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CHAPTER I

INTRODUCTION

An analysis of the electromagnetic (EM) plane wave scattering by open-ended

waveguide cavity configurations is useful for dealing with radar cross-section (RCS)

and EM penetration problems. In this report, four different approximate but useful

approaches are described for analyzing the high frequency EM scattering by a fairly

general class of semi-infinite open-ended waveguide cavities which admit treatment

by these methods. The cavities under consideration may contain an interior termi-

nation; in addition, the interior cavity walls may be perfectly-conducting with or

without a layer of absorbing material coating them, or the walls may be character-

ized by an impedance boundary condition. For the present analysis, the rim edge

at the open end of the cavity is assumed to be sharp and the scattering by the rim

is included in addition to the scattering by the interior of the waveguide cavity.

All other external scattering features are not of interest and will not be considered

in the present work, although in many instances they can be analyzed using the

geometrical theory of diffraction (GTD)[11, and its uniform version (UTD)[2,3].

The four different approaches considered in this report for analyzing the EM

scattering/penetration by the above class of open-ended waveguide cavities are

respectively based on:

(1) a hybrid combination of asymptotic high frequency and modal methods,



(2) the geometrical optics ray method,

(3) the useof Gaussianbeams,and

(4) a generalizedray expansionmethod.

It is noted that a rigorous analysis of the problem under consideration is

possibleonly for a very small number of specialcavity shapes,e.g., cavitiesformed

by open-endedsemi-infinite parallel plate and circular waveguideswith a planar

interior termination. Hence,it is necessaryto resort to approximate techniques of

analysis such as those indicated above. All of these approaches involve the use of

high frequency approximations.

The approach based on a hybrid combination of asymptotic and modal tech-

niques, which is employed within the framework of the self-consistent multiple scat-

tering method (or the generalized scattering matrix method) [4], can be applied to

efficiently treat the EM scattering by open-ended cavities which can be built up by

joining together waveguide sections for which the modes and their corresponding

modal rays are known analytically in closed form [5]-[9]. Some examples of cavities

which can be built up from different piecewise separable waveguide sections are

illustrated in Figure 1. The high frequency asymptotic methods, e.g., GTD [1]

and UTD [2,3] as well as the equivalent current method (ECM) [3,10] and also

the physical theory of diffraction (PTD) [31-[12], are employed in this hybrid for-

mulation to find the elements of the generalized modal scattering matrices which

describe the wave reflection and transmission properties of the junctions between

the different waveguide sections. The asymptotic methods provide relatively sim-

ple expressions for the elements of the generalized modal scattering matrices in

contrast to the more cumbersome and far less e_cient numerical modal matching

or integral equation techniques.

In principle, the sizes of the generalized modal scattering matrices are infinite

2



a) cavity with varying rectangular cross-section

b) cavity with circular cross-section

Figure 1: Examples of open-ended waveguide cavities made up of piecewise
uniform waveguide sections.



as tile concept of ordinary scattering matrices is generalized to include both the

finite number of propagating as well as the infinite number of evanescent modes

in closed waveguide regions. However, in practice, the sizes of the scattering ma-

trices are dictated by just the number of propagating modes and a few significant

evanescent modes which exist within the waveguide sections on either side of the

junctions. If the waveguide sections are sufficiently long then the effects of the

evanescent modes can be ignored.

Finally, the field scattered by the waveguide cavity which includes the effects

of all the multiple wave interactions between the various junctions is calculated in

terms of the junction scattering matrices via the self-consistent multiple scattering

method, or the generalized scattering matrix technique [4]; it is assumed in this

calculation that the scattering (or reflection) matrix of the interior termination

can also be found.

An interesting selective modal behavior which can be inferred from the hy-

brid asynlptotic-modal analysis is that the modes most strongly coupled into (or

radiated from) the open end are those whose modal ray angles are most nearly

parallel to the direction of incidence (or scattering) [6,13]. The modal ray an-

gles alluded to in the preceding statement regarding the selective modal scheme

are those associated with the modes in the first waveguide section containing the

open end. This selective modal scheme, which is demonstrated in Figure 2, can

be employed to increase the efficiency of computation of the field scattered from

open-ended cavities, especially at high frequencies where a large number of modes

can be excited.

It is noted that a perturbation of the hybrid approach can also be employed

in some relatively simple cases to efficiently but approximately take into account

the effect of a thin absorber coating on the interior walls of the waveguide sections

4
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8 (DEG)

all modes included in calculation
xxxxxxxx only 3 modes included in calculation

Figure 2: RCS pattern of a piecewise linearly tapered open-ended waveguide
cavity, calculated using the hybrid asymptotic modal method, which

demonstrates the selective modal scheme.
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comprising the cavity [7]. On the other hand, one could also use a more rigorous

procedure, but that would in general be very cumbersome both analytically and

numerically.

While the hybrid asymptotic modal procedure is useful, it is primarily suitable,

as mentioned previously, to treat cavities which can be built up from piecewise

separable waveguide configurations for which the modes (and modal rays) can be

found analytically in closed form. On the other hand, modes cannot be defined

in the conventional sense for waveguide cavities with non-uniformly varying cross-

sections, i.e., with walls that do not coincide with constant coordinate surfaces

in a separable coordinate system. An analysis of the EM scattering by slowly

varying but otherwise relatively arbitrarily shaped open-ended cavities, for which

the effects of diffraction by interior walls are small, can be performed approximately

via the geometrical optics (GO) ray approach used in conjunction with the aperture

integration (AI) method. [14]-[22]. In this technique, the part of the incident plane

wave which is intercepted by the aperture at the open end is initially divided into

a sufficiently large number of parallel ray tubes which are shot into the cavity as in

Figure 3. These ray tubes (or a dense grid of rays) are then tracked via all possible

cavity wall reflections to the interior termination and then back to the open end.

Figure 4 shows one such ray tube. Each reflection off the cavity wall is calculated

via the laws of ordinary GO. The polarization, divergence, phase and magnitude

of each ray tube is kept track of as it is traced through the cavity.

It is noted that the ray tubes which arrive from the termination to exit from

the open end generally exist only in a discrete set of directions, and hence give

rise to a discontinuous field behavior. Consequently, it is necessary to evaluate

the radiation integral over the equivalent sources defined by the exiting ray tubes

in the aperture to obtain a continuous value for the field that comes back out of



Figure 3:

INCIDENT PLANE

GO SHADOW - _>lr,,_,l_ _._
REGION

GO ray tubes launched into an open-ended cavity demonstrating a ray
caustic and a shadow region.

SIMPLE PLANAR

V

------I_ 0D

Figure 4: GO ray tube tracked inside a waveguide cavity until it exits through
the open end.



RAY TUBE
AXES

RAY TUBE PROJECTION
IN PLANE OF APERTURE

Figure 5: Projections of exiting ray tubes in the plane of the aperture of an
open-ended cavity.

the cavity [7], [14]-[19]. Figure 5 demonstrates several ray tubes exiting the cavity

and their projections in the plane of the aperture. This combination of GO and

AI procedures may be more precisely called the GO/AI technique, rather than

just the GO technique. The GO/AI technique has also been referred to as the

"shooting and bouncing rays" (SBR) technique in [16]-[19].

In [16], the EM scattering by a non-uniform S-shaped, three-dimensionaJ

waveguide cavity with a planar short circuit termination is analyzed. It is noted

that such a conceptually simple GO/AI or SBR approach can also include the effect

of absorber coating on the interior cavity walls, or walls which are characterized

by a surface impedance condition. In general, one finds that the GO/AI (SBR)

based calculations usually provide the dominant trends present in the correspond-

ing results based on the more rigorous hybrid asymptotic-modal analysis. The

details of the scattered field patterns are generally not reproduced accurately at

moderately high frequencies by the GO/AI (SBR) procedure; on the other hand,



this technique in generalpredicts the peak envelopeof the RCS quite well and it

tends to become increasingly more accurate at higher frequencies.

It is noted that one typically requires the density of ray tubes entering the

cavity aperture to be about 350 per square wavelength (in the aperture) or more

for convergence in the GO/AI (SBR) approach [16]. Thus, at high frequencies,

an extremely large number of ray tubes must be allowed to enter the cavity, and

each tube must be tracked through the whole length of the waveguide cavity and

back via multiple wall bounces in the GO/AI (SBR) approach. Likewise, at high

frequencies, an extremely large number of modes are excited which nmst be in-

eluded in the hybrid asymptotic-modal analysis of separable (or piecewise separa-

ble) waveguide cavity configurations. Therefore, both the GO/AI (SBR), and the

hybrid approaches discussed above become cumbersome and inefficient at high fre-

quencies. Recently, a hybrid ray-mode analysis, which is more efficient than either

the ray or the modal techniques used separately, has been developed in [23,24]

for describing the fields coupled into large open-ended parallel plate and circu-

lar waveguides. A different approach which potentially retains the simplicity and

generality of the GO approach, but which at the same time is more efficient and

overcomes some of the limitations of the GO ray technique, is considered here. The

latter approach, which like the GO/AI (SBR) approach is also a high frequency

approach, employs speetrally narrow or well collimated Gaussian beams (GB's) to

represent the fields launched from the open end into the waveguide cavity. Each

Gaussian beam (GB) is then tracked axially as a ray along the beam axis. This GB

approach, again like the GO/AI approach, is valid for slowly varying but otherwise

relatively arbitrarily shaped open-ended waveguide cavities for which the effects of

diffraction by the interior walls are small; furthermore, it can also account, for the

effects of absorber coating on the interior cavity walls. In previous related work, a



single focussed beam (e.g., a laser beam) injected into a closed parallel plate or an

open dielectric waveguide of infinite extent was tracked paraxially as one GB via

the complex source point method [25]; also GB's have been employed to represent

the far zone radiation fields of aperture antennas in free space [26]. This aperture

expansion method along with the complex source point method was applied in [27]

where an array of GB's representing an aperture field was propagated in the pres-

ence of a curved dielectric layer, such as through a radome. However, the present

use of GB's is somewhat different and novel in that they are employed to represent

the coupling of waves through an aperture into a closed interior waveguide region

when the initial excitation at the aperture is a non-Gaussian incident plane wave,

and the GB's are tracked approximately like rays along their beam axes to the in-

terior termination via successive reflections at the cavity walls; furthermore, these

GB's need to be tracked only once since the expansion of the GB's in the aperture

can be made independent of the incident angle thereby making this approach quite

efficient. The GB expansion used here is different from the Gabor type expansion

used in [26] and [27] in the respect that all the beams are identical and equally

spaced in angle when initially launched. In contrast, the Gabor expansion [28,29]

gives rise to GB's which have different parameters depending on the rotation of

their axes, and which are not equally spaced in angle [26]. While one can employ

this Gabor expansion for the aperture field here as well, the present approach is

chosen as it appears to be more convenient for our particular application to inte-

rior cavity configurations by allowing more freedom to select the GB parameters

suitable for axial GB tracking within the cavity. Basically, in the present GB ap-

proach, the fields in the cavity are found by first expanding the fields incident at

the open end in terms of shifted and rotated GB's. In order to track beams axially

and maintain sumcient resolution even after successive reflections off the interior

10
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walls it is necessary to have well focussed or spectrally narrow GB's. However,

such spectrally narrow GB's have wide waists. It is thus important to be able

to have spectrally narrow GB's whose waists can fit easily within the waveguide

cavity. Typically, the initial waists of the GB's at the aperture plane should be

about half the width of the original aperture. The latter can be accomplished by

dividing the aperture at the open end into equally sized sub-apertures, and then

expanding the fields of each sub-aperture into a superposition of rotated GB's with

equal angular spacing between each rotated beam. A procedure is then developed

to determine the size of the sub-apertures and the number of GB's launched per

sub-aperture, as well as the initial GB parameters.

There appear to be some important advantages to be gained by using the GB

approach over the GO/AI approach for the following reasons. The GO approxi-

mation neglects the effects of rays diffracted by the aperture edges at the open end

which can enter into the waveguide cavity; these effects (in addition to the effects

of interior cavity wall curvature) significantly diffuse the initially collimated GO

incident field as it propagates large distances into the cavity. Furthermore, the GO

field description fails at and near ray caustics; such ray caustics can occur if the

GO rays undergo reflections from portions of the interior cavity walls which are

concave (see Figures 3 and 4) or exhibit points of inflection. On the other hand,

the field of the GB's launched from the aperture into the interior waveguide cavity

region as in Figure 6 includes the contribution of the aperture edge diffracted fields

which enter the cavity, and the GB description remains valid at ray caustics. It

also appears that one needs to launch less than 25 GB's per square wavelength

in the aperture to accurately represent the interior fields over a sufficient distance

within the slowly varying waveguide cavity provided the aperture is large enough

to launch well collimated GB's inside the cavity. As mentioned above, another

11
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Figure 6: Example of one typical Gaussian beam launched into an open-ended

cavity from the pth sub-aperture.

significant advantage of the GB's which is not present in the GO/AI approach is

that if the density of the GB's is appropriately increased to about 100 per square

wavelength in the aperture, then the GB's become independent of the incident an-

gle over a sufficiently large range of angles, and therefore need to be tracked only

once within the interior. In contrast, the GO rays need to be tracked each time

the incident angle is changed. This advantage of the GB's comes from the fact

that they can be launched as a phase-space like array which is sufficiently dense

to cover the entire angular range of interest. Thus, if the expansion in terms of

GB's is selected to be independent of the incident angle, then only the initial GB

amplitudes change with the incident angle. Moreover, this suggests that not all

GB amplitudes are significant so that one can even pre-select the most strongly

excited GB's, just as in the selective modal scheme mentioned earlier [13], to once

again further reduce the computational times. On the other hand, one finds that

the axial (real ray) tracking of the GB's requires one to launch well focussed GB's

12
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Figure 7: Rays launched from sub-apertures into a cavity using the GRE method.

whose spatially wide waists must fit well within the waveguide cavity. The spa-

tially wide GB's sample a wide portion of the reflecting cavity wails and undergo

distortion at each reflection thus limiting their use to waveguide cavities which are

not long relative to their width.

An alternative ray method for analyzing the scattering by open-ended waveg-

uide cavities which will be referred to as the generalized ray expansion (GRE)

method, is also developed here to avoid the problems of beam distortion due to

successive reflections in the axial GB tracking approach. In the GRE, the rays are

launched into the cavity from each sub-aperture as in Figure 7; this is done in a

manner which is very similar to the launching of the GB's from the sub-apertures

as shown earlier in Figure 6, but is different from that in tile GO/AI or SBR ap-

proach shown in Figure 3. Thus, the rays launched in the GRE method implicitly

contain effects of waves diffracted into the cavity via tile edges at tile open end as

in the GB approach; also, each of the many rays launched from the sub-apertures

needs to be tracked only once independent of the incident angle, again as in the GB

13



method. The GO ray tubes in the GRE can be made as narrow as is necessary,

unlike the GB's, so that they can be traced (via the laws of GO) much farther

inside the waveguidecavity than the GB's. This allowsthe GRE method to be ap-

plicable to cavity configurations of virtually unlimited depth and generality. The

limitation of the GRE method is that it usesthe laws of GO to trace the ray tubes

within the cavity soerrors canaccumulatefrom the effectsof ray caustics,creeping

wavesand surfacediffraction. Also, the GRE method like the GB and GO/AI (or

SBR) also doesnot include diffraction from interior discontinuities, such as from

the junctions betweenwaveguidesectionsin the cavities of Figure 1, for example.

However, realistic cavity configurations have smooth, slowly varying walls so the

higher order diffraction effects are minimal and can be neglected.

In general, the termination within the cavity can be quite complex. It is

therefore convenient to characterize the termination in terms of a scattering ma-

trix which can be found separately via the method of moments (MM), or via some

approximation scheme (e.g., physical optics (PO) if appropriate), or by measure-

ments, etc. This scattering matrix provides the fields scattered by the termination

over some fictitious aperture plane in the neighborhood of the termination, when

a given field distribution is incident on this plane, but in the absence of the ter-

mination, after propagating into the cavity from the open end where it originates

due to the plane wave illumination. If the waveguide cavity region containing the

termination and its vicinity is separable, as it is assumed here, then the termina-

tion scattering matrix can be expressed in terms of the modes of that region. This

termination scattering information obtained separately from an analysis dictated

by only the shape of the waveguide cavity region containing the termination and

its vicinity, and by the termination itself, can be combined effectively via a gen-

eralized reciprocity principle with the information on the fields propagating from

14



the open end into the waveguide cavity region (without the termination) obtained

by any appropriate approach (e.g., the hybrid modal, GO/AI (or SBR), GB or

GR.E methods, etc.). This generalized reciprocity integral involves a reaction of

these two separate fields over the conveniently chosen fictitious plane near the ter-

mination. Such a generalized reciprocity (or reaction) integral formulation thus

allows one to systematically and independently study the effects of various ter-

minations and waveguide cavity shapes, respectively, on the overall scattering by

such open-ended waveguide cavities with complex terminations. It is noted once

again that the use of this generalized reciprocity result requires one to track the

fields from the open end to the fictitious termination plane and not back again to

the open end [30]; thereby further adding to the computational efficiency. This

method, referred to as the reciprocity integral (RI) method, is described in detail

in Appendix C.

The format of this report is as follows. The hybrid asymptotic-modal analysis

will be described in Chapter II, the GO/AI (SBR) method in Chapter III, the

GB method in Chapter IV and the GRE method in Chapter V. Numerical results

based on each of the methods will be included at the end of Chapters II through V,

respectively, and conclusions will be discussed in Chapter VI. Appendices A thru

D will describe the waveguide modes of 2-D parallel-plate and annular waveguides,

the aperture integration of GO ray-tubes, the reciprocity integral method, and

the sub-aperture expansion method in 2-D, respectively. The aspects of incidence

and scattering of interest in the present work are restricted primarily to the sector

0 ° < 6, 6i < 60 ° where the incident and scattering directions 8i and 6, respectively,

are with respect to the axis of the waveguide cavity at the open end. Furthermore,

as mentioned earlier, the scattering from all external features except by the edges

at the open end of the cavities will be excluded in this report. Only the scattering

15



by the edges at the open end and by the interior cavity termination are of main

concern here. Finally, an e j_'t time dependence for the EM fields will be assumed

and suppressed in the analyses to follow.
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CHAPTER II

THE HYBRID ASYMPTOTIC MODAL METHOD

In the hybrid asymptotic modal method (henceforth referred to as simply

the hybrid modal method) for analyzing the EM scattering of an incident plane

wave by an open-ended waveguide cavity, sections of uniform waveguides are joined

together to build up a more general cavity configuration. The fields within these

uniform waveguide configurations are separable; i.e., the modes and the associated

modal rays for the waveguide sections can be described analytically in closed form

[5,6,7]. Some typical open cavities which can be built up in this manner are shown

in Figure 1. The multiple wave interactions between the junctions formed by

connecting the different waveguide sections, the open end and the termination,

respectively, are handled using a self-consistent multiple scattering matrix (MSM)

method, sometimes referred to as the generalized scattering matrix method. In this

method the scattering by isolated scattering centers (e.g., the open end, junctions

and the termination) is represented in terms of transmission and reflection matrices

which the MSM ties together self-consistently to include all possible interactions

between the scattering centers.

Because realistic cavity geometries can be large in terms of wavelength, there

are typically many propagating waveguide modes which can be supported within

the cavity (the number increases exponentially with the cross-sectional area). This

makes it very inefficient to find the elements of the individual scattering matrices
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using numerical methods such as mode matching or integral equation methods.

However, these large waveguide structures do lend themselves well to high fre-

quency asymptotic methods. The hybrid approach to the modal method finds the

elements of the individual scattering matrices directly and efficiently using high

frequency asymptotic methods such as GTD [1], ECM [3,10] and PTD [3,11,12].

As implied earlier, the hybrid modal method is limited to cavities that can

be "built up" from joining sections of uniform waveguides for which the modal

fields are known. Also, these waveguide sections are most often perfectly conduct-

ing because cumbersome numerical procedures are usually required to solve the

complex eigenfunction equations for the modes of waveguides whose walls are non-

perfectly conducting [16]. It is possible to use perturbation techniques as in [7]

where it is assumed that the walls can be modeled by impedance surfaces which

are nearly perfectly conducting, but this unfortunately has limited practicality.

Finally, because the number of modes which must be included increases exponen-

tially with frequency, even the hybrid modal method becomes cumbersome and

inefficient for larger perfectly conducting cavities. The main advantage of using

this hybrid modal method, aside from being efficient compared with numerical

methods, is that it can give highly accurate results when applied properly. This

allows the method to be very useful in verifying more approximate methods that

can handle general cavity geometries and surface characteristics, such as the meth-

ods described in the next three chapters. Often there is no other reasonable means

of verification other than direct measurement.

In this chapter, the MSM will be formulated in terms of the individual scat-

tering matrices of the open end and termination of a simple open-ended cavity

made up of a single waveguide section. It will be discussed how a simple extension

of the MSM of the single section cavity can be applied to cavities made up of mul-

18
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Figure 8: Open-ended waveguide cavity made up of a single waveguide section
illuminated by a plane wave.

tiple waveguide sections, such as in Figure 1. High frequency asymptotic methods

will then be used to find the elements of tile individual scattering matrices in an

efficient way. Finally, some numerical results from [5]-[9] will be presented.

2.1 Self-Consistent Multiple Scattering Matrix Formulation

2.1.1 Formulation for a cavity with a single waveguide section.

The MSM will be derived in this section to describe the scattering by an

open-ended waveguide cavity made up of a single terminated waveguide section

illuminated by an incident EM plane wave in free space, as shown in Figure 8.

Tile electric and magnetic fields E _ and H _, respectively, of this plane wave can

be written as

4"

= Zo k × (2.2)
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where

fci = kki

k = free space wavenumber (27r/_),

fci = direction of the incident plane wave,

Zo = plane wave impedance in free space.

In terms of the incidence angles,

k i = -_ sin t_i cos _i _ _ sin 6 / sin _i _ ;_cos 0 i

(2.3)

(2.4)

(2.5)

where

6i, _bi = elevation and azimuth angles of incident plane wave.

The scattered field due to this plane wave incident field can be written as a

sum of its rectangular vector components as

_s = &E s +_E_ + _E s. (2.6)

Tlle multiple scattering matrix [S] for this problem relates the scattered field com-

ponents of (2.6) to the incident field components of (2.1) and is defined by

= [s] (2.7)

It is clear from (2.7) that IS] has three rows and two columns (i.e., it is of order

3×2).
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Referring again to Figure 8, the total forward or backward (+0) propagating

fields inside the waveguide section, which include all the effects of multiple inter-

actions between the open end and the termination, can be written as a sum of

waveguide modes:

where

N

n=l

7/

N

= n th waveguide modal fields,

= propagation constant of the n th mode,

= axial coordinate of the waveguide,

= modal expansion coefficients,

= number of included modes.

These waveguide modal fields are complete orthogonai eigenfunction solutions to

the vector wave equation, with appropriate boundary conditions, for a separable

waveguide geometry of infinite length. The open-ended cavities of this analysis

are made up of finite length sections of these waveguides. The exact closed-form

expressions for the modal fields of some simple waveguide geometries and the

method of derivation can be found in [31]. The expressions for the modal fields

of a two-dimensional (2-D) parallel-plate waveguide and a 2-D annular (curved)

waveguide are derived in Appendix A of this report as examples.

