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Abstract

Multitemporal Landsat multispectral scanner data were analyzed to test
various computer-aided analysis techniques for detecting significant forest canopy
alteration. Three data transformations, differencing, ratioing, and a difference
of ratios, were tested to determine which best delineated gypsy moth defoliation.
Response surface analyses were conducted to determine optimal threshold levels
for the individual transformed bands and band combinations. Results indicate
that, of the three transformations investigated, a difference of ratios
(Band7) transformation most accurately delineates forest change due to gypsy
Band5
moth activity. Band 5 (0.6-0.7 um) ratioed data did nearly as well, however,

other single bands and band combinations did not improve upon the band 5 ratio

results.
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Detecting Forest Canopy Change Using Landsat

Ross Nelson
I. INTRODUCTION
A. Change Detection in Forestry

Foresters have traditionally relied on airphotos, photo interpreters, and
ground sampling to keep their forest inventory records current. The inventory
techniques, though effective, are cumbersome, and catastrophic events can
quickly change the quantity and condition of the wood resources available.
Fire, wind throw, ice, and insect damage may profoundly affect a manager's
decisions concerning harvesting, silvicultural, and pest control practices in
his district. Change detection techniques which quickly and accurately
delineate forest canopy alteration provide the information necessary to make
intelligent management decisions.

Satellite data may be used to detect gross forest canopy alterations.
Numerous studies have shown that broad cover types--conifer, hardwood,
agricultural areas, water, etc.--may be consistently and reliably classified
using satellite data. Satellite remote sensing, however, does have
limitations, and various studies have demonstrated an inability to consistently
and accurately identify tree species, crown density differences, and age class
differences. These characteristics may be critically important in terms of an
assessment of the impact of canopy change in a forest.

Due to the limitations of the Landsat data, some have suggested that
Landsat may best be utilized as the first stage in a multistage sampling
design (Heller, 1978; Smith, 1979). The broad cover types should be reliably
delineated using satellite data. In terms of forest canopy alteration, change
and unaltered areas should be delineated. Finer resolution systems and ground

observations can provide the details necessary for the management decisions.



This investigation assesses the capabilities of the Landsat data and
computer-aided analysis techniques to provide such first stage change information.
An area attacked by the gypsy moth was studied to determine how well selected
change detection procedures delineated defoliated forest from unaffected

forest.

B. The Gypsy Moth and Forest Canopy Change

The gypsy moth was introduced into the United States in 1869 when a
French scientist imported the egg clusters for breeding experiments with the
silkworm. In the course of attempts to produce a hearty, commercial hybrid,
gypsy moth eggs or larvae were lost; the import from France quickly established
itself. By 1890, infestations encompassed a 350 mile area around Medford
Massachusetts. Since that time, in spite of chemical and biological controls,
the gypsy moth has spread to northern Maryland, southern Maine, and from the
Atlantic Ocean to the Ohio-Pennsylvania border (see Figure 1). It defoliates
many of the northern hardwoods, favoring the oaks, birches and aspen; conifers
may also be attacked if the epidemic is severe. The moth kills or weakens
timber on hundreds of thousands of acres a year. Control practices, which
include the application of pesticides, pheremones, microbial or viral
insecticides, and the release of natural predators or sterilized male moths,
depend on the accurate location of areas supporting the epidemic populations.
These areas are currently located by ground egg mass counts or by aerial
sketchmapping. During the past decade, the utility of Landsat satellite data
for monitoring the distribution and severity of defoliation has been investigated.
Research has shown that the digital analysis of Landsat data cannot delineate
all defoliation types of interest. Though a heavily defoliated canopy can
easily be distinquished from all other forest cover types, the spectral and
spatial resolutions of the Landsat satellites are such that a healthy forest

canopy cannot be accurately distinguished from forests in which 30-60% of the
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Expansion of the gypsy moth range since its introduction in
1869 (from Marshall, 1981).



canopy has been removed by the gypsy moth (Williams and Stauffer, 1979; Nelson,
1981; Williams and Ingram, 1981). These moderately defoliated areas support
potentially explosive gypsy moth populations; as such these are prime targets
for control measures.

The usefulness of the Landsat satellite data then, lies in the capability
to assess relatively severe damage, that is, to detect significant forest
changes. The objective of this research was to determine which of three
change detection approaches most accurately portrayed forest canopy
alterations due to gypsy moth defoliation. The three data transformations,
image differencing, image ratioing, and the difference of ratios, were
investigated to determine those band combinations and threshold levels which

maximized change classification accuracy.



11. LITERATURE REVIEW

Digital change detection approaches approaches may be characterized by
(1) the data transformation procedure (if any), and (2) analysis techniques
used to delineate areas of significant alterations. A tabular breakdown of a
variety of change detection approaches is given in Table 1, along with references
to those who have used that particular approach. The purpose of the table is
twofold. First, it is a concise summary of a majority of the change detection
work done to date. Second, it gives the reader an idea of the number of approaches
available for digitally detecting land cover alterations.

Figure 2 outlines a series of steps which an analyst may take in order to
implement a particular change detection approach. Many of the authors listed
in Table 1 are included in Figure 2 so that the reader migh better understand
the particular approach taken by these investigators. The steps depicted in
this Figure are separated into two distinct sections by the first decision
node. At this point the analyst must decide upon one of two basic methods for
detecting change; 1. delta classification or 2. the analysis of multitemporal
data as a single data set. Delta classification involves the classification
of the individual dates of a multitemporal data set into land cover types and
a subsequent comparison of the land cover classifications. Changes in the
identity of a particular pixel from time one (t7) to time two (t») connote
land cover alteration. The second basic approch calls for the simultaneous
analysis of multitemporal data. Using this approach, the multitemporal data
is classified to identify changed areas. Each of these procedures is

discussed more fully in subsequent sections.

A. Delta Classification

A standard change detection procedure investigated by many has been the

delta classification procedure. Delta classification change detection relys
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on the independent, correct classification of two data sets. [Inaccuracies in
either lead to spurious change when the classifications are compared. Swain
(1976) endorsed a delta classification approach, however he employed a
processor which reduced the spurious change problem. Swain compared the
capabilities of a per-point and a per-field classifier (ECHO, Kettig and
Landgrebe, 1975) and found that the ECHO classifier reduced speckling, i.e.,
the random incorrect classifications of individual pixels. He concluded that:
"urban encroachment of agricultural areas can be detected through
classification of multitemporal (Landsat) data. However, the size
of the change areas must be large relative to the resolution of the
sensor, and the classifications must be done with relatively high
accuracy with respect to the classes that will show the change."
Weismiller et al., {1977) also claimed that the delta classification technique
reliably identified areas of change. This conclusion is based on a qualitative
comparison of the change results; no coincident ground information was available.
Riordan (1980) produced unsupervised classifications of 1973 and 1978
Landsat MSS data and compared the classifications to detect nonurban to urban
change. She reported a 67% accuracy figure. Gordon (1980) used Landsat data
and a delta classification approach to monitor land-use change in Ohio. Based

on a rigorous quantitative assessment, he wrote:

". . . we must conclude that substantial errors are associated
with the use of Landsat data for land cover and change analysis."

The poor showing of the delta classification approach may be attributed to the
individual data sets' poor classification accuracies and possibly, to mis-
registration errors.

The delta classification approach was not considered as a viable alternative
in this study because: 1) it depends on two fairly accurate, independent land cover
classifications and 2) the two classifications must be comparable. Toll et
al., (1980) noted that the poor performance of the delta classification approach

may, in part, have been attributable to "the difficulty of producing comparable



classifications from one date to another". As noted previously, an error in
either classification results in an error in the change image. Spurious, small

areas of change result, which may cause the amount of change to be overestimated.

B. Analysis of Multitemporal Data Simultaneously

The disadvantages of the delta classification procedure may be avoided by
analyzing the multitemporal data simultaneously. When a multitemporal data
set is analyzed as a single multiband image, the analysis sequence may be
characterized by the method used to identify change. Essentially two change
detection classification procedures are available, multitemporal classification
and density slicing, also called thresholding.

Multitemporal classification techniques may be applied to raw or
transformed Landat data. The analyst develops training statistics which
mathematically describe the cover types of interest, including change
categories. These statistics are used to classify the study area into changed
and unchanged land cover types.

Density slicing or thresholding techniques may only be applied to
transformed data. The transformations are necessary to provide a framework
wherein large departures from the norm may be recognized. Transformations are
done on a pixel by pixel basis within a given band. The spectral response of
the same piece of ground is compared at two different times to see if any
gross spectral changes have occurred in that time interval. Hence relatively
large deviations from the mean indicate land cover alteration. Changed pixels
may be thresholded to one side of the mean or to both sides, depending on the
spectral characteristics of the change of interest and the data transformation
used (see Fig. 3).

The transformations which are commonly used in change detection work and
the research results of investigators using those transforms are discussed

below. The analysis technique used to highlight change is also given within
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the context of the characteristics of the data. Again, in general, the analyst
has only two choices--multitemporal classification or thresholding, and thresholding
can only be used if the multitemporal data has been appropriately transformed.

1. The Use of Untransformed Landsat Data

Williams and Haver (1976) and Weismiller et al. (1977) developed training
statistics for various change classes using untransformed Landsat data. Williams
and Haver (1976) identified drastic forest canopy alterations (e.g., fire
damage and clearcutting) and suggested that the use of multitemporal data
allows rapid updates of harvesting activities or catastrophic events. Weismiller
et al. (1977) conconluded that the multitemporal classification approach has
"undeveloped potential". In his particular investigation, however, this
approach did not agree with the results of a delta classification which he
used as a reference source. Though the accuracy assessment was qualitative,
Weismiller found that seemingly stable areas were often noted as changed using
the multitemporal classification approach. This work suggests that the
multitemporal classification approach using raw Landsat data might best be
limited to delineating changes which are spectrally quite distinct.

2. The Use of Transformed Landsat Data

Landsat data may be transformed for any one of three reasons: (1) to

accentuate various land cover features or change phenomena; (2) to reduce data
dimensionality; and/or (3) to enable use of the thresholding technique to
delineate change. The transformations used by a variety of researchers to
detect change are reviewed below.

Differencing: A differenced data set is formed by subtracting the
greylevel value of a particular pixel in a given band at time one from the
corresponding greylevel at time two. Large positive or negative values
connote change (see Fig. 3). The transformation also serves to reduce

an eight channel data set to four channels.

