion circuitry to race up and down!08 This
incident proved the need for and effectiveness of built-in software
recovery for unknown or unanticipated error conditions in flight
software—a philosophy that has appeared deeply embedded in all
NASA manned spaceflight software since then.

Verification and Validation

There could be no true certification of the Apollo software be-
cause it was impossible to simulate the actual conditions under which
the software was to operate, such as zero-G. The need for reliability
motivated an extensive testing program consisting of simulations that
could be accomplished before flight. Three simulation systems were
available for verification purposes: all-digital, hybrid, and system test
labs. All-digital simulations were performed on the Honeywell 1800s
and IBM 360s used for software development. Their execution rate
was 10% of real time!9%. Technicians did hybrid simulations in a lab
that contained an actual AGC with a core rope simulator (as core rope
would not be manufactured until after verification of the program) and
an actual DSKY. Additionally, an attached Beckman analog computer
and various interfaces simulated spacecraft responses to computer
commands!10, Further ad hoc verification took place in the mission
trainers located in Houston and at Cape Canaveral, which would run
the released programs in their interpretive simulators.

The simulations followed individual unit tests and integrated tests
of portions of the software. At first, MIT left these tests to the
programmers to be done on an informal basis. It was very difficult at
first to get the Instrumentation Laboratory to supply test plans to
NASA!L The need for formal validation rose with the size of the
software. Programs of 2,000 instructions took between 50 and 100 test
runs to be fully debugged, and full-size mission loads took from 1,000
to 1,200 runs!12.

NASA exerted some pressure on MIT to be more consistent in
testing, and it eventually adopted a four-level test structure based
largely on the verification of the Gemini Mission Control Center

developed by IBM in 1964113, This is important because formal

48 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

release of the program for rope manufacture was dependent on the
digital simulations only. Raytheon performed the hybrid and system
tests after they had the release tape in hand!14. At that time, MIT
would have released an "AGC Program Verification Document” to
NASA. Aside from help from IBM, NASA also had TRW participate
in developing test plans. Having an outside group do some work on
verification is a sound software engineering principle, as it is less
likely to have a vested interest in seeing the software quickly succeed,
and it helps prevent generic errors.

Apollo Software Development Problems

Real-time flight software development on this scale was a new
experience for both NASA and the MIT Instrumentation Laboratory.
Memory limitations affected the software so that some features and
functions had to be abandoned, whereas tricky programming tech-
niques saved others. Quality of the initial code was sometimes poor,
so verification took longer and was more expensive. Despite valiant
validation efforts, software bugs remained in released programs, forc-
ing adjustments by users. Several times, NASA administrators put
pressure on MIT to reduce software complexity because there were
real doubts about MIT’s ability to deliver reliable software on time.
Apparently, few had anticipated that software would become a pacing
item for Apollo, nor did they properly anticipate solutions to the
problems.

By early 1966, program requirements even exceeded the Block II
computer’s memory. A May software status memo stated that not only
would the programs for the AS504 mission (earth orbit with a LEM)
exceed the memory capacity by 11,800 words but that the delivery
date for the simpler AS207/208 programs would be too late for the
scheduled launch!!5. Lack of memory and the need for faster
throughput resulted in complicating and delaying the program
development effort! 16, One of MIT’s top managers explained

If you are limited in program capacity ... you have to fix. You
have to get ingenious, and as soon as you start to get ingenious

you get intermeshing programs, programs that depend upon

others and utilize other parts of those, and many things are going

on simultaneously. So it gets difficult to assign out little task

groups to program part of the computer; you have to do it with a

very technical team that understands all the interactions on all

these things!17.

The development of obscure code caused problems both in under-
standing the programs and validating them, and this, in turn, caused
delays. MIT’s considerable geographic distance from Houston caused

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 49

additional problems. Thus, NASA’s contract managers had to com-
mute often. Howard W. "Bill" Tindall, newly assigned from the
Gemini Project as NASA’s "watchdog" for MIT software, spent 2 or 3
days a week in Boston starting in early 1966! 18,

Tindall was well known at the Manned Spacecraft Center due to
his legendary "Tindallgrams"—blunt memos regarding software
development for Apollo. One of the first to recognize the importance
of software to mission schedules, he wrote on May 31, 1966 that "the
computer programs for the Apollo spacecraft will soon become the

most pacing item for the Apollo flights"!19, MIT was about to make
the standard emergency move when software was in danger of being
late: to throw more bodies into the project, a tactic that often back-
fires. As many as 50 people were to be added to the programming
staff, and the amount of interaction between programmers and, thus,
the potential for miscommunication increased along with the time
necessary to train newcomers. MIT tried to protect the tenure of its
permanent staff by using contractors who could be easily released.
The hardware effort peaked at 600 workers in June of 1965 and fell
off rapidly after that, while software workers steadily increased to 400
by August of 1968. With the completion of the basic version of
COLOSSUS and LUMINARY, the number of programmers quickly
decreased!20. This method, although in the long-term interests of the
laboratory, caused considerable waste of resources in communication
and training.

Tindall’s memo also detailed many of NASA’s efforts to improve
MIT’s handling of the software development. Tindall had taken Lyn-
wood Dunseith, then head of the computer systems in Mission Con-
trol, and Richard Hanrahan of IBM to MIT to brief the Instrumen-
tation Laboratory on the Program Development Plan used for manage-
ment of software development in the Real-Time Computing Center
associated with Mission Control. The objective was to give MIT some
suggestions on measuring progress and detecting problem areas early.
One NASA manager pointed out that the Instrumentation Laboratory
was protective of the image of MIT, and one way to control MIT was
to threaten its self-esteem!2!. The need to call on IBM for advice was
apparently a form of negative motivation. A couple of weeks later,
Tindall reported that Edward Copps of MIT was leading the develop-
ment of a Program Development Plan based on one done by IBM!22,
However, by July he was complaining that MIT was implementing it
too slowly!23. In fact, some aspects of configuration control such as
discrepancy reporting (when the software does not match the
specification) took over a year for MIT to implement!24,

NASA had to be very careful in approving cuts in the program re-
quirements to achieve some memory savings. Some features were ob-
viously "frosting," and could easily be eliminated; for example, the ef-
fects of the oblate nature of the earth, formerly figured into lunar orbit

50 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

rendezvous but actually minimal enough to be ignored!?>. Also cut
were some attitude maneuver computations. They therefore left Reac-
tion Control System (RCS) burns to the "feel" of the pilot, which

meant slightly greater fuel expenditure!20. Overall, the cuts resulted
in software that saved money and accelerated development but could
not minimize fuel expenditures nor provide the close guidance
tolerance that was within the capability of the computer, given more

memory!27.
Flight AS-204: A Breaking Point

Despite efforts by both MIT and NASA, by the summer of 1966,
flight schedules and problems in development put both organizations
in a dangerous position regarding the software. A study of the
problems encountered with the software for flight AS-204, which was
to be the first manned Apollo mission, best demonstrates the urgency.
On June 13, Tindall reported that the AS-204 program undergoing in-
tegrated tests had bugs in every module. Some had not been unit
tested prior to being mtegrated128 This was a serious breach of
software engineering practice. If individual modules are unit tested
and proven bug-free, then bugs found in integrated tests are most
likely located in the interfaces or calling modules. If unit testing has
not been done then bugs could be anywhere in the program load, and
it 1s very difficult to identify the location properly. This vastly in-
creases the time and, thus, the cost of debugging. It causes a much
greater slip in schedule than time spent on unit tests. Even worse, Tin-
dall said that the test results would not be formally documented to
NASA but that they would be on file if needed.

The AS-204 software schedule problems affected other things.
All the crew-requested changes in the programs were rejected because
including them would cause even further delays!2%. The AS-501
program and others began to slip because the AS-204 fixes were
saturating the Honeywell 1800s used in program development!30,
MIT also added another nine programmers to the team, all from AC
Electronic, thus increasing communication and training problems.

The eventual result was that the flight software for the mission
was of dubious quality. Tindall predicted such would be the case as
early as June 1966, saying that "we have every expectation that the
flight program we finally must accept will be of less than desirable
quality"131, In other words, it would contain bugs, bugs that would
not actually threaten the mission directly but that would have to be
worked around either by the crew or by ground control. They found
one such bug less than a month before the scheduled February 21,
1967, launch date. Ground computers and the Apollo guidance com-

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 51

puter calculated the time for the de-orbit burn that preceded re-entry.
Simulations performed during January 1967 and reported on the 23rd
indicated that there was a discrepancy between the two calculations of
as much as 138 seconds! Since the core rope was already installed in
the spacecraft, the only possible fix (besides a delay in the launch
time) would be to have the crew ignore the Apollo computer solution.
The ground would transmit the Real-Time Computing Center solu-
tion, after which an astronaut would have to key the numbers into the
Apollo computer!32, This situation, and other discrepancies, led one
NASA engineer to later remark that "we were about to fly with flight
software that was really suspect" 133,

AS-204 did not fly, so that software load was never fully tried.
On January 27, 1967, during a simulation with the crew in the
spacecraft on the pad, a fire destroyed the CM, killed the crew, and
delayed the Apollo program for months. The changes in managing
software development put into effect by NASA and MIT during 1966
had not had enough time to take effect before the fire. In the ensuing
period, with manned launches on indefinite delay, MIT was under the
direction of the NASA team led by Tindall and was able to catch up
on its work and take steps to make the software more reliable. NASA
and MIT split the effort among three programs: CM earth orbit, CM
lunar orbit, and lunar module lunar landing (LM earth orbit was
dropped)!34. By October 17, 1967, the SUNDISK earth orbit program
was complete, verified, and ready for core rope manufacture, a year
before the first manned flight!33. The time gained by the delay caused
by the fire allowed for significant improvements in the Apollo
software. Tindall observed at the time, "It is becoming evident that we
are entering a new epoch regarding development of spacecraft com-
puter programs.” No longer would programs be declared complete in
order to meet schedules, requiring the users to work around errors. In-
stead, quality would be the primary consideration!36.