It is noted that a waveguide supports a finite number of propagating modes

and an infinite number of evanescent modes; so if all the modes are included, N

is infinite. However, because the evanescent modes die out very quickly as they

propagate down the waveguide (fin is pure imaginary for evanescent modes) and

the higher the mode number the faster they decay, the summation of (2.8) is
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truncated at somevalue N which includes all the propagating modes and only the

few significant evanescent modes. Usually, the effect of evanescent modes is so small

that they can be neglected completely. This occurs for waveguide sections which

have a large number of propagating modes or are long enough for the lowest order

evanescent modes to decay to a sufficiently low level. The sizes of the waveguides

of interest to this study are usually large enough so that the evanescent modes can

be neglected.

The components of the field scattered by the cavity, including only the scat-

tering by the interior of the cavity and the rim at the open end, can be written

as

E.'

[Sll] + [s 2I[A+] (2.9)

where [S11] is the scattering matrix which relates the incident field components to

the components of the field scattered by the edges or the rim at the open end of

the cavity and is of order 3 × 2. [A +] is a column matrix of order N containing the

coefficients A + of the +r) propagating modes incident on the open end from within

the cavity, and [S12 ] is the transmission type scattering matrix of order 3 × N

which relates these modal coefficients to the components of the field scattered by

the interior of the waveguide cavity. These two scattering matrices are illustrated in

Figure 9. 7/is an arbitrary axial coordinate for the waveguide under consideration

and is shown in Figure 16.

The +0 propagating modal fields incident on the open end from within the

waveguide with coefficients A + are due to -0 propagating modal fields with coeffi-

cients A_ which have reflected from the termination of the cavity. Therefore, [A +]

can be related to [A-] via a termination modal reflection matrix denoted by [Sr] ,
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Figure 9: Open end of a waveguide cavity illustrating the scattering matrices
[s_] and [s_2].

with appropriate phase delays which account for the modal propagation down and

back the length of the waveguide section:

[A +] ---[P][St`][P][A-]. (2.10)

[P] is a diagonal matrix of order N × N which describes the phase translation of

a modal field down the length of the waveguide and is given by

[P] = 0

0

0 0

e -jflnl 0

,.°

(2.11)

where

l = length of the waveguide section.

[St'] is a reflection type scattering matrix of order N × N which relates coefficients

of the -_ propagating modal fields incident on the termination to coefficients of

the +r_ propagating reflected modal fields. [P] and [St'] are illustrated in Figure

10.
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Figure 10: Open-ended waveguide cavity illustrating the matrices [P] and [St].

Tile -_ propagating modal coefficients A n can found in terms of the coupling

of the incident plane wave into waveguide modes in addition to the reflection of

modes incident on tile open end from within the cavity. This is expressed as

[A-] = [$21] Ab + [$22][A +] (2.12)

where [$21] is the transmission type scattering matrix of order N × 2 which relates

the components of the incident plane wave to the coefficients of the -_ propagating

modes, and [$22] is the reflection type scattering matrix of order N × N which

relates the coefficients of the +_ propagating modes incident on the open end from

within the cavity to the coefficients of the -_ propagating modes. [$21] and [$22 ]

are illustrated in Figure 11.

Equations (2.10) and (2.12) can be solved for [A +] which can then be sub-

stituted into (2.9) to give the components of the scattered field in terms of the

components of the incident plane wave; the complete scattering matrix IS] of (2.7)
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Figure 11: Open end of a waveguide cavity illustrating the scattering matrices
[s2_]aud [S221.

will then be evident. Combining (2.10) and (2.12) yields

([I] - [S22][P][SF][P])[A-] = {$21]

where

A_

A_
(2.13)

[I] = identity matrix of order N × N.

Using (2.13)in (2.10) gives

[A +] = [P][SF][P] ([I] - [S22][P][SF][P]) -1 [$21]

and substituting this into (2.9) yields

E_

E_
E_

A_

A_

: {[Sll -4-[S12I[P][Srl[P]([I]- [S2.2][PI[Srl[P]) -1 [$211}
A_

A_

(2.14)

(2.15)
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From (2.15) the complete MSM for the open-ended waveguide cavity of Figure 8

can be extracted as

[S] = [Sill + [S12][P][Srl[P] ([I] - [S22][P][SrI[P]) -1 [$21].

(2.16)

Notice that this matrix is composed of two terms -- the scattering matrix of the

rim at the open end and a product of scattering matrices which together give the

scattering matrix of the interior of the cavity. Also notice that if the multiple

interactions between the open end and the termination can be neglected, i.e., if

the elements of [5"22] are assumed to be zero, then the inverted term of (2.16)

disappears and the scattering matrix is approximated by

IS] _ [$11] + [S12][P][Sp][P][S21]. (2.17)

This can be interpreted physically as follows: reading from right to left, the ma-

trix [5'21] couples the components of the incident plane wave field into waveguide

modes. [P] propagates the modes down the guide to the termination where they

are reflected via [SI']. They are then propagated again by [P] back to the open

end where they are coupled to the components of the scattered field in the exterior

region via [S12]. The scattering by the rim at the open end is then added using

[$11] to give the total field scattered by the open-ended cavity. Equation (2.17) is

often used because the modal reflection by the open end ([$22]) is usually negligible

compared with the reflection by the termination ([St]). This eliminates the need

to invert a rather large matrix of order N × N, as in (2.16).

2.1.2 Extension to cavities made up of more than one waveguide sec-
tion.

Figure 12 shows an open-ended cavity made up of two waveguide sections

with a termination. The MSM can be easily extended to this cavity by simply
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Figure 12: Open-ended cavity made up of two waveguide sections with a
ternfination.

replacing [St] in (2.16) of the single section case above, with an effective MSM

which describes the multiple interactions between the termination and the junction

between the two waveguide sections. This new reflection matrix is given by

[Sr] = [S_11 + [SI2][P'][S_,][P'] ([[']- [Si2][P'i[S'r][P']) -1 [S_1].

(2.18)

This is exactly analogous to (2.16) (and can be derived the same way) except

that the scattering matrices of the junction between the sections, [S_1], [S_2 ] and

[S_1], now relate the coemcients of the modal fields on either side of the junction

rather than relating the modal coemcients with the components of the incident

and scattered fields of the exterior region, as is done for the open end. Figure

12 illustrates the individual scattering matrices associated with the two-section

cavity.

In general, the two waveguide sections will have sets of waveguide modes dif-

fering in structure and number. Referring to Figure 12, let there be M included

modes in the second section (the waveguide to the right) and once again there are
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N included modes in the first section (the waveguide to the left). Then the trans-

mission type scattering matrix [S_I ] is of order M × N and relates the coefficients

of the modal field incident on the junction from the first section to the coefficients

of the modal fields coupled into the second section and [S_2], which is of order

N × M, does the reverse. [S_1 ] is of order N × N and relates the coefficients of

the modal field incident on the junction from the first section to the coefficients

of the modal fields reflected by the junction (note that this does not include the

scattering by anything beyond the junction, which is accounted for using (2.18)).

Likewise, [S_2 ] is of order M × M and relates the coefficients of the modal field

incident on the junction from the second section to the coefficients of the field

reflected by the junction. The new termination modal reflection matrix [S_,], the

propagation matrix of the second section [P'] and the identity matrix [I'] in (2.18)

are all of order M × M.

The junction reflection type scattering matrices [S_1 ] and [S_.2] are often neg-

ligible compared with the termination scattering matrix [Sr] so they can be ex-

cluded, like [$22] was excluded in the last section. After removing these three

matrices, the total self-consistent scattering matrix of the two-section open-ended

cavity can be approximated similar to (2.17) as

[S] _ [Sll] -b [SI2][P][S_2][P'][S[,][P'][S_I][P][S21] (2.19)

which can be physically interpreted the same way as (2.17) was in the last section.

It should now be clear that another waveguide section could be added by

simply replacing [S_,] with the effective MSM of this additional section, exactly

the same way as was done for the second section. This process could be repeated

indefinitely to handle cavities made up of any number of waveguide sections. How-

ever, if all the multiple interactions are to be included, i.e., the junction reflection
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matrices are not neglected, the number of necessary matrix inversions increases

exponentially, making the method more and more inefficient. Therefore, it is de-

sirable to exclude the junction reflection matrices whenever possible. Luckily, for

the larger cavity geometries with smooth junctions encountered in practice, the

approximation is quite adequate. For smaller waveguide cavities, the effects of

the junction reflection matrices may become more important so it is suggested

that they be included if the number of waveguide modes is not too large to be a

limitation.

2.2 Development of the Elements of the Scattering Matrices in the
Multiple Scattering Matrix (MSM) Method

In this section the individual scattering matrices associated with the open end,

junctions and termination will be found using high-frequency asymptotic methods.

II: particular, the methods used are GTD, UTD, ECM and PTD [11-[3], [10]-[12].

The equations presented here are for the general case; more explicit expressions

for selected waveguide geometries can be found in [5]-[9].

2.2.1 The scattering matrix of the rim at the open end [SI:].

[Sll], the scattering matrix which relates the components of the plane wave

incident on the open end to the components of the fields scattered by the rim is

defined by

r
sr

Ey

EV

[Sll] (2.20)

where

sr sr $r

E z , E v ,E z = rectangular components of the electric field scattered by
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the rim,

components of the electric field of the plane wave

incident on the open end.

It is clear from (2.20) that [Sll] is of order 3 × 2 (i.e., it has two rows and three

columns), as mentioned earlier. The geometry for finding this scattering matrix is

a semi-infinite open-ended waveguide, as shown in Figure 13.

Using the equivalent current method (ECM) the scattered field is assumed to

be produced by equivalent electric and magnetic currents that replace the rim and

radiate in free space. The scattered field can then be written as an integral over

these currents and is given by

_sr jkZo e-jkRdlt (2.21)
-- 47r Lira [_ × _ × Ieq(l')4- YoR > J_eq(lt)] --_-
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Figure 14: Equivalent currents which replace the rim at the open end of the
waveguide.

where

/_ = vector from a point on the rim to the receiver position,

Yo = free space admittance (= Zol),

lI = coordinate of points on the rim.

Tile geometry is shown in Figure 14.

The equivalent currents feq and J_eq are excited by the incident plane and are

given by [3]

^f ---*.

I •E'(_im) D ,' '/_'_ _f
_q(l') = -Zo_/Si--_o_m/3 s(_b,_ ;_o,_3, alV-j-_t (2.22)

i'.//'(,i,_) ¢, , s/-_-_,
JVleq(l') =-y-o_/S-7-_n_sinflDh(_,, ;/3o,/_,a)g-j-_t (2.23)

where Ds and D h are tile soft and hard GTD diffraction coefficients, respectively,
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Figure 15: Geometry of the wedge diffraction coefficient showing the angles ¢3o,
fl, _', _b' and at.

given by [1]

e-J _i sin _
Ot

Ds,h(_b,_b';j3o,_O,a) = aV/_-_x/sinflosin/3

[ i ]_" -0__=__T ,r
cos_-cos _ cos_-cos

with the angles defined in Figure 15. By substituting (2.24) into (2.22) and (2.23)

and then (2.23) and (2.24) into (2.21) and integrating, one obtains the field scat-

tered by the rim at the open end in terms of the incident plane wave. From this

result, the elements of [Sll] can then be easily identified and extracted.

It is noted that the GTD diffraction coefficients of (2.24) are non-uniform and

therefore become singular at the shadow boundaries formed by the incident and

reflected ray-optical fields and the wedge. However, this usually only occurs for

cases where the incident plane wave comes close to grazing the aperture; neverthe-

less, this range of angles is not of interest as indicated previously. Furthermore,

if the incident plane wave grazes the aperture, very little energy will be coupled

into the waveguide cavity; also the specular contribution from the external surface
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Figure 16: Reflection of modal fields from the open end of a semi-infinite
open-ended waveguide.

of the cavity near the aperture can become important for this case and could be

accounted for via the UTD [2,3].

2.2.2 The reflection modal scattering matrices of the open end [$22 ]

and junctions [S_1 ], [S_2 ].

Figure 16 shows the geometry used for finding [$22], the reflection type scat-

tering matrix which relates the coefficients of the modal field incident on the open

end from within a semi-infinite open-ended waveguide to tile coefficients of the

reflected modal field. Let these incident or reflected waveguide modal fields be

written as a sum of +_ and -_ propagating modes similarly to (2.8) as

N

n:l

[$22 ] is then defined by

[C-] = [$221[C +1 (2.26)

and is of order N × N, as mentioned earlier.

The ECM will again be used to find the elements of [$22] by replacing the open

end with equivalent magnetic line and dipole currents which coincide with the rim
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Figure 17: Equivalent problem with the open end replaced by magnetic current
sources radiating on the walls of an infinite waveguide.

at the open end. These currents are then allowed to radiate on the walls inside

the waveguide which now extends to infinity in both directions as illustrated in

Figure 17. It is noted that electric currents are not used here because they would

not radiate on the surface of the perfectly conducting waveguide walls. Also note

that this is not the same case as in the last section where the equivalent currents

were allowed to radiate in free space.

The radiating magnetic currents will excite modes inside the waveguide prop-

agating in both directions away from the current sources. The excitation of waveg-

uide modes can be found for any given current source distribution using the equa-

tion found in [31]:

1

The integration in (2.27) is over the volume containing the current sources. The

waveguide modal fields have been decomposed into their transverse and axial corn-

,====
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ponents in (2.27) and can be written as

where

_nt , ]tnt =

en_l, _tn_l

(2.28)

(2.29)

transverse components of the electric and magnetic fields,

respectively, of the n th waveguide mode,

axial (,}) components of the electric and magnetic fields,

respectively, of the n th waveguide mode.

f fs ent × _tnt " ¢ldS is a term which normalizes the power of the n th mode and S

is an arbitrary cross-section inside the waveguide. To find the coefficients of the

,nodes reflected by the open end, the volume integral in (2.27) reduces to a line

integral and the coefficients are given by (setting r/= 0 at the open end)

1

C n -- 2ffs_nt×]tnt.CldSlrim]t+.[JV1l(l')+lQd(l')Jdl' (2.30)

/' r 1

where

ffIl(l'),Md(1 ) =

I t --.

equivalent magnetic line and dipole sources, respectively,

replacing the rim at the open end

coordinate of points along the rim.

The mn th element of the ['-q22] is simply the coefficient of the n th reflected mode

due to a single mth mode incident on the open end of the waveguide and can be

written using (2.30) as

1 fr ]z+" [ffllm(l') + ffldm(l')] dl'[S22]m. = 2 f IS × £.t "

(2.31)
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Figure 18: Ray-optical fields of the mth mode in a parallel-plate waveguide.

where

l_llm( l'), Mdm( l' ) equivalent magnetic line and dipole sources,

respectively, due to the mth mode incident on the

open end.

So far we have the elements of [$22 ] given in terms of the equivalent magnetic

current sources due to the mth incident mode, as in (2.31). To find the elements

of [$22], we must know the excitation of these sources by an incident waveguide

mode. This is done by decomposing the modal field into its high-frequency ray-

optical equivalent. For example, the modal fields of a 2-D parallel-plate waveguide

are expressed in terms of sine and cosine functions. When these are written in

their exponential (Euler) form, it becomes clear that the modes in a parallel-plate

waveguide are simply crossing plane waves which propagate at a characteristic

mode angle 6m, as shown in Figure 18. The modal fields and their ray-optical

equivalents are derived for the parallel-plate and 2-D annular waveguides in Ap-

pendix A.

In general, it is found that in the vicinity of a waveguide wall, a modal field

can be expressed as a sum of ray-optical fields which propagate toward and away
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from the wall. For a point near a wall, this is written for the ra th mode as

e J o" --
Pm

^+ ^-t- (emp,r,hmp,r)] (2.32)

p=l

where

^+ _-4-
emp, i_ rap, i]

Pm

= pth ray-optical fields of the mth mode propagating towards

the waveguide wall,

= pth ray-optical fields of the mth mode propagating away

from the waveguide wall,

= number of ray-optical fields of the m th mode.

These ray-optical fields can now be used to find the excitation of the equivalent

magnetic current sources of the ECM, again using the Keller-type GTD wedge

diffraction coefficient of (2.24). The only difference is that for this case the incident

field is the ray-optical form of the incident modal field instead of a plane wave, and

the equivalent currents radiate on the inner surface of a waveguide wall instead of

in free space, as was done in Section 2.3.1. Physically, the ray-optical fields of the

waveguide mode are incident on the rim at the open end and diffract, radiating

energy into the exterior region and also back into the waveguide region. This

scattered field is represented as being produced by equivalent magnetic line and

dipole currents along the rim. The exterior region is not of interest in finding [$22],

so the original semi-infinite geometry is replaced in this equivalence by an extension

of the waveguide past the open end to infinity, and the equivalent magnetic currents

located where the rim was in the original configuration now radiate inside, exciting

waveguide modes in both directions, via (2.30) for this case.

The equivalent magnetic current sources of (2.31) due to the mth incident
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lnode and which are usedto excite the n th reflected mode are given by [5]

Pm 1 ,/87r Dh(_btmp, _bnp;13,np,flnp, a)

l_tm(l') = -['p=]Z YooVj-k (_t+P'i'l") 2_sin/3mpsin/3np

where

_/ D r
-- -- p=iZ jk (emp'i" _t) 2] sill_.vlx/sin_mp sinfl.v

. +,+ (i'.+,,+)

(2.33)

(2.34)

+¢",,,.p,,+,,,.p

_bnp, [3np

¢7

h

[emp

= wedge diffraction angles associated with the mp th ray-optical

incident modal field,

= wedge diffraction angles associated with the np th ray-optical

reflected modal field,

= waveguide axial direction,

= unit vector normal to the waveguide walls,

= direction of propagation of the mp th incident ray-optical field.

The GTD wedge diffraction coefficients Ds, h are given by (2.24) and the associated

angles are defined in Figure 15. Note that the expressions for the equivalent

magnetic current sources depend on the modal ray angles of the n th reflected

mode _bnp and _np. This is because the equivalent currents are not isotropic, i.e.,

they radiate with different strength in different directions to reproduce the correct

scattered field. Therefore, to be consistent with reciprocity, the radiation by the

equivalent currents is evaluated in the direction of the modal rays of the reflected

modal field.

The elements of [$22] can now be found by substituting (2.33) and (2.34)

into (2.31) and integrating. The junction scattering matrices [S_I ] and [S_2 ] are
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found in exactly the same way as [$22} except that the rim at the open end is

replaced by the junction between waveguide sections. Also, for the case of [SIll,

the incident modes now propagate in the -_) direction and the reflected modes

now propagate in the +_ direction. The expressions for the elements of these two

scattering matrices will therefore not be repeated here.

It has been found that if the junction between two waveguide sections is fairly

smooth, i.e., their is no slope discontinuity, the junction reflection matrices can

most often be neglected [6,7] (all elements are assumed to be zero). In addition, if

the reflection matrix of the open end [$22] is negligible compared to the termination

reflection matrix [Sr] (or the elements of both are small), [$22] can also be excluded.

These two approximations are usually valid for most open-ended waveguide cavity

configurations of interest and greatly simplify the analysis. A close examination

of the scattering centers of a particular waveguide cavity and their higher order

interactions should suggest what approximations are reasonable.

It should be mentioned that in some separable waveguide geometries there

exist modes which have regions where the fields can not be expressed ray-optically

in closed form. This occurs in the transition zones between regions of real ray-

optical fields and evanescent fields, or in regions near caustics. The evanescent

fields can be expressed as ray-optical fields which have been analytically extended

to complex space and can therefore be handled by an analytic extension of the

GTD wedge diffraction coefficient. However, this is usually not necessary because

these fields are small due to their evanescent nature and can be neglected. But the

fields in the transition region are sometimes not negligible and should be included

using some other method, such as a complex plane wave spectral expansion of the

modal fields [8]. The annular waveguide of Appendix A propagates such a mode,

called a whispering gallery mode, which is ray-optic in the region near the outer

39



OPEN END

---_ -¢0

Figure 19: Open-ended semi-infinite wavegnide illuminated by a plane wave
which couples into waveguide modes.

wall, evanescent in the region near the inner wall, and has a transition (caustic)

region between the two.

2.2.8 The transmission scattering matrices of the open end [$12 and

[$21], and junctions [S_2 ] and [S_I ].

Figure 19 shows the geometry for finding [$21], the transmission type scatter-

ing matrix which relates the components of the plane wave incident on the open

end of a semi-infinite waveguide to the coefficients of the coupled modal fields

propagating away from the open end. As before, these coupled modal fields can

be written as a sum of -r) propagating waveguide modes as

N

: E c:
rt:l

[$21 ] is then defined by

[C-] = [$21] A_ (2.36)

and is of order N × 2, as mentioned earlier, and [C-] is a column matrix of order

N.
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The coefficientsC a of the coupled modal field are found again by using the

modal excitation Equation of (2.27). The currents used in the integral of (2.27)

are the equivalent currents of the physical theory of diffraction (PTD) [3,11,12]

which replace the effects of the open end of the semi-infiIfite waveguide. These

equivalent currents are, of course, based on the fields of the incident plane wave in

the open end. The modal coefficients can be written for this case as (setting 7] = 0

in the open end)

2 f fs × h.t.

+_imtt+.(._l_ t + _t'_t) d/'] . (2.37)

The first integral in (2.37) is an integration over the physical optics (PO) currents

on the surface defined by the open end given simply by

Js = it × ._i (2.38)

-Ms = /_i×it (2.39)

where

/t = unit surface vector of the open end pointing into the

waveguide region.

The second integral in (2.37) is a line integration over the Ufimtsev equivalent

magnetic line and dipole edge sources [11,12] coinciding with the rim at the open

end. Figure 20 shows the equivalent geometry with the open end replaced by

surface and line current sources in an infinite waveguide region.

Again using the ECM, the Ufimtsev magnetic current sources are given simi-

larly to (2.33) and (2.34) by [6]

Pm .!__,/8_yoVjk (_i . i') ............... (2.40)
,_I_ = -[' E 2 /sin ,, sin ,_nv_/p pp=l
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Figure 20: Equivalent surface and line sources replacing the open end of the
semi-infinite waveguide of Figure 19.

Pm 8V/-_j___ D_(¢', Cnp;/_,,Snv)
2_rdt = Op=l_ (/_i'i') 21sinCnp]_sin_sin/3nv

(2.41)

where

¢np, _np

F

¢7

= Ufimtsev's wedge diffraction coefficients,

= wedge diffraction angles associated with the incident plane

W ave,

= wedge diffraction angles associated with the pth modal ray of

the n th coupled mode

= unit vector along the rim

= waveguide axial direction.

The angles associated with the PTD wedge diffraction coefficient are defined in Fig-

ure 15. After substituting Equations (2.38) thru (2.41)into (2.37) and integrating,

the elements of [$21 ] can easily be identified and extracted.

The Ufimtsev equivalent currents of (2.40) and (2.41) are corrections to the

PO currents of (2.38) and (2.39) and they may be neglected for most open-ended
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waveguide geometriesof interest leading to the Kirchhoff approximation which

simplifies the analysisconsiderably. Caseswherethe Ufimtsev currents should be

included are for waveguideswhich do not havea large cross-section (in wavelength)

and for cases of very steep incidence angles (i.e., very far off axis or near grazing).

As nfight be expected, there is a simple relationship between [$12] and [$21]

which eliminates the need to calculate the elements of [S12 ] independently. This

relationship is derived via reciprocity and is given by [5,6]

[S12] T = -2[//s_ra xttnt'rldS][S21] (2.42)

where

rt t l

[JJs_ntx_tnt._ldS] = diagonal matrix of order NxN,

[S12] T = transpose of [S12].