1



A number of researchers have used the differencing technique to detect
change, primarily in urban environments, with varying degrees of success.
Toll et al. (1980) investigated image differencing, principal components
transformation, and delta classification to see which most accurately
portrayed conditions in Richmond, Virginia and in Denver, Colorado. Training
statistics were developed for the differenced and principal components data,
and the change categories were classified. The differenced data produced the
highest overall change detection accuracies. Anuta (1974) classified
differenced data using a supervised approach in an attempt to identify new
construction sites. He found that construction could be accurately
identified, but many other types of change, such as agricultural and
industrial, were incorrectly included in the construction class. Anuta's
major concern was not that areas that had changed were falsely alarmed, but
that the identification of the type of change was incorrect. Ingram et al.
(1981) found that simple image differencing and thresholding produced urban
change results (Denver) as good as those obtained using much more sophisticated
approaches. Finally, Barthmaier et al. (1980) reports a quasi-operational use
of differenced Landsat data and supervised classification techniques to detect
clearcutting operations in the state of Washington. The areal tallies
compiled from the Landsat data for various state or private tracts are
compared with the tallies turned into the Department of Revenue for tax
purposes. Obvious inequities are investigated by the Department of Revenue.

Ratios: Ratioing is similar to image differencing in that both
approaches compare relative reflectance measurements at two different times.
However, greylevels are divided rather than subtracted to produce the
transformed 4 band image.

Data ratioing has not been as intensively investigated as image

differencing, perhaps because of software and hardware lTimitations (ratioing
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results in a real numbered image, not a byte image). Todd (1977) ratioed band
5 pixel values from two different years to determine urban change in Atlanta,
Georgia. Only ratios to the low side of the mean were considered changed
(threshold approach). He then classified the most recent MSS data set to
determine the type of change that had occurred. His overall evaluation
indicated that 91.4% of all land use and land cover change was correctly
jdentified. This included 78% of the total number of change areas.

Accuracies decreased when attempts were made to identify the types of change.
Todd noted that omission and comission errors occurred, for the most part, in
relatively small areas.

Difference of Ratios: The difference of ratios (in this study, (Band

7/Band5, t7) - (Band 7/Band 5, tp) for a given pixel) is fundamentally

different from the first two transformations in that vegetation density

measures are compared. Landsat bands 5 and 7 are well situated for monitoring
green vegetation; the 0.50-0.60 um region (band 5) is centered on the red
absorption wavelengths of a green canopy, and the 0.80-1.10 um reflective

infrared region is highly reflected by vegetation due to the internal structure

of the leaf (Tucker and Maxwell, 1976). The ratios of the reflectance measurements
in the red wavelengths to those in the photographic IR have been used by researchers
as a green biomass indicator. Radiometer studies (Jordan, 1969; Pearson and
Miller, 1972; and Tucker, 1979), aircraft scanner studies (Stoner et al.,

1972), and Landsat MSS data studies (Maxwell, 1976; Justice, 1978; and Nelson

1981) have shown that the IR/red response ratio is sensitive to the amount of

green leaf biomass being sensed. Comparing the 7/5 ratio between dates would
provide an avenue for deciding whether or not a vegetation canopy has been
significantly altered. Only one study (Angelici et al., 1977) was found which

used the difference of ratios data and the thresholding technique to delineate
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changed areas. Unfortunately, as seems to be the case with a majority of
change detection studies, no quantitative assessment of the results was performed.
Hence, the capabilities of such a technique are as yet undocumented.

Regression: Regression involves an approach where a particular data
value at ty is used to predict the corresponding data value at tp using a
simple linear relationship. Assuming that most of the image has not changed,
those pixels which have large residuals have most 1ikely undergone change.
Ingram et al. (1981) compared the change detection capabilities of the
regression data to a number of other data transformations. Thresho]ding was
used to detect change in the various data sets. They found that, while the
regression transform did do better than more sophisticated transforms, it did
not do as well as simple image differencing.

Greeness-Brightness: Colwell et al. (1980) used a vegetation-soil index

to monitor forest canopy changes in South Carolina. The data transformation,
called TASCAP, is the first step in a complete change detection system
(TASCAP/BLOB/CVA) developed by Colwell et al. and reviewed below.

TASCAP refers to the initial data transformation which converts an eight
channel, multitemporal data set into a four channel greenness-brightness data
set. Each date is characterized by two channels, a greenness channel related
to the amount of vegetation in the field of view, and a brightness channel
related to the contribution of soil (Kauth and Thomas, 1976).

This four channel, transformed data set is clustered using a spectral-
spatial clustering algorithm called BLOB (Kauth et al., 1977). Spectrally
similar, contiguous areas are found in the data. Each blob (spectral-spatial
cluster) vector has four components, consisting of the means of the greenness
and brightness values for the two dates. The greenness and brightness measures

should be similar in the areas (blobs) that do not represent change. Blobs
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formed over change areas should vary significantly in the transformed channel
values.

The magnitude of the differences between the greenness and brightness
measures for each date determines whether or not the change is significant,
i.e., worth considering. The directions of the changes in these values
determine the type of land cover alteration that has taken place. Blobs whose
greenness values decrease and brightness values increase have lost vegetation,
while the converse may indicate reforestation or field crop development. The
thresholds and directions have been defined in an approach called Change
Vector Analysis (CVA) (Malila, 1980).

Colwell et al. (1980) used the TASCAP/BLOB/CVA technique to detect
changes in Kershaw County, South Carolina. No ground reference accuracy
assessment was done, but the results of the TASCAP/BLOB/CVA approach and a
delta classification approach were compared to a dot grid estimate of change
derived from a Landsat multitemporal color composite. Colwell found that the
delta classification approach resulted in identifying six times more change
than was indicated by the dot grid estimate, while the TASCAP/BLOB/CVA results
and dot grid estimates were comparable. They wrote that the delta classification
overestimate of the change area was most probably due to:

“(1) spurious recognition of anomalous single pixels in delta

classification, which is reduced in BLOB/CVA, and (2) inconsistent

date to date classification of the same pixel in delta

classification, which is eliminated by joint analysis of

both dates of data in BLOB/CVA." {(Colwell et al., 1980, pg. 51)

Principal Components: This transformation defines the major axes of

variation within the data set and mathematically rectifies the data to lay
along the axes. The variance components are orthogonal and may hold interesting
discriminatory information. Toll et al. (1980) investigated three change

detection procedures, image differencing, principal components transformation
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prior to differencing, and a delta classification approach. They used thresholding
techniques to define change areas and found that image differencing produced
the highest accuracies.

Disagreement exists over which principal component is most useful for
discriminating various land cover types. A1l agree that the first component
contains variability due to the overall scene brightness. Robinson (1979),
Riordan (1980), and Friedman (1979) have suggested that the second or third
components contain the variability useful for cover type discrimination. Toll
et al. (1980) refutes the usefulness of the 2nd component of a single date
data set, at least in the context of urban-nonurban discrimination. Byrne and
Crapper (1980) report that the third and later components of a multitemporal
data set hold the most interesting information for change detection purposes.
The first two components reflect the variability due to scene brightness and
the presence of clouds. Obviously, care must be exercised when selecting the

proper principal component to discriminate various land cover features.

Other data transformations have been developed for specific land cover
purposes (predominantly for use in agricultural situations). Many of these
are described in Williams and Stauffer (1979) or Tucker (1979). The single
guiding factor in selecting an appropriate transformation, if one is necessary
at all, is that the transformed data should accentuate the change phenomenon

of interest.

C. Techniques Selected for Study

Three data transformations, differencing, ratioing, and a difference of
ratios were selected for investigation. The difference transformation is
selected for two reasons. First, it was the most widely used transformation,

making it a useful metric against which the results of other transformations
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may be compared. Second, Toll et al. (1980) and Ingram et al. (1981) found

that differenced data produced results as good or better than more sophisticated
transformations. The ratio transformation was investigated to determine the
impact of a mathematical operand on the same data sets. Differences in the
change detection capabilities of difference or ratioed data would be due solely
to the fact that one transformed data set was produced by subtraction, the

other by division. Hence comparison of the results of differenced and ratioed
data would quantify the effects of different arithmetic operations. The difference
of ratio transformation was studied to see if change in a vegetative index
(i.e., a value responsive to the amount of green vegetation in the field of
view) characterized forest canopy change better than relative reflectance
comparisons (i.e., the first two data transformations).

Thresholding techniqus are used to delineate change. The thresholding or
density slicing approach is one that requires no apriori information once the
threshold is set. Multitemporal classification or delta classification, on
the other hand, always requires information so that training statistics can be
developed for the classifiers. Hence, from an operational stand point, the
thresholding technique is potentially much more useful. If one can define the
optimal data transformation, wavelength(s), and the thresholds, and if these
thresholds are relatively stable from year to year, then an operational change
detection system may be realized.

The three data transformations were tested to see which was most useful
for delineating forest canopy alteration. Threshold limits were defined to
maximize change detection accuracy. Throughout the study, the Landsat data

were processed to define only two forest cover conditions, change or no change.
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I11. MATERIALS

A. Landsat Data

July 19, 1976 (2444-15001) and June 27, 1977 (2887-14520) Landsat scenes
obtained over Harrisburg, Pennsylvania (path 17, row 32), were geometrically
corrected, registered and resampled to a 50 meter grid (see Fig. 4). A 286
line by 217 sample subsection corresponding to the Wertzviile, Pennsylvania 7-
1/2 minute USGS quadrangle map was chosen for analysis. The quadrangle,
encompasses mountainous areas which are thickly forested, predominantly an
oak-hickory cover type. These forests were not defoliated in 1976, but were
extensively damaged by the gypsy moth in 1977. The June 27, 1977 data set was
obtained during the peak defoliation period, which occurs from mid June
through early July.

Color infrared aerial photography obtained on June 24, 1977 was available
over the entire quadrangle. The 1:48,000 scale airphotos (see Fig. 5) were
used to delineate areas of heavy (60-100% leaf removal) and moderate (30-60%
leaf removal) defoliation. Acetate was laid atop the photos and the defoliated
areas were outlined. This information was transferred to the 7-1/2 minute
quad map (Fig. 6) using a Zoom Transfer Scope. The defoliation boundaries were
then digitized from the quad map using the HP-3000 Geographic Entry System
(Stauss et al., 1978).

The digitized defoliation information was combined with a Landsat
generated forest/non-forest mask to form the ground reference image (GRI) to
which all change detection products were compared. The forest/non-forest mask
was generated from the July 19, 1976 (i.e., healthy) Landsat data set.
Supervised forested training statistics, only, were input to a Bayesian
classifier. The classifier generated a confidence map that assigned a
probability to each pixel that the pixel belonged to the forest

class. This confidence map was density sliced to separate the forested and
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Figure 5 One of the 1:48,000 scale color infrared airphotos used to
delineate defoliation conditions on the Wertzville Quadrangle, Pennsylvania.

The registration marks (black cross hairs) permit scale comparison

with the ground reference image (Figure 7, lower left corner).
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Figure 6 1:24,000 U.S.G.S. topographic map with moderate (M) and heavy
(H,100) defoliation outlined.
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non-forested areas. A stratified random sample of 230 pixels (115/strata)
indicated that the mask's accuracy was 89.95% +5% at the 95% level of confidence.