The Guidance Software Task Force

Despite postfire improvements, Apollo software had more hurdles
to clear. NASA was aware of continuing concern about Apollo’s
computer programs. Associate Administrator for Manned Spaceflight
George E. Mueller formed a Guidance Software Task Force on
December 18, 1967 to study ways of improving development and
verification™. The group met 14 times at various locations before its
final report in September 1968137,

*Members of the Task Force included Richard H. Battin, MIT; Leon R. Bush,
Aerospace Corp.; Donald R. Hagner, Bellcomm; Dick Hanrahan, IBM; James
S. Martin, NASA-Langley; John P. Mayer, NASA-MSC; Clarence Pitman, TRW,
and Ludie G. Richard, NASA-Marshall. Mueller was the chairman.

52 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Even while the Task Force was investigating, Mueller took other
steps to challenge MIT. A Software Review Board re-examined the
software requirements for the lunar mission in early February 1968.
The board judged the programs to be too sophisticated and complex,
and Mueller requested that they aim for a 50% reduction in the
programs, with increased propellant consumption allowed as a
tradeoff138. An aide reported that Mueller was convinced that MIT
"might not provide a reliable, checked-out program on schedule” for
the lunar landing mission!39.

The recommended 50% scrub did not occur, and the final report
of the Task Force was very sympathetic to the problems involved in
developing flight software. It recommended standardization of sym-
bols, constants, and variable names used at both Houston and
Huntsville to make communication and coding easier!40, The Task
Force acknowledged that requirements would always be dynamic and
that development schedules would always be accelerated, but rather
than using this for an excuse for poor quality, the group recommended
that software not be slighted in future manned programs. Adequate
resources and personnel were to be assigned early to this "vital and
underestimated area"!41. This realization would have great effect on
managing later software development for the Space Transportation
System.

Mueller remained concerned about software even after the Task
Force dissolved. On March 6, 1969, he wrote a letter to Robert Gil-
ruth, NASA deputy administrator, complaining that software changes
were being made too haphazardly and should receive more attention,
equal to that given to hardware change requests. Gilruth replied five
days later, disagreeing, noting that the Configuration Control Board
and other committees formed an interlocking system adequate for

change control!42,

Lessons of the Apollo Software Development Process

Overcoming the problems of the Apollo software, NASA did suc-
cessfully land a man on the moon using programs certifiably adequate
for the purpose. No one doubted the quality of the software eventually
produced by MIT nor the dedication and ability of the programmers
and managers at the Instrumentation Lab. It was the process used in
software development that caused great concern, and NASA helped to
improve it143. The lessons of this endeavor were the same learned by
almost every other large system development team of the 1960s: (a)
documentation is crucial, (b) verification must proceed through
several levels, (c) requirements must be clearly defined and carefully
managed, (a’) good development plans should be created and ex-

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 53

ecuted, and (e) more programmers do not mean faster development.
Fortunately, no software disasters occurred as a result of the rush to
the moon, which is more a tribute to the ability of the individuals do-
ing the work than to the quality of the tools they used.

USING THE AGC

The Apollo computer system made great demands on the crew. It
took about 10,500 keystrokes to complete a lunar mission; not much
in the life of an airline reservations clerk but still indicative of how
computer centered the crew had to bel44. During the period in which
the software was criticized for its complexity, designers attempted to
reduce the number of keystrokes required to execute various
programs. When possible, they also eliminated built-in halts as data
were displayed for astronaut approval However, the "fourth crew
member" never abandoned center stage!43.

Apollo’s crew employed its computer through the use of the
DSKYs. In the CM one was on the main control panel opposite the
commander’s couch. The other was at the navigator’s station in the
lower equipment bay, where the computer itself was located. Block I
had a different DSKY at the navigator’s station than on the main
panell40, but they were identical in the Block II series. DSKY and
computer activity could be monitored from the ground as the com-
puter transmitted data words to drive real-time displays in Mission
Control 147,

The crew could communicate with the computer through keys,
displays, and warning lights on the DSKY. Additionally, the uplink
telemetry could provide input to the machine, and so could the
preflight checkout equipment!48. The computer, in turn, could com-
municate with the crew by flashing the PROGram, VERB and NOUN
displays149. The DSKY displays included 10 warning lights, a com-
puter activity light, a PROGram display, VERB and NOUN displays,
three five-digit numeric displays with signs, and 19 keys including
VERB, NOUN, CLEAR, KEY RELEASE, PROCEED, RESET,
ENTER, PLUS, MINUS, and the digits 0-9. See Boxes 2-2 and 2-3
for functions and use.

54 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

UPLINK
ACTY

TEMP

NO ATT

GIMBAL
LOCK

PROG

KEY REL

RESTART

OPR ERR

TRACKER

Figure 2-2. The Display and Keyboard (DSKY) of an Apollo spacecraft.
(Prepared by The Wichita State University Media Services)

ORIGINAL PAGE IS
OF POOR QUALITY

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 55

Box 2-2:—Apollo Display and Keyboard Lights

Ten DSKY warning lights had the following functions:

¢ COMP ACTY: This lit up when the computer was running a
program.

e UPLINK ACTY: Lit when data was being received from the
ground.

o TEMP: Lit when the temperature of the stable platform was out
of tolerance.

¢ NO ATT: Lit when the inertial subsystem could not provide at-
titude reference.

¢ GIMBAL LOCK: Lit when the middle gimbal angle was greater
than 70 degrees.

o STBY: Lit when the computer system was on standby.

¢ PROG: Lit when the computer was waiting for additional infor-
mation to be entered by the crew to complete the program.

¢ KEY REL.: Lit when the computer needed control of the DSKY
to complete a program. Sometimes display information could be
"buried" under other routines or by a priority interrupt. The crew
could press the KEY REL key to release the keyboard to the re-
questing programlSO. When the KEY REL light went on, that
signaled the crew to press the key.

¢ RESTART: Lit when the computer was in the restart program.
This was the light that kept coming on during the Apollo 11 land-
ing.

¢ OPR ERR: Lit when the computer detected an error on the
keyboard.

¢ TRACKER: Lit when one of the optical coupling units failed.

The LEM DSKY had three additional lights: NO DAP, ALT, and
VEL, which were related to failures of the digital autopilot and to warn
of altitude and velocity readings outside of the predetermined limits.

56 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 2-3. Another DSKY was located at the navigator’s station in the com-
mand module. Astronaut James A. Lovell takes a star sighting during the Apollo 8
mission. (NASA photo S-69-35099)

Box 2-3:—Apollo Display and Keyboard Displays
Seven displays were available on the DSKY:

¢ PROG: This was a two-digit display indicating what numbered
program the computer was currently executing.

e VERB: A two-digit display of the verb number being entered
(the verb—noun system is discussed below).

¢ NOUN: A two-digit display of the noun number being entered.

e Three five-digit numeric displays, which showed numbers in ei-
ther decimal or octal (base eight). When a sign was shown with
the number, the number was decimal; otherwise, it was octal 151,

ORIGINAL PAGE IS
OF POOR QUALITY

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 57

Figure 2—4. The interior of an Apollo Command Module, showing the location of
the DSKY on the main control panel at the left. Apollo 15 crewmen shown in-
clude Alfred M. Worden (center) and David R. Scott (left). James B. Irwin is
mostly obscured to the right. (NASA photo S-71-29952)

Using the Keys and the Verb—Noun System

Astronauts used keys to enter information and select programs
and actions. Key inputs caused automatic interrupts in the
software!92. The astronauts would activate a program and then inter-
act with it by requesting and entering information; a typical software
load consisted of about 40 programs and 30 simultaneous routines!33.
Changing programs and making other requests involved using the
verb—noun system. Those familiar with current computer keyboards

ACIR IS
&o1o

OE BEOOR QUALITY

_-__-_L

LAV LS S5

58 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

will notice the lack of alphabet keys on the DSKY. Whereas most
computer commands are entered by typing in the text of the com-
mand, the Apollo computer command list specified verb and noun
pairs. There were 100 two-digit numbers available for each, and most
were used on any given flight. Examples of verb—noun pairs are
"display velocity” and "load angle." Verb 37, for example, was
"Change Prog," which enabled the crew to set up a new program for
execution.