The transmission type scattering matrix [S_I ] which relates the coefficients

of the modal field incident on a junction between two semi-infinite waveguides to

the coefficients of the modal field coupled through the junction into the second

waveguide region, is found in an analogous manner to [$21 ]. Figure 21 shows the

geometry.

Let the incident modal field of the left waveguide be given by

N

Hw) = E C; (_-_,h-_)e if_'_rl (2.43)
n=l

and let the transmitted modal field of the right waveguide be given by

M
^F--

(/_tw,Htw) = E Dm (_tn-;'hm)eJfl"] (2.44)
m----1

where the primed quantities indicate they are of the modal fields of the waveguide

on the right. Note that in general the modal fields of the two waveguides are
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Figure 21: Junction between two semi-infinite waveguide sections with an
incident and transnfitted modal field.

different and there are a different number of included modes. [S_I] is then defined

by

[D-] = [S_l][C- ] (2.45)

and is of order M x N, as mentioned earlier. Similar to (2.37), the nrn *h element

of [S_I ] is simply the coefficient of the mth transmitted mode due to a single n th

mode incident on the junction and is given by

2sss^' ^, •_,ds u.c,,o.(-_ S,.-/._. _,.)[ dS
emt × hint

where

Ln

fi

"u
Mi.

= fi × _t_- (2.47)

= _ × fi (2.48)

= unit surface normal of junction pointing into the waveguide

on the right,

P'_ 1 , /8_- D_( _l'_V, _?mp; fl=p,13m p) (2.49)
-= --[! p=lZ roo V/_ (]t_p'i" it) 2v/sinflnvsinfl'n"
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and

P= V_3___ DU (_blnv' !/'raP; ¢3nP'/3raP)
/_n = Op=l_ (enp'i'll) 2[sin_bmpl_siuflnpsinflmP

(2..50)

_mp __mp

^!
77

= wedge diffraction angles associated with tile np th ray-optical

incident modal field,

= wedge diffraction angles associated with the m p th ray-optical

transmitted modal field,

unit vector along the edge of the junction,

waveguide axial direction for the waveguide on the left,

waveguide axial direction for the waveguide on the right.

The angles associated with the PTD wedge diffraction coefficients DsU,h are defined

in Figure 15. Equations (2.47) thru (2.50) can now be substituted into (2.46) and

integrated to give tile elements of [S_2 ]. Once again it is noted that tile radiation

from the Ufimtsev equivalent currents of (2.49) and (2.50) does not contribute

significantly and may therefore be neglected (as in the Kirchhoff approximation)

especially for junctions between waveguide sections which are smooth and contin-

uous and for large waveguide cross-sections. However, the Ufimtsev current con-

tributions become more important for smaller waveguides and for junctions which

are highly discontinuous or abrupt, and so they should therefore be included for

such cases.

The transnfission type scattering matrix [S_2 ] wlfich is defined by

[C +] = [S_2][D +] (2.51)

and is of order N × M is found in exactly the same way as [S_1 ] except that

the incident modal field is from the waveguide on the right in Figure 21 and the
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Figure 22: Termination geometryfor finding [St].

transmitted field propagates in the +r_ direction in the waveguideon the left.

Therefore, the expressionsfor the elements of [S_2] will not be repeated here.

Although there does not appear to be a simple reciprocal relationship between

[S_2] and [S_1] for the general caseas might be expected, there often is such a

relationship for somespecific cases. For example, in [7] it is shown that these

matrices are transposesof eachother for the caseof a junction betweena parallel-

plate and annular waveguide.

2.2.4 The termination scattering matrix [St].

The reflection type termination scattering matrix [St] relates the coefficients

of the modal field incident on the termination of the waveguide cavity to the

coefficients of the reflected modal field. The geometry is shown in Figure 22. Let

the incident modal field be given by

N

(/_,,Hw) = _ C: (_n,hn)e j_3'_° (2.52)
rt=l
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and the reflected modal field by

"_/ --t31 \

[St] is then defined by

N

Z c2 (2.53)
n=l

[C+] = [Sr][C-] (2.54)

and is of order N × N as mentioned earlier.

For simple terminations, such as a perfectly conducting or impedance surface

which is everywhere transverse to the axial coordinate 77, it is a straightforward

task to find [St,] by enforcing boundary conditions on the termination surface.

For these two cases, it is easy to show that [St] is always diagonal using the

orthogonality property of the modes and conservation of power. In other words,

the n th incident mode reflects only into the n th reflected mode. For a perfectly

conducting termination and the mode conventions used here, [Sr] = -[I], the

negative of the identity matrix of order N × N. This is easy to see by requiring

that the tangential electric field vanishes on the termination surface, and using the

modal decomposition of (2.28).

For an impedance surface at the termination, the ratio of the tangential elec-

tric and magnetic fields is defined by

Et - z, (2.55)
Ht

where

Z s = equivalent surface impedance

It is assumed that the vector directions of the tangential electric and magnetic

fields are orthogonal. This is true if the waveguide modes are separated into
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transverse-to-r/ electric (TE,7) and magnetic (TM,1) categories. For TE¢ modes

the axial electric field en_ is zero, and for TM¢ modes the axial magnetic field ]_n¢

is zero. Furthermore, it can be shown that if the waveguide modes are separated

into TEu and TMrt categories, then the transverse electric and magnetic fields of

any given mode have the same functional form and are related by a constant, as

well as being orthogonal.

In terms of the n th incident and reflected modes, using (2.28) and (2.29),

(2.55) can be written as

where

e,u + [Sr]nne,u

-h,u + [Sr]nnh,u
= Z, (2.56)

eat,hat = scalar portions of ent and hnt, respectively,

[SF]nn = n th diagonal element of [St].

Solving (2.56) gives the elements of [SF] for the impedance termination as

Zshnt+en t

[Sr],.. : : form = n (2.57)
0 : formen.

It is noted that hnt and ent are functions of the transverse coordinates of the waveg-

uide, which would suggest that the elements of (2.57) are not constant. However,

as mentioned above, it can be shown that hut and ent always have the same func-

tional form, which will cancel itself in (2.57), provided the waveguide modes are

divided into TE_ and TM_ categories. Also, it is clear from (2.57) that for a per-

fectly conducting termination (Zs = 0), [St] is the negative of the identity matrix,

as expected.

For more conlplicated terminations it is not nearly so easy to find [Sr]. It is

necessary to resort to other methods such as high-frequency asymptotic approxi-

mations and the method of moments. In [5], the reflection matrix for planar blade
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structures with concentric conical or hemispherical hubs terminating a circular

waveguide was found approximately using physical optics (PO). The termination

was replaced with equivalent PO currents due to an incident mode and these cur-

rents were then allowed to radiate inside the waveguide, exciting reflected modes.

Also in [5], a termination which was an open-ended circular waveguide was also

analyzed. This reflection matrix was found in the same way as [$22 ] was found

earlier in Section 2.3.2 of this chapter using the hybrid modal method. In [8],

the reflection matrix for some simple 2-D waveguide terminations was found using

the method of moments. In this method, the termination is replaced with un-

known surface currents excited by an incident mode inside the waveguide. These

unknown currents are solved for using the method of moments, adapted to the inte-

rior waveguide problem. These currents then radiate inside the waveguide exciting

reflected modes.

Currently, research is under way at The Ohio State University ElectroScience

Laboratory to find a means of obtaining [SI'] experimentally so that terminations of

arbitrary complexity could be coupled to the open-ended waveguide. This would

be a very useful tool because many realistic terminations are of such size and

complexity that they are nearly impossible to model using analytic techniques.

2.3 Numerical Results and Discussion of the Hybrid Modal Method

In this section some numerical results obtained using the hybrid asymptotic

modal method will be presented and in some cases will be compared with lnea-

surement. All of the results of this section have appeared in previous reports and

publications, and the appropriate references will be cited. Because of its accu-

racy, the hybrid modal method will be used again in later chapters as a reference

solution for comparison against more approximate methods.
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In [5],perfectly conducting, singlesectionrectangular and circular open-ended

waveguidecavities with cone/hub and disk/blade terminations wereanalyzedusing

the methods of this chapter as indicated earlier. The modal termination reflection

matrix [SI'] wasobtained by replacingthe conducting terminations with their phys-

ical optics (PO) currents dueto an incident mode,and then finding the excitation

of the reflectedmodesradiated by thesecurrents inside an equivalentwaveguideof

infinite extent. Figure 23showsa typical backscatter (RCS) vs. aspect angle result

from [5], compared with a measurement performed in the indoor compact range

at The Ohio State University ElectroScience Laboratory (OSU-ESL). Figure 24

shows a typical RCS vs. frequency result from [5], compared with a measurement

from OSU-ESL. It was found that the calculations agreed well with the measure-

ments and that the terminations used did not drastically change the overall pattern

features when compared to a simple planar "short circuit" termination, for the rel-

atively small guide cross-sections considered. Also, as Figure 24 indicates, the

measured data from such cavities is very sensitive to frequency. This suggests that

imperfections in the dimensions of the model and its alignment in the compact

range could significantly affect the accuracy of the measurement when compared

with calculations based on a perfect geometry.

Perfectly conducting open-ended waveguide cavities made up of more than one

waveguide section were discussed in [6], with emphasis placed on modal reflection

from and transmission through the junctions between waveguide sections and the

open end. A more detailed presentation of modal rays for some common uniform

waveguide geometries is also found in [6], along with a derivation of the reciprocity

relationship between [$12] and [$21]. Figure 25 shows some typical RCS vs. aspect

angle results and Figure 26 shows a typical RCS vs. frequency result, from [6] based

on the hybrid modal method and compared with measurements obtained at OSU-
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ESL. Figure 27showsthe inverseFourier transform of the frequency data of Figure

26 which shows the scattering centers in the time domain. It is easy to distinguish

between the scattering by the rim at the open end and the scattering by the planar

ternfination using this technique.

Another interesting result which was discussed in [6] and [13] is the selective

modal property of the coupling of the incident plane wave into waveguide modes.

Simply stated, the modes most strongly excited by a plane wave incident on the

open end of the guide are those whose mode angles are closest to the direction

of the plane wave. Using this principle, many of the propagating modes can be

neglected for a given incidence angle because they are too weakly excited. This

can greatly improve the efficiency of the hybrid modal method, for cases where the

selective modal property is applicable, especially for large waveguide cross-sections

which would otherwise allow too many propagating modes to be tractable. Figure

2 in the introduction demonstrates this principle with a result from [6] where an

RCS vs. aspect angle pattern calculated using all of the propagating modes is

compared to one which uses only the three most strongly excited modes for each

incidence angle. This particular waveguide cavity propagated over 100 modes at

the frequency used in the calculation, implying a great savings in computation

time.

In [7], the scattering by a 2-D S-shaped waveguide cavity with a planar termi-

nation and slightly lossy inner walls was analyzed using the hybrid modal method.

The S-shape was achieved by joining together parallel-plate and annular waveguide

sections alternately. Because a junction between these two types of waveguides is

smooth, it was found that the modal reflection from the junctions is very small

and can be neglected, thus simplifying the analysis. The small loss of the waveg-

uide walls was handled using a simple perturbation technique which required that
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tile equivalent surface impedance of the walls be small. The corresponding lossless

waveguide modes are then used with a perturbation to their propagation constants

which causes them to attenuate as they travel. Figure 28 shows a typical backscat-

ter vs. angle result for a straight cavity and an S-shaped cavity, with and without

loss. Tile loss was due to a thin absorbing layer covering perfectly conducting

walls, which caused approximately 1 dB of loss to occur per reflection near normal

incidence. The scattering by just the rim at the open end is also shown on the

plots. As Figure 28 suggests, the effect of the S-shape is to flatten out and lower

the overall pattern and to make the absorber coating have more effect, especially

near axial incidence.

The scattering by a 3-D version of the S-shaped cavity was done in [9], but

no loss was included. This was because there is no simple way to use the pertur-

bation method for 3-D waveguides in which there exists a power coupling between

modes. The exact modal fields could be found for a uniform 3-D waveguide with

impedance walls, but (a) this requires complicated numerical solutions to the eigen-

value equations, (b) there is power coupling between modes (i.e., the modes do not

carry power independently of all other modes) which does not occur for the lossless

case, and (c) the modal rays would become complex and not lend themselves easily

to the hybrid asymptotic modal method. Figure 29 shows a typical backscatter

vs. angle result from [9] for a straight rectangular cavity and Figure 30 shows one

for a 3-D S-shaped cavity.

In [8], the scattering by single section, perfectly conducting, 2-D linearly ta-

pered and parallel-plate waveguide cavities with plane and plug terminations was

found using the hybrid modal method. The modal ternfination reflection matrix

[St,] was found using the method of moments, providing a highly accurate result.

Figure 31 shows a typical backscatter vs. aspect angle result from [8] where the
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effect of a wedge-shaped plug termination is compared with a planar termination.

As expected, the plug redistributes the scattered energy such that the return is

reduced near axial incidence, as opposed to the planar termination which gives a

maximal return in that region.
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CHAPTER III

THE GEOMETRICAL OPTICS RAY SHOOTING METHOD

The geometrical optics (GO) ray shooting method has been used to analyze

much more general open-ended cavity geometries than the hybrid modal method

could handle [7], [14]-[19]. In the hybrid modal method of Chapter II, the cavity

geometries were limited to ones which could be made up of finite sections of uni-

form waveguides for which the modal fields could be written in closed form as an

eigenfunction expansion. In addition, these waveguide sections would have to be

perfectly conducting, or nearly perfectly conducting as in the modal perturbation

technique used in [7]; otherwise, a great deal of complexity and numerical analysis

gets added to the modal method. Examples of the modal analysis of non-perfectly

conducting waveguide cavities appear in [15] for a parallel plate waveguide and in

[16] for a circular waveguide. Finally, the number of propagating modes involved

in the hybrid modal analysis increases exponentially with frequency. Therefore,

while the hybrid modal method is highly accurate, it also becomes more dimcult to

use for many realistic cavity geometries of interest. However, the usefulness of the

hybrid modal method becomes evident when it is used to validate more general

and approximate methods, such as the ones described in this and the next two

chapters.

In the GO ray tracing method, also referred to as "shooting and bouncing

rays" (SBR) [17], the incident plane wave field which enters the cavity is broken
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up into a dense grid of parallel ray-tubes. The central ray of each ray-tube is

then traced via the laws of GO inside the cavity and the field in any transverse

cross-section of the ray-tube is assumed to be that of the central ray. Also it is

often assumed that the exact shape of the ray-tube is relatively arbitrary as long

as the cross-sectional area is known. These two assumptions are reasonable if the

cross-sectional area of each ray-tube is kept to less than (21-)_)2 where )_ is the free

space wavelength [18].

It is possible to trace the boundary rays of the ray-tubes in order to know

the exact shape of the cross-section and thus allow larger ray-tubes [17,18], but

this may not be desirable because larger ray-tubes sample a larger portion of the

cavity walls which they reflect from, and therefore may lose some information on

the geometry. Also, since the ray tubes are eventually integrated in some way, such

as in an aperture radiation integration (Appendix B) or the termination reciprocity

integral (Appendix C), it may be difficult to integrate ray-tubes of irregular shapes

[17,18]. It is very convenient to be able to pick an arbitrary ray-tube shape which

allows for a simple integration.

The advantage of the GO ray tracing method (SBR) is that it can handle

very general cavity geometries with many possible surface characteristics, as long

as the reflections of the rays by the interior cavity walls dominate the interior

scattering effects. Also, the ray tracing part of the method is relatively frequency

independent so that it is feasible to extract a fairly broad band of frequency data

from a single set of traced rays. However, the GO method neglects all higher order

effects such as diffraction. Probably the most important of these higher order

effects which are not included is the part of the incident field which enters the

cavity via diffraction by the edge at the open end. Of course these effects diminish

as the frequency increases because the GO field is the only term left in the high
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frequency asymptotic series of the EM field as the frequency approaches infinity.

Other disadvantages of the GO method are that a new grid of rays must be traced

for each new incidence angle, and the incident field must always be ray-optical.

In this chapter, the theory behind the launching and tracking of the ray-tubes

and their subsequent integration will be discussed and some numerical results will

follow. The actual tracking of the GO field will be referred to as the GO ray

shooting method. When this is combined with an aperture integration (AI) it will

be referred to as the GO/AI method, and when it is combined with the reciprocity

integral (RI) it will be referred to as the GO/RI method.

3.1 Formulation of the Geometrical Optics Ray Tracing Method

3.1.1 Launching the ray-tubes.

In the GO ray tracing method, the incident plane wave field which passes

through the open end of the cavity is divided up into a dense grid of parallel ray-

tubes which normally have a square cross-section. This is illustrated in Figure 32

for a 2-D geometry. The fields of each ray-tube are then tracked using the laws of

GO through the cavity to some required location, such as to the termination as in

the GO/RI method, or down and back to the open end as in the GO/AI method.

Figure 33 shows one such ray-tube.

As the ray-tube undergoes reflections from curved surfaces, it experiences

changes in its divergence (curvature or spreading factor) and the shape of the

ray-tube distorts. It is therefore necessary to have a way of keeping track of this

divergence and shape change (in addition to phase propagation, polarization and

reflection coefficients) in order to know the fields inside the ray-tube. There are

several ways of doing this. One way is to ray trace the central ray of the ray-tube

using the laws of GO to give the field in the center of the ray-tube, and then trace
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Figure 33: A single ray-tube tracked through a cavity until it exits via the open
end.
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the four corner rays geometrically, without keeping track of divergence, to give

the shape of the ray-tube. It is then assumed that the fields anywhere in a cross-

section of the ray-tube are the same as the field of the central ray. Another more

approximate method ray traces the four corner rays without divergence to give the

shape of the ray-tube (and therefore, the cross-sectional area), and the magnitude

of the .,livergence is found by conserving the total power in the ray-tube (neglecting

any ioss associated with non-perfectly conducting walls). The magnitude of the

field at a point P inside the ray-tube (without loss) is then given by

(a.1)

where

u

Ain

A(P)

= electric field at P assuming lossless walls,

= electric field at the input,

= input cross-sectional area of ray-tube,

= cross-sectional area of ray-tube at P.

This method reduces the complexity of GO by not requiring calculations involving

the principle radii of curvature of the ray-tube and the curvature of surfaces the

ray-tube reflects from. However, all information on the phase shifts associated

with propagation through caustics is lost. It is noted that this method of tracking

a ray-tube does not require that the ray-tube be less than (½)_)2 in cross-sectional

area as mentioned earlier.

Probably the easiest method which keeps information on caustics and diver-

gence is to track the central ray of the ray-tube using GO and assume that the

field in any transverse cross-section of the ray-tube is that of the central ray. The

cross-sectional area of the ray-tube is known by conserving power as in (3.1). At
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a point P in the ray-tube, the cross-sectional area is then given by

A(P) - if'in 2

ff_,(p)ll 2Ain" (3.2)

In this ray-tube tracking method, the cross-sectional area is found from (3.2), but

the exact shape of the ray-tube is unknown. However, if the area of the ray-tube

is kept small enough, i.e., less than (1)_) 2, then the exact shape of the cross-

section is relatively arbitrary and can be made into any convenient shape. This is

demonstrated for a sample case in the aperture integration method in Appendix

B. For example, the shape could be chosen to coincide nicely with the coordinate

system in which the integral is evaluated. Of course tile problem with this method

is that a larger number of rays may have to be traced in order to keep the ray-tubes

small enough.

3.1.2 GO ray tracing using curvature matrices.

An efficient means of tracing a given ray via the laws of geometrical optics is

available through the use of curvature matrices which describe the curvatures of

reflecting surfaces and the GO wavefront of a ray as it propagates and reflects [17].

The derivation of this method is found in [20,21,22] and the pertinent resulting

equations are presented here. Consider the GO ray-tube shown in Figure 34 which

propagates from point O to point P. According to GO, the field at P is related to

the field at O by

ff_,(P) = (DF)E(O)e -jks (3.3)

where (DF) is the divergence factor given by

1

(DF) = (l + s/R1

1

" QI+s)R2 (3.4)
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and

m 2

Figure 34: GO ray-tube propagating in free space and its caustics.

R1, R2 = principal radii of curvature of the wavefront at P (i.e., caustic

distances),

= propagation distance from O to P.

The sign convention for tile square roots in (3.4) is as follows:

¢1 + s/R1,2

1

l+s/R1,2

$

: forl+ 1_-_,2>0

I
1 [ j_v s

¢ ]e 2 : forl+ 11_,2 <0I"+s/ R1,2

(3.5)

The caustics shown in Figure 34 are points where the GO field becomes sin-

gular, as is evident from (3.3) and (3.4) if s = -R1 or s = -R2. However, in

the application of GO to treat realistic open-ended cavities this has not been seen

to be a serious problem, mainly because it is highly unlikely numerically that a

caustic of a given ray-tube will occur exactly in the plane of integration, and if it

is nearby it will tend to integrate to a finite value, as in a Cauchy principal value

integral.
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The principal radii of curvature R1 and R2 of a surface can be found from the

curvature matrix Q(P) at point P on the surface using

M 1 -_ 2

R1,2

where

_(P) = 2 × 2 curvature matrix at P,

TrQ = trace of matrix Q,

DetQ = determinant of matrix Q.

Now the question arises, what exactly is Q and how is it defined? Let an

arbitrary parametric surface be defined by r"(u,v), a vector from the origin to a

loci of points, where (u,v) are the parametric coordinates on the surface, and let

]V(u,v) be the unit normal vector of the surface. The curvature matrix Q is then

defined by

where the subscript u or v denotes differentiation with respect to u or v. It is noted

that r'u, _v, l_u and Nv are tangent to the surface, but not necessarily orthogonal.

As examples, if _u and rv are the principle directions of the radii of curvature

Q =

(and therefore orthogonal), then

Q =

or if the surface is planar then

0

0

k
(3.8)

0 0

0 0

(3.9)
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Figure 35: Parameterized surface with tangent vectors _1 and $2 and normal
vector _N on the surface.

but in general, the principal radii of curvature are related to Q through (3.6).

To find the curvature matrix for a given surface defined by the parameterized

vector r-*(u,v), refer to Figure 34 where $1 and z2 are arbitrary orthogonal unit

vectors tangent to the surface. The curvature matrix for this surface is then given

by

=-1
Q = v

011 012

v (3.1o)

where

V (3.11)

eG - fF .fE - eF
011 -- 012 --

EG - F 2' EG - F 2

021 - fG-gf 022 - gE-fF
EG - F 2' EG - F 2 (3.12)

E = _._, F = _.G, G = _._
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Figure 36: GO reflection of a ray from a curved surface.

e = _'uu" IV, f = ÷ttv'lV, g = _'vv" IV. (3.13)

The double subscripts uu, uv and vv denote second derivatives.

It remains to be seen how the curvature matrix of a ray-tube changes as it

propagates and as it reflects off curved surfaces. Again referring to Figure 34, the

curvature matrix at P is related to the curvature matrix at O according to the

propagation relation

1
+=

where

(3.14)

? = 1 o (3.15)
0 1

and once again s is the propagation distance from O to P. The divergence factor

(DF) of (3.3) can now be found usi,lg (3.4) th,'u (3.6).

To find the curvature matrices associated with reflection from a curved surface,

refer to Figure 36. N is the unit surface normal and the reflected ray obeys Snell's

law of reflection, i.e., 8i = 8r and the incident and reflected rays lie in the same
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plane. The electric field at a point P can be written similarly to (3.3) as

E,(P) = (DF) . _. E(O-)e -jks

where

= electric field immediately before reflection,

-- dyadic plane wave reflection coefficient.