Combining the forest/non-forest mask with the digitized defoliation
information resulted in a four class ground reference image (GRI): O - non-
forest, 1 - heavy defoliation, 2 - moderate defoliation, 3 - healthy forest
(see Figure 7). Any discrepancies between the defoliation data and the
forest/non-forest mask were rectified in favor of the mask. In other words,
if the defoliation information showed that a given pixel was moderately
defoliated, but the mask showed it as non-forest, then the mask was assumed
correct. That pixel would be non-forest in the GRI. The Interactive Digital
Image Manipulation System (IDIMS) software (Electromagnetic Systems Laboratory,
1978) was used to manufacture the GRI.

IDIMS was also used to generate the transformed data sets from the raw
multitemporal Landsat data. In addition, the image processing system was used
to generate change images from these transformed data sets using thresholding
techniques. The specific processes involved are explained in the PROCEDURES
section.

The change products resulting from the thresholding of the transformed
data were compared to the GRI to assess the accuracy of the change
classification. The accuracy evaluations were done using a software package
called ASSESS2. ASSESS2 compares two byte images and quantitatively evaluates
their similarity. One of the two images is designated the ground reference
image (in this case the GRI); the other, the classified image, is compared to
the former. The software evaluates the accuracy of classification on a per
pixel basis and by analyzing polygons (Chaiken, 1979). Only per—pixé]

accuracies were considered in this study.
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Figure 7 The ground reference image was

manufactured by combining the forest/
nonforest mask and the digitized defol-

iation information.

Upper left: forest/nonforest mask

white - forest
black - nonforest

Upper right: digitized defoliation
information
light grey - moderate defoliation
dark grey - heavy defoliation

Lower left: ground reference image
(GRI), colors as noted above




IV. PROCEDURE
Any change detection approach can be categorized by (1) the data transformation
method; and (2) the analysis technique used to detect change areas. The
transformations and techniques used in this study are described below.

A. Data Transformations

Three data transformations were investigated to determine which most
accurately detected gypsy moth defoliation.

1. Differencing: An eight band multitemporal Landsat image was reduced
to a four band differenced image. A given differenced band is formed by
subtracting the pixel value at time two (tp) from the corresponding pixel
value at time one (ty):

Dijk = Xijk,1976 = Xijk,y977 * 127

where: i = line coordinate
Jj = sample coordinate
k = band number (MSS 4-7)
X = greylevel value for that pixel
D = differenced value
127 = constant added to produce a non-negative image assuming a dynamic

range of 128 greylevels.
The differenced image values, then, may range from 0-254, with an expected
mean of 127 if there is no change between images.
2. Ratioing: Again, an eight band image was reduced to a four band

ratioed image, the ratioed bands are manufactured thusly:

Rea o i3ks1977
K XTIR 976

where all terms are as previously defined.

R = ratioed value of the given pixel.
Note that the differenced image is a byte, or discrete, image. The ratioed
image is a real image with an expected mean of 1.00 for a given band if no

change has taken place. The potential range of this image is 0.00 to positive

infinity.
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3. Difference of Ratios: An eight band image was reduced to a one band

data set using the following transformations.

Xii7.1976 _ *id7.0977

DRij = +— — ¢
Xij5,1076 135,197
(healthy) (defoliated)
where: have been previously defined

i,j:
7,5: refers to the band numbers, 5 (0.60-0.70 um), 7 (0.8-1.1 um).
C : is an arbitrary constant added to produce a non-negative real image.

In the case of the data used for this study, C=4.0. The potential range of
this image is 0.00 to positive infinity. A simpler method of depicting this

transformation follows:

Difference of Ratios = Band/ - Band7 + 4.0
Band5 time 1 Band> time 2

Two factors should be noted concerning the characteristics of these data
transformations. First, the differenced image is a four band byte, or
discrete, image. Its' dynamic range is the integer values between 0 and 254
inclusive. The Ratio and Difference of Ratios images are real, continuous
images. Second, the Difference and Ratio transformations result in images
which are basically albedo comparisions at time 1 and at time 2. The
Difference of Ratios image is a comparison of green biomass measures at time 1
and 2.

B. Data Analysis, Technique Used to Alarm Change Pixels

The data were transformed and the mean and standard deviation of each
transformed band were calculated. Various standard deviation threshold levels
were tested for any particular transformed band to see which threshold
produced fhe highest change classification accuracy. An example may serve to

explain how the thresholding was done.
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Example: Develop a change classification image for differenced band 5
data. Threshold: 1.5 standard deviations.

The mean and standard deviation of the difference band 5 image may be
calculated. Mean: 125.765 SD: 3.718

Calculate the threshold values for 1.5 standard deviation: 126.765 +
(1.5 stan. dev) (3.718) - 121.188, 132.342. Hence anything further than 1.5
standard deviations from the mean is considered change. However, due to the
expected spectral change of the defoliated forest canopy in this wavelength
region, only difference values to the low side of the mean (in this case,
below 121.188) were considered change due to gypsy moth activity. So, band 5
difference values less than or equal to 121 were flagged as change.

Pixels regarded as unchanged at this particular standard deviation level
(i.e., difference band 5 values of 122 or greater) were set equal to O.
Changed pixels (values equal to or below 121) were set equal to 1. This 0/]
change classification was compared to the GRI to see how well it correctly
identified the gypsy moth damage.

The use of the standard deviation criterion to delienate changed pixels
in no way assumes a normal data distribution. In fact, it was assumed that

the data would be markedly non-normal. Lack of data normality merely prevents

the experimenter from using the Expirical Rule which states that 68% of the
population lies within 1 standard deviation of the mean, 95% within two
standard deviations, etc. The standard deviation threshold criterion is
merely one method of determining the actual cutoff value above or below which
pixels are noted as changed.

A standard operating procedure in most studies which have utilized the
thresholding approach has been to calculate threshold values on both sides of

the mean, since all types of change were of interest. Generally threshold
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levels on the order of 2 to 3 standard deviations were evaluated since the
experimenters were looking for a relatively small amount of total scene
change. This study was interested solely in change in the forest canopy, more
specifically, change due to gypsy moth defoliation. If a forest canopy is
defoliated, the change in the spectral response of that canopy over time is
predicatable. Nelson (1981) showed that a canopy which has suffered gypsy moth
defoliation generally increases its reflectance in the two visible Landsat
bands (4 and 5) and exhibits a decrease in the two infrared Landsat bands (6
and 7). This information was used to threshold the transformation images to

one side of the mean only, as follows:

Difference Image Band 4 (0.5 - 0.6 “m)ilow side of mean
Band 5 (0.6 - 0.7 um)
Band 6 (0.7 - 0.8 um) . .
Band 7 (0.8 - 1.1 um).-h1gh side of mean
Ratio Image g:zg g»-high side of mean
Band 6 .
Band 7 ‘1ow side of mean
Difference of Since one would expect the 7/5 ratio to decrease with
Ratio Images increasing defoliation, and the 1977 ratio (defoliated)

was subtracted from the 1976 ratio; this single band
image was thresholded to the high side of the mean.

Hence, pixels on the tail end of the distribution not considered were not
noted as changed, no matter how "abnormal" the data value. Though there may
have been some legitimately changed pixels in these tails, the change most
1ikely was not due to gypsy moth defoliation. Only canopy alterations due to
the gypsy moth infestation were of interest.

C. Accuracy Considerations

Two major questions concerning classification accuracy had to be addressed
prior to or during the study. The first dealt with those cover types which
would be considered "change" in the ground reference image; the second

concerned a suitable accuracy criterion which could be maximized. The problem
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and the solution to each problem are given below.

The GRI contained 3 forest classes, healthy, moderately defoliated, and
heavily defoliated forest. The 1976 Landsat data set included only healthy
forest, while the 1977 Landsat data set included all three forest classes. It
seemed evident that moderately and heavily defoliated forest should be
considered as change. However, previous studies concerned with gypsy moth
defoliation have shown that moderately defoliated and healthy forest are not
separable given the spectral and spatial resolutions of Landsat (Williams and
Stauffer, 1978; Nelson, 1980; Williams and Ingram, 1981). Dottavio (1980)
used a hand held radiometer to test the amount of 1light incident on the forest
floor beneath these two stand conditions (healthy and moderately defoliated)
and concluded that " . . . moderate defoliation (30-60% canopy removed) may
have such high spectral variability that the class cannot be identified, even
with higher spectral resolution, unless other environmental variables are
considered." The evidence collected thus far indicate that only heavy
defoliation can be consistently separated. Hence, it may be presumptuous to
consider moderate defoliation as a changed area when dealing with Landsat
data. This question was resolved by testing the difference and ratio images
over a wide range of standard deviation threshold levels. The objective of
the test was to determine whether or not moderately defoliated areas were
alarmed as change more frequently than healthy forest at the various threshold
levels. If the moderately defoliated pixels showed up as change significantly
more often than the healthy pixels in either the difference or ratio images,
then the two classes should be considered separately; i.e., moderate defoliation
would be a valid change class that should not be grouped with the healthy
forest. A paired-difference t test was run on each band of the difference and

ratio images with standard deviation threshold levels (henceforth called
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thresholds) ranging from 0.00 to 2.50, at intervals of 0.25 standard
deviations (sd). Each transformed image was analyzed independently; if
significant differences were found in either, then moderate defoliation would
be considered a valid change class. The one sided statistical hypothesis
follows:

Hg : Moderate defoliation is alarmed as change less often or equally as
often as healthy forest.

i.e., Ug ¢ O when U = Unod - Unealthy

Hy : Moderate defoliation is alarmed more often than healthy forest.

i.e., Ug2 O
The tests showed that moderately defoliated areas were alarmed significantly
more often than healthy forest areas in both the difference and ratio images.
Hence it was concluded that the moderate defoliation class was a valid entity
and was included as a change class when assessing accuracies.

The second question, that concerned with an accuracy criterion, deals with
the characteristics of various accuracy measures and their interaction with
the study site characteristics. This study was designed to define parameter
levels for the technique which maximized the accuracy of delineating
defoliated areas. In order to meet that objective, an appropriate accuracy
measure had to be selected. Most researchers base their accuracy measurement
on classification results tabulated in a confusion matrix. Two measures may
be quickly calculated from such a matrix; (1) average accuracy, which weights
each class equally and (2) overall accuracy, which weights each class
according to the number of pixels in that class.

Only two classes are considered in the accuracy assessment, no change
(healthy forest) and change (the two defoliated forest classes). Each of

these accuracy criteria has an inherent bias due to the number of pixels involved

30



in each of the classes of interest. Table 2 details the class sizes.

Table 2. Number of pixels in each ground reference cover type class

Change Forest
Class Class Number of Pixels
No Change Healthy Forest 31067
Moderate Defoliation 3307 °
Change % 4108
Heavy Defoliation 801
Nonforest 26887
Total 62062

Maximizing average accuracy would tend to favor low threshold levels.
Average accuracy equally weights a class with 4108 pixels and a class with
31067 pixels. 3107 of those 4108 pixels are in a category which is usually
confused with healthy forest. Hence as threshold levels increase, the
classification accuracy of 75% (248%) of the pixels in the change category
quickly plummets. The higher thresholds, then, adversely affect average
classification accuracy. Maximizing overall accuracy, onthe other hand, would
favor the high threshold levels which would correctly classify healthy forest
at the expense of the defoliated classes.