If, for example, the crew wanted to execute the rendezvous target-
ing program, an astronaut would first press the VERB key followed
by the digits 3 and 7, and then the ENTER key. That sequence in-
formed the computer of a request for a program change. The astronaut
would then press 3, 1, and ENTER to tell the computer to execute
program P31. Within the program the crew could request maneuver
angles (verb 50, noun 18), monitor the changes while a maneuver was
in progress (verb 06, noun 18), or request the velocity change required
for the next maneuver (verb 06, noun 84), among other functions. The
CSM G&C Checklist, a set of "cue cards” on three rings changed for
each mission by the Crew Procedures Division in Houston, described
all these sequences in detail. The document contained reference data,
such as a star list, verb list, noun list, alarm codes, error handling and
recovery, and the checklists for each program carried in the computer.

Despite the 100 verb—noun pairs, 70-odd programs and routines,
and a very limited user interface that alternated decimal and octal and
blinked for attention, the consensus is that the Apollo computer was
easy to use. As with other aspects of flying space missions, hours in
simulators made operating the computer second nature. NASA en-
gineer John R. Garman commented that "it’s like playing the piano--
you don’t have to see your fingers to know where they are"'!34,
Familiarity with the computer, remarked astronaut Eugene Cernan,
meant that pressing a wrong key simply and immediately "felt"
wrong133. Others also confirmed that using the machine eventually

became relatively naturall5®. Apollo astronauts were also willing to
adapt to design foibles that would frustrate others. There were con-
cerns that a crewman initiating a maneuver from the navigator’s sta-
tion would not be able to return to his couch before the burn started.
In response, Virgil Grissom was accommodating: "Well, we’ll just lie
down on the floor"!57. Astronauts also tolerated non-life-threatening
software errors not cleared up before flight as merely something else
to endure!>8. They did, however, complain about the annoying num-
ber of keystrokes required during a rendezvous, so designers modified
the software to make a "minkey" (minimum keystroke) option avail-
able, in which the computer could perform some functions without
constant crew approvall’9. This change contributed to an even more
compact, straightforward system.

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 59

THE ABORT GUIDANCE SYSTEM

The computer in the Abort Guidance System (AGS) is probably
the most obscure computing machine in the manned spaceflight
program to date. The 330-page "Apollo Spacecraft News Reference”
prepared for the first lunar landing mission does not contain a single
reference to it, compared with several pages of description of the
Primary Guidance, Navigation, and Control System (PGNCS) com-
puter and its interfaces. The invisiblity of the AGS is a tribute to
PGNCS, since the AGS was never needed to abort a landing. It was,
however, an interesting and pioneering system in its own right.

The AGS owed its existence to NASA’s abort policy; an abort is
ordered if one additional system failure would potentially cause loss
of crew!0. Hence, the failure of either the PGNCS or the AGS would
have resulted in an abort. The AGS operated in an open loop, parallel
to the PGNCS in the LEM, and gave the crew an independent source
of position, velocity, attitude, and steering informationl6!. It could
verify navigation data during the periods when the LEM was behind
the moon and blacked out from ground control. The Apollo program
first exercised this capability during Apollo 9 and Apollo 10 leading
up to the first landing mission!62,

The AGS was a pioneer in that it was the first "strapped-down"
guidance system. The system used sensors fixed to the LEM to deter-
mine motion rather than a stable platform as in conventional inertial
guidance systems!03. The entire system occupied only 3 cubic feet
and consisted of three major components: (a) an Abort Electronic As-
sembly (AEA), which was the computer, () an Abort Sensor As-
sembly (ASA), which was the inertial sensor, and (c) a Data Entry and
Display Assembly (DEDA), which was the DSKY for the AGS.

AEA and DEDA: The Computer Hardware

As with the PGNCS computer, the AGS computer went through
an evolutionary period in which designers clarified and settled the re-
quirements. The first design for the system did not include a true com-
puter at all but rather a "programmer," a fairly straightforward sequen-
cer of about 2,000 words fixed memory, which did not have naviga-
tion functions. Its job was simply to abort the LEM to a "clear” lunar
orbit (one that would be higher than any mountain ranges) at which
point the crew would wait for rescue from the CM, with its more
sophisticated navigation and maneuvering system164 The require-
ments changed in the fall of 1964. To provide more autonomy and
safety, the AGS had to provide rendezvous capability without outside

60 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

sources of information!®3. TRW, the contractor, then decided to in-
clude a computer of about 4,000 words memory. The company con-
sidered an existing Univector accumulation machine but, instead,
chose a custom designed computer!66.

The computer built for the AGS was the MARCO 4418 (for Man
Rated Computer). It was an 18-bit machine, with 17 magnitude bits
and a sign bit. It used 5-bit op codes and 13-bit addresses. Numbers
were stored in the two’s complement form, fixed point, same as in the
primary computer. Twenty-seven instructions were available, and the
execution time varied from 10 to 70 microseconds, depending on the
instruction being performed!®7. The computer was 5 by 8 by 23.75
inches, weighed 32.7 pounds, and required 90 watts168, The memory
was bit serial access, which made it slower than the PGNCS com-
puter, and it was divided into 2K of fixed cores and 2K of erasable
cores!09. The actual cores used in the fixed and erasable portions were
of the same construction, unlike those in the PGNCS computer.
Therefore, the ratio of fixed memory to erasable in the MARCO 4418
was variable!70. TRW was obviously thinking in terms of adaptability
to later applications.

The DEDA was much smaller and less versatile than the DSKY.
It was 5.5 by 6 by 5.19 inches and was located on the right side of the
LEM control panel in front of the pilot, about waist height!71. Sixteen
pushbutton keys were available: CLEAR, READOUT, ENTER,
HOLD, PLUS, MINUS, and the digits 0-9. It had a single, nine-
window readout display. Three windows showed the address (in
octal), one window the sign, and five, digits”z. This was similar to
the readout in the Gemini spacecraft for its computer.

Software for the AGS

~ Since hardware in the AGS evolved as in PGNCS, software also
had to be "scrubbed" (reduced in size) in the AGS. Mirroring the
memory problems of PGNCS, by 1966, 2 full years before the first ac-
tive mission using the LEM, only 20 words remained of the 4,000 in
the AGS memory!73. Careful memory management became the focus
of TRW and NASA. Tindall recalled that the changes all had to be
made in the erasable portion, as the fixed portion was programmed
early and remained set to save money. However, changing the eras-
able memory turned out to be very expensive and a real headache, the
develo ers fighting to free up storage literally one location at a
time! 7. Also, some software decisions had to be altered in light of
p0531b1e disastrous effects. The restart program for the PGNCS has
been described. In it, a restart clears all engine burns. The first ver-
sions of the AGS software also caused engine shutdown and an at-

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 61

titude hold to go into effect when a restart occurred. This would be
potentially dangerous if a restart began with the LEM close to the
lunar surface. The solution was to give the crew responsibility to
manually fire the engines during a restart if necessary 7.
Software development for the AGS followed a tightly controlled
schedule:
1. 12.5 months before launch: NASA delivers the prelimi-
nary reference trajectory and mission requirements to
TRW.

2. 11 months: Program specification and AGS performance
analysis is complete.

3.10.5 months: NASA conducts the Critical Design
Review (CDR).

4.8 months: The final mission reference trajectory is
delivered.

5.7 months: The equation test results, verification test
plan, and preliminary program goes to NASA for ap-

proval.

6. 6.5 months: The First Article Configuration Inspection
(FACI) conducted.

7.5 months: The verified program and documentation is
delivered to NASA.

8. 4.5 months: NASA conducts the Customer Acceptance
Readiness Review (CARR).

9. 3 months: The operational flight trajectory is delivered
by NASA to the contractor.

10. 2 months: The final Flight Readiness Review (FRR) is
held.

11. 1.5 months: The tape containing the final program is
delivered!7s.

One method of software verification was quite unique. To simu-
late motion and thus provide more realistic inputs to the computer,
planners used a walk-in van containing the hardware and software.
Technicians drove the van around Houston with the programs running

inside it!77.

62 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE
Use of the AGS

The AGS was never used for an abort, but it did contribute to the
final rendezvous and docking with the CM on the Apollo 11 mission,
probably to avoid the problems encountered with the rendezvous radar
during landing!78. It did monitor PGNCS performance during all mis-
sions in which it flew. The only criticism of its performance was from
astronaut John Young, who remarked that "one mistake in a rendez-
vous, and the whole thing quit"179. Apparently, restarts occurred as
part of the recovery from some operator errors. The AGS was actually
like a parachute—absolutely necessary, but presumably never needed.

LESSONS

What did NASA learn from its experiences with the Apollo com-
puter system? At the management level, NASA learned to assign ex-
perienced personnel to a project early, rather than using the start of a
project for training inexperienced personnel, many NASA managers
of software and hardware were learning on the job while in key posi-
tions. Also, more participation by management in the early phases of
software design is necessary so that costs can be more effectively es-
timated and controlled.