(3.16)

The divergence factor (DF) is again given by (3.4) and (3.5) with the principal radii

of curvature R1 and R2 given by (3.6). The dyadic plane wave reflection coefficient

F relates the polarization components of the incident and reflected electric fields.

Because of the localized nature of high frequency fields, it is assumed that this

dyadic reflection coefficient is the same as for the case of a plane wave incident on

a planar interface of the same material.

Using (3.14), the curvature matrix at P is given in terms of the matrix at O +

_(P)--([-_(O+)]-l+s_/-1 (3.17)

by

where

_(O +) = curvature matrix just after reflection.

Referring to Figure 37, the reflected curvature matrix Q(O +) is related to the

incident curvature matrix Q(O-) by the relation

+ = (3.18)

where

(3.19)
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Figure 37: Coordinate systems of tile surface and the incident and reflected rays.

p33 = _i. 5r (3.20)

_i,r) T =- transposeof_i,r,

_S = curvature matrix of the reflecting surface at O.

Qs is found using (3.10) thru (3.13) and the coordinate vectors of the incident

and reflected rays and the surface are shown in Figure 37. For the purpose of

tracing a ray through multiple reflections inside a cavity, the following choices

for the reflected wavefront and surface orthogonal coordinates are often used for

ff:l = ru
Curved surface: (3.21)

_2 = J_/')< _1 = rv

Reflected wavefront:

convenience [17]:

{ _ = Nx _r/sinO i
(3.22)
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where

÷u = unit vector in the direction of O_'/Ou,

rv = unit vector in the direction of O_'/Ov.

In other words, the surface coordinate vectors Xl and a:2 are derived from r'u, and

the reflected wavefront coordinate vectors $_ and _ are perpendicular and parallel

to the plane of incidence, respectively. The incident coordinate vectors zi, $_ and

_i are known a priori and _r is found from $i using Snell's law. The reflected

coordinate vectors will become the new incident coordinate vectors for the next

reflection, and so on.

For the very first reflection, i.e., when a ray-tube of the incident plane wave

field first strikes a cavity wall, the incident wavefront curvature matrix is a zero

matrix, as in (3.9), representing a planar wavefront. A convenient choice of incident

coordinate vectors for this first reflection is (referring again to Figure 37)

Incident wavefront, first reflection: / $_ = _:_
(3.23)

!
where $_ is given in (3.22).

3.2 Exterior Field Scattered by the Interior Termination Using GO
Based Equivalent Sources

As mentioned earlier, to obtain the fields scattered by the interior cavity

termination using the GO method, one of two integral methods are used. The first

of these is an integration over the aperture at the open end and it is referred to as

GO/AI; the second is based on the use of a generalized reciprocity integral over

an aperture surface defined conveniently in the vicinity of the termination and it

is referred to as GO/RI. Thus, the main difference between the two is that in the
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GO/AI method, the ray-tubes are traced from the open end to the ternfination

and back to the aperture at the open end where they are integrated, while in the

GO/RI method they are traced only from the open end to some waveguide cavity

cross-section before but near the termination of the cavity where they are "reacted"

(in the form of a generalized reciprocity integral) with all the other ray-tubes and

integrated. However, in general, the GO/RI method also requires the use of an

aperture integration because some ray-tubes may never reach the ternfination but

will exit through the open end. The main advantage of the GO/RI over the GO/AI

method is that complex terminations can be included which GO alone could not

handle, provided there is some other means of characterizing the EM reflections

from the termination.

3.2.1 GO combined with an aperture integration (GO/AI).

Once again, as in the hybrid modal method of Chapter II, the scattering from

an open-ended waveguide cavity will be restricted to the scattering by the rim at

the open end and the scattering by the interior termination. No other external

scattering mechanisms are included. The total scattered field with this restriction

can then be written as

/_s = /_sr +/_sc (3.24)

where

field scattered by the rim alone,

field scattered by the interior of tile cavity.

4,

In Chapter II, the incident plane wave field E t is given by (2.1) and the rim

scattered field/_sr is given by (2.21) thru (2.24) and will not be repeated here.
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Figure 38: Projections of ray-tubes in the open end as they exit the cavity.

The cavity scattered field _sc is due to ray-tubes incident at the open end

which have been traced inside the cavity via interior wall reflections and the ter-

nfination until they exit through the open end. This method requires that one

know how the ray tubes reflect from the termination; clearly the GO/AI (or SBR)

method can accomodate only simple terminations, e.g., a planar reflecting surface.

When the ray-tubes exit through the open end after reflecting from the termina-

tion, their cross-sectional shapes and areas have changed and their projections in

the plane of the aperture at the open end form discrete patches or footprints where

their fields exist, as shown in Figure 38. Hence, an aperture integration over these

patches is necessary to obtain a continuous scattered field from a discontinuous,

rapidly varying aperture field distribution obtained via GO ray tracing.

The cavity scattered field can be written as a sum of contributions from all
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Figure 39: rt th ray-tube exiting through the open end of a cavity.

the ray-tubes which exit through the open end as

N

n-----1

where

(3.25)

/_sc = field "radiated" by the equivalent (Kirchhoff or PO based)

sources corresponding to the fields of the rt th GO ray-tube in the

aperture at the open end.

Figure 39 shows the rt th ray-tube and its projection in the open end. As shown

in Appendix B Equation (B.11), the far field radiated by the equivalent sources in

the Kirchhoff approximation for the aperture radiation integral is given by

_ e-jkr#so = _[÷ x Pha + _; x (_ x Pen)] EnoeJk'_"_AnSn(÷)
_n 7.
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where

(3.26)

F' = vector from the origin to the receiver point,

i_en = unit polarization vector of the electric field of the n *h ray-

tube in the open end,

Phn ----- unit polarization vector of the magnetic field of the n th ray-

tube in the open end,

kn = unit vector ii1 the direction of propagation of the n th ray-tube,

-- Z,n

Eno = scalar portion of the electric field of the n th ray-tube in the

open end,

An = cross-sectional area of the n th ray-tube in the open end,

.-,!
r n = vector from the origin to the intersection of the central ray

of the n th ray-tube with the open end.

The form of (3.26) is that of a spherical wave, originating at the point where the

central ray of the ray-tube intersects the open end, whose pattern is determined

by the normalized shape function Sn(_') [17,18] which is given by

1

Sn(÷) - An f /A,_ eJk¢'4dS' (3.27)

with the relative geometry of tile rt_h ray-tube in the open end shown in Figure

40, and

_.t = vector from origin to a source point in the coordinate system of
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Figure 40: Relative coordinate system and geometry of the n th ray-tube in the
open end.

the rt th ray-tube,

,: = unit vector in direction of observer.

The integration is over C t in the zn-Vn plane within the cross-section of the rt th

ray-tube where it intersects the open end. Integrating over the cross-section of the

ray-tube is easier to perform than integrating over the oblique projection of the

ray-tube in the open end.

The shape function of (3.27) is actually a two-dimensional Fourier transform

of the shape of the cross-section of the n th ray-tube, and can thus be found for an

arbitrary polygonal shape [17]. For example, if the cross-section is a square with

its sides parallel to the zn and Vn axes, the shape function is given by

(3.28)
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where

sinc(z)

0_, ¢_

_ sin x (3.29)
X

= angular coordinates of the observer in the coordinate system

of the n th ray-tube,

a.s shown in Appendix B. If the cross-section is circular, then [18]

where

Sn(_)- 2Jl(u) (3.30)
U

sin On

= k_-_sin (cos -1 ÷. ion) (3.31)

Jl(u) = the first order Bessel function of the first kind.

However, as mentioned earlier in Section 3.1.1, if the cross-sectional area An

of the ray-tube is less than (½5)2, the exact shape of the ray-tube can be assumed

arbitrary in the calculation of the shape function, provided that the ray-tube is

roughly symmetric about its central ray. The radiation pattern determined by the

shape function for such cases will be symmetric about the Zn axis and depend only

on the cross-sectional area and On. This is demonstrated in Appendix B for the

case of a cross-section which is approximately square. The shape function for this

case becomes, from (B.19) and (B.26)

Sn(_) = sinc(_ky/AnsinOn )

= sinc(_kx/_n _×kn) (3.32)

which is rotationally symmetric as desired. If the pattern of the ray-tube is shape

independent, then the expressions of (3.30) and (3.32) should be very nearly the
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same for x/ZA-_ < 1A. This is shown in Appendix B by comparing tile quadratic

portions of tim Taylor series expansions of the two shape functions for small argu-

ment. Thus, (3.30) becomes

2Jl(ky/_r sinOn) 2

k_-_ sin On

and (3.32) becomes

sinc(_k_nsinOn) ._ a-l(k_nsinOn) 2 (3.34)

which are nearly identical for practical purposes.

In summary, the recommended method of using GO/AI is to choose a dense

enough grid of ray-tubes for the incident plane wave field which enters into the

cavity at the open end, such that the ray-tubes exit tlle cavity with a cross-sectional

area less than (1A)2. The central ray of each ray-tube is then traced via GO as

described in Section 3.1.2 to obtain the field En° in the cross-section of the ray-

tube where it exits through the open end. The cavity scattered field is then given

by (3.25) and (3.26) along with (3.30) or (3.32).

area of the n th ray-tube in the open end is

I/ il 2

An = _Ain

where

Using (3.2) the cross-sectional

(3.35)

/_/n/o = electric field of the n th ray-tube in the open end assunfing no loss,

Ain = initial area of the ray-tube when it was launched.

Since it is not usually known a priori what the cross-sectional area of ray-tubes

will be when they exit, it is difficult to know just how dense to make the initial
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grid of ray-tubes upon entry. They should, of course be less than "''(_A)2 in cross-

section, but because of divergence effects, this area tends to grow the farther the

ray-tubes must travel and the more reflections from curved surfaces they undergo.

One solution is to launch denser and denser grids of ray-tubes by trial and error

until they are all sufficiently small when they exit. However, it is usually much

more efficient to use an algorithm which sub-divides a ray-tube which is too large

when it exits into smaller ray-tubes. These new ray-tubes are re-launched and the

process is repeated. This procedure is more efficient than to make all the ray-tubes

in the grid smaller just because one ray-tube came out too large.

3.2.2 GO combined with the termination reciprocity integral (GO/RI).

The termination reciprocity integral is formulated in Appendix (3 for the gen-

eral case of an open-ended waveguide cavity illuminated by two electric current

point sources of strengths lffand _l, as shown in Figures 95 and 97. The source/_is

located at a point P and/_l is located at pI. The termination reciprocity integral

given by (C.15) is formulated for this general case as

where

E_(P) = electric field at P scattered by the termination of the cavity

when it is excited by an electric current point source

of strength _! at pi,

= fields due to/Y in the absence of the termination but in the

presence of the semi-infinite waveguide cavity,

= fields due to iffl scattered by the termination in the presence
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of the semi-infinite waveguide,

St = a cross-sectional surface chosen conveniently in front of the

termination,

_t = unit surface normal of St pointing away from the termination.

Throughout this section, a primed quantity means that it is associated with the

source at P_ and a corresponding unprimed quantity means that is associated with

the source at P. By an appropriate choice of p, any component of the scattered

field call be extracted using (3.36). For example,

EIsx(P) = _ component of/_'s(P)

= E's(P).

= g's(P)._ f=_. (3.37)

What (3.36) and (3.37) imply is that the field at P which was scattered by

the ternfination due to fields from the current element at pi can be found by

tracking the fields from both f and f' inside the cavity to the cross-section St

and integrating as in (3.36). Therefore, the fields do not have to be tracked back

out of the cavity as is necessary in the GO/AI approach. The fields from/7 at St

are in the absence of the termination and the fields from f' are in the presence

of the termination. It is noted that (3.36) includes all multiple wave interactions

between the termination, the open end and any other scattering centers; however,

these effects are generally not significant if the interior reflection by tile termination

is substantially bigger than the interior reflection of waves from the open end and

can therefore be neglected. The latter situation which is of interest here is also

true if the cavity walls are coated with a layer of absorbing material. It is assu,ned

that the above conditions are met ill the present study; hence, these multiple wave
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interaction contributions to/_s,/t_s can be ignored here. Since the fields in (3.36)

are computed approximately by GO ray tracing, the result in (3.36) is approximate

even to first order. It is important to note that the exact form of (3.36) does not

include the effects of waves which experience reflections from the interior cavity

region without, reaching the termination plane St; however, this contribution can

be significant when it exists (as in tapered waveguides for example) and it must be

added separately. The latter contribution when it exists can be found easily within

the GO approximation by using the aperture integration method of Section 3.2.1,

applied only to those ray-tubes which exit from the open end without reaching the

termination. Also, (3.36) does not include any external scattering such as that due

to the rim at the open end, but this can be added separately as was done for the

rim in Section 3.2.1.

To use the termination reciprocity integral of (3.36) with the GO method, the

point sources at P and pI must be moved to infinity so that their fields incident

on the cavity are plane waves. As noted in Appendix C, the plane wave fields of

an electric point source ig are given by

ff_ff_) = Eoe -jkR (3.38)

1 R × _,oe_Jk R (3.39)

where

lim
jkZo (3.40)

ff'-=o = -/_×/_×f 4_rR
R --+ cx_

vector from current element to receiver.

Also as noted in Appendix C, the bistatic radar cross-section (RCS), or the "echo

area", for the co-polarized and cross-polarized fields, respectively, are most often
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the figures of interest. In terms of t_ and ¢ polarizations, the two co-polarized echo

widths are o'0o and _r4,¢ and the two cross-polarized echo widths are °0¢ and _r¢0.

The first subscript denotes the polarization of the receiver at P and the second

subscript denotes the polarization of the source at pi. For example, a04, is defined

as in (C.31) by

where

lira [EIs0(P) 2
a0¢ = 4_-r 2 (3.41)

r _ o¢ Eo¢

Else(P) =

!

Eo_ =

T

E_s(P)./7 _=_ (3.42)

q_ component of the plane wave field incident on the cavity

from the direction of P_,

distance from the open end of the cavity to P and pI.

As shown in Appendix C, (3.41) can be written as

(kZo) 2 [E'so(e) 2

: 4. leon?E

where

(3.43)

Eo0 = 0 component of the plane wave field incident on the cavity from

the direction of P,

which is a much easier form to use computationally. The other three bistatic RCS

components are found using this same equation with the appropriate interchanges

of 0 and ¢.

It remains to compute (3.36) using the fields at St which have been found using

the GO ray tracing method of this chapter. Because it is not a simple matter to do
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the integral using the ray-tube fields themselves and because it is not easy to find

/_ts and/ts I of (3.36) for complex terminations, it is usually necessary to transform

the GO fields incident on St into some regular expansion such as a modal or plane

wave expansion. Other transformations have been suggested such as a Gaussian

beam expansion or a simple point matching scheme, but so far only the modal

expansion has been investigated in any depth and so only it will be described

here. Whatever the transformation, it is assumed that the fields reflected from

the termination can be found in terms of the new expansion. In the case of the

modal expansion, the modal reflection matrix [SF] described in Chapter II must

be known.

To use the modal form of the termination reciprocity integral, it is necessary

that the region near the termination be a separable waveguide section for which the

waveguide modal fields are known. For example, the region near the termination in

Figure 95 is a circular waveguide. Then the fields in this circular waveguide region

can be expanded as a sum of waveguide modes as in Chapter II and appendix

Section C.2. As shown in Appendix C, the modal form of (3.36) is given by

M

E's(P).f = -2 y_ A+Am ' (3.44)
rrt=l

where

A+ = / fst (_mtX Hi)" _ldS (3.45)

A+ml = fist (emtX It_). FIdS (3.46)

[A-'] = [Sr][A +'] (3.47)

and

/_. if! = magnetic fields incident on St from P and pi, respectively,
2, _t
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emt = transverse component of the electric field of the rn th waveguide

mode,

M = number of included waveguide modes,

= waveguide axial coordinate unit vector pointing towards the

interior termination.

It is assumed that 7/= 0 is chosen to coincide with St. [A -t] and [A +t] are colunm

nlatrices containing the M modal coefficients A +t and Am t, respectively, and [SF] is

the termination modal reflection matrix of order M × M which relates the incident

modM coefficients to the reflected coefficients, referenced at the cross-section St

(i.e, at 7? = 0). Equation (3.44) can now be used to evaluate the scattered field

component as in (3.37) or (3.42).

The modal coefficients of (3.45) and (3.46) can be found in terms of the ray-

tubes which are incident on St. These can now be written as a sum of integrals

over the ray-tubes at St:

where

A + : _ ffs(  , ×a, )nas
q=l

A +' = ql__, (emt × .¢ldS: 1 qt *q I

Sq, Sq,

-"t

l_ iq , H iqt

Q, O'

= projection of the qth or qt th ray-tube on St,

= magnetic field of the qth or qt th ray-tube incident on St,

= number of ray-tubes which reach the cross-section St

from P or pt.

(3.48)

(3.49)

Once again, the primed quantities are associated with the point source at pt and

the corresponding unprimed quantities are associated with the point source at P.
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The area of the projections of the ray-tubes on St are related to the cross-

sectional areas of the ray-tubes by

Aq

Sq - ]_q. _ (3.50)

where

Aq = cross-sectional ..'J.rea of the qth ray tube,

_:q = unit vector in the direction of propagation of the central ray of

the qth ray-tube,

and similarly for Sqt and Aq,. The fields Hiq and l_qt can be found easily from

the field of the central ray of a ray-tube because the field inside a ray-tube is

assumed to be constant at any given cross-section. The field of a central ray is

found by launching a ray-tube as described in Section 3.1.1 and by ray tracing it

as described in Section 3.1.2.

As mentioned before, it is expected that if the cross-sectional area of a ray-

(_)2, then the exact shape of the ray-tube about its axis is nottube is less than

important in the integral so that any convenient shape may chosen, as long as the

area stays the same. For example, if the integration is in the x-V plane then the

projection would be chosen to be a square with sides of length _q parallel to the

z and V axes. This makes the integrals in (3.48) and (3.49) nmch easier to evaluate

numerically.

3.3 Numerical Results and Discussion of the Geometrical Optics Meth-
ods

In this section numerical results obtained using the GO method will be pre-

sented and in most cases will be compared with more accurate modal reference
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solutions. All of the plots of this section are taken from sources listed in the

references and these sources will be cited as the results are presented.

In [7], the scattering from 2-D straight and S-shaped cavities with planar

short circuit terminations and absorber coatings on the inner walls was analyzed

using the hybrid modal method of Chapter II and the GO/AI method of this

chapter. It was found that the GO/AI method could predict the general trends

of the backscatter pattern when compared with the modal reference solution, but

often failed to depict accurately the details of the lobe structure such as locations

of peaks and nulls. This has often been seen in other work which used the GO

method, such as in [14], [16] and [17]. However, the GO method is useful in many

practical applications which do not require as much accuracy in the pattern details

and in applications where other methods, such as the hybrid modal method, can

not be used due to non-uniform geometries and arbitrary absorber treatments.

Figure 41 shows a typical backscatter vs. aspect angle result from [7], comparing

results obtained using the hybrid modal perturbation method and the GO/AI

method applied to a shallow S-shaped cavity. The modal result shows plots for the

lossless case and for the 1 dB loss/reflection absorber coated case, while the GO/AI

result shows these two plots plus one for the 5 dB loss/reflection case. Both show

the scattering by just the leading edges of the cavity. It is noted that the modal

perturbation technique could not handle the higher loss case. As the figure shows,

the GO/AI solution agrees fairly well for this shallow cavity, which is generally

the case. However, as the length of the cavity increases, the GO/AI result gets

worse because the actual fields in the cavity diverge more due to diffraction effects,

which the GO field does not include. Also, because of ray divergence effects, the

longer the cavity is the more rays need to be traced, thus decreasing the efficiency

of the method.
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In [i6], the GO/AI method, there referred to as the shooting and bouncing

rays (SBR) method, was applied to open-endedwaveguidecavities with planar

terminations which were modelled mathematically using transitions between ge-

ometric shapes along with axis-shifting lofting functions. An example of such a

cavity would be one which starts out with a square cross-section at the open end

that slowly becomes circular by the region near the termination, and a lofting

function is used to bend the axis of the cavity into an S-shape. Figure 42 shows a

typical RCS vs. aspect angle result from [16] for an open-ended circular cylinder

with a planar termination, found using SBR and compared with a modal result.

The agreement is good in terms of the general trends of the pattern, but not as

good in terms of detailed lobe structure, as was discussed above.

Figure 43 and 44 show typical bistatic scattering (BCS) vs. observation angle

results from [16] for two geometric transition/lofted S-shaped cavities. Since there

is no modal reference solution available for such general configurations, the plots

show only the SBR result and illustrate the convergence of the solution in terms

of ray density. In general it was found in [16] that the ray density needed to be

approximately 15 to 20 rays per wavelength for convergence of the solutions for

the geometries considered.

Figure 45 shows an RCS vs. aspect angle result from [16] for a triangle-to-circle

cavity, with and without offset and with and without absorber coating. As the

figure shows, the offsetting the termination reduces the RCS somewhat compared

to the non-offset case, and the absorber combined with the offset reduces the RCS

quite significantly.
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CHAPTER IV

THE GAUSSIAN BEAM SHOOTING METHOD

In this chapter, the scattering from the interior of relatively arbitrary open-

ended waveguide cavities with smoothly curved interior walls is analyzed using

a Gaussian Beam (GB) expansion of the incident plane wave fields at the open

end. The cavities under consideration may contain perfectly-conducting interior

cavity walls with or without a thin layer of material coating, or the walls may be

characterized by an impedance boundary condition. As before, the scattering by

external features of the cavity, such as by the rim at the open end, must be added

separately to the scattering from the interior of the cavity; again only the rim

scattering will be included here. The termination of the cavity may be arbitrarily

complex as long the scattering properties are known in some manner, such as via

a modal reflection matrix or a plane wave spectral expansion.

In the GB shooting method, the incident field in the open end of the cavity is

expanded in terms of an array of shifted and rotated Gaussian beams. At optical

wavelengths, an example of a well known type of Gaussian beam is a laser beam.

At microwave frequencies, GB's are typically much wider and diverge faster than

laser beams, but their basic functional form is the same. These GB's are allowed

to propagate inside the cavity, reflecting off the cavity walls. If the GB's are well

focussed, it is assumed then that they can be tracked within the interior waveguide

cavity region only along the axis of the beam in a manner similar to geometrical
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optics (GO) ray tracing. The reflection of a GB from a curved wall is subsequently

found in this axial beam tracking approximation by assuming that an incident

GB gives rise to a reflected GB with parameters related to the incident beam and

the radius of curvature of the wall. It is found that this approximation breaks

down for GB's which come close to grazing a convex surface and when the width

of the incident beam is comparable to the radius of curvature of the surface. An

important and useful feature of this GB approach is that the expansion of the

fields in the open end depend on the incidence angle only through the expansion

coefficients, so the GB's need to be tracked through the waveguide cavity only

once for a wide range of incidence angles. Furthermore, the GB's are tracked

only to the vicinity of the interior termination from the open end where they are

launched as they propagate via reflections off the interior cavity walls. It is not

necessary to track another set of beams from the termination back to the open end

to find the fields scattered into the exterior by the termination because the use of a

generalized reciprocity theorem allows one to do so with the information available

from tracking the fields only one way (from the open end to the termination).