To overcome the biases of the two accuracy criteria, a decision was made

to maximize the average of the average accuracy and the overall accuracy.
This combined accuracy figure, though in itself meaningless, does have the
admirable characteristic of dampening the biases found in the first two
criteria. The class weights associated with the combined accuracy criterion
are merely the average of the weights of the average and overall accuracies,

and are detailed in Table 3.
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Table 3. Class weights for average, overall, and combined accuracy.

Change Forest Class Weights
Class Class Average Accuracy Overall Accuracy Combined Accuracy
No Change Healthy 0.50 0.8832! 0.69162
Moderate Def.  0.40253 0.0940°
Change > 0.50 £ 0.1168 0.30847
Heavy Def. 0.09754 0.02286 .
Total 1.00 1.00 1.00

See Table 2 for sample sizes of each forest class.

1. 31067/35175 = 0.8832 5. 3307/35175 = 0.0940

2. (0.50 + 0.8832)/2 = 0.6916 6. 801/35175 = 0.0228

3. (3307/4108) (0.50) = 0.4025 7. (0.50 + 0.1168)/2 = 0.3084
4. (801/4108) (0.50) = 0.0975

An alternate method which may have proved fairer would have been to arbitrarily
assign a class weight of 0.50 for healthy forest, and 0.25 for the two
defoliated cover types. Such an approach would have been more equitable for
the defoliated classes, though an argument can be made for combined accuracy
which slightly favors the class which comprises 88% of the test pixels. The
combined accuracy figure (as set forth in Table 3) was used in the procedures
outlined below in an attempt to find the method which best delineated gypsy
moth defoliation.

D. Detecting Change Using Individual Bands

Each band of the difference and ratio images, as well as the single band
of the difference of ratios image, were individually tested to determine the
optimal threshold level for delineating defoliation. The "goodness" of a
particular approach was judged solely by its quantitative performance; the
higher the combined accuracy, the better the approach.

Greyscale cutoff values were calculated using threshold levels ranging
from 0.00' to 2.50 standard deviations, using 0.25 sd increments. An output

change image was produced for each threshold level. This change image

1. Remember that only values on the low or high side of the mean were thresholded,
depending on the band being processed. Hence the 0.00 standard deviation

threshold level would result in roughly half the forested area being flagged

as change.
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contained zeros and ones, where "one" indicated change. This 0/1 change image
was compared to the GRI and the combined accuracy was calculated. Hence for
each individual band, there were 11 threshold/combined accuracy pairs.

The response surface around the threshold that produced the highest
combined accuracy for a particular band was investigated further. For
instance, if 1.00 standard deviation produced the highest combined accuracy
for the band 6 difference image, then thresholds from 0.80 to 1.20 standard
deviations (in increments of 0.05 sd) were tested. The threshold that
produced the highest combined accuracy over this more limited range was considered
the optimal threshold. In the event that a range of thresholds produced the
same maximum combined accuracy (as was typically the case with the difference
image), then the mid point of the range was considered optimal. The optimal
threshold for each band of the difference and ratio images served as the

starting point or “best guess" threshold for the multiband image analysis.

E. Modeling Combined Accuracy - Single Band Images

Identification of the optimal threshold level involved time which was,
perhaps, unnecessarily spent. If the sd threshold/combined accuracy relationship
could be accurately modeled using the initial empirical results {i.e., thresholds
ranging from 0.0-2.5 sd, increments of 0.25), then the more detailed investigation
(every 0.05 sd) could be bypassed. Though finding such a relationship would
not help this research (since the 0.05 sd investigation would have been completed),
future work might benefit. Hence, the threshold/combined accuracy relationship
was modeled using data from the initial response surface analysis (0.00-2.50
sd, 0.25 increments). The model derived from this data was used to calculate
the expected combined accuracy values around the initial empirical maximum,

These expected values were compared to the actual accuracy values.
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One would expect that a certain threshold would produce the maximum
accuracy, and the accuracies would become smaller as the threshold moved toward
0.00 or 2.50 standard deviations. Hence, a second order (quadratic) polynominal
was fit to the threshold/combined accuracy data. It was expected that the
resultant curves would be concave downward (2nd derivative negative) and that
the solution to the first derivative set equal to zero would be the threshold
that would maximize the combined accuracy.

A second response surface modeling approach was tested as a means of
interpolating between the empirical results to try and find the threshold that
would yield the maximum combined accuracy for a particular band. The threshold
and accuracy data for each band was modeled using a natural cubic spline
function. The spline function fits a third order polynominal between each
pair of knots, or data coordinates (each threshold/accuracy observation). Hence,
the empirical information is modeled perfectly; the spline may be evaluated between the
knots for purposes of interpolation. An explanation of the approach and an example
of the Fortran program similar to the one used in this study may be found in
Forsythe, Malcolm and Moler (1977). The interpolated accuracies were compared
to the actual accuracies to see which, if either, model produced acceptable
results.

F. Multiband Analysis Difference and Ratio Images

A sequential simplex design was used to explore the combined accuracy
response surface for various band combinations. The purpose of this portion
of the experiment was to explore the response surface of these multiband
images to maximize the accuracy for any particular band combinations. These
maximized accuracies were compared to determine (1) if additional bands
provided additional information and (2) which band combination best characterized

forest canopy alteration due to gypsy moth.
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A simplex design is one in which the experimeter mathematically brackets
a "guessed at" maximum with different treatment combinations so that the response
surface around that maximum can be explored. "Sequential" refers to the fact
that the outcomes of previous treatment combinations are used to establish new
treatment combinations. The experimental approach is such that the experimenter
steps across the response surface to the maximum yield or response. The logic
and mathematics of the approach may be found in Anderson and McClean, 1974,
pg, 362-367; these pages are reproduced in Appendix A.

The best two, three and all four bands for the difference and ratio images
were considered in the multiband analysis. The individual band ratings for
the difference or ratio image were based on the best empirical performance of
each band. A composite change image was produced for a given band combination
by adding the change/no change results for the individual bands (see Figure

8). A pixel was considered changed if any of the bands found it changed.
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Figure 8 Construction of a change image - multiband analysis.
A pixel is considered changed if any of the bands involved note change.

The composite change image is compared to the ground reference image.
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V. RESULTS

A. Analysis of Individual Bands

Individual bands of the various transformed images were investigated to
determine which bands best classified defoliated areas as change. The following
facts should be considered while reading this section:

1. Combined accuracy was calculated by averaging overall and average
classification accuracies. The latter two were calculated from performance
statistics of the individual forest classes, the combined accuracy figure was
the criterion maximized throughout the study.

2. The study is entirely quantitative. The sole measure of the ability
of a given technique to accurately classify defoliation as change is the combined
accuracy figure. No visual or qualitative judgements were involved in the
selection procedure.

3. No sampling error was involved in these accuracy assessments; the
assessment inciuded all of the forested pixels as defined by the forest/non-
forest mask.

4. Non-forest areas were masked and any changes in the non-forest areas
were not considered in the accuracy figures.

5. The change images output for single bands were 0/1 masks. A pixel
was correctly classified if a O on the change image corresponded to healthy
forest on the GRI or if a 1 on the change image corresponded to moderate or
heavy defoliation on the GRI.

6. Only one side of the population distribution of a given band was
considered for detecting alterations due to gypsy moth defoliation. Tests
were done where outliers on both sides of the mean were considered over a
range of thresholds. The results from these tests were compared to the results

when only one side was considered. In all bands tested (the 4 difference and
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4 ratio bands) the highest accuracy of the one-sided approach was higher then
the highest accuracy when both sides of the mean were considered.

1. Difference Image:

a. Empirical Results

Table 4a-d presents the results of the threshold tests. The accuracy of
classification of the individual cover types and the average, overall, and
combined accuracies are presented for the various thresholds. The two visible
channels (4 and 5) were analyzed to the low side of the mean, vice versa for
the infrared channels. Since the expected spectral shift due to gypsy moth
defoliation would be in these directions.

Note that as the sd level increases, the healthy forest accuracy, hence
the overall accuracy, increases. Conversely, the defoliated cover type class
accuracies and (with one exception) average accuracy fall. The combined accuracy
describes a concave downward curve with an empirical maximum of 1.00 and 1.25
for band 4, 0.50 for bands 5 and 7 and 1.00 sd for band 6. The channel best
suited for discriminating levels of defoliation from healthy forest was band
5, band 7 was second best, and band 6 was the worst.

Confusion matrices may be found in Appendix B with the methods used to

calculate the various accuracy measures.
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Table 4. Threshold level vs. classification accuracy - difference image.

SD Level: standard deviation threshold which produced these accuracies

Hithy: % correct classification, healthy forest

Mod: % correct classification, moderate defoliation

Hvy: % correct classification, heavy defoliation

Chng: % correct classification, change areas. Those areas noted

as defoliated on the GRI were considered Change. Hence, Chng =
(# of change pixels in moderate defoliation + # of change
pixels in heavy defoliation) = (total number of mod and hvy pixels in

GRI).
Avg: Average classification accuracy = % correct chng + % correct Nochange,
2
note that % correct nochange and % correct healthy are equivalent.
Over: Overall classification accuracy = total # correctly classified
pixels/total # of pixels.
Comb: Combined classification accuracy: (Avg + Over)/2.

a) Difference Image, Band 4

% Correct Classification

SD
Level Hlthy Mod Hvy Chng Avg Over Comb
0.0 38.97 87.30 99.38 89.65 64.31 44.89 54.60
0.25 38.97 87.30 99.38 89.65 64.31 44.89 54.60
0.50 69.59 62.72 91.39 68.31 68.95 69.44 69.20
0.75 69.59 62.72 91.39 68.31 68.95 69.44 69.20
1.00 89.32 29.21 71.66 37.49 63.41 83.27 73.34
1.25 89.32 29.21 71.66 37.49 63.41 83.27 73.34
1.50 96.34 8.65 46.57 16.04 56.19 86.96 71.57
1.75 98.49 1.51 15.98 5.11 51.80 87.58 69.69
2.00 98.49 1.51 19.98 5.11 51.80 87.58 69.69
2.25 99.27 0.03 6.87 1.36 50.31 87.83 69.07
2.50 99.27 0.03 6.87 1.36 50.31 87.83 69.07

% Correct Classification

SD

Level Hlthy Mod Hvy Chng Avg Over Comb

0.0 65.81 74.24 98.63 78.99 72.40 67.35 69.87
0.25 65.81 74.24 98.63 78.99 72.40 67.35 69.87
0.50 83.40 49.89 97.13 59.10 71.25 80.56 75.91
0.75 90.92 27.85 91.39 40.24 65.58 85.00 75.29
1.00 94.48 11.37 81.02 24.95 59.72 86.36 73.04
1.25 96.38 5.65 66.67 17.55 56.97 87.18 72.07
1.50 97.62 2.69 57.30 13.34 55.48 87.78 71.63
1.75 98.33 1.15 45.19 9.74 54.03 87.98 71.01
2.00 98.80 0.39 32.83 6.72 52.76 88.05 70.40
2.25 99.08 0.12 23.47 4.67 51.92 88.14 70.03
2.50 99.38 0.12 15.48 3.12 51.25 88.14 69.69
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Table 4 (continued):
c) Difference Image, Band 6