From the standpoint of development, NASA learned that a more
thorough, early effort at total systems engineering must be made so
that specifications can be adequately set. NASA contractors in the
Apollo program faced changing specifications long after final require-
ments should have been fixed. This was expensive and caused such
problems as Raytheon’s retooling, memory shortages, and design in-
sufficiencies.

The realization that software is more difficult to develop than
hardware is one of the most important lessons of the Apollo program.
So the choice of memory should be software driven, and designers
should develop software needed for manned spaceflight near the
Manned Spacecraft Center. The arrangement with MIT reduced over-
all quality and efficiency due to lack of communication. Also, more
modularization of the software was needed!80.

The AGC system served well on the earth-orbital missions, the
six lunar landing missions, the three Skylab missons, and the
Apollo-Soyuz test project. Even though plans existed to expand the
computer to 16K of erasable memory and 65K of fixed memory, in-
cluding making direct memory addressing possible for the erasable
portion, no expansion occurred!81, The Apollo computer did fly on
missions other than Apollo. An F-8 research aircraft used a lunar
module computer as part of a "fly-by-wire" system, in which control

D

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 63

surfaces moved by servos at the direction of electronic signals instead
of traditional cables and hydraulics. In that way, the Apollo system
made a direct research contribution to the Shuttle, which is completely
a fly-by-wire craft. The most important legacy of the AGC, however,
was in the way NASA applied the lessons it was beginning to learn in
developing ground software to the management of flight software.

3

The Skylab Computer System

66 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Skylab, America’s first orbital workshop, carried a highly successful
computer system. For much of the operating life of the space station,
the computer was not just the fourth crew member but the only crew
member. It made a large contribution to saving the mission during the
2 weeks after the troubled launch and later helped control Skylab
during the last year before re-entry. The entire system functioned
without error or failure for over 600 days of operation, even after a 4-
year and 30-day interruption. It is significant as the first spaceborne
computer system to have redundancy management software. The
software development for the system followed strict engineering prin-
ciples, producing a fully verified and reliable real-time program.

The record of the computer system stands in contrast to that of the
workshop itself. NASA launched Skylab on May 14, 1973 on a Saturn
V booster. The first two stages put the modified S-IVB third stage into
orbit. The S-IVB contained the workshop, which included a solar tele-
scope mount and living and working quarters. The plan was to launch
the first crew the next day aboard a Saturn IB carrying an Apollo
command and service module. However, shortly after achieving orbit,
telemetry from the unmanned Skylab indicated that one of the two
wings of solar panels was missing and the other had not deployed.
The panels on the Apollo Telescope Mount (ATM) had opened
properly but they were too small to supply power for the whole
workshop. In addition, the gyros were drifting and the thermal shield
was damaged. These failures caused concern that the interior of the
space station would overheat and destroy the equipment. The damage
was so serious that for the first 3 or 4 hours the ground controllers felt
that NASA would be fortunate if the systems were to function for 1
day!. However, by using the computer system that controlled the
workshop’s attitude, the ground controllers were able to keep the
Skylab at angles to the sun such that the equipment would be exposed
to tolerable temperatures in the laboratory in concert with generating
adequate power from the remaining solar panels. At times these were
conflicting requirements. This had to be done for 2 weeks while en-
gineers prepared repair materials for the crew to fix the workshop.
Controller Steven Bales remembered that time as "the hardest 2 weeks

I have ever spent,” since a 24-hour watch had to be maintained on the

attitude and temperature?,

The computer system again served as "captain" during the entire
Skylab reactivation. The workshop systems were shut down on
February 9, 1974, after the last crew left. NASA expected that the
Skylab would stay in orbit until the mid-1980s. By that time the Space
Shuttle would be operational and, it was thought, could be used to
bring up rockets to boost the laboratory into a higher orbit. However,
unexpected solar activity in the mid-1970s resulted in an increase in
the density of the atmosphere, so the Skylab’s orbit decayed at a much

faster rate than projected3.

ORj/n: - THE SKYLAB COMPUTER SYSTEM 67

Figure 3—1. Skylab in orbit. Note the foil sun shield above the center section and
the missing large solar panel. The Apollo Telescope Mount is the section with the
"windmill" solar panels. (NASA photo 74-H-98)

By 1978, the predicted re-entry time was to be late that year or in
early 1979. NASA decided to attempt to change the attitude of the
workshop so that minimal drag would ensue. In this way, the orbit
might be maintained until the Shuttle could rescue the space station.
Engineers reactivated and reprogrammed the computer to maintain the
proper attitude and, later, to control the re-entry when NASA aban-
doned the attempt to maintain orbit. They accomplished this over 4
years after the computer was shut down.

The need for the computer system that served Skylab so well was
not apparent until the original "wet workshop" concept (the laboratory
to be assembled in space inside of the empty propellant tanks of the
last stage of the launch vehicle) had progressed through more sophis-
ticated designs to the eventual "dry workshop"4. In December 1968,
NASA decided to acquire a dual computer system to help control at-

titude while in orbit>. Attitude control was crucial to the success of
the solar experiments. In fact, the name of the computer reflects this:
Apollo Telescope Mount Digital Computer (ATMDC). Two of these
computers were a part of the Skylab Attitude and Pointing Control
System (APCS), which consisted of a number of other components,

68 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

such as an interface unit, magnetic tape memory, control moment
gyros, the thrustor attitude control system, sun sensors, a star tracker,

and nine rate gyros®.

Marshall Space Flight Center devised this complex system—a
pioneering effort because it regresents the first fully digital control
system on a manned spacecraft’. Its mission-critical status led to the
use of extensive redundancy in its design, in both hardware and
software. The computer system not only managed its own redun-
dancy, but all redundant hardware on the spacecraft®. The uniqueness
and complexity of the control laws associated with the control mo-
ment gyro attitude system led one NASA engineer to refer to it as "a

crazy animal". It was up to the Skylab computer system to tame it.
HARDWARE

The choice of a central processor for the Skylab computer system
marked a break from NASA’s previous practice. The Gemini and
Apollo computer systems were custom-built processors. Apollo did
have an immediate predecessor, but the number of changes necessary
before flight negated most of its resemblance to the Polaris system. To
the contrary, Skylab and, later, the Shuttle, used "off-the-shelt” IBM
4Pi series processors, though they both needed the addition of a cus-
tomized I/O system, a simpler and necessarily idiosyncratic com-
ponent. By using existing computers, NASA avoided the serious
problems associated with man-rating a new system encountered
during the Apollo program.

The 4Pi descended directly from the System 360 architecture
IBM developed in the early 1960s. Some 4Pis were at work in aircraft
by the latter part of that decade. The top-of-the-line 4Pi is the AP-101,
eventually used in the F-15, B-52, and Shuttle. The version on board
Skylab was the TC-1, which used a 16-bit word, in contrast to the
AP-101’s 32 bits. A TC-1 processor, an interface controller, an I/O as-
sembly, and a power supply made up an ATMDC!0. Each flight com-
puter had a memory of 16,384 words!l. This memory was a destruc-
tive readout core memory, which means that the bits were erased as
they were read and that the memory location had to be refreshed with
the contents of a buffer register, which saved a copy of the bits before
they were passed on to the processor. The memory was in two
modules of 8K words each!2. Addressing ranged from 0 to 8K, with a
hardware switch determining which module was being accessed!3.
The redundant computer system was composed of two processors at-
tached to a single Workshop Computer Interface Unit. The unit con-
sisted of two I/O sections (one for each computer), a common section,
and a power supply!4. Only the I/O section connected to the active

THE SKYLAB COMPUTER SYSTEM 69

computer was powered. The inactive computer and its I/O section of
the interface unit were not powered. The common section contained a
64-bit transfer register and timer associated with redundancy

management!S. The transfer register and timer were the only parts of

Skylab that consisted of triple modular redundant (TMR) circuits!®.
Basically, TMR circuits sent signals in triplicate on separate channels
and then voted. The single output from a TMR voter represented ei-
ther two or three identical inputs.

The final component of the computer subsystem was the Memory
Load Unit. The original design did not contain one, but, like the
Gemini Auxiliary Tape Memory, engineers later added it. Whereas
the Gemini tape unit was useful in handling memory overloads, desig-
ners included the Skylab tape unit to further increase the reliability of
the system. It carried a 16K software load and an 8K load that could
be written into either module of either memory of the ATDCs. If up to
three modules failed, the mission could continue with reduced
capabilities with an 8K program loaded into the remaining module.
This raised the total reliability of the system from a factor of 0.87 to
0.9717. The tape load would take a maximum of 11 seconds!3.

NASA decided to add the Memory Load Unit in the summer of
1971, when both IBM and Marshall realized that a Borg—Warner tape
unit, like the two already used as telemetry recorders, could be
upgraded for program storage. IBM imposed some manufacturing
changes on the recorders (primarily piece part screening) to make the
process more nearly match the care taken in constructing the
computers!9.