At the termination, the sum of all the GB's are integrated using the termination

reciprocity integral described in Appendix C to give the fields scattered from the

interior of the cavity.

Results are compared with solutions based on the hybrid asymptotic modal

method. The agreement is found to be very good for cavities made up of planar

surfaces, and for cavities which are not too long with respect to their width with

curved surfaces. General rules of thumb for choosing the proper GB expansion

parameters and length to width ratios of cavities for which the method should be

accurate are presented. It is noted once again that the scattering from external

features of the cavity (other than the open end) are not of interest here and are
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thus ignored, as was done in Chapters I and II. While the development is pre-

sented here for the 2-D case, it can be directly extended to treat the 3-D case in a

straightforward manner.

The analysis in this chapter is for the two dimensional (2-D) plane wave

bistatic scattering case. Therefore, the two possible polarizations are perpendic-

ular (A_) polarization in which the electric (E) field is normal to the plane of the

geometry, and parallel (H) polarization in which the magnetic (H) field is normal

to the plane of the geometry. Throughout, the letter U will be used to repre-

sent either the E-field or the H-field, depending on polarization, perpendicular or

parallel, respectively. Also, U represents the scalar portion of U.

Section 4.1 will formulate the problem in terms of scattering by the open end,

found using GTD, and scattering by the termination, found using the termination

reciprocity integral of Appendix C. Section 4.2 will derive the Gaussian beam

basis function and discuss some of its properties. Section 4.3 will describe the GB

expansion of the fields in the open end of the cavity by treating the transmission

through an aperture in free space, and Section 4.4 will discuss how the GB's

are tracked inside the cavity to the termination. Numerical results will then be

presented in Section 4.5.

4.1 Formulation of the Gaussian Beam Shooting Method

The contributions to the scattering from an open-ended waveguide cavity

which are of primary interest in this work consist of the following components:

the external scattering by the edges at the open end, and the internal scattering

due to incident energy which is coupled to the interior of the cavity, then reflected

by the termination and re-radiated back into the exterior via the open end. All

other external scattering effects from the structure in which the cavity is enclosed
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Figure 46: Scattering mechanisms of a 2-D open-ended waveguide cavity.

are not of interest here and are therefore not included in this analysis. Figure

46 shows a general two dimensional (2-D) cavity geometry which illustrates the

scattering mechanisms of interest. The scattered field can then be written as a

sum of these two scattering components as

_s = _rsr + ffsc (4.1)

where

rim scattering component,

interior cavity scattering component.

The plane wave field scattered by the edge at the open end of the cavity can be

found easily using the geometrical theory of diffraction (GTD) [1]. The scattered

field for this case is given to first order as (see [7])

e-jkp

[Ds,h (_r + _s, _r + _i )ej: svi---y
kd(sin es +sin 0i)

+Ds,h(_ - gs,Tr - Oi)e-J_kd(siaes+sinei) I- (4.2)
J
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WA

where

Figure 47: Geometry of a 2-D open-ended waveguide cavity.

Ui = magnitude of the incident plane wave,

0 i = incidence angle,

Os = observation angle,

p = distance to the receiver from the center of the open end,

d = width of the open end.

The geometry is shown in Figure 47, with _ normal to the page. (4.2) is phased

referenced to tile center of the open end. Ds, h is the appropriate soft or hard

diffraction coefficient (Keller's form [1]) given by

sin (_) [ 1 1

[ :F

(4.3)

where

WA
n = 2--- (4.4)

71"
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WA = wedge angle of the rim, as shown in Figure 47.

"Soft" and "hard" refer to the polarization and correspond to perpendicular and

parallel, respectively. The edge scattered field given by (4.2-4.4) includes only first

order non-uniform diffraction. This first order result in (4.42) is quite adequate

for large guide widths d and for incidence and scattering angles which are not too

steep (lOi,Osl < 60 °) because the higher order diffraction effects will in such cases

be negligible and the transition regions associated with shadow boundaries will

not be in the directions of interest.

In general, the total field scattered by a large open-ended waveguide cavity is

dominated by the interior scattering, whereas, the edge scattering is almost negli-

gible by comparison. However, if the cavity contains a large amount of loss, such as

that due to interior absorber wall coatings, the edge scattering may become much

more noticeable. Therefore, it is important to include this scattering mechanism

in calculations, especially if there is loss present.

The contribution to the scattering from the interior of an open-ended waveg-

uide cavity is found by coupling the plane wave field incident on the open end

into the cavity and then tracking the fields via a GB expansion through the cavity

to the termination. The fields at the termination are then integrated using the

reciprocity integral described in Appendix C and derived in [30]. From (C.15), the

termination reciprocity integral is given as before for the general 3-D bistatic case

by

See Appendix C for definitions of the quantities and geometry used for this 3-D

case (they will be defined later for the 2-D case). In general, the primed quantities

are associated as before with a point source located at pl and the corresponding
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unprimed quantities are associatedwith a point sourcelocated at P. For the 2-D

case of perpendicular polarization, the E-fields are in the _ direction (out of the

page), the H-fields are in the plane of the page and igis replaced by the strength

I of a _ directed electric line source. Also, p, in is the direction of Oi and P is in

the direction of Os of Figure 47. The left side of (4.5) becomes

E',(P)._ = _Z'8(0s).(_I )

= E's(OS)I (4.6)

where

E'(Os) = electric field in the direction of Os scattered by the termination,

due to a plane wave incident from the direction of 0i,

directed electric current source located at the point where

Ets(Os) is to be evaluated.

The H-field can be derived from the _ directed E-field for this case using one of

__

Maxwell's equations:

1
Vx_

jkZo

jkZol ($ O_ ^0)__+ YE × (_z)

1j;Zo \ -gyy- _-g-;_ •

×j--_o_ o_ -

(4.7)

The integral of (4.5) can now be reduced as follows:

:

_(iE,s) x-1 (_OEi_jOEi'_]
\ _ _]j .(-_)dy

(4.8)
-1 d [ i)E_s

- t Ei
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where fi has been replaced by -37 and the integral is over y from 0 to d, as Figure

47 illustrates.

The field incident on the open end of the cavity due to the line source at P,

i.e., from the direction of Os, is given by

Ei ° = -ZoI_/ jk_--e-j_p (4.9)

where

= distance from the center of the open end to P (from Os direction).P

As p approaches infinity, this field looks like a plane wave incident on the cavity

with magnitude Eio incident from the direction of 8s. Using this result along with

(4.6) and (4.9), after some rearranging gives

1 e-Jko [d (Ei OE: E' OEi
EIs( Os ) dy. (4.10)

Eio_ _ Jo \ Oz s-_x ]

Using the equivalence theorem [32], Hts(Os) for the parallel polarization case is

obtained by replacing E with H in (4.10), and in general

= , d (v, OV" u, OU, 
Uiov/_g-_ _ fO k ' Oz so x ] dy (4.11)

where

V

U i =

v' =

Uio =

directed E-field for _L polarization or $ directed H-field for

[[ polarization,

scattered field in the direction of Os (towards P) due to a

plane wave incident from the direction of Oi (from P'),

fields from the source at P in the absence of the termination,

fields from the source at P' in the presence of the termination,

magnitude of the plane wave incident on the open end of the

cavity from the direction of Os (from P).
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and the h,tegral is over a cross-section in the cavity conveniently chosen near the

termination.

Equation (4.11) can also be expressed in terms of the modes of the waveguide

cavity region near the termination, if it is assumed that the region is separable

so that the modes can be found analytically, following a procedure similar to that

used in deriving (4.11), but starting with Equation (C.27) and using (C.22), (C.29)

and (C.30). The scattered field in the direction of Os (at P) is then given by

+2 e-jkp N
A+A-_ ' (4.12)

Uts(Os) = Uiox_ -_ v_ n=i

where

[A-'] = [Sr][A +'] (4.13)

and

N

[A-'],[A +'] =

[Sr] =

Ui, U_ =

A+ = fOd OUi-Unz_ dy (4.14)

A.+'= dUnz --_-x dy (4.15)

component of the n th waveguide modal field (enz or hnz,

for _1_or II polarization, respectively),

number of included waveguide modes,

column matrices of order N containing the modal

coefficients A_ I and +lA n , respectively,

modal termination reflection matrix of order N × N,

fields from the sources at P and pi in the absence of the

termination, respectively.
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It is assumed that the waveguide cavity region near the termination in this 2-D

case is a parallel plate region; thus the waveguide modal fields for this 2-D case

are the parallel plate waveguide modes and are found in Appendix A. [Sr], the

modal termination reflection matrix is discussed in Section 2.3.4, and determines

the coefficients of the modal field reflected by the termination to the coefficients of

tile incident modal field. The incident modal coefficients are found from the fields

incident from P and P' and are given by (4.14) and (4.15), respectively.

The fields inside the cavity are found by first expanding the incident fields

ill the open end in terms of shifted and rotated Gaussian beams (GB's). Each

GB of the expansion of the fields at the open end is then tracked like a ray along

the beam axis to the termination within the waveguide cavity. In order to track

beams axially like rays and maintain sufficient resolution even after successive re-

flections off the interior walls it is necessary to have well focussed or spectrally

narrow GB's. However, such spectrally narrow GB's have wide waists. It is thus

important to be able to have spectrally narrow GB's whose waists can fit easily

within the waveguide cavity. Typically, the initial waists of the GB's at the aper-

ture plane should be about half the width of the original aperture. The latter can

be accomplished by dividing the aperture at the open end into equally sized sub-

apertures, and then expanding the fields of each sub-aperture into a superposition

of rotated GB's with equal angular spacing between each rotated beam. Figure

6 illustrates this sub-aperture expansion and shows one GB being launched and

tracked inside the cavity.

The fields at a point Pc inside the cavity (such as at the termination plane)

can then be written as a sum of GB's as

M N

Ui(Pc) = _ _ Am(Os,On)Bmn(Pc) (4.16)
m=-M n=-N
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where

M N

U_(Pc) = _ _ Am(Oi,On)Bmn(Pe) (4.17)
m:-M n------N

Bran(Pc) = field at Pc due to the Gaussian beam launched

from sub-aperture rn at an angle On, which has

beel_ traced inside the cavity,

2M + 1 = number of sub-apertures,

2N + 1 = number of GB's per sub-aperture,

Ara(Oi,s,On) = expansion coefficients for the mn th GB which

depend on the incidence angle 0 i or the

scattering angle Os, respectively.

Note that only the GB coefficients Am(Oi,On ) and Am(Os,On) change with the

angles of incidence while the directions of the beams do not so that the beams

need to be tracked only once and not each time the incident angle changes.

Section 4.2 will derive the GB basis function used in the expansion of (4.16)

and (4.17) and Section 4.3 will derive the expansion coefficients Am(Oi,,, On). Sec-

tion 4.4 will then discuss how the GB's are traced axially like rays from the open

end of the cavity to some point Pc inside the cavity, such as to the termination

plane.

4.2 Gaussian Beams as Field Basis Functions

The present Gaussian beam (GB) method uses well focused GB's to axially

track the fields inside a waveguide cavity. This method is useful because the GB's

are exact solutions to the wave equation (in paraxial regions) and therefore are

well-behaved everywhere (even at caustics), and their propagation and scattering
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characteristics can be found using conventional techniques. Also, it has been shown

by Gabor that a set of Gaussian distributions with appropriate linear phases can

be used as a complete expansion for aperture fields [28,29]. In fact, this type of

Gabor expansion has been used in similar problems involving aperture radiation

in the presence of complex environments, such as in a radome [27], because it gives

a rigorous method of launching Gaussian beams. However, the Gabor expansion

is not used here for the cavity scattering problem because it gives rise to GB's

which have parameters that vary depending on the amount of their rotation. In

other words, all of the beams arising from the Gabor expansion are not identical,

which hampers the effectiveness of the method when applied to arbitrarily shaped

geometries. The Gabor expansion was useful in [27] because the beam tracking was

done using complex ray tracing. This technique gives more reliable results than

the axial beam tracking method used here, but it is not practical for complicated

geometries where there are multiple reflections, such as in an arbitrarily shaped

cavity.

The results in this section are restricted to two dimensions, however, the GB

method can be extended to 3-D in a straightforward manner. In this section the

GB basis function which will be used in the sub-aperture expansion will be derived

from a 2-D Green's function with a complex source location [33], and some of the

important properties of the GB basis function will be discussed.

4.2.1 A Gaussian beam as the paraxial field of a point source located
in complex space.

A GB can be derived as the paraxial form of the 2-D Green's function widen

the source point is located in complex space [33]. The 2-D free space Green's
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function is given by

where

X,Z)

(X l , Z I )

Go(r)

1 e-jkr

- ,/W_ v_ '
for kr >> 1

V@ ' _,)2 + (__ :,)2

Hankel function of the second kind of order zero and

argument kr,

coordinates of the receiver,

coordinates of the source point.

(4.1s)

(4.19)

(4.20)

The paraxial form of r is

r _ z-z'+(x-z') 2
2(z - z')'

for Iz- z'? >>I=- ='12. (4.21)

To obtain the desired Gaussian amplitude characteristic, the source location

is placed in complex space at (zt, z t) = (0,-jb) where b is a positive real constant

referred to as the "beam parameter". (4.21) becomes

r

_c2

,_ z + jb + 2(z +jb)' for ]z + jbl 2 >> Ixl 2

x2 .1 b x2
_-. z+jb+_Zz2+b 2 3 2 _+b 2" (4.22)

Substituting this result into (4.19) gives the paraxial free space Green's function

for a complex source location as

_2

e kb 1 -Jkz(l+lz-2_+b2)e-

ao(.,_) = -eT_ __

for Iz + jbl 2 >> Ixl 2

I kb z2

(4.23)
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which has a quadratic phase front paraxial with respect to the z-axis, along with

a Gaussian amplitude distribution transverse to the direction of propagation. In

other words, for a constant z, the amplitude of the beam in the transverse x

direction is a Gaussian function centered on the z-axis. Notice also that (4.23)

is not singular at z = 0. This functional form appears often in the field of laser

optics because it is the dominant lowest order mode of a laser beam.

4.2.2 The Gaussian beam basis function and its properties.

The GB basis function used in this chapter has the form of (4.23) with a more

convenient constant in front,

for ]z + jb[ 2 >> [z[ 2 (4.24)

chosen so that B(0, 0) = 1. Note that if b is made large enough, the GB will have

significant magnitude only in the paraxial region because it will die out quickly

away from the beam axis. This is the case for the well focussed GB's which are

useful in the cavity scattering problem. Therefore, it is usually not necessary to

keep track of where the paraxial approximation is valid because it is essentially

automatically taken into consideration by the Gaussian amplitude taper.

Two important parameters of the GB are the phasefront radius of curvature

R(z) and the 1/e beam half-width w(z) which are given by

n(z) = 1_(.2+ b2) (4.25)
z

F:2(z2 + b2)
w(z) = V kb " (4.26)

Of these two parameters, w(z) is the most often referred to because it describes

the effective boundary of the beam, outside of which the amplitude of the beam
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is less than 1/e of its on-axis value (8.7 dB down) for Ix[ > w(z). As z becomes

much larger than b, (4.26) indicates that the beam half-width approaches a linear

asymptote given by

w(z) = z, forz 2>>b 2. (4.27)

Figure 48 shows a typical GB designated by shading within its 1/e half-width

boundaries, and Figure 49 shows the beam half-width w(z) plotted for different

values of b, along with the asymptotes. These two figures show only the region

z > 0 because the GB's are symmetric about the x axis as well as the beam (z)

axis.

Tile beam waist, We is defined as twice the minimum of the 1/e half-width:

Wo = 2w(0)

-- 2 . (4.28)

This is a measure of the width of the beam at its narrowest point, i.e., at its waist.

As Figure 49 shows, GB's with smaller beam waists diverge faster than GB's with

larger waists, as expected from a Maxwellian field function. However, beams with

large waists may not fit inside a waveguide cavity. This is the trade-off limitation

of using GB's to track the fields inside waveguides. Beams which start out small

may diverge too fast and become too large to fit the waveguide after propagating

a short distance. On the other hand, beams which start out with a large waist

diverge slower, but they may already be too large. Therefore, this method which

tracks beams axially like rays, is expected to work well only for waveguide cavities

which are wide in terms of wavelength and not very long. The allowable length

to width ratio will increase with frequency because it is easier to fit well focussed

GB's inside for electrically large geometries.
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Figure 48: A Gaussian beam, shaded within its 1/e boundaries.

Figure 49: Gaussian beam half-width w(z) plotted for 3 values of tile beam
' _": parameter b.
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The far field form of the beana basis function (4.24) is also of interest mainly

so that GB's can be matched to the far field pattern of an aperture using point

matching. Changing to the (p, 0) coordinate system,

x = psin0

z = pcosO (4.29)

where

p = distance to the observer from the origin,

0 = angular displacement from the z-axis.

Substituting these into (4.24) and letting p extend to infinity yields the far field

GB basis function as

3__ b -jkp -lkb02 for [01 << 7r. (4.30)
B(e,o) = V '

This shows that the GB basis function is also Gaussian in angle in the far field.

The angular beam width, BWo, is defined as the 1/e angular width of the beam

in the far field and is given by

BWe = 2V_- _. (4.31)

Comparing (4.28) and (4.31) shows that the beam waist varies as v_ while the

angular beam width varies as 1/v_. It follows that for a small angular beam

width the beam parameter b is large, giving a large beam waist. This was discussed

earlier in terms of the beam half-width w(z) of (4.26) and (4.27) and is illustrated

graphically in Figure 49, where the angles that the asymptotes make with the

z-axis correspond to half the angular beam width BW O.
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Figure 50: Plane wave incident on an aperture of width d.

Sub-Aperture Field Expansion Using Gaussian Beams

km

In this section, the fields radiating from an aperture illuminated by a plane

wave will be expanded in terms of shifted and rotated Gaussian beam basis func-

tions. Figure 50 shows the geometry. As mentioned before, the method presented

here is similar in concept to the method of [26] and [27] which uses a complete

Gabor expansion to establish an array of shifted and rotated Gaussian beams in

the aperture. The difference is that in the sub-aperture expansion method of this

chapter, the GB's used in the array are all identical (except for their orientation),

in contrast to the Gabor method which gives rise to GB's that have differing beam

waists depending on the amount of their rotation in the aperture. For the appli-

cation of this report, i.e., cavity scattering, it is more desirable to use identical

beams via the sub-aperture approximation which is conceptually simpler than the

Gabor expansion. Also, the Gabor expansion gives rise to rotated GB's which are

not equally spaced in angle, as the sub-aperture method does. However, this is not

117



necessarily a drawback of using the Gabor method for cavity scattering problems,

just an added complication.

Some numerical results illustrating the technique of using GB's in a sub-

aperture expansion of the fields radiating from an aperture will be presented at

the end of this section.

4.3.1 Formulation of the sub-aperture expansion.

The sub-aperture expansion method described in Appendix D is used to write

the fields in the z > 0 half-plane as a double summation of GB's:

M N

voB = (4.32)
m=-M n=-N

which is a sum over the 2M + 1 sub-apertures and the 2N + 1 rotated GB's of

each sub-aperture, and

B(_mn, Zmn) ----- n th rotated GB basis function of the mth sub-aperture,

Am(Oi,On) : expansion coefficient of the mn th GB,

(_rnn,Z,nn) = relative coordinate system of the rnn th GB,

On = angle between the n th beam axis and the z-axis.

The relative coordinate system of the mn th GB is shown in Figure 51. The Zmn-

axis is the beam axis of the mn th GB which makes an angle of On with the z-axis.

Xmn and Zmn are given in terms of x, z, and On by

Xmn = (x - mA)cosOn - zsinOn (4.33)

Zmn = (_c-mA)sinOn + zcosOn (4.34)

where A is the sub-aperture size given by

d

A = 2M + 1" (4.35)
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Figure 51: Coordinate system of the rnn th shifted, rotated Gaussio:n Beam.

The GB's are equally spaced in angle, i.e.,

8n = nAB (4.36)

A8 = angular separation between adjacent rotated beams.

The GB basis function B(x, z) is defined by (4.24).

As discussed earlier, it is noted that the expansion of (4.32) is slightly differ-

ent than the Gabor based expansion used in [29,26] and [27]. Gabor's expansion

consists of a double summation over shifted Gaussian functions with linear phases

[28]. It happens that in the paraxial region, a rotated Gaussian beam has a linear

phase through its waist. Therefore, the fields of an aperture which are written as

a Gabor expansion can be continued or propagated as GB's beyond the aperture

by noting that the linearly phased Gaussian functions in the aperture correspond

to shifted and rotated Gaussian beams whose waists are in the aperture. This is

because the propagation characteristics of GB's are well known everywhere within

the paraxial region. However, as mentioned earlier, Gabor's expansion gives rise

to GB's which are not all identical and equally spaced in angle, in contrast to the
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sub-aperture expansion of (4.32). In fact, as shown in [26], it also gives rise to

evanescent type beams which die out away f,'om the aperture. Furthermore, Ga-

bor's expansion is a double infinite summation which must be truncated somehow

to be of practical use, as investigated in [26]. In the course of the work detailed

in this report, it was found that the expansion of (4.32) is more useful for the

open-ended waveguide cavity application. As will be shown later, this expansion

also remains valid in both the near and far fields of the aperture.

To find the expansion coefficients Am(Oi, On) , the far field pattern of the m th

sub-aperture illuminated by a plane wave is used. This is given by

,,,r I, J_ e-jk(pm+mAsinOi) [_kA(sinOm sin0i)]
Upo(Pm'Om) = zv°_V g-_ _m sinc

(4.37)

where

= polar coordinates of the mth sub-aperture (see Figure D.2),

= magnitude of the incident plane wave.

(4.37) is derived in Appendix D using the Physical Optics (PO) approximation

(or equivalently, the Kirchhoff approximation). This far field pattern can also be

written in terms of the far field form of the GB's (4.30) as

N

UGB(pm,O,n)= (4.38)
n'--'--_[

where

jb • 1
B(pm, Om, On) = ,i] -'--e-_kPm e -_kb(O'n-nAO)2 (4.39)

V Pm

(4.38)is a superposition of rotated GB's which have their maxima at 0m = On --

nAO, as (4.39) indicates.
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In the expansion of (4.38), it remains to find the expansion coefficients Am(el, On)

and the beam parameter b in terms of the PO function of (4.37) and the beam

spacing A0. Consider an arbitrary function f(z) expanded as a sum of equally

spaced Gaussian distributions with equal standard deviations er:

f(x) = _ Cne 2_,2 , for -co < z < oo (4.40)
Its-- OO

where

Cn = expansion coefficient of the n th Gaussian distribution,

= standard deviation of the Gaussian distributions,

6 = spacing between peaks of the Gaussian distributions.

It is theoretically feasible to allow er and 6 to vary with n, as might be true were

this a Gabor type expansion, but for our purposes it is desirable to have all the

Gaussian distributions (Gaussian beams) be the same. The latter requires that Gn

depend only on the function f(z), whereas a is then required to depend only on

the spacing 6 and not on f(z). To do this it is assumed that only adjacent beams

overlap enough to affect each other. So, beam n I overlaps beams n I + 1 and n t - 1

but dies out too fast to significantly overlap with beams rt I + 2 and n I - 2 and

hence also with all the other beams. It is further assumed that f(z) varies slowly

with respect to the beam spacing 6. Figure 52 illustrates this by showing beam n I

with two adjacent overlapping beams and f(z) in the vicinity of z = nl6.