% Correct Classification

SD -
Level Hithy Mod Hvy Chng Avg Qver
0.0 72.28 39.01 93.01 49.54 60.91 69.62
0.25 79.79 29.51 91.39 41.58 60.69 75.33
0.50 89.37 15.78 85.14 29.31 59.34 82.35
0.75 92.17 12.43 81.02 25.80 58.99 84.42
1.00 95.59 7.35 72.66 20.08 57.84 86.77
1.25 96.53 5.68 66.79 17.60 57.06 87.31
1.50 97.86 2.87 53.06 12.66 55.26 87.91
1.75 98.60 1.18 42.07 9.15 53.88 88.15
2.00 98.90 0.79 35.46 7.55 53.22 88.23
2.25 99.25 0.33 21.60 4.48 51.86 88.18
2.50 99.36 0.15 15.86 3.21 51.28 88.13

d) Difference Image Band 7

% Correct Classification

SD
Level Hlthy Mod Hvy Chng Avg. Over
0.0 75.27 54.85 98.13 63.29 69.28 73.87
0.25 84.15 40.37 96.00 51.22 67.69 80.31
0.50 89.75 30.06 93.01 42.33 66.04 84.21
0.75 93.21 19.93 89.51 33.50 63.35 86.24
1.00 95.19 13.61 84.39 27.41 61.30 87.28
1.25 96.56 9.71 79.03 23.22 59.89 88.00
1.50 97.48 6.32 71.79 19.08 58.28 88.32
1.75 98.07 4.11 63.30 15.65 56.91 88.54
2.00 98.64 2.36 51.44 11.93 55.28 88.51
2.25 99.00 1.09 40.32 8.74 53.87 88.45
2.50 99.22 0.45 30.09 6.23 52.73 88.36

A second, limited, response surface analysis was performed around the
threshold level which produced the highest accuracy for each band in Table 4.
Hence, threshold levels from 0.80 sd to 1.45 sd (in 0.05 sd increments) were
investigated for band 4 because this range brackets the thresholds (i.e.,

1.00, 1.25) which yielded the highest combined accuracy. The highest combined
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accuracy in bands 5 and 7 were associated with the 0.50 standard deviation
threshold, hence thresholds from 0.30-0.70 standard deviations were investigated,
in 0.05 intervals. The region from 0.80-1.20 standard deviations was investigated
in band 6. The results of this refined empirical analysis are given in Table

5 and in Figure 9a-d. The best empirical results as noted in Table 5 provided
input to the multiband analysis.

b. Modeling - Difference Image

The results in Table 4 (threshold vs. combined accuracy) were modeled
using (1) a quadratic regression equation and (2) a natural cubic spline function.
The models were evaluated to determine which most closely fit the empirical
data. Figure 9 a-d provides a graphical comparison, while Table 5 provides a

tabular comparison of the modeled and empirical results.

Table 5. Difference Image, Empirical vs. Modeled results.

Best Best Modeled Optimal Results
Empirical Empirical Quadratic Spline*
Band sd levels Comb. Acc (%) sd thresh Pred. Acc RZ sd thresh Pred. Acc

4 0.85-1.25 73.34 1.56 73.13  0.81 1.10 73.99
5 0.35-0.60 75.91 1.02 73.15  0.45 0.60 76.41
6 0.95-1.05 72.31 1.42 72.28 0.87 1.10 72.36
7 0.45-0.65 75.13 0.94 74.35 0.83 0.55 75.15

* The spline functions models the data_perfectly, the derived functions are used
for interpolation only. Hence an RZ value is not applicable; if calculated it
would always be 1.00

In Table 5 and in Figure 9 a-d, the concern lies with how well a particular
modeling approach estimates the optimal sd threshold. One notes that the

spline function seems to do well in this regard; three of the four optimal

thresholds predicted by the spline are within the 1imits of the empirical

results. The quadratic model does a very poor job of predicting the optimal

threshold level, none are reasonably close.
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2. Ratio Image:

a. Empirical Results

Tables 6 a-d present the results of the threshold tests for the ratio
image. The ratio image channels were handled in an inverse manner relative to
the difference image channels. The two visible ratio bands were analyzed to
the high side of the mean only, the infrared channels to the low side. These
areas of the channel populations are those where one would expect to pick up
the gypsy moth defoliation due to the nature of the calculations producing the
ratio image (5329_511217 ) and due to the spectral shifts caused by foliage

Band X,1976
removal.

Table 6. Threshold level vs. classification accuracy, Ratio image.
NOTE: See Table 4 for explanation of column headings

a) Ratio Image, Band 4

% Correct Classification

SD
Level Hlthy Mod Hvy Chng Avg Over Comb
0.0 39.97 87.30 99.38 89.65 64.31 44 .89 54.60
0.25 69.59 62.72 91.39 68.31 68.95 69.44 69.20
0.50 69.59 62.72 91.39 68.31 68.95 69.44 69.20
0.75 88.80 29.24 71.66 37.51 63.16 82.81 72.98
1.00 89.36 29.21 71.66 37.49 63.43 83.31 73.37
1.25 91.32 29.00 67.92 36.59 63.95 84.93 74.44
1.50 96.44 8.65 46.57 16.04 56.24 87.05 71.65
1.75 97.33 8.56 44.94 15.65 56.49 87.79 72.14
2.00 98.23 2.96 20.35 6.35 52.29 87.50 69.89
2.25 98.89 1.51 19.98 5.1 52.00 87.93 69.97
2.50 99.20 1.42 15.73 4.21 51.70 88.10 69.90

b) Ratio Image, Band 5

SD
Level Hlthy Mod Hvy Chng Avg Over Comb
0.0 65.81 74.24 98.63 78.99 72.40 67.35 69.87
0.25 69.34 72.12 98.25 77.21 73.28 70.26 71.77
0.50 84.00 49.89 97.13 59.10 71.55 81.09 76.32
0.75 90.29 28.39 91.39 40.68 65.48 84.49 74.99
1.00 92.75 27.64 91.01 40.00 66.37 86.59 76.48
1.25 94.91 12.37 81.40 25.83 60.37 86.85 73.61
1.50 96.35 9.53 74.53 22.20 59.28 87.69 73.48
1.75 97.37 6.38 66.29 18.06 57.71 88.11 72.91
2.00 97.89 4.17 61.42 15.34 56.61 88.25 72.43
2.25 98.41 2.69 57.43 13.36 55.89 88.47 72.18
2.50 98.73 2.15 50.31 11.54 55.14 88.55 71.84



c) Ratio Image, Band 6

% Correct Classification

SD
Level Hithy Mod Hvy Chng Avg Over
0.0 72.28 39.01 93.01 49.54 60.91 69.62
0.25 85.06 22.53 88.39 35.37 60.22 79.26
0.50 91.99 12.82 82.02 26.31 59.15 84.32
0.75 95.45 7.95 75.53 21.13 58.29 86.77
1.00 97.14 4.78 64.54 16.43 56.79 87.72
1.25 98.30 2.57 52.81 12.37 55.33 88.26
1.50 98.89 1.06 42.57 9.15 54.02 88.41
1.75 99.33 0.51 32.33 6.72 53.02 88.51
2.00 99.56 0.12 19.10 3.82 51.69 88.38
2.25 99.69 0.03 8.86 1.75 50.72 88.26
2.50 99.78 0.0 1.75 0.34 50.06 88.17

d) Ratio Image, Band 7

% Correct Classification

SD
Level Hithy Mod Hvy Chng Avg Over
0.0 60.95 70.97 98.88 76.41 68.68 62.75
0.25 91.28 25.58 92.63 38.66 64.97 85.14
0.50 97.05 8.32 76.53 21.62 59.33 88.24
0.75 98.96 1.42 45.07 9.93 54.45 88.56
1.00 99.63 0.06 13.61 2.70 51.17 88.31
1.25 99.88 0.0 0.0 0.0 49.94 88.22
1.50 99.94 0.0 0.0 0.0 49.97 88.27
1.75 99.98 0.0 0.0 0.0 49.99 88.30
2.00 99.99 0.0 0.0 0.0 50.00 88.32
2.25 100.00 0.0 0.0 0.0 50.00 88.32
2.50 100.00 0.0 0.0 0.0 50.00 88.32

The order of band usefulness for delineating gypsy moth defoliation is
identical to that of the difference image, best to worst: bands 5, 7, 4, 6.
Each ratio band was subject to further investigation around the threshold
which produced the highest combined accuracy in Table 6. Band 4 was checked
from 1.05 to 1.45 sd (0.05 increments); Band 5, 0.80-1.20; Band 6, 0.55-0.95;
Band 7, 0.05-0.45. The results of this refined empirical analysis are given
in Table 7 and in Figure 10a-d. The best empirical results, as noted in Table

7, provided input to the multiband analysis.
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b. Modeling - Ratio Image:

The quadratic regression model and the natural cubic spline model were
used to analyze the threshold/combined accuracy data in Table 6a-d. The model
results were compared to the empirical results at the points mentioned in the

paragraph above. Table 7 and Figures 10a-d summarize the results.

Table 7. Ratio Image, Empirical vs. Modeled Results

Best Best Modeled Optimal Results
Empirical Empirical Quadratic R Spline
Band  sd level Comb. Acc (%) sd thresh Pred. Acc R? sd thresh Pred. Acc
4 1.20-1.25 74.44 1.46 74.22 0.72 1.20 74.50
5 0.65 77.45 1.20 74.81 0.52 1.00 76.48
6 0.85 73.66 1.31 72.23 0.73 0.80 72.54
7 0.25 75.05 0.61 70.81 0.12 0.30 75.29

Again, the spline model performed well, the quadratic model did very
poorly. The spline consistently predicted the optimal standard deviation
within 0.05 with the exception of band 5. The extreme irregularity of the
threshold/accuracy relationship in this band produced the inaccurate spline
response (see Figure 10b).

3. Difference of Ratios Image

a. Empirical Results
This image was evaluated to determine if a one band comparison of
vegetation indices at time 1 and time 2 would produce more accurate results
than the albedo comparisons of the Ratio and Difference images. The 7/5 ratio
was calculated for each pixel in the 1976 (healthy forest) data set and for

each pixel in the 1977 (defoliated) data set. The 1977 values were subtracted
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from the 1976 ratios and the mean and standard deviation of the new image was
calculated. Since the 7/5 ratio in defoliated areas is expected to decrease,
only values at the high end of the scale (greater than the mean) were
considered to potentially be gypsy moth defoliation. The results of the

empirical analysis are given in Table 8.