NASA awarded the contract for the computer system to IBM on
March 5, 196920, By October, designers froze the choice of proces-
sors and their configuration, a decision heavily influenced by the con-
cern for redundancy and reliability?!. The first computer was
delivered on December 23, 1969. IBM eventually built 10, the final 2
being the flight versions, which went to NASA on February 11, 1972,
over a year before launch. Two of the ATMDCs and an interface unit
were turned over to IBM for use in testing both hardware and
software, ensuring that the final verification would be on actual equip-
ment rather than simulators?2.

IBM took great pride in delivering on time without sacrificing
reliability. In applying Saturn development techniques to the Skylab
equipment, for example, IBM required all piece parts to exceed ex-
pected stress levels2?, and prepared the ATMDC for thermal con-
ditions, the most dangerous stress to electronic components24. A num-
ber of design problems, including thermal and vibration difficulties,
analog conversion inaccuracies, and interconnection failures, had to
be overcome?5. To make up time lost handling these problems, [BM

sometimes went to a 7-day, three-shift debugging cycle20.

70 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

o
O
O

VOTER B

J

~
|
&)
e
(&)
Q
— N 2N
m [=°]
(] o
o S
= =
@) @)
O O
O O
<
-4
=
=
o
>
— o g
< < <
&)
= = 2
e £ U
3 2 5
J

Figure 3—-2. The concept of Triple Modular Redundancy.

Concept of Triple Modular Redundancy

THE SKYLAB COMPUTER SYSTEM 71

Tape Umbilial A (GSE)

RF Uplink No. 1 Recoider
RF Uplink No. 2 -—1 | { Umbilial B (GSE)
<

Redundant

Primary R
Computer Memory Load Unit Compus
TC-1 Switch Sslector TC
e cue asis ond b w Somw eomy
————N] npuv
Input/ <}:——____—1 . p
ATMDC Output ———V Output le— ATMDC
Assembly | Assembly
i {} wCiu § g i i
Common Section Redundant
Primary Cqmputcr o TMR Gompner
1/0 Extension ® Automatic Switchover 1/0 Extension
170 Isolation Circuits

I

Figure 3-3. A block diagram of the Skylab Computer System with the dual
ATMDCs, tape memory, and common section shown. (From IBM, Skylab Opera-
tion Assessment, ATMDC, 1974)

Probably due to the care taken in manufacture, the computer sys-
tem had no failures. A planned ground-initiated switch-over from the
primary to the secondary computer occurred after 630 hours of orbital
operations. The second computer then ran the remainder of the 271-
day mission2?. On the final day, the system did another switch-over
and used the tape unit for the first time, primarily to prove that it
would work. A transmission of software from the ground to the com-
puter was also practiced. IBM’s reports of the performance of the
hardware are quite self-congratulatory but, based on the actual record,
justified.

72 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

SOFTWARE

IBM wanted to do a careful job on the software for Skylab. In the
late 1960s and early 1970s, the company internally pushed the
development and implementation of software engineering techniques.
IBM learned many lessons from the creation of the OS/360 operating
system, and various government-related projects. Two IBM software
management experts, Harlan Mills and Frederick Brooks, circulated
these lessons both within IBM and to the computing public?8. The
small size (16K) of the Skylab software and correspondingly small
group of programmers assigned to write it (never more than 75
people, not all of whom were programmers, and only 5 or 6 for the
reactivation software), meant that the difficulties in communication
and configuration control associated with large projects were not as
much of a factor. Also the IBM programmers were specialists. MIT
assigned engineers to the programming of the Apollo computer, as-
suming that it was easier to teach an engineer to program than to teach
a programmer the nuances of the system. This turned out to be a mis-
take, which MIT acknowledged29 Thus, the stage was set for IBM to
produce a superb real-time program. However, the complexity of the
control moment laws, the redundancy management needs, and the in-
evitable memory overrun kept the development from being simple.

Requirements Definition and Design

IBM and NASA jointly defined the requirements for the Skylab
software. Marshall Space Flight Center delivered the detailed require-
ments for the control laws, navigation, and momentum management,
leaving lesser items such as I/O handling to the contractor. IBM and
NASA made a parallel effort to determine if the equations actually
worked30. The result was the Program Requirements Document
(PRD), issued July 1, 197031,

The actual design, the Program Definition Document (PDD), was
released later and served as the baseline for the software, which meant
that the design could not be changed without formal review. The
software resulting from these documents ranged from 9,000 words to
nearly 20,000 words of memory. Since the memory size of the com-
puter was just over 16,000 words, a "scrub" was necessary, continuing
the NASA tradition of exceeding the memory size of an already-
procured computer by the time the planners knew the final require-
ments. Managers had not yet learned that software needs should drive
the hardware choices. Engineers changed the control moment gyro

S

THE SKYLAB COMPUTER SYSTEM 73

logic to reduce core usage and made other cuts32, Memory became
the prime consideration in allowing requirements changes33.

Architecture and Coding

Skylab gave IBM an opportunity to demonstrate how to do
software development right. The company carefully separated the
production process into strictly designed phases. Two different flight
loads resulted: one full-function program that filled the 16K memory,
and an 8K version as a backup that needed only one module for
storage. These two programs needed slightly different architectures, or
schemes for organizing the execution of functions, which made the
job tougher. Also increasing complexity was the requirement for
redundancy management. An advanced development environment
helped keep the complexity under control.

Production Phases

IBM developed the software load for Skylab in four baselined
phases. Originally, three were planned: Phase I, Phase II, and Final,
but numerous changes made during Phase I required an intermediate
stage Phase IA. Crews used the software resulting from Phase IA for
training in the simulators in Houston34,

The PDD for Phase I was released on November 4, 1970, and
coding began35. The Phase I program contained most of the major
components of the eventual flight load, including discrete I/O and in-
terrupt processing, command system processing, initialization, redun-
dancy management, attitude reference determination, attitude control,
momentum desaturation, maneuvering, navigation and timing, ATM
experiment control, displays, telemetry, and algorithms for utilities>0.
IBM’s programming team completed and released the Phase I
program for verification on June 23, 1971. It consisted of 16,224
words, filling about 99% of the computer’s memory>.

It was this situation that led to the added phase, which was chiefly
a memory scrub. Not only was Phase I a fairly extensive program,
three modules still had to be coded and many changes would likely
occur in the nearly 20 months remaining before launch38. By the time
IBM delivered Phase IA on February 9, 1972, it had incorporated 45
waivers and 105 software change requests (SWCR) made after the
thirteenth revision of the design3®. This meant that nearly 40% of the
original program was changed. Even with the attention to memory
size, the new software amounted to 16,111 words, or 98.3% of the
locations.

74 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Phase II represented another extensive revision of the software.
The baseline for it was Phase IA plus 49 approved change requests.
By delivery on August 28, 1972, 102 additional changes had been in-
corporated and the design was up to revision 1940, Therefore,
software engineers modified about 35% of the program. The memory
usage rose to 99.7%, or 16,338 locations. The final version reduced
this to 16,329 words. The difference between Phase II and the flight
release was only 17 additional changes. IBM made the delivery March
20, 1973, 2 months before the launch.

Architecture: The 16K Program

The ATMDC software divided into an executive and applications
modules. The executive module handled the priority multitasking, in-
terrupt processing, supporting the interval timer and also basic
timekeeping chores#!. Applications consisted of three major groups:
time-dependent functions, asynchronous functions, and utilities.
Time-dependent functions were executed in three cycles, with the pos-
sibility of higher priority jobs interrupting the currently running
module. The cycles were differentiated by time: There was a "slow
loop" each second, an "intermediate loop" executing five times each

second, and the switch-over processor running each half second*2.
Designers grouped appropriate modules in a cycle. An exception to
the cycle groupings, but nevertheless time dependent, was the
output—write routine, which was run between intermediate loops in or-
der to take more efficient advantage of the system resources. The
switch-over process aided in redundancy management, as explained
below. Asynchronous functions could be called at any time, one of
which was telemetry, which sent 24 strings of 50 bits per second. The
other was the command system, which could receive signals from ei-
ther the ground or the Digital Address System (DAS, the crew
interface) in the workshop. Those signals resulted in interrupts. Utility
functions included such common algorithms as square root, sine, and
cosine, and unique functions such as gimbal angle computations and

quaternion multiplication?3.

Interrupt handling was quite straightforward. Each application
module had a specific priority ranking. Tasks could be requested by
several means, such as interrupts, discrete signals, elapsed time, or by
the direct request of another program. Any current task could be inter-
rupted when a new task was requested. The priority of the new task
was immediately entered into the priority level control tables. If the
new task was of a higher priority than the current task, the computer
did the new one first. When telemetry or the command system re-
quested a task, its priority was entered on the table, just like tasks

THE SKYLAB COMPUTER SYSTEM 75

16 K FLIGHT PROGRAM COMPUTATION CYCLE
00

L
k4
LY IV Sy S /
/ /
y
/ /
i
L) ‘ﬁ
3%
s 7 ‘ 04 AR IS
Nl ORIGINAL PAGE ';Y
OF POOR QUALILE

1. INPUT READ. OUTPUT WRITE
2 TELEMETRY

EXN 8] 3. SWITCHOVER PROCESSOR, SELF TEST
4 INTERMEDIATE LOOP

s. SLOW LoOP

6. WAIT STATE

=

Figure 3—4. The real-time cycle of the Skylab 16K flight program. (From IBM,
Skylab Operation Assessment, ATMDC, 1974)

76 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

called in the other ways#*. The standard telemetry signal functioning
as a Digital Command System (DCS) word consisted of 35 bits.
Buried in it were an enable bit, an execute bit, and 12 information bits.
The enable and execute bits caused an interrupt, making it possible for
the data to be stored?>.