Using tile above assumptions, (4.40) and its derivative at z = nl6 are given

approximately by

62 _2

f(n' 6) ,_ Cn,_ l e-2_2 -4- C n, -4- Cnt + l e- _-2 (4.41)

62 62

f'(n'6) _ -_Cn,_l e _ + _--_Cn,+l e-2a-_ (4.42)
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Figure 52: Gaussian basis function n I and the two adjacent basis functions along
with f(z).

It is desirable to eliminate f'(ntS) from (4.42) by approximating it with the average

of the slopes of f(z) on either side of z = hiS, i.e.,

f(n'5)- f(_'5- 5) f(,,'5+ 5)- f(_'5)
-2 5 + 5

1
(4.43)

Comparing (4.42) and (4.43) implies that each term in (4.42) corresponds to the

same term of (4.43). For example, equating the last terms,

_2 _2 1 1)5], (4.44)C.,+le _2 _ 25/[(n'+

which yields the general relation

_r 2 5 2

Cn - 2-_e_ f(nS). (4.45)

This result shows that the expansion coefficients Cn of (4.40) are proportional to

the function f(z) evaluated at the peaks z = n_ of the Gaussian distributions, as

is expected in this point matching technique.
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Using (4.45)in (4.41) gives

o.2 0-2 _2 0"2

(4.46)

which can be rearranged as

f(n'6) ( 262 62)-e2a--_ = f [(n'-1)6] + f [(nt+ 1)61 . (4.47)

This equation could be solved for 0-, but it would depend on n t, which is not

desirable for reasons mentioned earlier. However, another reasonable approxima-

tion is to assume that if f(x) is slowly varying over an incremental distance 26,

then f(nt6) is given approximately by the average of the function on either side of

X m_ hi6, aS

f(n t6) _ _1{f[(nt _1)61+f[(n,+l)6]}, (4.48)

It is noted that this approximation and the one in (4.43) become exact as 6 ap-

proaches zero.

Using (4.48) in (4.47) yields the transcendental equation for 0-:

62 1 _2

2e2a2 -- 1 = 0, (4.49)o-2

which unfortunately has no real solution. However, it does have a maxima which

is close to a solution, as shown in Figure 53. This maxima is found by setting the

derivative of (4.49) equal to zero and solving for 62/0- 2 , which yields

0-2

62 - 2log4. (4.50)

Using this result along with (4.45) provides the two required parameters of the

point-matched Gaussian expansion of (4.40):

6
.6006 6 (4..51 )

0- _ v_log 4
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Figure 53: Plot of Equation (4.49).

1

Cn - log4f(n_) _ .7213 f(n_). (4.52)

Comparing the expansions of (4.40) and (4.38) along with (4.39), the following

correspondences are evident:

x --_ $m (4.53)

--, ;xe (4.54)
1

_ _ kb (4.55)

Cn ---* Am(Oi,On)J J_b e-jkpm (4.56)
V Pm

f(,_) _ U_,o(pm,e,,) (4.57)

which along with (4.37), (4.51) and (4.52) gives

2 log 4
b -

kAO 2
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(4.59)

(4.58) gives b in terms of AS, either of which can be chosen to best fit the given sub-

aperture size. For example, A_ should be small enough so that the far field pattern

is adequately reproduced by the GB expansion. This is achieved by requiring that

there are at least three or four GB's per lobe of the far field pattern. However,

for a small sub-aperture size the lobes might be quite large, so a larger number of

narrower GB's may be desirable to keep the GB's well focused and confined within

the paraxial region. On the other hand, (4.58) shows that a small A8 will make b

large which will make the beam waist, Wo, of (4.29) large, as discussed earlier in

terms of the angular beam width, BW_. In fact, the angular beam width can now

be written in terms of the beam spacing by substituting (4.58) into (4.32):

BW e _ _A_ _ 1.4427 A_ (4.60)

which shows that the angular beam width is a little larger than the angular beam

spacing, as might be expected because the GB's should overlap somewhat to ade-

quately cover all space.

4.3.2 Numerical results of the Gaussian beam sub-aperture expansion.

Consider the aperture geometry of Figure 54. It shows a 14.9 wavelength

aperture illuminated by a plane wave incident at 15 ° and has five sub-apertures of

width 2.98 wavelengths, each. Figure 55 shows the physical optics far field pattern

of one of the sub-apertures (solid line) and its GB expansion (dotted line) which

used approximately 3.5 beams per lobe of the pattern (actually, this means 3.5

beams per side lobe because the main lobe is approximately twice the width of a

side lobe). Also shown are four typical adjacent GB's inside the main lobe which
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Figure 54: Aperture illuminated by a plane wave incident at 15 ° with 5
sub-apertures.

together sum up to give the middle part of the main lobe. The GB expansion can

be improved in accuracy by increasing the number of beams per lobe, as shown in

Figure 56, which is the same case as in Figure 55 except that 4.5 beams per lobe

are used.

Figures 57 and 58 show the total aperture far field pattern found by summing

the five individual sub-aperture patterns, using 3.5 and. 4.5 beams per lobe, re-

spectively (dotted line). They both give excellent agreement with the PO result

(solid line), with the 4.5 beams per lobe case being slightly more accurate than

the 3.5 beams per lobe case, as expected.

Because the GB's are valid everywhere, the radiated fields can be back-tracked

to the aperture and compared with the incident field in the aperture. Figures

59(a) and (b) show the phase and amplitude of the fields in the plane of the

aperture, respectively, corresponding to the far field pattern of Figure 57, which

used 3.5 beams per lobe. The agreement is quite good, showing that the Gaussian
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beam expansionof fields can be used in the aperture as well as in the far field,

and since the individual GB's are solutions to the wave equation, the expansion

is valid everywhere in between. Also, becauseGB's propagate independently of

one another, eachbeanacan be tracked individually via reflections/transnfissions

through complex environments,provided that there is an adequatebeam tracking

procedure available.

Notice that for the cases of Figures 5.5, 57 and 59, the width of the beam

waist Wo, is 9.0 A, which is larger than the sub-aperture width of 2.98 A and larger

than half the aperture width of 14.9 A. This suggests a problem may arise when it

conies to tracing the GB's inside a waveguide cavity because the beams may start

out with a width comparable to that of the cavity aperture. This is, in fact, the

main linfitation of the GB tracking method when applied to open-ended waveguide

cavities and will be discussed further in later sections of this chapter.

4.4 Tracking the Gaussian Beams Axially Through the Interior of the
Cavity

Once tlle GB's have been established in the sub-aperture expansion of the

fields in the open end of the waveguide cavity, as described in Section 4.3, they

must each be tracked individually through the interior of the cavity to the ter-

mination. This requires insight into how the beams propagate and reflect in the

presence of waveguide walls. To do this rigorously, the fields inside the cavity due

to a line source must be found as accurately as possible, and then the line source

can be given a location in complex space; this directly furnishes the propagation

of a Gaussian beam within the same environment, as discussed in [27,34,35,36,37].

Recall that in Section 4.2, a line source located in complex space generates a Gaus-

sian beam in the paraxial region along some axis. However, to find the fields due
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to a line sourcein the presenceof arbitrarily shapedwaveguidewalls asa function

of only the source and receiver location is very difficult computationally because

the reflection points must be searchedfor numerically. When the line source is lo-

cated in complex space, this search becomes an order of magnitude more difficult

because the reflecting surfaces have extensions into complex space. This problem

has been solved only for a few simple configurations such as reflection and trans-

nfission at a planar or curved interface between two dissinfilar dielectrics [34,35],

single reflection from a parabolic reflector antenna [36], the multiple reflection of

a GB inside a circular cross section [37], and the transmission of GB's through a

2-D radome [27].

Inside an arbitrarily shaped waveguide cavity, it is convenient to track the

GB's approximately like rays by tracking only their beam axes. In other words,

the GB is assumed to have most of its energy confined to a narrow region around

the beam axis, and a beam which is incident on a curved reflecting surface is

assumed to give rise to a new reflected beam which is also Gaussian in nature. If

the parameters of this new GB can be found easily in terms of the incident beam,

the GB can be traced from reflection to reflection, much like tracing a ray in tile

Geometrical Optics (GO) method. However, it has been shown in [35] that the

reflected beam in this case may look Gaussian for many practical cases, but in

general it has asymmetries present. These asymmetries arise for cases where the

incident GB has a width comparable to the radius of curvature of the surface or

when the incident GB grazes the surface as shown in Figure 60. Also, because

the curvature of the interior waveguide wails gradually changes, the GB's must

be kept narrow enough so that the area of the surface that they iUuminate has

an approximately constant radius of curvature. These limitations are not always

easy to overcome, especially at lower frequencies and for waveguide cavities which
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Figure 60: A Gaussian beam which reflects near grazing from a curved surface.

are long compared to their width. This will be discussed further in the numerical

results section.

A simple, approximate way of finding the axial reflection of a Gaussian beam

from a curved surface very similarly to GO ray tracing, is derived in this section.

As will be seen, the main difference between the reflection of the beam axis and

GO reflected ray tracing is that, unlike the real GO rays which have real caustic

locations, the reflected beam will have complex caustic positions. This is not

surprising considering that GB's can be derived from a source which is located in

complex space, as described in Section 4.2. In the derivation, it is assumed that

the incident GB illuminates a small area on the surface and that it does not come

close to grazing incidence on the surface.

Figure 61 shows the geometry for a GB reflecting off a curved surface. It

shows an incident beam field given by

I [ _=_ro)_2 1 1 kb'_ 2
jb I -jk z+_ i___o)2+_i_ j e- _ (z_z_o)2+bt2

vi( ,z) = u" z : z, jb,e
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' ' (4.61)for z < z o + pc.

In this approximation, the reflected field is assumed to be a new Gaussian beam

whose axis intersects the surface at the same point as the incident beam axis. The

reflected beam is given by

/ jb -jk z+½(z_zo)2+b2j
_ _ _ Z _ Zo _ _ _ b _

Vr(z,z) = U° vz-zo+jb e e

I , (4.62)forz>z o + pc.

These have the same form as the beam basis function of (4.24) but are shifted

along the z-axis. The parameters used in (4.61) and (4.62) are defined as

z = the total phase propagation at any point along the beam axis,

z = the coordinate transverse to the z-axis,

Uo, Uto = coefficients of the beams,

b,b I = beam parameters,

t
Zo, z o = beam waist positions along the z-axis,

where the primed quantities are associated with the GB before reflection and the

corresponding unprimed quantities are associated with the GB after reflection.

Note that the z-axis, which is always the beam axis, changes directions after re-

flection. Again referring to Figure 61,

I

Pc, Pc

RC

h

_i, 6r

= distances from the beam waist to the point of reflection Q,

before and after reflection, respectively,

= radius of curvature of the surface at Q,

= unit vector normal to the surface at the point Q,

= angles the incident and reflected beam axes make with fi,

respectively.
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This derivation is also valid for concavesurfacesfor which Rc is negative.

The parameters of the reflected beam, Uo, b, zo, Pc, and Or can be found

in terms of the incident parameters by matching the fields on the surface in the

vicinity of the reflection point Q of the beam axis. First, matching the beams

exactly at point Q gives

jb'

R(oi)v' p, + jb'

where

e -jk(z_°+p_) = Uo_/ jb -jk(zo+pc) (4.63)
c+jb eVp

R(Oi) = reflection coefficient at Q.

This equation yields Uo and Zo as

UO

Z 0 _---

n(oi)u', v(p + jb)
b(p, + jb,)

! !
Zo + Pc - Pc.

(4.64)

(4.65)

The remaining parameters can be found by expanding each of the incident

and reflected beam fields in a Taylor series as a function of the displacement from

point Q along the surface. Equating the constant terms of these two series gives

(4.63) above. Equating the linear terms yields the relation

Or = Oi (4.66)

which is the law of reflection for a GO ray. Finally, equating the quadratic terms

of the two Taylor series expansions and using the reflection law of (4.66) yields

1 1 2
- + (4.67)

Pc + jb plc + jb r Rc cos 0 i"

This is the same result as GO would give for a ray along the beam axis, except that

the caustic distances are now complex, with real parts Pc and ptc and imaginary

parts jb and jb I.
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Pc and b can be solved for separately by inverting (4.67) and equating the real

and imaginary parts, which yields

. plc(RccosO i + 2ptc) + 2b t2
Pc = Rc cos t/, ................ (4.68)

(nc cos Oi -4- 2ptc) 2 q- 4b t2

b = bt (Rc cos 8i) 2
(Rccosei + 2ptc)2 + 4b,2. (4.69)

Notice from (4.69) that b is going to be smaller than bI for most cases, with the

possible exception being for cases when Rc or ptc is negative. The angular beam

width BWo, given by (4.34) is inversely proportional to b. What this means is that

the a GB will usually become more divergent upon reflection from a curved surface.

Therefore, the farther a GB propagates inside a curved waveguide cavity, the more

it will diverge and the more likely it will become too large to fit nicely inside the

cavity and satisfy the restrictions of the axial beam tracing approximation. This

is what limits the length to width ratio of the waveguide cavities for which this

method can be applied.

The approximations used above assumed that the incident beam illuminated

an area confined to the vicinity of the reflection point Q. In reality, this condition

may be difficult to achieve for the two cases mentioned earlier, namely, for GB's

whose beam half-width at the point of reflection w(zto +/c) given by Equation

(4.27) is comparable to the surface radius of curvature Rc, and for beams which

come close to grazing the surface. If the beam illuminates too large an area of the

surface, such as in the two cases mentioned above, the reflected field will no longer

be Gaussian in nature. In most cases it may resemble a Gaussian beam, but it will

probably be asymmetric to some extent.

Once the axis of a GB has been tracked to the termination via the axial

approximation the fields of the beam in the presence of the waveguide walls in

the termination plane must be found. If the beam is narrow enough and not close
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to the waveguide walls at the termination, as shown in Figure 62, the fields are

simply those of the GB basis function in free space. However, if the beam crosses

the termination plane near a wall, the fields of the image beam should also be

included, as shown in Figure 63.

4.5 Numerical Results and Discussion of the Gaussian Beam Shooting
Method

In this section, some numerical results are presented which illustrate the use

and accuracy of the axial Gaussian beam shooting and tracking method in compar-

ison with other methods. All of the geometries included are made up of perfectly

conducting surfaces.

Figures 64(a) and (b) are plots of the magnitude of the fields at a cross-section

inside a semi-infinite parallel plate waveguide illuminated by a plane wave, perpen-

dicular (±) and parallel (ll) polarization, respectively. Once again, perpendicular

polarization means the E-field is normal to the plane of the page and parallel po-

larization means the H-field is normal to the plane of the page. For comparison,

Figure 64 includes results found using the hybrid asymptotic high frequency modal

method described in Chapter II. This method is considered sufficiently accurate

to be used for reference solutions. Also shown in the figures is the (30 ray tracing

solution which is described Chapter III. As the plots show, the GO ray tracing so-

lution is discontinuous due to shadowing effects of the GO field. The GB solution

agrees nicely with the reference modal solution.

Figure 65 is a plot of the backscattered fields of an open-ended parallel plate

waveguide cavity with a short circuit ternfination for A_ polarization, found using

the reciprocity integral formulation of Section 4.1 with Gaussian beams. In this

and all subsequent plots, the scattering by the rim at the open end is included
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Figure 62: Gaussian beam crossing the plane of the termination inside a
waveguide cavity, away from the walls.
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Figure 63: Gaussian beam crossing the plane of the termination inside a
waveguide cavity, near a wall.
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in the calculations, and the wedge angle of the rim WA is zero. The figure also

shows plots of the modal reference solution and the GO/AI ray tracing solution.

The GB solution agrees nicely with the reference solution for all angles shown,

while the GO/AI solution agrees well only for incidence angles within about 35 °

of of the guide axis. It is expected that the GB method should work very well for

waveguide cavities with planar walls because the GB reflection from these walls is

known exactly from image theory. It is the axial approximation used to find the

reflection of GB's from curved walls (see Section 4.4) which introduces the most

error in the GB tracing method.

Figures 66(a) and (b) are plots of the backscatter from an open-ended 2-

D S-shaped waveguide cavity with a planar termination, / and II polarizations,

respectively. The cavity is made up of three uniform waveguide sections, two

annular guides followed by a parallel plate guide, so the hybrid modal method

is used as a reference solution. Each of the sections has an axial length of 5

wavelengths making the overall axial length 15 wavelengths giving a length to

width ratio L/d of one. The GB solution used 7 sub-apertures (M = 3) and an

angular increment A0 of 7.69 °. The beams covered an angular range of 4-60 °

making N = 7 and giving a total of 105 GB's. This choice allowed 3.5 beams per

lobe (see Section 4.3 for a discussion). Using (4.45) and (4.28), the beam parameter

is b = 32.7A and the beam waist width is Wo = 6.45A. The particular choices of

sub-aperture size and angular increment were determined by trial and error. The

values were used which gave the minimum number of beams which reached the

termination too wide to fit in the guide. As a general rule of thumb, it is best to

choose parameters which give a beam waist width Wo in the open end which is less

than half the width of the waveguide and an angular beam width BW 0 which is

less than 10 °. Ideally, both Wo and BW 0 should be as small as possible, but since
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they are inversely proportional, a trade-off is necessary. For this relatively shallow

cavity, the GB solution agrees very well with the modal reference solution.

Figures 67(a) and (b) are the same as Figures 66(a) and (b), respectively,

except that the waveguide sections are now each 10 wavelengths long giving an

overall L/d of two. Figures 68(a) and (b) are again the same as Figures 66(a) and

(b), respectively, except that the waveguide sections are now each 15 wavelengths

long giving an overall Lid of three. The results still agree quite well, but perhaps

not as well as for the shallower Lid = 1 waveguide cavity.

Figures 69(a) and (b) are the same as Figures 68(a) and (b), respectively, but

an additional parallel plate waveguide section of length 15 wavelengths has been

inserted between the two annular sections giving an overall Lid of four. These

figures show the GB solution is getting worse for longer guide lengths. This is due

to the fact that the GB's diverge and get wider the farther in they go until they

are too wide to fit inside the waveguide. However, because GB's become better

focussed at higher frequencies, i.e., they stay narrow over longer propagation paths,

the cavities which the GB tracing method can handle are determined by frequency

as well as the axial length to width (L/d) ratio. Figure 70 is the same as Figure

69(a) except the frequency is doubled. For this plot 11 sub-apertures and an

angular increment of 6.04 ° were used. It shows a much better agreement with the

modal solution than Figure 69(a) does, as expected.

It was found from experience that a general rule of thumb for applying the

GB tracing method is

Lid < ld/)_ (4.70)

where d and L are the approximate waveguide cavity width and axial length, re-

spectively and )_ is the wavelength. This condition determines whether a particular
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cavity can be analyzed using the GB tracing method at a given frequency. The

inequality of (4.70) is only an approximation and it may be found that the GB

method will work well for certain waveguide cavities which do not satisfy this con-

dition. Two specific examples of this are parallel plate and rectangular waveguide

cavities for which the GB tracing method will work for much larger Lid ratios

than in (4.70). This is due to the fact that the planar surfaces of these guides do

not change the rate of divergence of the GB's.
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-- hybrid modal solution, - - GB solution.
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CHAPTER V

THE GENERALIZED RAY EXPANSION METHOD

The main limitation of the Gaussian beam (GB) shooting method of Chapter

IV is that the well focussed GB's used tend to become too wide to fit well inside the

waveguide cavity after a few reflections and as a result they sample a rather large

portion of the cavity walls at subsequent reflections, thereby leading to a distortion

of the beam from a true Gaussian shape after reflections. Hence, a generalized ray

expansion (GRE) method is developed to retain many of the useful features of the

GB shooting approach and at the same time to try and overcome the problems of

beam distortion due to successive reflections in the later approach. In the GRE

method, the rays are launched into the cavity from each sub-aperture as in Figure

7; this is done in a manner which is very similar to the launching of GB's form the

sub-apertures as shown in Figure 6; but is different from that in the conventional

GO or SBR approach. Thus, the field radiating from each sub-aperture in the GRE

is expressed as a spherical wave which originates at the center of the sub-aperture

and whose amplitude is determined via a far zone Kirchhoff approximation for the

field radiated by that sub-aperture in the absence of the cavity walls. The portion

of this spherical wave which enters the cavity is then tracked as an ordinary GO

ray field within the interior via reflections at the cavity walls. In particular, a grid

of ray-tubes are launched from the center of each sub-aperture to represent the

spherical wave field which enters the cavity interior. These ray-tubes can be made
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arbitrarily small to adequatelysamplethe cavity geometry. Sincethe ray-optical

field radiated by the sub-aperture is found via the Kirchhoff approximation, the

GRE method therefore implicitly containseffectsof wavesdiffracted into the cavity

via the edgesat the open end. This is in contrast to the GO ray shooting method

of Chapter III which launchesonly the incident planewave GO field directed into

the cavity via a set of parallel incident ray-tubes and therefore doesnot contain

such diffraction effects. In addition, the phase-spacelike array of ray-tubes in

the GRE method is preset, as in the GB shooting method, so that the ray-tubes

in the GRE need to be tracked only once within the cavity for a wide range of

incidence angles, while the GO ray shooting method requires that a new grid of

ray-tubes be traced every time the incidence angle changes. Consequently, the

GRE method combines the versatility of the GO method with the rigor of the

sub-aperture expansion method used in the GB approach, while overcoming most

of the limitations of both. However, because the ray-tubes in the GRE method

are of course tracked according to GO, they are prone to any caustic effects and

cannot account for any diffraction effects within the cavity such as those arising

from creeping waves on convex portions of the cavity walls. These effects should

be minor for the smooth, slowly varying waveguide cavity geometries of interest.

It is noted that while the GB's do not encounter caustics, the GB axial tracking

procedure used in Chapter IV is more prone to errors than the well known GO ray

tracing technique, especially for long waveguide cavity configurations.

The field scattered by the interior cavity termination can be found using either

the termination reciprocity integral, or by an aperture integration over the fields

of the ray-tubes which exit the aperture at the open end, as was done in Chapter

III for the GO ray shooting method. Section 5.1 of this chapter will describe the

manner in which the rays are launched in the GRE based on a knowledge of the
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fields coupled through an aperture in the absence of the waveguide cavity, and

the simplification that results for the case of planar sub-apertures and a locally

planar incident field. Also in Section 5.1, one possible method will be presented

for arranging the GRE in a cone-shaped angular grid of ray-tubes carrying equal

power. Section 5.2 will discuss how the ray-tubes of the GRE propagate in the

presence of the waveguide walls to the ternfination (or back to the open end) and

Section 5.3 will derive the cavity scattered field from the ray-tube fields. In Section

5.4, the GRE method is applied to treat the case of an open-ended waveguide cavity

with a rectangular aperture at the open end. Numerical results will be presented

in Section 5.5.