Table 8. Threshold level versus classification accuracy, Difference of Ratios image.

% Correct Classification

SD
Level Hithy Mod Hvy Chng Avg Qver Comb
0.00 64.00 74.47 98.88 81.65 72.85 66.11  69.48
0.50 80.26 58.87 98.50 66.60 73.43 78.67  76.05
1.75 85.87 49.44 97.75 58.86 72.36 82.71 77.54
1.00 89.79 40.64 96.75 51.58 70.68 85.32 78.01
1.25 92.58 32.45 94.01 44.45 68.51 86.96 77.74
1.50 94.78 25.18 91.63 38.14 66.46 88.16  77.31
1.75 96.23 17.30 87.89 31.06 63.64 88.62 76.13
2.00 97.34 12.85 83.40 26.61 61.98 89.08 75.53
2.25 98.30 9.13 77.03 22.37 60.34 89.43 74.88
2.50 98.85 6.23 69.16 18.50 58.67 89.46  74.07

The response surface around 1.00 standard deviations (from 0.80-1.20) was
checked to see if higher accuracies could be obtained. The 1.00 standard
deviation level yielded the only combined accuracy over 78%. O0On a single band
basis, this technique performed slightly better than the best band of the
differenced or ratioed data.

b. Modeling - Difference of Ratios

A quadratic regression expression and a natural cubic spline function
were fit to the data in Table 8. Table 9 and Figure 11 summarize the findings

of these analyses.
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Table 9. Difference of Ratios - Empirical vs. Modeled Results

Best Best Modeled Optimal Results
Empircal Empirical Quadratic R Spline
sd level Comb. Acc (%) sd thresh Pred. Acc R¢ sd thresh Pred. Acc
Difference 1.00 78.01 1.37 77.91  0.86 1.00 78.01

of Ratios
The quadratic equation overestimated the optimal threshold; the spline
function accurately modeled the response surface. Thus, the spline function
predicted the optimal threshold within 0.05 standard deviations in eight of

nine trials. The quadratic did poorliy in all nine.

B. Multiband Image Analysis

Having found the optimal sd levels for individual bands in differenced or
ratioed images, the task became one of determining whether or not information
from two or more bands improved change detection capability. The single band
analysis highlights the fact that optimal threshold levels are not the same
for each band For instance, the optimal threshold for band 4 is twice the
optimal threshold for band 5 in the difference image. Hence, the levels for
the individual bands used in combination must be adjusted independently when
the response surface of two or more bands is studied.

A full factorial design would be the most informative approach to
determine the optimal threshold levels of two or more bands used in combination.
The drawback to this approach is the number of treatment combinations necessary
to adequately study the entire response surface. For instance, if 11 standard
deviation levels are to be tested using all 4 channels to detect change, the
number of treatment combinations that must be tested is 114 or 14,647, Full
factorials, though ideal in the context of information content, were not run
due to time and expense considerations.

A sequential simplex experimental design was used to investigate the band

combination problem. Sequential refers to the fact that the results from
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previous trials are used to formulate the new treatment levels which are
subsequently tested. A simplex design is one in which a treatment combination
of interest is bracketed with experimental treatment combinations. A simplex
design is a mathematical method of defining treatment level combinations in an
area of the response surface that is of interest to the researcher. That
area, or treatment combination of interest, might be a "quessed at" maximum,
for instance, a treatment combination in a chemical experiment that produced
the maximum yield of a desired product. The sequential simplex design permits
the experimenter to study the response surface and adjust factor levels such
that, eventually, he finds the optimal treatment combination that maximizes
the dependent variable. An explanation of the approach and statistical "how-
to" may be found in Anderson and MclLean (1974); pg. 362-367. These pages are
reproduced in Appendix A, with permission of the publisher.

The "best guess" initial estimates were those sd thresholds which yielded
the highest combined acuracy for a particular band. In the event a range of
thresholds produced the same high accuracy, the mid-point of the range was
used. The initial thresholds for the multiband analysis are listed in Tables
5 and 7, second column.

The best two bands (5 and 7), the best three bands (5, 7, 4) and all four
bands were tested to see whether the information supplied by the additional
bands improved classification accuracy. To review, a multiband change image
was produced by adding together the 0/1 change masks of the individual bands.
For instance, the final change image (single band) of a three band (5, 7 and
4) treatment combination would have a zero where no band found change, a 1
where only one of the three found change, a two where two of the three bands
found change, and a three where all bands concurred (see Figure 8 and associated

text).
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The results of the sequential simplex experiment are given in Table 10.
The thresholds Tisted are, theoretically, the treatment levels that will yield
the maximum response (highest combined accuracy) for a particular band
combination. In actuality, these treatment levels may be viewed as
approximations (i.e., close to the maximum) to the optimal treatment levels.
Previous work showed that small improvements in classification accuracy (up to
one half a percentage point) could be expected if a micro-response surface
investigation around the simplex maximum was conducted.

Table 10: Results of the sequential simplex experiment to determine optimal
threshold Tlevels for bands used in combination.

sd Threshold Level % Correct Classification
Channel
Image Comb. Ch2 Ch4 Chl Ch3 Hth Mod Hvy Avg Over Comb.
Dif. 5,7 0.47 1.70 83.05 49.89 97.13 71.08 80.26 75.67
Dif. 5,7,4 0.49 1.05 1.40 81.58 52.46 97.63 71.42 79.21 75.32

pDif. 5,7,4,6 0.41 0.95 1.33 1.22 81.21 52.46 97.63 71.24 78.88 75.06

Ratio 5,7 0.65 0.54 85.21 49.53 97.13 72.01 82.13 77.07

Ratio 5,7,4 0.95 0.93 1.19 86.71 44.60 94.38 70.51 82.93 76.72

Ratio 5,7,4,6 0.59 0.65 1.50 1.07 83.43 52.04 97.25 72.15 80.80 76.47

C. Comparison of All Approaches

Comparison of the results of the single and multiband analyses for the three
images show that: (1) the difference of ratios transformation produced the
highest combined classification accuracy; (2) the red channel, band 5,
classifies gypsy moth defoliation more accurately than any other single
channel or channel combination; (3) additional bands do not improve the
discriminatory capability of differenced or ratioed data; (4) ratioed data
provided consistently more accurate results than did the differenced data.

Table 11 describes the best performance for each of the three images.
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Table 11. Best classification performance for Difference, Ratio and
Difference of Ratio images.

Image Band(s) T;Sesh Hth Mod Hvy Chng Avg Overall Combined
Difference 5 0.48 83.40 49.89 97.13 59.10 71.25 80.56 75.91
Ratio 5 0.65 85.86 49.38 96.63 58.59 72.23 82.68 77.45
D of R - 1.00 89.79 40.64 96.75 51.58 70.68 85.32 78.01

NOTE: The contingency tables associated with the best approaches are given in
Appendix B.

Figure 12 presents each of the images listed in Table 10 and the ground reference
image for visual comparison.

The results point to the fact that a Difference of Ratios transformation
is the most useful method for detecting gypsy moth defoliation. Not only did
it turn in the highest classification accuracy over a relatively wide range of
threshold levels but it did so using only one band of transformed data. The
ratio band 5 data performed almost as well, but did so over a more limited
range of thresholds (compare Figures 10b and 11). Additional bands did not
enhance the capability of a particular data transformation to detect change.
The difference image universally turned in the poorest detection performances;
an arguement may be made for processing continuous (real) images instead of

discrete (byte) images when thresholding to detect change.

D. Characteristics of Landsat Data and Transformations

A noteable feature of the results given in the preceeding sections is the
strikingly low thresholds necessary to accurately classify change due to gypsy
moth defoliation. Previous work had shown that threshold levels on the order
of two to three standard deviations were typical (Stauffer and McKinney, 1978;
Ingram et al., 1981). The low thresholds encountered indicated that the transformed
populations were most likely markedly non-normal. Hence, a number of statistical

tests were run on many of the data sets which were used in this study. The
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Figure 12 The best difference, ratio,
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statistical tests were conducted to determine if a particular data set was
normally distributed and to characterize the "shape" of the frequency
distribution.

The raw Landsat data and the transformed data were tested using the SAS
program Univariate (Statistical Analysis System, SAS Institute, Inc., 1979).
Table 11A and B list the results of those tests which included the calculations
of the mean, standard deviation, Fisher's gy and gp statistics (skewness and
kurtosis), and the Kolamagorov-Smirnov D-statistic test for normality. These
numbers allow the population to be characterized as follows:

1. Signficantly nonnormal (Kolomagorov-Smirnov Test);

2. Significant skew, left or right (Fisher's g] statistic);

3. Significant kurtosis, leptokurtic or platykurtic (Fisher's gp statistic).

The Kolomagorov-Smirnov statistic is a nonparametric value which deals
with the maximum deviation of the observed population from the theoretical (dr
normal) population (Davis, 1973, pg. 276). The Fisher g statistics allow one
to draw conclusions concerning the shape of the population in question. The
g1 and g» statistics have an expected value of zero in a normally distributed
population and are themselves normally distributed with a variance of 6/N and
24/N (these are approximations, see Fisher, 1970, pg. 75 for precise variance
calculations), where N is the number of values sampled from the population.

In this case, 252 points were systematically sampled over the entire 286
Tine by 217 column image, corresponding to every 16th pixel in a line (14
sample points per line), every 15th line (18 lines). The 252 sample points
represented the range of cover types found on the Wertzville Quad. The forested
area, which was the sole consideration in the change detection study, was
analyzed separately by multiplying the data by a 0/1 forest mask. Only 146

sample points remained after masking, indicating that roughly 57.9% of the
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quadrangle is forested (the actual forested area defined by the forest/non-
forest mask is 56.7%). The following data was tested for normality:

1976 "raw" Landsat data - 4 channels

1977 "raw" Landsat data - 4 channels

Difference data - 4 channels (DIF)

Ratioed data - 4 channels (RAT)

Band7/Band5 ratio, 1976 data - 1 channel (7/5, 1976)

Band7/Band5 ratio, 1977 data - 1 channel (7/5, 1977)

Difference of Ratios - 1 channel (DR)

A11 sampled points in each band in a particular data set were analyzed (252
points, Table 11A), then just the forested points were tested (146 points,
Table 11B).

A data set that is normal will have a D statistic very close to zero. D-
statistics larger than zero indicate a non-normal data set. A skewed data set
will have a positive or negative g] statistic, zero indicates no skew. A
positive number denotes a tail trailing off to the right, a negative number
naturally denotes skew to the left. Kurtosis, the gy statistic, is positive
if the sampled population is leptokurtic (spiked), negative if platykurtic
(flat-topped), and zero if it is normal (bell shaped). The significance of
the g1 and g statistics were evaluated with a simple Z test, using the
variance approximations given above to calculate the standard error (in this
case the standard error is the same as the standard deviation).

A few generalities may be garnered from Table 11. Exceptions to these
generalizations may be found in the table; however, the overview may be more

valuable than the exceptions.
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Table 11A. Test for normality, skewness and kurtosis for entire Wertzville
quad N = 252 points.