The 16K program had a computation cycle consisting of six
levels: experiment input, Control Moment Gyro gimbal rates,
Workshop Computer Interface Unit tests, and the command system
processor; telemetry output; the switch-over timer (reset each second)
and 64-bit transfer register (refreshed about once every 17 seconds);
the intermediate loop (made up of Control Moment Gyro control); the
slow loop (containing timing, navigation, maneuver, momentum
management, dlsplay, redundancy, self test, and experiment support
functions); and the "wait" state (when all functions in a particular
cycle finished, about 15% of cycle time in the flight release of the

program, depending on the number and nature of interrupts*0,

The 8K Program

The 8K program was strongly related to the 16K program in that
the larger version served as the model for the smaller. Its design,
released April 3, 1972, developed from the Phase IA version of the
software. IBM delivered the 8K program on November 14, 1972 after
10 weeks of verification activity. The functions of the short program
were largely limited to attitude control and solar experiment activity
and data handling#’. It was 8,001 words in length. IBM reduced the
number of levels in the computation cycle of the 8K program to four:
Level I handled command processing and 1/O to the Gyros, Level I
did telemetry, Level IIl consisted of the time-dependent functions
from both the original intermediate loop and slow loop, and Level IV

was the wait state3.
Redundancy Management

All mission-critical systems in Skylab were redundant. The com-
puter program contained 1,366 words of redundancy management
software4?. At less than 10% of the total memory, it was a bargain.
Managing redundancy with stand-alone hardware and solely mechani-
cal switching would have added much more cost, weight, and com-
plexity to the workshop design, with the loss of a certain amount of
reliability.

The redundancy management software consisted of two parts: self

THE SKYLAB COMPUTER SYSTEM 77

tests of the computer system and an error detection program for
mission-critical hardware not in the computer system. Self tests of the
computer were quite extensive: Logic tests might involve doing a
Boolean OR operation on the contents of a register to see if a carry oc-
curred; operation tests required executing EXCHANGE and LOAD
instructions; and arithmetic tests meant executing an ADD and check-
ing for planned answer’0. IBM also designed tests for memory ad-
dressing and 1/O51.

The error detection program examined critical signs in several
systems. If a failure was detected in attitude control hardware such as
the Control Moment Gyros, rate gyros or acquisition sun sensors, then
backups or reconfigurations were activated>2. During the mission,
one Control Gyro and several of the rate gyros failed. In fact, a "six-
pack” of replacement rate gyros had to be brought up by the second
Crew.

Switch-over between the two computers was handled by the error
detection program or automatically activated by the TMR timer cir-
cuits. If self tests indicated a computer hardware failure or that the
software was not properly maintaining the workshop’s attitude,
switch-over would then be initiated. The timers were supposed to be
reset about once each second during the computation cycle, after
which they then counted down until reset. If two of the three reached

zero, then switch-over occurred’3. Besides automatic switch-over, the
crew or the ground could initiate it, as actually happened in mid-
mission. So that the secondary computer would be properly activated,
a 64-bit transfer register was kept loaded with relevant data. This
register, like the timers, consisted of TMR circuits. Great care was
taken to ensure that data loaded into the transfer register were uncon-
taminated. A write operation to the register was restricted in length to
a period of 672 microseconds plus or minus 20%, which was just
about how long it took to write 64 bits into a redundant circuit. This
operation could only take place after 1.5 to 2.75 seconds had elapsed
since the last write, so the computer would not accept transient signals
as correct data and a new write could not interfere with an earlier
write?4. Besides this "time-out feature,” the transfer register could
only be refreshed after a successful execution of the error detection
programd>. This way, data could not be written to the register from a
failed computer.

The redundancy management software was a step toward the
eventual Shuttle redundancy management scheme. Previously, IBM
had used TMR hardware to ensure reliability. This system, with its
watchdog timer, was software based and, in effect, saved space and
weight. Two ATMDCs were smaller and required less power than a
single TMR computer of equal reliability.

78 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

The Development Environment and Integration

The Skylab software development was done in a programming
environment that took advantage of useful software tools and proper
integration techniques. Binary code for the computer was in
hexadecimal (base 16) format, and loaded in that format>®. Hand
coding in hex is rather tedious, so IBM prepared an assembler to
translate mnemonics into it. They also provided a relocatable loader
for placing separately coded modules in contiguous memory loca-
tions. Macros, blocks of frequently used code, were kept in common
libraries. Listings of programs and the original source resided in an
IBM System 360/75°/. This environment was small compared with
the later Software Production Facility for the Shuttle, but the concept
of a good tool set, promoted by IBM’s Mills and Brooks, was well
realized.

Integration of the Skylab software followed a top-down approach:
The program was highly modular so as to keep individual functions
separate for easy modification and also simple enough for a single
programmer to handle. The executive and major subprocesses were
coded and integrated first; then the remaining modules were added.
The modules were grouped into three batches, so all the modules in a
batch were added and tested, then the next batch would be added, and

so on’%. This helped in the integration process.
Verification

The software for Skylab was one of the most extensively verified
systems of its era. Since it was a real-time program, verification was
more difficult than a corresponding batch program because it is hard
to replicate test inputs when interrupts can occur at any time; thus, a
combination of simulators is needed to properly verify a real-time
program.

IBM used a number of different simulation configurations in the
verification process. The AS-II simulator consisted of a System
360/75 used for analysis of the Skylab while it was in orbit. It could
evaluate the effects of changes to the flight program. The Skylab
Workshop Simulator (SWS) was an all-digital simulation used in
developing the initial software, as well as verification. It ran at a 3.5/1
ratio of execution time to real time. The SWS was so effective that it
once correctly identified a deficiency in the requirements relating to
the Control Moment Gyro system. The Skylab Hybrid Simulator
(SHS) included some analog circuits for greater fidelity. One of the
most effective simulators was a System 360/44 connected to an actual
ATMDC; the program in the 44 could simulate six degrees of

freedom>9.

THE SKYLAB COMPUTER SYSTEM 79

The verification process was scheduled for the final 10 weeks
prior to the delivery of any software phase. The process included
validation of the baseline program to the requirements, coding
analysis, logic analysis, equation implementation tests, performance
evaluations, and mission procedure validation. The AS-II did the logic
analysis and was designed to trace all logic paths through the
software. The 360/44 and ATMDC system did performance tests since

it was near real time in operation®. The digital simulators could be
stopped in order to insert program changes. Tracing was also
possible®l. Combining simulators and software verification tools con-
tributed to a high level of confidence that was confirmed in actual per-
formance.

USER INTERFACES

NASA and IBM designed the computer system to operate
autonomously. One crewman reported "not much interaction" with the
system at all®2, but the capability was present for significant activity if
needed®3. The crew could enter data and actually make changes in the
software through a keyboard located in the DAS on the ATM Control
and Display Console.

The DAS had only 10 keys and a three-position switch. The keys
were the digits 0—7 (all entries were in octal), a clear key, and an enter
key. The switch could select either power bus one or two, or be off.
Above the DAS was an "Orbit Phase" panel containing a digital
readout of minutes and seconds to the next orbital benchmark. When
the first keystroke of a five-digit command was made, the uplink DCS
commands were inhibited, and the time remaining clock inputs were
inhibited, so that the clock digits could be used for displaying the
keystrokes. In that mode, five digits would be lit instead of four. The
remaining four keystrokes were the data/command input®. The dis-
play of the keystrokes represented an echo. If the sequence was cor-
rect, the astronaut pressed the enter key, or else he would restart the
input process. Pressing the clear key brought back the digital clock.
The rather limited nature of this command system indicates that it was
intended for sparing use.

Besides the DAS, one other switch on the control panel related to
the computer system. In the "Attitude Control" area of the panel was a
three-position switch that controlled which computer was in actual
use. it could be set for automatic (and usually was), in which case the
redundancy management software would take care of matters. Alter-
nately, the crew could purposely select either the primary or secon-
dary computer. If either of these was selected, then automatic change-

over was inhibited®>. The switch gave the crew protection from

80 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 3-5. Dr. Edward Gibson at the Apollo Telescope Mount Control console.
The interface to the digital computer is at lower left, on the panel immediately
above the coil of cable. (NASA photo 4-60352)

ORIGINAL PAGE IS
OF POOR QUALITY,

THE SKYLAB COMPUTER SYSTEM 81

failure of the redundancy management software. Incidentally, the
switch was not a common three-position toggle switch but, instead, re-
quired the crew to pull out and rotate the post. This protected the crew
from accidental switching.