5.1 The Generalized Ray Expansion (GRE) for the Fields Coupled
through an Aperture

The GRE as described here constitutes a high frequency asymptotic method

for finding the fields coupled through an aperture at the open end of a waveg-

uide cavity, and the subsequent tracking of these fields through the interior cavity

region. The GRE method expands the fields coupled through an aperture via a

superposition of the fields radiated by a suitable array of sub-apertures which make

up the aperture. The use of sub-apertures allows one to calculate the fields within

the near zone of the original aperture in a ray-optical (spherical wave) form by

employing a far zone Kirchhoff approximation for the fields radiated (i.e., trans-

,nitted) through each sub-aperture with the cavity walls absent. The ray-optical

(spherical wave) fields launched from the coordinate center of each sub-aperture

are then tracked via the laws of GO within the interior cavity region. Figure 71

shows an example of the aperture of an open-ended waveguide cavity divided up

into N sub-apertures. The figure also shows the relative coordinate origin of each
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Figure 71: Aperture of an open-ended waveguide cavity divided up into N
sub-apertures.

sub-aperture and an arbitrary incident field. Throughout this chapter, the electric

(E) field will mainly be dealt with. The magnetic (H) field can be easily derived

from the E-field using the Maxwell's equation

_ -1 V x /_. (5.1)
jkZo

For ray-optic fields (5.1) reduces to

^

9- zok× (5.2)

where

Zo = free space impedance (_ 377f/),

k = free space wavenumber (= 27r/)_),

A = free space wavelength,

k = unit vector pointing in the direction of propagation.
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The fields radiated into the cavity by the sub-apertures are well approximated

using the fields due to the familiar physical optics (PO) based equivalent electric

and magnetic sources _ and ._rs in tile aperture, respectively, which are derived

from the incident fields as [32]

= × (5.3)

Js - Hi×n (5.4)

where

fi --- unit surface normal of the aperture pointing into the waveguide cavity.

The fields transmitted or propagated into the cavity beyond the aperture can

be written as a sum of the fields which are radiated by each of the N sub-apertures,

N

g(P_) = Y] ff, n(Pc) (5.5)
n=l

where

ff, n(Pc) = field from the n th sub-aperture at a point Pc inside the cavity,

provided Pc is in the far zone of the n th sub-aperture.

To find the field ff_n(Pc) the PO based far zone field radiated by the n th sub-

aperture is first found in the absence of the waveguide walls. This far zone ff_n(Pc)

is a spherical wave with its phase center located at the relative coordinate origin of

the n th sub-aperture; also, this ff,n(Pc) has some pattern to it. The field radiated

by the sub-aperture is then associated with a cone-shaped angular grid of ray-

tubes with constant amplitude originating at the relative coordinate origin of the

sub-aperture, with each ray-tube amplitude weighted according to the pattern

function. These rays can then be traced from the sub-aperture origin via the laws

of geometrical optics (GO), but now in the presence of the waveguide wails. This

is the basis of the GRE method.
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Figure 72: Geometry and coordinate system of the n th sub-aperture illuminated

by/_i.

5.1.1 Far zone fields of the n th sub-aperture.

Figure 72 shows the geometry of the n th sub-aperture and its relative coor-

dinate system, illuminated by/_i- The sub-aperture has surface area Sn. The far

zone field radiated by the n th sub-aperture in the absence of the waveguide walls,

derived using the PO based equivalent electric and magnetic surface currents of

(5.3) and (5.4) is

4 _r r r, n

-ZOO,,×f f,. [,'× (5.6)

where

_'n = vector to the observer from the coordinate origin of the n th

sub-aperture (r'n = _nrn),

r n = vector to a source point in the sub-aperture,

^1
s n = unit surface normal vector (at a source point) pointing into the cavity,
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and the integration is over the primed sourcepoints in the sub-aperture. It is noted

that /_i(_'_) and/_i(6"_) in (5.6) are the incident fields in the sub-aperture in the

absence of the cavity walls, as in the Kirchhoff approximation. A more accurate

result could be obtained by including the first order diffracted field in J_i(6'n_) and

/ti(6'n_), due to the presence of the rim at the open end of the cavity. However,

this would add unnecessary complexity to the analysis of practical geometries, so

this diffracted field is usually not included.

The far zone criterion required to use (5.6) is

,n > 2L_ (5.7)

where

Ln = maximum linear dimension of the sub-aperture,

which is the familiar far zone definition encountered in antenna problems. As will

be shown later, this requirement is very conservative; (5.7) is roughly twice as large

as is necessary.

Equation (5.6) has the form

e-jkrn

g_(_) - V_"n F_(rn'gi) (5.8)

where the vector far zone pattern function Fn is given by

ffn(÷n'E'i) = -Jkv/247r (J[f fsn ÷n × [_ln x/_'i(_'d)] eJkr'd'¢ndS '

-zoo,×/ fso [s'×a,(¢d)] s.,ods,}

The factor of x/_ is introduced in (5.8) and (5.9) for power normalization reasons

which will become clear in Section 5.2. Note that ffn(_n, El) depends only on the

incident field and the direction of observation, and not the distance to the observer.
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Using (5.1) or (5.2), (5.9) can be evaluated numerically for any arbitrary known

incident field, or it can be evaluatedin closedform for somesimple casessuchas

plane waveincidence.

In general, since (5.8) and (5.9) represent far zone radiated fields, (5.9) can

alwaysbe decomposedinto its _n and _n polarizations, i.e.,

Fn(7"u,Ei) = _nFo,(_'n,Ei) + _,F¢,(÷n,Ei). (5.10)

Therefore_ if the ray-tubes in the GRE are traced for both polarizations, the rela-

tive weighting of the amplitude of the ray-tubes can be found using (5.10).

5.1.2 Initial values for the launching ofthe ray-tube fields from the n th

sub-aperture.

The far zone spherical wave fields of the n th sub-aperture given by (5.8) and

(5.9) which enter the cavity interior can be associated with an angular grid of

closely spaced ray-tubes within a specified cone which have their focus at the

coordinate origin of the sub-aperture. The rays that lie outside the chosen cone

either contribute insignificantly to the interior cavity field because they undergo a

significantly larger number of reflections at the cavity walls, or they do not enter

the cavity at all and hence they must be ignored. Additional reasons for ignoring

these rays are given later on. As stated earlier, the relative amplitude of a ray-

tube launched by the n th sub-aperture is determined by the value of the pattern

function evaluated in the direction of the central ray of the ray-tube. Therefore,

the radiated pattern of the sub-aperture which is included within the specified

cone is approximated in a staircase fashion by the ray-tubes. Using (5.10), (5.8)

can now be approximated as a sum over Q ray-tubes along which the fields of the
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n th sub-aperture are launched into the cavity interior. Thus,

Q

q=l

where

(5.11)

_(_'.) = &(÷_,Zi)_.(_.) + F¢.(_,_i)_.(r.) (5.12)

.= Fsn,¢,_(_n,Ei)l_,t=_q (5.13)

= unit vector in the direction of the central ray of the

nq th ray-tube.

where

are the nq th ray-tube functions in the expansion of (5.11)

I t_q 2q_e -jkrqn

,, .,_.,_ : forIO,,,-O_l< ½_oq,
1 qI¢.- ¢_1< _A¢.

0 : elsewhere

(5.14)

(0., ¢,,.)

(0_,¢q)

= observation direction

= direction of the central ray of the nq th ray-tube

= angular widths of the nq th ray-tube (cross-sections of the

ray-tubes are approximately square).

Once again, the subscript n refers to the relative coordinate system of the n th sub-

aperture. Notice that the qth ray-tube expansion function of (5.14) constitutes a

spherically spreading field in the neighborhood of the _q direction with its focus

at the center of the sub-aperture (n th coordinate origin) and with 0q and eq

polarizations. These expansion or basis functions can be tracked independently of
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RAY TUBES CENTRAL

//1y"_,, xn _ • RAYS

i.i. i

" I u_ nt. SUB-APERTURE

Figure 73: Ray-tubes within a cone of half-angle tyna_ which are launched fromv n

the coordinate origin of the n th sub-aperture with the cavity wails absent.

the direction of the incident field because their excitation coefficients Fe,(÷qn,/_i)

and F4_,_(÷q,YEi) contain all the information on the incident field.

Figure 73 shows how a typical ray-tube expansion within a specified cone

might look in the absence of the waveguide cavity walls. Notice that the ray-tube

expansion is truncated at some maximum angle ornaz which is less than 90 °. Thisvn

is because it is not practical to track all of the ray-tubes filling the Zn > 0 half-

space for the reasons cited earlier and also because the PO approximation used

in (5.6) becomes less accurate for steep angles. Also, in practice steep incidence

angles are not usually of interest so the ray-tubes at large 0q angles will normally

be very weakly excited, i.e., Fo,_(÷q,_P,i) and F4_,_(÷q,Ei) will be small enough to

neglect these ray-tubes.

The total fields radiated by the entire aperture in the absence of the waveguide

w"
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cavity walls can now be written as a sum over NQ ray-tubes as

N Q

= Z (5.15)
n----1 q--1

It should be mentioned here that the expansion of (5.15) is only valid subject

to the sub-aperture far zone criterion of (5.7). Therefore, (5.15) is not valid for

r,t < 2L2/A for all n. However, if knowledge of the fields nearer to the aperture is

required, the sub-aperture sizes can be made arbitrarily small so that the region

of validity of (5.15) gets closer to the aperture.

5.1.3 Simplification for planar sub-apertures and a locally planar inci-
dent field

If the n th sub-aperture lies completely in a plane (the Zn'yn plane, by defini-

tion) and the incident field is locally planar (or ray-optic), it is easy to extract the

polarization components of (5.10) by manipulating the vector portions of (5.9).

Also, the/']i field can be written in terms of/_i using (5.2). First, the E and H

fields are each expressed as a unit polarization vector times a scalar:

where

"= peEi(rn) (5.16)

Ei(¢') (5.17)
Hi(r'_) = phHi(r'n') = Ph Zo

_h = ki × _ (5.18)

15e = unit polarization vector of the incident E-field,

/_h = unit polarization vector of the incident H-field,

k i = unit vector in the direction of propagation of the incident field.

The vector portions of (5.9) come out of the integrals so it can be written for this

case, using (5.13) where r'n is replaced by the vector in the direction of the central
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ray of the nq th ray-tube r-qn, as

where

(5.19)

I(¢'qn'Ei) - 47rJkv_ f fa, Ei(_'nl)eJk¢_'_qndSt (5.20)

5n = unit surface normal of n th sub-aperture pointing into the cavity

(replaces ^t which is not constant in general).8n_

The vector portion of (5.19) can be decomposed into its 0qn and Cqnpolarization

components using the fact that -_n = zn" This goes as follows, without including

the tedious transformations between coordinate systems:

where

-_ × (_,, x _e)

÷q x [¢q.× (_,, × _h)]

= _,,,x (fe,,Pe,,,+ O,,p_,,,+ &pez,,)

= OnPex,_ - fenPey,_ (5.21)

= Oqn(Pez, cosCqn + Pey,_ sinCqn)

-¢q(Pexn sin _bqn- Peyn cos Cqn) cos 0qn (5.22)

= -Oqn (Phxn sin Cqn - Phyn cos Cqn) cos 0qn

+¢qn(PhznCosCq n + PhynSinCqn) (5.23)

Pexn,Pevn = fen and On components of i6e, respectively

Phzn_Phyn = fen and On components of iSh, respectively.

The components of the vector pattern function of (5.10) can now be written as

Fon(rq, ff'i) = [(Pezn + Phyn CosOqn)cosCq
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+(pey,_- Phx.cos0q)sin¢q]I(_q,Ei) (5.24)

[(pe_.cose_+ phx.) cos¢I

+(--Peznc°s/_qn+ Phyn)sinCq]I(rq,Ei)• (5.25)

Note that (5.24) and (5.25) depend on the _3n and _n components of the incident

field. This allows for easy decomposition of the incident field into horizontal (_:n)

and vertical (in) polarization cases. (5.20), (5.24) and (5.25) will be used later

in Section 5.4 for the special case of a plane wave incident on a waveguide cavity

with a rectangular open end.

5.1.4 An angular grid of ray-tubes carrying equal power within the
cone,

In this section a method is presented for setting up the angular grid of ray-

tubes within the specified cone which represent the fields radiating from a sub-

aperture into the cavity in the GRE approach described above. In the method

described below, all the individual ray-tubes are chosen to carry the same power,

or equivalently, they all have the same initial angular area, and the initial cross-

sectional area of the ray-tubes is approximately square. Using (5.11), the fields

radiating from the n th sub-aperture can be expanded as

_,,(e,,) = _ _ _p(_',,) (5.26)
p-'-0 q----1

where

_._(e,,) = Fo.(_,_i)O7.(_'.)+ Fo.(s_q,_i)9_.(_'.). (5.27)

The single summation of (5.11) over the index q has been replaced with an equiva-

lent double summation over the indices pq, representing a summation over the/_n

and Cnpq angles, respectively, p is the index of a given annular ring of ray-tubes
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which make an angle_ = 0p with the zn axis (see Figure 74) and q is the index

of a given ray-tube in that ring. Note that the inner summation limit QPn may

depend on p in (5.26). This is because the number of ray-tubes in a given annular

ring of ray-tubes depends on the angle _, as shown in Figure 74.

Once again, (9'_qn, ¢_ is the direction of the central ray of the npq th ray-tube.

Fe=,¢_(÷_,/_i) is given by (5.9), (5.10) and (5.13) evaluated in the _ direction,

and/_,¢,_(_',_) is given by (5.14) with the superscript q replaced by pq, i.e., by

IhPq 3.pq_e-Jkr_

t_', ,wn l_r_y n : for len-_1 < _AOp,

1 (5.2s)

0 : elsewhere

where

A$_, A_ = angular widths of the npq th ray-tube which points in the

(t_'qn, ¢_) direction.

Again, E,;(_'n) of (5.26) represents the fields radiating from the n th sub-aperture

in terms of a double summation of ray-tube basis functions incremented in 0,t and

Cn, which are the angular components of the relative spherical coordinates of the

n th sub-aperture.

For consistency as well as convenience, we want the angular area (fl) of all

the ray-tubes to be the same, i.e.,

fl_ = ft. (5.29)

It is also convenient if the angular width in the 0n direction of the ray-tubes is

constant for all the ray-tubes:

t,e = (5.30)
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and

ep = va_ = e_. (5.31)

A convenient choice for the angular area of all the ray-tubes is then

f_ = A02. (5.32)

It remains to find ACnpq and Cnpq. For a given 0_n, let ACnpq be constant:

ac_q. = a_' (5.33)

q_qn= qA_bp. (5.34)

Also for a given _, let there be an integral number of ray-tubes:

2_

Aq9_ - (5.35)
Qv

where

Qp = number of ray-tubes in a ring for a given 8np,

as illustrated in Figure 74. Now the only thing left to find is QP. For a ring of QP

ray-tubes at a given angle 0Pn, as in Figure 74, the total angular area of the ring is

QP_

given by

f2,r f_+½Ae

= Jo J_-_AO sin0dOddp

= 4_'sin(_A0) sin0 p. (5.36)

For practical cases, A0 is going to be very small so (5.36) can be written as

QPf_ = 2_'A0sinpA0 (5.37)
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Figure 74: Ring of QP ray-tubes for a given 0Pn.

where pAO has replaced _ using (5.31).

and (5.37), along with the requirement that QP is an integer,

QP = Int

= Int

= Int

Qp can now be solved for using (5.32)

27rA0 sinpA0]

h-e J
"2_- sinpA0"

A# (5.38)

where

Int[x] = nearest integer to x. (5.39)

However, (5.38) is not correct for the special case of p = 0. QP should be 1 for this

case, so (5.38) should be rewritten as

Int [27r sinpA0]
Qp = [_0 J : forp>0 (5.40)

1 : for p = 0.

For tile special case of p = 0, A_)P is 27r from (5.34). In other words, the axial

ray-tube of a sub-aperture has a circular cross-section instead of square. This is
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p=0

Figure 75: Cross-sections of the ray-tubes near the sub-aperture axis.

illustrated in Figure 75 which shows a nose-on view of how the cross-sections of

the ray-tubes would look for the first few _ angles.

Because QP is an integer, the angular area of the npq th ray-tube is not going

to be exactly A02, i.e., Equation (5.32) is not exact but is very nearly so. The

exact angular area is given by

_P = AOAd_PsinpA8 (5.41)

which can be written as

2_A0 sin _A0

at[" _'_"JI--_;sT_""A-'-_T : for p > 0

_A02 : for p = 0

(5.42)

using (5.35) and (5.40). The four worst cases, in order, are for p = 0, 1,2 and 3,

which are

i_ 0 - _'A92 _ 0.79_ (5.43)
4
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fll _ 7r/X_2 ,_ 1.05_ (5.44)
3

D2 _ 47rA02 _ 0.97_ (5.45)
13

f13 _ 6_rA02 _ 0.99_. (5.46)
19

These four exact angular areas are close enough to fl for practical purposes, con-

sidering that there will be a very large number of ray-tubes per sub-aperture. As

(5.43)-(5.46) show, the difference decreases with increasing p.

In summary, the expansion of the fields of the n th sub-aperture into a cone-

shaped angular grid of ray-tubes (5.27,5.28) is done by making A0_nn constant as in

(5.30) and by requiring that the angular area of each ray-tube finpq is also constant,

as given by (5.32). The expansion is a double summation over Pn angles in On,

each with Qp ray-tubes (5.40) with their central rays going in the (0_n,¢_) =

(pAO, qAc/_) direction. Thus, the number of ray-tubes QP for a given 0_n, depends

on p, as in (5.40). The maximum On angle in the cone-shaped grid is PnAO. The

cross-section of all the ray-tubes is approximately square, except for the p = 0

axial ray-tube which is circular, as shown in Figure 75.

5.2 Tracking the Generalized Ray Expansion (GRE) into the Interior
Waveguide Cavity Region

In Section 5.1 the derivation was for a sub-aperture illuminated by an incident

field in the absence of the waveguide cavity walls. To find the fields inside the

cavity, tile ray-tubes in the GRE representation of (5.15), which are launched from

the coordinate centers of the sub-apertures, are allowed to propagate via the laws

of GO to points inside the waveguide cavity. This is done using standard ray
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tracing. The central ray of each ray-tube is traced from the coordinate origin

of its sub-aperture to some cross-section within the cavity, or until it exits the

cavity, via multiple reflections inside the cavity. The field of this central ray is

assumed to represent the field across the ray-tube. The cross-sectional area of the

ray-tube after each reflection at the cavity walls is found by conserving power in

the ray-tube. If there is any power loss in the ray-tube due to reflections from

non-perfectly conducting walls, this is not included in the power conservation,

i.e., power is conserved by assunfing a lossless cavity. As the initially square ray-

tube undergoes reflections from curved surfaces, the cross-sectional shape of the

ray-tube will become distorted. However, if tlle area of the ray-tube is kept to

approximately (½A)2, then the exact shape of the cross-section is notless than

important. So, any convenient shape can be used, such as a circle or square.

An efficient ray-tube tracing technique which uses curvature matrices is de-

scribed in detail in Section 3.1.2 for the GO ray shooting method, and will not be

repeated here. The only difference is that the ray-tubes in the GRE method are

initially launched as diverging spherical waves originating at the coordinate ori-

gins of the sub-apertures, whereas the GO ray-tubes of Chapter III are launched as

parallel, non-diverging ray-tubes representing the incident plane wave (these, too,

will start diverging after reflection from a curved wall). Figures 3 and 7 illustrate

the GO and GRE ray-tube launching schemes, respectively, for a 2-D geometry.

The fields at any point Pc inside the cavity can be written as a sum over NQ

ray-tubes, similar to the summation of (5.15):

N Q

JE(Pc) = _ _ E,q(P¢) (5.47)

n----1 q----1

where

F-fl(Pc) = F6,_(÷q,JE;)B_,_(Pc) + F¢,_(;q,-Ei).B_,_(Pc) (5.48)
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/_,,,¢,,(Pc) = vector ray-tube basis function at a point Pc inside the

cavity which was initially On,_Pn polarized.

The expansion coefficients Fo,,,¢n(÷q,ffTi) are found from (5.9), (5.10) and (5.13)

for the general case. The vector ray-tube basis functions of (5.48) were originally

given by (5.14) before they were launched into the cavity. These ray-tubes were

launched from the coordinate origin of the n th sub-aperture in the ÷qn direction

and traced via GO to some cross-section inside the cavity containing Pc. Note

that both polarizations can traced simultaneously because their GO ray paths will

be identical. All polarization relevant information will be accounted for using the

dyadic reflection coefficient of (3.16) for each reflection.

The cross-sectional area Aq(Pc) of the nq th ray-tube at Pc is again found by

conserving power in the ray-tube, without wall loss. Using the ray-tube field of

(5.12) along with (5.13) and (5.14), in the absence of the waveguide cavity walls,

the input power of the nq th ray-tube is given by

(input power)qn = fflq Ifffln(_'n) 2r2ndf_

^ q -_ !e_jkrr t 2

: 1[IFO'_(÷q2 ,/_i) = + IFcn(+q,/_i)12 ] ftq (5.49)

where

12q = beam solid angle of the nq th ray-tube when it is launched.

Since the ray-tubes are tracked independently of the excitation, the cross-sectional

area Aq(Pc) can be found for arbitrary Fen,¢,(÷q,/_i). Therefore, it is convenient

to choose the excitation

= 1 (5.50)
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which makesthe input powerof the nq th ray-tube simply

(input power)_ = f/qn. (5.51)

This explains why the normalization factor of v_ was introduced back in (5.8) and

(5.9) of Section 5./5.1.

The output power of the nq th ray-tube at some point Pc is given by

where

(output power)qn = [Enq'/l(Pc)[ 2 A_(Pe) (5.52)

electric field of the nq th ray-tube at a point Pc due to the

unit excitation of (5.50), without wall loss.

Equating (5.51) and (5.52) yields the ray-tube cross-sectional area at Pc to be

nq

Aq(Vc) -  ,q,ulen 2" (5.53)

This cross-sectional area along with the fields of the central ray completely define

the ray-tube at any point Pc if Aqn(Pc)is less than (½A) 2, as mentioned earlier.

This is because the exact shape of the ray-tube can then be chosen arbitrarily as

some convenient axially symmetric geometry such as a circle or square. If it is

a ray-tube has a cross-sectional area greater than (_A) 2 at Pc, it isfound that

more efficient to sub-divide and re-launch that ray-tube rather than re-launching

a whole new denser grid of ray-tubes. This was also discussed in 3.2 for the GO

method. It is this capability which gives the GRE method an advantage over the

Gaussian beam shooting method for cavities with larger length-to-width ratios,

because GB's cannot be sub-divided into arbitrarily narrow beams like the ray-

tubes can.
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Note that (5.53) is only valid subject to the constraint of (5.50) (unit excita-

tion). In practice, the ray-tubes would be traced with the unit excitation of (5.50)

and their cross-sectional areas would be found from (5.53) before the incident field

is varied via the excitation coefficients in (5.48). This is a very useful property of

the GRE method because the array of ray-tubes need to be traced only once for a

wide range of incident fields (i.e., for all incident fields which lie within the angular

region covered by the GRE grid).

To summarize the GRE method described so far, the open end of the waveg-

uide cavity is divided up into N sub-apertures and for each sub-aperture a cone-

shaped grid of Q ray-tubes is defined, with each ray-tube originating at the relative

coordinate origin of the sub-aperture. The fields at a point inside the cavity are

then expanded as a sum of the fields of all the ray-tubes of all the sub-apertures

as in (5.47) and (5.48). The expansion coefficients of (5.48) are related to the

incident field and the direction of the ray-tube and are given by (5.9), (5.10) and

(5.13). The ray-tubes are tracked only once (independent of the incident angle)

via geometrical optics (GO) along the central ray which is launched in the (8 q, cq)

direction; only the initial amplitudes (expansion coefficients) are changed but not

the ray directions with changes in the incidence angle. The area of the ray-tube

after undergoing multiple reflections is found by conserving power (without loss)

and is given by (5.53). The field is assumed constant across a ray-tube and the

shape of a cross-section of a ray-tube can be chosen arbitrarily (as long as it is

approximately axially symmetric) if the area of the ray-tube is kept to less than

about (½)_) 2.
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5.3 Obtaining the Cavity Scattered Field from the GRE Fields Inside
the Cavity

As in the GO ray shooting method of Chapter III, one of two integral methods

are normally used to find the fields scattered by the cavity using the GRE fields.