K-S

D Prob! Skew Prob! Kurt Probl

Dataset Band Mean sd statistic 0 g] q] g7 g2
Raw 1976 4 18.98 3.71 0.215 0.01 1.009 0.01 0.476 NS2
5 17.18 5.48 0.219 0.01 1.108 0.01 0.541 0.01

6 57.77 8.03 0.151 0.01 -2.514 0.01 13.013 0.01

7 62.06 11.09 0.414 0.01 -3.074 0.01 9.014 0.01

Raw 1977 4 18.74 3.49 0.183 0.01 1.068 0.01 1.229 0.01
5 17.50 5.77 0.184 0.01 1.273 0.01 1.669 0.01

6 56.63 7.22 0.133 0.01 -2.473 0.01 11.368 0.01

7 58.68 11.88 0.084 0.0 -1.473 0.01 5.091 0.01

Difference 4 127.24  2.16 0.130 0.01 0.008 NS 2.031 0.01
5 126.67 3.53 0.159 0.01  -1.301 0.01 7.514 0.01

6 129.14  6.02 0.112 0.01 1.042 0.01 2.443 0.01

7 130.37 8.08 0.047 0.01 1.456 0.01 4.686 0.01

Ratio 4 0.99 0.11 0.154 0.01 0.585 0.01 1.134 0.01
5 1.03 0.19 0.161 0.01 2.111 0.01 10.153 0.01

6 0.97 0.11 0.081 0.01 -0.137 NS 3.863 0.01

7 0.96 0.20 0.157 0.01 4.703 0.01 50.054 0.01

1976, 7/5 1 4.00 1.42 0.118 0.01 -0.403 0.01 -0.878 0.01
1977, 7/5 1 3.79  1.55  0.117 0.01  -0.093 NS -1.151 0.01
DR 1 4.21 0.85 0.086 0.01 1.191 0.01 2.952 0.01

1The columns marked Prob. D, Prob. g], Prob g list the probability that the
number calculated is actually not significant. The numbers should be read with a
" " sign in front of them. Hence if the number were 0.05 or smaller, then the
null hypothesis (Hgy: the number in question is not significantly different from
zero) would be rejected at the 95% confidence level.

2NS:  not significant, below 90% confidence level, i.e., the number given would
be greater that 0.10.
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Table 11B. Test for normality, skewness and kurtosis, forested areas
only N = 146 points.

K-S

D Prob Skew Prob Kurt Prob

Dataset Band Mean  sd statistic D g] g1 g2 92
Raw 1976 4 16.40 1.24 0.210 0.01 0.881 0.01 1.908 0.01
5 13.26 1.30 0.285 0.01 1.250 0.01 1.567 0.01

6 58.66 5.40 0.105 0.01 0.347 0.10 1.922 0.01

7 66.40 7.08 0.076 0.04 -0.078 NS 0.920 0.05

Raw 1977 4 16.60 1.94 0.248 0.01 2.310 0.10 9.417 0.01
5 13.95 3.28 0.255 0.01 4.483 0.01 28.702 0.01

6 58.14 5.48 0.078 0.03 -0.840 06.01 3.327 0.01

7 64.56 8.31 0.110 0.01 -1.037 0.01 3.178 0.01

Difference 4 126.80 1.64 0.199 0.08 -1.078 0.01 2.124 0.01
5 126.31 2.88 0.225 0.01 -3.995 0.01 25.549 0.01

6 127.53  5.60 0.151 0.01 1.951 0.01 7.888 0.01

7 128.84 8.00 0.177 0.01 2.404 0.01 10.128 .01

Ratio 4 1.01 0.10 0.205 0.01 0.854 0.01 0.783 0.10
5 1.05 0.19 0.215 0.01 3.097 0.01 15.670 0.01

6 1.00 0.09 0.119 0.01 -1.283 0.01 4.705 0.01

7 0.98 0.1 0.139 0.01 -1.720 0.01 5.993 0.01

1976, 7/5 1 5.05 0.66 0.081 0.02 -0.604 0.01 0.206 NS
1977, 7/5 1 4.83 1.08 0.137 0.01 -1.002 0.01 0.960 0.02
DR 1 4.22 0.97 0.125 0.01 1.330 0.01 2.628 0.01

1. All sample populations tested (exception: differenced data, band 4,
forested), whether solely from forested areas or from the entire quad, were
non-normal at the 95% level of confidence. The population characteristics
responsible for this lack of normality varied.

2. Results from the forested areas were very similar to results when all
cover types were considered. The Wertzville Quadrangle is heavily vegetated,
most of those lands not in forest are agricultural areas that at the time of
the imagery were supporting some sort of vegetation.

3. Most of the data sets, transformed or untransformed are leptokurtic.
In general, Landsat data and the associated multitemporal transformations tend
to have a large number of observations clustered around the band mean and a
large number of outliers (relative to a normal distribution). The only data
that exhibited a flat-topped distribution were the within-date band ratios

(1976 and 1977 7/5 ratios).
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4. Most of the data channels were skewed. The direction of skew varied;
this variation in part seemed to be a function of the data transformation and
whether the channel involved was in the visible or infrared portion of the
spectrum.

The standard deviation threshold levels which optimized classification
accuracy were suprisingly low, generally in the range of 0.50 to 1.00 standard
deviations. One should remember that a specific type of change was sought;
that change was spectrally manifested on only one side of the mean. The one-
sided nature of the change coupled with the non-normal data produced the low
threshold levels. The data non-normality may be better illustrated by
comparing the actual number of flagged pixels at a particular threshold to the
expected number if the population was normally distributed (see Table 12).

The actual percentage of forest pixels that were noted as defoliated in the

GRI was 11.68 percent.

Table 12. Comparison of actual number of changed pixels in the best single band
ratio and difference images and in the Difference of Ratios image

versus the theoretical percentage that would be flagged if the
populations were normally distributed.

Percent Percent of
sd Side of Forest Pixels Pogu]ation
Image Band  Thresh Mean Flagged as Change ormal 1
Difference 5  0.35-0.602  Tow 21.56 13.68-22.57
Ratio 5 0.65 high 19.33 24.22
Dif. of Rat. - 1.00 high 15.05 34.13

1pn 7 distribution was used to calculate this column. The normal curve areas
are available in Mendenhall, 1975, Appendix 2, Table 3.

2Due to the discrete nature of the difference image, a range of standard
deviation threshold levels produced the "best" classification accuracy.

Note that, in general, the percentages of alarmed pixels in the images

were smaller than the corresponding values in a normal population. This
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decrease mirrors the leptokurtic nature of the data. The relatively small
threshold levels may have been due to the characteristic skew of the
particular data sets. In each case, the data set was significantly skewed in
the direction of the change being detected (see Table 11B). These results
demonstrate that Landsat data collected over a diverse area such as Harrisburg
is markedly non-normal, even when the cover types being considered are
restricted. Certain tests and processors, such as the Bayesian classifier,
assume a gaussian (or normal) distribution but are fairly robust if the data
is non-normal. Analyses involving parametric statistical measures that
require normality should be treated cautiously if Landsat spectral data is

involved.
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VI. CONCLUSIONS AND DISCUSSION

The following conclusions concerning the use of Landsat data for

detecting and monitoring gypsy moth defoliation may be drawn from the

literature review and the results of the study.

1.

A difference in vegetative indices (such as the 7/5 ratio) classified
defoliation more accurately than a strict comparison of albedo
measurements, i.e., the difference or ratio transformations. The
difference of ratios transformation has the added advantage of
reducing an eight channel multitemporal data set to one channel. The
difference and ratio transformations reduce eight channels to four.
Concerning differenced or ratioed data:

Band 5 is the most useful single band for discriminating canopy
alteration.

Band 7 is the second most useful channel, band 4 third, and band 6 is
the worst.

In all cases, additional bands did not improve change classification
performance.

The ratio image produced consistently higher accuracies than the
difference image. Though both compare spectral reflectance
measurements obtained on two different dates, the ratio calculation
produced a real number image. The discrete nature of the difference
image makes it relatively insensitive to adjustments in the standard
deviation threshold level for a particular band.

Optimal threshold levels (based on maximizing combined accuracy) were
low, on the order of 0.50 to 1.00 standard deviations. One cannot
associate these levels with a certain percentage of the population

(via the Empirical Rule) due to the non-normality of the data.
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A11 Landsat data, transformed and untransformed, were markedly non-
normal. Most of the data were leptokurtic (spiked) and skewed. The
direction of the skew was in part a function of the data band being
considered--whether it was a visible or infrared channel--and of the
transformation involved, if any.

The natural cubic spline function did not adequately model the
relationship between the standard deviation threshold and combined
accuracy. However, the natural spline predictions were much more
realistic than those obtained when a quadratic model was forced to
fit the empirical threshold/accuracy results. The forced quadratic
regression analysis more often than not gave misleading or incorrect
predictions of the optimal threshold value. The spline, a more
empirical approach, produced much more reasonable modeling results,
but could not handle the often, almost random behavior of the
combined accuracy criterion.

The sequential simplex experimental design did not, in this study,
adequately define the optimal threshold levels of the individual
bands when used in various combinations. It did, however, produce
acceptable approximations to these values. The sequential simplex
design, then, should be used to define an area of the response
surface that produces the highest classification accuracy for a
particular band combination. The sequential simplex design provides
a methodical avenue for investigating the response surface, and once
a "best set" of thresholds is defined, that region of the response
surface can be explored using a much smaller factorial design.

A combined accuracy figure, the average of the average and overall
accuracies, had to be generated and analyzed. This criterion, though

in itself meaningless, did combine the characteristics of average and
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overall accuracy into a variable for which an optimal threshold could
be defined. The combined accuracy class weights were midway between
the weights associated with average and overall accuracy. Such a
criterion may be useful wherever there is a need to maximize

classification accuracy.

8. The moderate defoliation class was responsible for the fairly low
combined classification accuracies (below 80%). Healthy forest and
heavy defoliation may be correctly classified typically 85 and 95
percent of the time, respectively; moderate defoliation rarely got
above 50%. Moderately defoliated areas exhibit abominable
classification accuracies regardless of the data transformation used.
Major increases in the classification accuracy of moderate
defoliation came at the expense of healthy forest.

This study handled moderate defoliation as a valid cover type. This
tended to reduce classification accuracies by alarming pixels in healthy
forest. A viable alternative which would reduce this false alarm rate would
be to maximize healthy forest and heavy defoliation classification accuracies
to set the threshold limits. The problem with this approach is that much of
the forest that lost 30-60% of its crown would go unnoticed; the amount of
unhealthy forest would be underestimated.

To summarize, only three of a multitude of data transformations were
tested, but the results are clear. If one is searching for a specific type of
change, use a data transformation that highlights differences in the cover
types being checked. In the case of forest canopy alteration, a vegetative
index is most useful. Data transformations to detect change, however, are not
always called for. Many have found differences in the band 5 response
adequate for delineating urban boundaries. Flood or coastal zone surveys

might do well to study band 7 responses at different times to detect obvious
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changes in, for instance, the sizes or shapes of barrier islands or large
river systems. The point is, tailor the data transformation to the specific
type of change being investigated.