THE REACTIVATION MISSION

The Skylab Reactivation Mission represents one of the most in-
teresting examples of the autonomy and reliability of manned
spacecraft computers. The original Skylab mission lasted 272 days
with long unmanned periods. The reactivation mission, flown entirely
under computer control, lasted 393 days. Therefore, the bulk of the ac-
tivated life of the space laboratory fully depended on the ATMDCs.

When it was obvious that the Workshop was going to fall to the
earth long before a rescue mission could be launched, NASA began
studying methods of prolonging the orbital life of the spacecraft. Even
though the atmosphere is very thin at the altitude Skylab was flying,
the drag produced on the spacecraft was highly related to its attitude
with respect to its direction of flight (velocity vector). During most of
the manned mission periods Skylab flew in solar inertial (SI) mode, in
which the lab was kept perpendicular to the sun to provide maximum
exposure for the solar collectors. Momentum desaturation maneuvers
were done on the dark side of the earth to compensate for bias
momentum buildup resulting from noncyclic torques acting on the
spacecraft. The SI mode was high drag, so engineers devised two new
modes, end-on-velocity-vector (EOVV) and torque equilibrium at-
titude (TEA). EOVV pointed the narrow end of the lab in the direction
of flight, minimizing the aerodynamic drag on the vehicle. TEA could
control the re-entry, using the gravity gradient and gyroscopic torques
to counterbalance the aerodynamic torque. Only in this way could the
Workshop be controlled below 140 nautical miles altitude®®.

Use of the new modes required that they be coded and transmitted
to the computers in orbit. First it was necessary to discover whether or
not the computers still functioned. Since the ATMDC used destructive
readout core memories, there was some concern that the software
might have been destroyed during restart tests if the refreshment
hardware had failed. On March 6, 1978, NASA engineers at the Ber-
muda tracking station ordered portions of Skylab to activate. On
March 11, the ATMDC powered up for 5 minutes to obtain telemetry
confirmation that it was still functioning. The software resumed the
program cycle where it had left off 4 years and 30 days earlier. As far
as the computer was concerned, it had suffered a temporary power
transient67!

When IBM began to make preparations to modify the software, it
discovered that there was almost nothing with which to work. The

82 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

carefully constructed tools used in the original software effort were
dispersed beyond recall, and, worse yet, the last of the source code for
the flight programs had been deleted just weeks beforehand. This
meant that changes to the software would have to be hand coded in
hexadecimal, as the assembler could not be used—a risky venture in
terms of ensuring accuracy. Eventually it became necessary to
repunch the 2,516 cards of a listing of the most recent flight program,
and IBM hired a subcontractor for the purpose®8.

Engineers could not test this software with the same high fidelity
as during the original development. They abandoned plans for real
time simulations because they could not find enough parts of any of
the original simulators. Interpretive simulation could be performed
because the tapes for that form of testing had been saved. However,
the interpretive simulator ran 20 times slower than real time, so less
testing was possible®”.

IBM approached the modification using the same principles as in
the original production. The baseline software for the reactivation was
Flight Program 80, including change request 3091, which was already
in the second computer. Software changes for reactivation were
simply handled as routine change requests. They placed the EOVV
software in memory previously occupied by experiment calibration
and other functions useless in the new mission. TEA replaced the
command and display software’0.

When the software was ready for flight, NASA uplinked it to a
reserve area of memory and then downlinked and manually verified it.
If it passed the verification, engineers gave a command to activate it.
The reprogramming was generally successful. The four people as-
signed to the software revision maintained IBM’s record of quality

throughout the reactivation mission’!.
CONCLUSIONS

The Skylab program demonstrated that careful management of
software development, including strict control of changes, extensive
and preplanned verification, and the use of adequate development
tools, results in quality software with high reliability. Attention to
piece part quality in hardware development and the use of redundancy
resulted in reliable computers. However, it must be stressed that part
of the success of the software management and the hardware develop-
ment was due to the small size of both. Few programmers were in-
volved in initial program design and writing. This meant that com-
munications between programmers and teams were relatively min-
imal. The fact that IBM produced just 10 computers and really needed
to ensure the success of just 2 of those helped in focusing the quality
assurance effort expended on the hardware.

THE SKYLAB COMPUTER SYSTEM 83

What happened after the manned Skylab program demonstrated
the need for foresight and proper attention to storage of mission-
critical materials until any possibility of their use had gone away. The
dispersal of the verification hardware is understandable, as it is expen-
sive to maintain. However, some provision should have been made
for retaining mission-unique capabilities such as actual flight
hardware. The destruction of the flight tapes and source code for the
software by unknown parties was inexcusable. A single high-density
disk pack could have held all relevant material.

Skylab marked the beginning of redundant computer hardware on
manned spacecraft. It was also the first project that developed
software with awareness of proper engineering principles. The Shuttle
continued both these concepts but on a much larger and more complex
scale.

4

Computers in the

Space Shuttle Avionics System

86 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Computers are used more extensively on the Space Transportation
System (STS) than on any previous aircraft or spacecraft. In conven-
tional aircraft, mechanical linkages and cables connect pilot controls,
such as the rudder pedals and stick, to hydraulic actuators at the con-
trol surfaces. However, the Shuttle contains a fully digital fly-by-wire
avionics system. All connections are electrical and are routed through
computers. To give the spacecraft more autonomy, system manage-
ment functions (fuel levels, life support, etc.), handled on the ground
during previous flight programs, are monitored on board. Software
can be adjusted to suit increasingly complex and varied payloads.
Subsystems, like the main engines,that had no computer assistance be-
fore use them for performance improvement. And, as in Gemini and
Apollo, guidance and navigation tasks are accomphshed on the Shut-
tle with computers. All these functions, especially flight control, are
critical to mission success; therefore, the computers performing the
tasks must be made fail-safe by using redundancy. Meeting these re-
quirements has resulted in one of the most complex software systems
ever produced and a computer network within the spacecraft with
more powerful hardware than many ground-based computer centers in
the mid-1960s.

The major differences between the Shuttle computer system and
the systems used on Gemini and Apollo were the choice of an "off-
the-shelf” main computer instead of a custom-made machine and the
pervasiveness of the system within the spacecraft, since the main
computers are the heart of any true avionics system. Avionics
(aviation plus electronics) grew in the 1950s and 1960s as electronic
devices, especially digital devices, replaced mechanical or analog
equipment in aircraft. These digital devices were combined into a
coherent system, rather than isolated in function and location within
the aircraft. Several modern military airplanes have applied this con-
cept to varying degrees. The FB-111, an Air Force tactical bomber,
has a complex avionics system that Rockwell International built just
before it was awarded the Shuttle contract!; the F-15 fighter used an
AP-1 computer in its system. A repackaged version of the F-15’s
computer became the AP-101 used in the shuttle?. However, in no
aircraft has the Shuttle’s avionics system been matched as yet. For in-
stance, its main computers have to interconnect with other computers
in subsystems, such as the controllers on each main engine, whereas
most aircraft systems are centered on a single set of machines.

Since the Shuttle is completely dependent on the success of its
avionics system, each component must be made failure proof. The
method chosen to ensure this is absolute redundancy, often to a depth
of four duplicate devices. Managing this level of redundancy became
a large problem in itself.

Another result of the pervasive avionics system is that the fre-
quency and sophistication of the crew interaction with the computers
exceeds any previous manned space program. A large portion of the

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 87

ORIOTAT marm ya
Ak T : £ IS

QA: POUXR QU Au).i‘{

Figure 4—1. The first launch of the Shuttle Challenger, one of a fleet of the most
computationally intensive spacecraft ever built. (NASA photo)

88 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

software is directed at easing the necessary commanding of the com-
puters. In general, software development for the Shuttle has far out-
stripped any previous NASA ground or flight system in effort and
cost. The combination of requirements forced the Agency to pioneer
techniques in digital avionics, redundancy management, computer in-
terconnection, and real-time software development.

EVOLUTION OF THE SHUTTLE COMPUTER SYSTEM

Planning for the STS began in the late 1960s, before the first
moon landing. Yet, the concept of a winged, reusable spacecraft went
back at least to World War II, when the Germans designed a sub-
orbital bomber that would "skip" along the upper atmosphere, drop-
ping bombs at low points in its flight path. In America in the late
1940’s, Wernher von Braun, who transported Germany’s rocket
knowhow to the U.S. Army, proposed a new design that became
familiar to millions in the pre-Sputnik era because Walt Disney
Studios popularized it in a series of animated television programs
about spaceflight. It consisted of a huge booster with dozens of
upgraded V-2 engines in the first stage, many more in the second, and
a single-engine third stage, topped with a Shuttle-like, delta-winged
manned spacecraft.

Because the only reusable part of the von Braun rocket was the
final stage, other designers proposed in its place a one-piece shuttle
consisting of a very large aerospacecraft that was intended to fly on
turbojets or ramjets in the atmosphere before shifting to rocket power
when the atmospheric oxygen ran out. Once it returned from orbit, it
would fly again under jet power. However, the first version of the
reusable spacecraft to actually begin development was the Air Force
Dyna-Soar, which had a lifting body orbital vehicle atop a Titan III
booster. That project died in the mid-1960s, just before NASA an-
nounced a compromise design of desirable features: the expensive
components (engines, solid rocket shells, the orbiter) to be reusable;
the relatively inexpensive component, the external fuel tank, to be ex-
pendable; the orbiter to glide to an unpowered landing3.

The computer system inside the Shuttle vehicle underwent an
evolution as well. NASA gained enough experience with on-board
computers during the Gemini and Apollo programs to have a fair idea
of what it wanted in the Shuttle. Drawing on this experience, a group
of experts on spaceborne computer systems from the Jet Propulsion
Laboratory, the Draper Laboratory (renamed during its Apollo efforts)
at MIT, and elsewhere collaborated on an internal NASA publication
that was a guide to help the designer of embedded spacecraft

computers?. Individuals contributed additional papers and memos.
Preliminary design proposals by potential contractors also influenced

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 89

the eventual computer system. In one, Rockwell International teamed
up with IBM to submit a system>. Previously, in 1967, the Manned
Spacecraft Center contracted with IBM for a conceptual study of
spaceborne computers® and two Huntsville IBM engineers did a
shuttle-specific study in 19707. Coupled with IBM Gemini and Saturn
experience, the Rockwell/IBM team was hard to beat for technical ex-
pertise. NASA also sought further advice from Draper, as it was still

heavily involved in Apollo8. These varied contributions shaped the
final form of the Shuttle’s computer system.

There were two aspects of the computer design problem: func-
tions and components. Previous manned programs used computers
only for guidance, navigation, and attitude control, but a number of
factors in spacecraft design caused the list of computable functions to
increase. A 1967 study projected that post-Apollo computing needs
would be shaped by more complex spacecraft equipment, longer
operational periods, and increased crew sizes?. The study suggested
three approaches to handling the increased computer requirements.
The first assigned a small, special-purpose computer to each task, dis-
tributing the processes so that the failure of one computer would not
threaten other spacecraft systems. The second approach proposed a
central computer with time-sharing capability, thus extending the con-
cepts implemented in Gemini and Apollo. Finally, the study recom-
mended several processors with a common memory (a combination of
the features of the first two ideas). This last concept was so popular
that by 1971 at least four multiprocessor systems were being

developed for NASA’s usel0.* The greater appeal of the multiproces-
sors, and the production of the Skylab dual computer system, replaced
the idea of using simplex computer systems that could not be counted
on to be 100% reliable on long-duration flights.

On a more detailed level than the overall configuration, experts
also realized that increased speed and capacity were needed to effec-
tively handle the greater number of assigned tasks!l. One engineer
suggested that a processor 50% to 100% more powerful than first in-
dicated be procured!?. This would provide insurance against the
capacity problems encountered in Gemini and Apollo and be cheaper
than software modifications later. A further requirement for a new
manned spacecraft computer was that it be capable of floating-point
arithmetic. Previous computers were fixed-point designs, so scaling
of the calculations had to be written into the software. Thirty percent
of the Apollo software development effort was spent on scaling!3.

*These were: EXAM (Experimental Aerospace Multiprocessor) at Johnson
Space Center, the Advanced Control, Guidance, and Navigation Computer at
MIT, SUMC (Space Ultrareliable Modular Computer) at Marshall Space Flight
Center, and PULPP (Parallel Ultra Low Power Processor) at the Goddard Space
Flight Center.

90 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

One holdover component from the Gemini, Apollo, and Skylab
computers remained: core memory. Mostly replaced by semiconduc-
tor memories on IC chips, core memory was made up of doughnut-
shaped ferrite rings. In the mid-1960s, core memories were deter-
mined to be the best choice for manned flight for the indefinite future,
because of their reliability and nonvolatility!4. Over 2,000 core
memories flew in aircraft or spacecraft by 197815, The NASA design
guide for spacecraft computers recommended use of core memory and
that it be large enough to hold all programs necessary for a mission!0,
That way, in emergencies, there would be no delay waiting for
programs to be loaded, as in Gemini 8, and the memory could be
powered down when unneeded without losing data.

By 1970, several concepts to be used in the Shuttle were chosen.
One of these was the use of buses, which Johnson Space Center’s

Robert Gardiner considered for moving large amounts of datal’. In-
stead of having a separate discrete wire for every electronic connec-
tion, components would send messages on a small number of buses on
a time-shared basis. Such buses were already in use in cabling from
the launch center to rockets on the launch pads. Buses were also being
considered for military and commercial aircraft, which were becom-
ing quite dependent on electronics. Additionally, there would be two
redundant computer systems— though no decision had been made as
to how the systems would communicate. In the LEM, the PGNCS had
an active backup in the Abort Guidance System (AGS). This was not
true redundancy in that the AGS contained a computer with less
capacity than the AGC, and so could not complete a mission, just
safely abort one. True redundancy, however, meant that each com-
puter system would be capable of doing all mission functions.

Redundancy grew out of NASA’s desire to be able to complete a
mission even after a failure. In fact, early studies for the Shuttle predi-
cated the concept of "fail operational/fail operational/fail-safe.” One
failure and the flight can continue, but two failures and the flight must
be aborted because the next failure reduces the redundancy to three
machines, the minimum necessary for voting. In the 1970 computer
arrangement, one special-purpose computer handled flight control
functions (the fly-by-wire system), and another general-purpose com-
puter performed guidance, navigation, and data management func-
tions. These two computers had twins and the entire group of four was
duplicated to provide the desired layers of redundancy!8.

More concrete proposals came in 1971. Draper presented a couple
of plans, one fairly conservative, the other more ambitious. The less
expensive version used two sets of two AGCs. These models of the
AGC would contain 32K of erasable memory and magnetic tape mass
memory instead of the core rope in the original!®. Redundancy would
be provided by a full backup that would be automatically switched
into action upon failure of the primary (an idea later abandoned since

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 91

a software fault could cause a premature switch- over)?Y. Draper’s
more expensive, but more robust, plan proposed a "layered collabora-
tive computer system," to provide "significant total, modest individual

computing power"2l. A relatively large multiprocessor was at the
heart of this system, with local processors at the subsystem level. This
had the potential effect of insulating the central computer from sub-
system changes.

Unlike Gemini and Apollo, NASA wanted an off-the-shelf com-
puter system for the Shuttle. If “space rating” a s %/stem involved a

stricter set of requirements than a military standard 2 starting with a
military-rated computer made the next step in the certification process
a lot cheaper. Five systems were actively considered in the early
1970s: The IBM 4Pi AP-1, the Autonetics D232, the Control Data
Corporation Alpha, the Raytheon RAC-251, and the Honeywell
HDC-70123. The basic profile of the computer system evolved to the
point where expectations included 32-bit word size for accurate cal-
culations, at least 64K of memory, and microprogramming
capability?4. Microprograms are called firmware and contain control
programs otherwise realized as hardware. Firmware can be changed to
match evolving requirements or circumstances. Thus, a computer
could be adapted to a number of functions by revising its instruction
set through microcoding.

Despite the fact that Draper Laboratory favored the Autonetics
machine, and a NASA engineer estimated that the load on the Shuttle
computers would "be heavier than the 4Pi [could] support,” the IBM
machine was still chosen?>. The 4Pi AP-1’s advantages lay 1n its his-
tory and architecture. Already used in aircraft applications, it was also
related to the 4Pi computers on Skylab, which were members of the
same architectural family as the [BM System 360 mainframe series.
Since the instruction set for the AP-1 and 360 were very similar, ex-
perienced 360 programmers would need little retraining. Additionally,
a number of software development tools existed for the AP-1 on the
360. As in the other spacecraft computers, no compilers or other
program development tools would be carried on-board. All flight
programs were developed and tested in ground-based systems, with
the binary object code of the programs loaded into the flight com-
puter. Simulators and assemblers for the AP-1 ran on the 360, which
could be used to produce code for the target machine. In both the
Gemini and Apollo programs, such tools had to be developed from
scratch and were expensive.

One further aspect of the evolution of the Shuttle computer sys-
tems is that previous manned spacecraft computers were programmed
using assembly language or something close to that level. Assembly
language is very powerful because use of memory and registers can be
strictly controlled. But it is expensive to develop assembly language
programs since doing the original coding and verifying that the

92 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

programs work properly involve extra care. These programs are nei-
ther as readable nor as easily tested as programs written in FORTRAN
or other higher-level computer languages. The delays and expense of
the Apollo software development, along with the realization that the
Shuttle software would be many times as complex, led NASA to en-
courage development of a language that would be optimal for real-
time computing. Estimates were that the software development cycle
time for the Shuttle could be reduced 10% to 15% by using such a
language?20.

The result was HAL/S, a high-level language that supports vector
arithmetic and schedules tasks according to programmer-defined
priority levels.*™ No other early 1970s language adequately provided
either capability. Intermetrics, Inc., a Cambridge firm, wrote the com-
piler for HAL. Ex-Draper Lab people who worked on the Apollo
software formed the company in 196927

The proposal to use HAL met vigorous opposition from managers
used to assembly language systems. Many employed the same ar-
gument mounted against FORTRAN a decade earlier: The compiler

would produce code significantly slower or with less efficiency than
hand-coded assemblers. High-level languages a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>