Second, utilize information concerning the spectral characteristics of
the type of change being studied. For instance, in this project, only values
to the high side of the mean of the difference of ratios data were considered
as change due to gypsy moth defoliation. Low values might indicate (among
other things) an increase in the biomass being sensed. Such phenomena were of
no interest, since the type of change being studied concerned a loss of
canopy, a reduction in the value of the 1977 7/5 ratio, and subsequently an
increase in the difference of ratios value.

Finally, a review of the quantitative literature suggests that analysis
of a multitemporal data set is inherently more accurate than classifying each
date separately and comparing classifications. The errors involved with each
of the separate classifications are compounded when the results are compiled
into a single change image. The facts that (1) the classes represented in the
statistics formulated to train the classifier may not be equivalent, and (2)
misclassification errors are ubiquitious in any sort of MSS data classification,
give credence to the basic tenant that post-classification differencing starts
out with a marked handicap.

This research project has re-emphasized the fact that computer-aided
analysis of Landsat MSS data is capable of accurately delineating healthy
forest and heavily defoliated forest. Moderate defoliation causes problems;
none of the change detection techniques tested accurately classified this
cover type. It is unfortunate that this particular cover type class causes
such problems because it is the one cover type in which the foresters and

entomologists are most interested. The areas that were moderately defoliated
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this year will probably be heavily infested next year. These areas, where the
trees are still relatively healthy and there is a good breeding population of
moths, are most deserving of the suppression efforts mentioned in the
introduction. These areas cannot be reliably delineated using Landsat MSS

data.
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VII. APPENDIX A

(From Anderson and Mclean, 1975, pg. 362-367)

Simplex (Sequential)

The sequential application of simplex designs presented here do not
require that the sum of the levels of the factors add to one for each treatment
combination. The number of factors, n, then, is equal to the dimension of the
design. For the two factor experiment the regular simplex design is an equilateral
triangle in two dimensions. It is not necessary for this design to be regular
but the scaling can be done such that the same unit is used for all

dimensions.

To portray the procedure we will use a two dimensional design centered
around a "quessed at" maximum and call this point the centroid (0, 0). The
adjacent points in our design will be one unit apart. The layout for this

design is as follows.

s,

2
(Olm )

where only the three extreme points are used in the design.
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The general n-dimensional design has (n + 1) points and can be arrayed

as a (n + 1) by (n) matrix‘X:

Point or Independent Variable (X)
treatment
combination 1 2 3 4 R P n
1 -1 -1 -1 -1 cee - 1
2 2,3 2.6 2,10 ,2n(n+1)
2 1 -1 -1 -1 cee - 1
2 2,3 2,6 2]/10 J/2n (n+1)
3 0 2 -1 -1 - 1
2‘ 3 2.|,6 2v’10 V/2r1(n+l)
4 0 0 3 -1 . - 1
2.6 2,10 2n(n+1)
i Xij
(n+1) 0 0 0 0 n

, 2n(n+l)
Note that the two-dimensional design in the following tabulation as given

previously in the upper left-hand corners of .

Independent Variable

Point 1 2
-1 =x - -
1 R (2_1/3_ = X1
;
1 _
2 S = X T (1= xg,
273
¥
2Vf-'3 = X32
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Next we must show how one moves sequentially to the maximum yield or
response. Let us assume that the point (0, 2/(2 3)) gives the minimum yield
of the three points in the two-dimensional design. The sequential method is
to delete that point and form another simplex with the remaining two points
and a point on the opposite side. In this case the new point would be (O,
-4/(2 3)). The algebraic method for finding the new point is to delete the
minimum point from the array giving the remaining array as follows.

Independent Variable

Point 1 2
1 -] -1

2 2]3
2 1 -1

The next step is to add the levels of each factor and multiply each by 2/n
(where n = the number of X's) or 2/2 = 1 for this case, and subtract the level
of the factor deleted. For variable 1 we have

+

) =0

N —

2(-1+]
2 2
and subtract O giving 0. For variable 2

(-1 - 1)-=-

1 2
73 2.3 2.3

~Nof RO

and subtract 2/(255) which gives - 4/(243).

Using the Xjj notation of the (n + 1) by n matrix given previously to denote
the Tevel of the jth variable of the ith treatment combination, we can find the
new level qu by using
X5 = (& (g + X5 + oo+ X5, 5+ Xie1 5+ e+ Xne1 ) - Xij)

The procedure to find the optimum region of the treatment combinations

is to continue to delete the point or treatment combination that has the lowest
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response in the simplex, replacing this point by a point opposite to it as described
above. This procedure is followed until an optimum region is located. The

optimum region is indicated by several new points, say n, failing to produce

a response that is greater than that obtained at a previous treatment combination.
At this point the optimum treatment combination should be repeated before
experimentation is stopped in order to assure that this point is truly optimum.

If in the process of stepping through the factor space with successive
simplexes, the yield of a new point is less than any other point in the
current simplex, do not go back to the point that was previously vacated. In
this case determine the next lowest point and move opposite it. This makes up
a different simplex which is the basis for the next decision.

This concludes the design discussion. The analysis, in addition to
finding the optimum point, may include running a regression analysis on those
points near the optimum.

An example of the procedure is the following electrical engineering
problem in which the response y is output power and the inputs are (Xj)
voltage, (X») relative humidity, and (X3) temperature. The present system for
X1 is 110 V, Xo is 43%, X3 is 860F with y = 58%. Hence the point

(0, 0, 0) = (110, 43, 86)
has a yield of 58. For X7, X2, and X3 the experimenter felt that increments
of 10, 2, and 0.5, respectively, were equally important. Using these
increments to code about the centroid, we obtain the four treatment
combinations
1. 105, 42.4, 85.8-}
2. 115, 42.4, 85.8
3. 110, 44.2, 85.8]
4. 110, 43,0, 86.6

e -

from the following matrix:
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1 -1, -1
2 HE 2]
"o, 2 -1

2[3 2]6
P, 0, 3
A 775 |

The yields for the four treatment combinations were 52, 62, 61, 57,
respectively. Hence, delete treatment combination 1 and replace it by the

three Tevels:

Level 1 = %_(115 + 110 + 110) - 105 = 118.3
Level 2 = %,(42.4 +44.2 + 43.0) - 42.4 = 440
Level 3 = = 86.3

% (85.8 + 85.8 + 86.6) - 85.8
This new treatment combination (118.3, 44.0, 86.3), along with the remaining
three treatment combinations, forms the new simplex. After running the new
treatment combination, the sequential procedure continues as discussed
previously.

The efficiency of sequential designs is measured by the number of points
required to reach the maximum. For a given surface, one can determine the
rate of advance to the maximum. Spendley, Hext, and Himsworth (1962) show
that as the standard deviation (variation of the response for the same
treatment combinations) increases the rate of advance decreases as
(1/(standard deviation)). For example, the rate of advance in an experiment
with standard deviation of 3 is twice that of an experiment with standard
deviation of 6.

On comparing achievement of sequential procedures to reach maximum,

Spendley, Hext, and Himsworth (1962) indicate that the simplex design is
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second only to the steepest ascent (regression) procedure if there is no error
and somewhat poorer (but not too bad) when error is present.

Box and Behnken (1960) describe a "simplex-sum" design, a type of second
order design, that combines the vectors defining the points of the initial
simplex in pairs, threes and so on. One can use the midpoints, or points off

the midpoints, of the vectors joining the vertices to estimate the curvature.

Box, G.E.P. and Behnken, D.W. Ann. Math. Stat. 31: 838 (1960).

Spendley, W., Hext, G.R., and Himsworth, F_.R. Technometrics 4: 441 (1962).
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Appendix B - Contingency Tables
Best Methods for Delineating Defoliation;
Difference, Ratio, and Difference of Ratios Images

Contingency tables provide the data necessary to formulate various
classification accuracy criteria. Descriptive statistics such as the average,
overall and combined accuracies presented in the text may be calculated from
these tables. Readers reviewing this work may be interested in more specific
or entirely different accuracy indicators. Hence the best approaches for the
difference, ratio and difference of ratios images are given below. These
images correspond to those listed in Table 10 of the text.

The Landsat classification noted a forest pixel as either changed or
unchanged. Likewise the accuracy figures were calculated as if the ground
reference image (GRI) was composed of only those two classes. Change - no
change on the Landsat images correspond to healthy forest/defoliated forest on
the GRI. The defoliated forest category was composed of moderately and

heavily defoliated areas. These labels are maintained in the contingency

tables so that the reader may note which ground reference class is most error

prone.
Difference Image, band 5. Standard deviation threshold 0.35-0.60
Ground Reference Image
No Change Change
Healthy Moderate Heavy Mod and Hvy
No 25910 1657 23 1680
Landsat Change 83.42 50.1 2.9 40.9
Class. Change 5157 1650 778 2428
16.6 49.9 97.1 59.1
Total 31067 3307 801 4108
100.0 100.0 100.0 100.0
1. Number of pixels 2. Percent of total pixels in category
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Example:

Healthy:
Moderate Def:
Heavy Def:
Change:

Average Accuracy

Overall Accuracy

Combined Accuracy =

Ratio Image, band

83.4%

25910/31067) x =
49.9%

1
1650/3307) x 100
778/801) x 100 =
(1650 + 778)/4108) x 100 = 59.1%

00
97 .1%

83.4 +59.1)/2 = 71.3%

Classification accuracy calculations (as noted in Table 4b, text)

# correctly classified pixels/# test pixels) x 100
(25910 + 1650 + 778)/(31067 + 3307 + 801)) x 100 = 80.6%

Avg Acc + Over Acc)/2
71.3 + 80.6)/2 = 75.9%

5, standard deviation threshold 0.65

Ground Reference Image

(
(
g
E% Correct No Change + % Correct Change)/2
(
(
(
(

No Change Change
Healthy Moderate Heavy Mod and Hvy
No 26675 1674 27 1701
i Landsat Change 85.9 50.6 3.4 41.4
Class. Change 4392 1633 774 2407
14 .1 49 4 96.6 58.6
’ Total 31067 3307 801 4108
100.0 100.0 100.0 100.0
Average Accuracy: 72.2%
Overall Accuracy: 82.7%
Combined Accuracy: 77 .5%
Difference of Ratios, standard deviation threshold 1.00
Ground Reference Image
No Change Change
Healthy Moderate Heavy Mod and Hvy
No 27894 1963 26 1989
Landsat Change 89.8 59.4 3.2 48.4
Class. Change 3173 1344 775 2119
10.2 40.6 96.8 51.6
Total 31067 3307 801 4108
100.0 100.0 100.0 100.0
Average Accuracy: 70.7%
Overall Accuracy: 85.3%
Combined Accuracy: 78.0%
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