The first of these is the aperture integration method, referred to as GRE/AI, and

the second is a termination reciprocity integral method referred to as GRE/RI. The

main difference between the two is that in the GRE/AI method, the ray-tubes are

traced within the cavity to the termination and back until they exit through the

aperture at the open end where they are integrated, and in the GRE/RI method

they are traced within the cavity until they reach some conveniently located cross-

section near the termination of the cavity where they are reacted via a reciprocity

integral formulation with all the other ray-tubes. However, in general, the GRE/RI

method also requires the use of an aperture integration because some ray-tubes

will never reach the termination but will exit through the open end. The main

advantage of the GRE/RI over the GRE/AI method is that complex terminations

can be included in the former approach; the latter can handle only simple termi-

nations such as a planar one. Of course, the GRE/RI requires one to be able to

characterize the EM termination reflection properties; this was also discussed in

Section 3.2.

Because the methods of obtaining the cavity scattered fields in the GRE/AI

and GRE/RI methods are so similar to the GO/AI and GO/RI methods of Section

3.2, many of the equations of that section will be referenced but not repeated here.

Therefore, as in Section 3.2, the far-field bistatic scattered field is found here

for the case of incident plane wave excitation in this section. However, unlike

the GO method, the GRE method is not restricted to plane wave incidence and

could be extended to arbitrary excitations by adjusting the expansion coefficients
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Fon(_qn,gi) and F¢,_(_qn, gi) of (5.48)in a straightforward manner. Therefore, the

GRE method is not limited to any particular incident field, as long as it originates

outside the waveguide cavity.

5.3.1 GRE combined with aperture integration (GRE/AI).

The desired contribution to the field scattered by the waveguide cavity/_s is

given by (3.24); this includes only the scattering by the rim at the open end and

the interior of the cavity, and no other external scattering mechanisms for reasons

mentioned previously. The rim scattered field/_sr is found using GTD and ECM in

Chapter II, and is given by Equations (2.21) thru (2.24). In the GRE/AI method,

the cavity scattered field is given as in (3.25) by

M

= (5.54)
m----1

where

M number of ray-tubes which exit the cavity through the open end,

field radiated by the m th ray-tube which exits the open end

after reflecting from a simple interior cavity ternfination.

Note that the sum in (5.54) is over all the ray-tubes from all of the sub-apertures

which have been traced throughout the cavity and which exit through the open

end. The cavity scattering contribution of each of these ray-tubes J_ is given by

(3.26) and (3.27), with the n subscripts replaced by m (this is to avoid confusing

the sum over ray-tubes with the sum over sub-apertures, which used the subscript

n earlier in this chapter).

If the ray-tube cross-sectional area Am is less than (_A) 2, then the shape

function of (3.27) can be replaced by (3.30) or (3.32), which are shape independent.
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Th;_s cross-sectional area is given by (5.53) with the indices n and q replaced by the

single index rrt, which covers all the ray-tubes of all the all sub-apertures, which

exit through the open end.

5.3.2 GRE combined with the termination reciprocity integral (GRE/RI),

The GRE/RI method is exactly the same as the GO/RI method described in

Section 3.2.2, with the only difference being in the way the ray-tubes are launched

and their cross-sectional areas found. This was also the case for the GRE/AI

method of the last section, for which the important differences were described.

Therefore, it is assumed that the reader can infer the GRE/RI method from a

close examination of the GO/RI method of Section 3.2.2 and the GRE/AI method

of Section 5.3.1, so the details will not be repeated here. Simply put, the fields

of the GRE expansion of (5.47) and (5.48) are used in the termination reciprocity

integral (3.36), which is described in Appendix C. However, the modal form of

the reciprocity integral (3.44) is most often used in practice. The integration is

over all the points Pc in a cross-section near the termination. The bistatic radar

cross-section (RCS) is then obtained from the termination reciprocity integral as

described in Section 3.2.2 and given by (3.43). It is of course assumed that the

EM reflection properties of the complex interior cavity termination are known.

5.4 Generalized Ray Expansion for an Open-Ended Cavity with a

Rectangular Aperture

In this section the GRE method as described so far is applied to the special

case of a waveguide cavity with a rectangular aperture (at the open end) which is

illuminated by an externally incident plane wave field. The equations of Section

5.1.3 for planar sub-apertures and a locally planar incident field along with the

equations of Section 5.1.4 for the cone-shaped angular grid of ray-tubes carrying
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Figure 76: Geometry of a rectangular aperture divided up into rectangular
sub-apertures illuminated by a plane wave.

equal power will be used to illustrate the use of the GRE method so that it can

be understood well enough to be extended to more complicated geometries and

incident fields.

Figure 76 shows the geometry of the rectangular aperture in the absence of

the waveguide cavity walls, illuminated by a plane wave incident from the (Oi, _i)

direction, where Oi is measured from the -z axis of the figure. As shown in the

figure, the aperture is divided up into identical rectangular sub-apertures with

dimensions Ar and Ay given by

where

a

A_ - 2M+ 1 (5.55)

b

Ay - 2N + 1 (5.56)

a,b = x,y dimensions of the aperture, respectively,
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2M+l

2N+1

= number of sub-aperturesin the z direction,

= number of sub-aperturesin the y direction.

For the aperture shown in Figure 76, M = N = 1 and there are a total of (2M +

1)(2N + 1) = 9 sub-apertures making up the rectangular aperture. The figure also

shows the relative coordinate origins of each sub-aperture.

The fields radiating from the aperture can be expanded sinfilarly to (5.15) as

a sum over all of the ray-tubes which point in the rPqmn directions:

M N P QP

= y: (5.57)
m=-M n=-N p'=O q=l

where, as in (5.12) or (5.27),

(5.58)

Throughout this section, the subscript indices m and n designate the mn th sub-

aperture and the superscript indices p and q designate the pqth ray-tube of the

mn th sub-aperture. So, fi'mi_qnoriginates at the center of the mn th sub-aperture and

0Pqpoints in the ( ran, emPqn) direction. Xm and yn are the relative coordinates of the

mn th sub-aperture and are given by

zm = x - mAz (5.59)

y= = y - nAu, (5.60)

as can be deduced from Figure 76.

--# ..#

B_qn,,mn(rmn) are the vector ray-tube basis functions as in (5.14)or (5.28)
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given by

where

( mn,_mn_ _ _ : for 10ran--_1 < _,XO_.,
V Zrmr_

]¢mn--q_mn[ <_ _A¢_mn (5.61)

0 : elsewhere

AOPmqn = A0 (5.62)

0mPqn = 0Vmn = pA0 (5.63)

27r
AC_m n : A¢ p -- (5.64)

Q.

_ : qZ¢_ (5.65)

{ .  orv OQP = (5.66)
1 : elsewhere

as in (5.30), (5.31), (5.33), (5.35), (5.34) and (5.40). Simply put, (5.62)-(5.66)

mean that the angular ray-tube width A0 in the 0 direction is constant for all the

cone-shaped angular grids of ray-tubes, the angular width Aq_ v in the q_direction is

constant for a given p and there are QP ray-tubes for a given p. The vector ray-tube

pulse basis function of Equation (5.61) implies that the field of the mnpq th ray-tube

is a spherical wave originating at the coordinate origin of the mn th sub-aperture if

the observation direction (t_mn, C_mn) is within the mnpq th ray-tube; otherwise it is

zero. The mnpq th ray-tube points in the ÷mPqndirection, i.e., towards (0m_n, ¢mPqn).

The expansion coefficients in (5.58) are given by

Farmn t(rpclmn, El)-_ [(Pez -k Phy COSO_Pqnn) COs qbP_q

+ (Pey - Phz c°s/TPmqn) sin _bmPqn)]Imn (r_mn , Ei )

Fqbmn (_mn, ff_i ) = [(Vey COS_9_mn-I- phx ) COs q_Pmqn

(5.67)
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where

cosoF. + phy)sin

(5.68)

Pez,Pey = x,Y components of the unit polarization vector iSe of the

incident E-field,

Phz,Phy = _,_ components of the unit polarization vector/_h of tile

incident//-field,

and Imn(C'_mn, El) is the radiation integral over the fields in the sub-aperture eval-

uated in the direction _mPqngiven by

Imn(÷Pnqn El) = Jkv'_ f ½Av f½A=
' 47r J-l_yj-1/t z

(5.69)

as in (5.24), (5.25) and (5.20), respectively. The plane wave incident field is given

by

where

JF'i = I)eEo e-jk(z cos Oi+z sin 0i cos ¢i+Y sin Oi sin ¢i) (5.70)

magnitude of the incident plane wave,

direction from which the incident plane wave originates, with

0 i measured from tile --z axis.

So, using (5.59) and (5.60), the scalar portion of tile incident field in tile plane of

the mn th sub-aperture (z = 0) is given by

! I
Ei(xm, Yn) = Eo e-jk(mAz cos (_i+rtAy sin ¢i) sin 0i e-jk(z_ cos 4)i+Y_ sin ¢_i)sin Oi.

(5.71)

179



It can be shownthat the exponential term in the integrand of (5.69) is

-,t ._Pq t I • Opt/- (Zm cos q_,qn + Yn sm _mqn) sin mnrmn mn --
(5.72)

by decomposing _'ntm and _Pqmninto their ($n,_)m, _) components.

Substituting (5.71) and (5.72) into (5.69) and integrating gives

Ei) jk v/2EoAzAye_Jk(mAz cos _{ sin 8i+nA _ sin _bi sin Oi)
47r

.sinc [_kAx(cos _,q_n sin O_mn - COSq_i sin Oi)]

.sinc [_ k Ay( sin q_mn sin OPmqn- sin q_i sin Oi ) ] (5.73)

where

sin x
sine[x] - , (5.74)

Z

which, along with (5.67) and (5.68), gives the 8,nn and _mn components of the

expansion coefficients of (5.58).

The ray-tube basis functions can now be traced from their sub-aperture co-

ordinate origins to points inside the waveguide cavity via the laws of geometrical

optics (GO), as described in Section 5.2. The fields inside the cavity can be written

as in (5.47) and (5.48) as

M N P QP

= F_, (5.75)
m=-M n=-N p=O q=l

ff_mn(Pc) = FOm.(+_mn,ff, i).B_m.(ec) + F¢,,_.(_mn,ff'i)B_,.,,,,(Pc)

(5.76)
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where/t_qm_ and/3_qmn are the vector ray-tube basis functions for the initially Omn

and _mn polarized mnpq th ray-tube, respectively, which have been traced inside

the cavity to some cross-section containing Pc. The cross-sectional area of the



rnnpq th ray-tube at Pc inside the cavity is given as in (5.53) by

_rtlere

A  (Pc) --
_2

(5.77)

ff,pq,lllp,

f/

= electric field of the mnpq th ray-tube at Pc due to the unit

excitation of (5.50) without loss, as in (5.52),

= initial beam solid angle of the ray-tubes.

For this example, the initial beam solid angle has been chosen to be constant for

all ray-tubes, and is given by

_- 2 (5.78)

as in (5.32). It should be mentioned again that the exact shape of the ray-tube is

not important if the area given by (5.77) is less than (½_)2, so the shape can be

chosen arbitrarily. Also, if ray-tube sub-division is going to used to increase the

efficiency of the ray tracing, then of course the beam solid angle _ in (5.77) for a

sub-divided ray-tube must also be sub-divided accordingly.

Both the 8ran and emn polarizations for each ray-tube should be traced, as

the expansion of (5.57) and (5.58) indicates. However, as discussed in Section 5.3,

both polarization can easily be traced simultaneously because they follow identical

GO paths. Furthermore, all of the ray-tubes in the expansion of (5.57) need to be

traced only once independent of incidence angle because the rmn^pq directions of tile

ray-tubes do not change with the incidence angle. The effect of incidence angle

is contained entirely in the expansion coefficients of (5.67) and (5.68). Therefore,

once all the ray-tubes have been traced, the fields inside the waveguide cavity
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can be found for any givenincidenceanglewhich is well within the angular range

coveredby the angular grids of ray-tubes, simply by adjusting (5.67) and (5.68).

Finally, it should bementioned that the regionof validity of the expansionsof

(5.57) and (5.75) is restricted by the sub-aperture far zonecriterion of (5.7). For

the rectangular aperture casethe largest linear dimensionof a sub-aperture is its

diagonal length V/-_ + A2u so the far field restriction is

rmn > 2 _ , for all tort. (5.79)

This means that the fields inside the cavity given by (5.75) and (5.76) are not

valid within a distance 2(A 2 + A2)/)_ of the aperture. However, the sub-aperture

size can be reduced arbitrarily (with a corresponding increase in the number of

sub-apertures) if the fields closer to the aperture are desired. Therefore, the sub-

aperture size should be chosen to be small enough to obtain the fields at a desired

distance from the open end. But on the other hand, the smaller the sub-aperture

size, the more sub-apertures are necessary and therefore the more ray-tubes must

be traced. For practical application, it is most efficient to make the sub-apertures

as large as (5.79) permits. In practice it has been found that this criterion is

somewhat more extreme than necessary. Numerical results will be presented in

the next section for some 2-D cases which suggest that (5.79) is roughly twice as

large as is actually required for acceptable accuracy.

5.5 Numerical Results and Discussion of the Generalized Ray Expan-
sion Method

In this section, numerical results obtained using the GRE method will be

presented for some 2-D straight (parallel-plate), curved (annular) and S-shaped

(parallel-plate and annular) open-ended waveguide cavities. 3-D results have not
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yet been obtained due to the complexity of the computer coding required for 3-

D ray-tracing. Several groups are currently working on this task, so 3-D results

should be forthcoming in the near future. These can be verified with realistic

experimental results which are already available, and with results generated using

the more predictive hybrid modal method of Chapter II. For now it is assumed

that relevant principles of the GRE method are adequately represented in 2-D

so that conclusions based on these more insightful 2-D results can be reached.

This assumption is supported by the fact that the three basic components of the

GRE method, i.e., the sub-aperture expansion, the GO ray-tube tracing and the

termination reciprocity integral or aperture integration, all have straightforward

correspondences between their 2-D and 3-D application.

In this section, "perpendicular" polarization (_1_) is for the case when the

electric field is normal to the plane of incidence, i.e., perpendicular to the plane

of the geometry or page, and "parallel" polarization (]1) is for the case when the

electric field in parallel to the plane of incidence, i.e., the magnetic field is normal

to the plane of the geometry. All the GRE results will be compared with a hybrid

asymptotic modal reference solution, and in some cases the GO result will also be

included.

Figure 77 shows the backscatter pattern of an open-ended parallel-plate waveg-

uide with a planar short circuit termination. Three sub-apertures were used in the

GRE result which makes the far field distance from the aperture 50._ using (5.7).

This is the length of the waveguide of Figure 77, so the GRE/RI result agrees very

well with the modal reference solution, as expected. It is noted that the computer

code which generated the GRE/RI result used a ray-tube sub-division algorithm

for ray-tubes which were larger than 1)_ across when they reached the termination.

Therefore, the total number of ray-tubes listed in the caption of Figure 77 (and
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subsequent figures) does not refer to a fixed number of equally sized ray-tubes, but

to the total number of ray-tubes that was required to satisfy the 1_ criterion using

sub-division. This number will vary somewhat depending on the coding algorithm

in use. Finally, for the 4-45 ° pattern of Figure 77 (and others) all ray-tubes within

a range of ±60 ° were traced for each sub-aperture.

Figure 78 shows a backscatter pattern for the same case as in Figure 77 ex-

cept that the guide is 30)_ long instead of 50)_, thus violating the condition of (5.7).

Once again, the GRE/RI result agrees very well with the modal reference solution,

suggesting that the condition of (5.7) is too stringent. The open-ended waveguide

of Figure 79(a) pushes the far field condition even further with a length of 15A,

again using three sub-apertures. Here, the GRE/RI result begins to show notice-

able deviation from the modal reference solution, even though the agreement is

quite good for some incidence angles. From these results it is reasonable to con-

clude that the far field condition of (5.7) is about twice as much as is actually

required in practice, and can be rewritten as

rn > _-2n , for all n, (5.80)

to obtain reasonably accurate results more efficiently.

Figure 79(b) shows the same case as Figure 79(a), except that five sub-

apertures are used instead of three. As expected, the agreement with the reference

solution is quite good because the far field distance is 9A, using the approximation

of (5.80). Note that this five sub-aperture case of course required more total ray-

tubes than the three sub-aperture case. Also note thai., in general, the longer the

waveguide the more ray-tubes are required because the ray-tubes are diverging.

Figures 80(a) and (b) show the backscatter patterns for an open-ended annular

waveguide cavity with a planar short circuit termination, found using three and
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five sub-apertures, respectively. Here, the effect of wall curvature is important and

the differences between the three and five sub-aperture cases suggest how the radii

of curvature of the two walls affect the choice of sub-aperture size. Although, as

expected, the five sub-aperture result agrees better with the reference solution than

the three sub-aperture result, the three sub-aperture result is still quite reasonable.

This is an important result because it is difficult to prove analytically why it is

allowable to launch ray-tubes from a sub-aperture which lies adjacent to a curved

surface. The numerical results alone support the validity of this practice. In

contrast, it can be proven that it is allowable to launch ray-tubes from a sub-

aperture adjacent to a planar surface using image theory. So, it could be argued

that the curved surface case becomes rigorous as the radius of curvature of the

surface approaches infinity, and that most likely it is a very good approximation

for finite curvatures that are much larger than the sub-aperture size. In any case,

the numerical results thus far have supported the later argument for practical

applications.

The geometry of Figure 80 reveals some further valuable insight into the mech-

anisms of the GRE method. Because the GRE method uses GO ray tracing, it is

prone to some of the errors of GO field theory. The GRE method is rigorous for

the open-ended parallel-plate waveguide due to image theory as discussed above.

However, curved walls introduce errors in the GO ray tracing procedure. The four

most important sources of error in the GO ray tracing schemes are:

(1) ray caustics (focii),

(2) ray-tubes which come close to grazing a convex surface, and

(3) creeping waves which diffract from the convex surface,

(4) diffraction by discontinuities in the curvature of the walls.

The Iast three of these can in theory be handled by the uniform theory of
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diffraction (UTD) [2], but it would not be very practical to do so in the GRE

method becausethe ray-optical nature of the ray-tubes would be lost. The first

of these, i.e. caustics, have as yet no simple means of correction on a ray-tube by

ray-tube basis. Therefore, it appears that until the GRE method evolves to the

point where these inherent errors are overcome, it is necessary to evaluate there

effect on the accuracy of the method. Figure 80 may offer some insight into the

first three sources of error above, and some S-shaped cavity results which will be

discussed later may offer some insight into the fourth source of error because the

S-shaped cavities have discontinuities in curvature.

For positive angles of incidence, the reflection of the incident plane wave GO

field will form a caustic coming off of the outermost wall of the cavity as Figure

3 illustrates for a similar geometry. This caustic would extend to the termination

of the geometry of Figure 80, where the fields are integrated according to the

GRE/RI procedure. Therefore, if this caustic presents a significant error, it should

appear in the backscatter results for positive angles of incidence. Figures 80(a)

and (b) both show some error in the range 0i > 0 °, but it is not very significant

(the errors near axial incidence in these figures will be discussed later next). So it

is possible that the effect of the caustic is reduced by integrating across it such that

the singularity is balanced out. Numerically, it is highly unlikely that a ray-tube

will have a singularity exactly in the cross-section of integration. In fact it can be

shown that integrating across tile type of ray-tube used in this method very near

but not exactly on a caustic yields a finite value.

The second and third of the above errors would be evident in Figure 80 for

angles of incidence near the axis because the incident plane wave field will come

close to grazing the innermost wall of the cavity and a creeping wave which travels

along this innermost wall will be most strongly excited for such cases as in error
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(3). It follows that errors (2) and (3) will alwaysgo hand-in-hand. Both of tile

graphs in Figure 80 seemto show the most error ill the range -10 ° < t_i < 10 °,

suggesting that these mechanisms are tile main source of error. Since these errors

are associated with surface diffraction effects, it is expected that the error will

dinfinish with increasing frequency. Figure 81 shows the backscatter pattern for

an open-ended annular waveguide cavity as ill Figure 80, except that it is twice as

large in terms of wavelength, and five sub-apertures are used as in Figure 80(b).

The overall agreement is better than for the case of 5.10(b) but there is still some

error near axial incidence, probably again due to grazing/creeping wave effects.

Figures 82 and 83 show the backscatter patterns of a small parallel-plate cavity

and a small S-shaped cavity, respectively, comparing the GRE/AI and GO/AI

methods with the modal reference solution. The GRE/AI result agrees very well

for the parallel-plate case and reasonably well for the S-shaped case. It is much

better than the GO/AI result for both cases because the diffracted field not present

in the GO/AI method is more significant for these smaller geometries.

Figures 84 (a) and (b) show the backscatter patterns of a larger S-shaped cav-

ity using the GRE/RI method with three and five sub-apertures, respectively. Note

that these cavities are made up of alternating parallel-plate and annular waveg-

uide sections. The five sub-aperture result agrees quite well with the reference

solution and the three sub-aperture result agrees reasonably well. Of course the

three sub-aperture result required fewer ray-tubes to be traced (600 as opposed to

1000 for the five sub-aperture case). Tile excellent agreement of Figure 84(b) with

the reference solution suggests that the fourth source of error--diffraction from

discontinuities in curvature--is not significant.

Figures 85 (a) and (b) are the same cases as in 84(a) and (b), respectively,

except that waveguide cavity is three times as long. Here both the three and
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five sub-aperture results agreeonly reasonably well, with the five sub-aperture

result being slightly better. Once again, the three sub-aperture required fewer

ray-tubes to be traced (2000 as opposed to 3500for the five sub-aperture case).

There is a simple explanation for the degradation of the accuracy of the GRE/RI

method for this longer cavity. It is because the errors associated with the GO ray

tracing technique used in the GRE method accumulate as the ray-tubes propagate

farther inside the waveguide. Therefore, the GRE method is expected to decrease

in accuracy as the length of the waveguide cavity increases, for a given waveguide

cross-sectional area and frequency. Furthermore, it is not expected that the method

will improve much in accuracy simply by using more sub-apertures or smaller

ray-tubes. However, the accuracy is expected to increase with frequency for a

given geometry because the errors associated with neglecting the curved surface

diffraction effects decrease.
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Figure 83: Backscatter pattern of a small open-ended annular waveguide cavity
with a planar short circuit termination, 3 sub-apertures, 150 total rays.
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Figure 84: Backscatter patterns of a large open-ended S-shaped waveguide cavity
with a planar short circuit termination, _1_polarization.
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(a) 3 sub-apertures, 2000 total ray-tubes
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Figure 85: Backscatter patterns of a large open-ended S-shaped waveguide cavity
with a planar short circuit termination, 2_ polarization.
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CHAPTER VI

CONCLUSIONS AND DISCUSSION

In this report four different high frequency methods have been described for

analyzing the EM scattering by relatively general open-ended waveguide cavities.

They are the hybrid asymptotic modal method (Chapter II), the geometrical op-

tics (GO) ray shooting method (Chapter III), the Gaussian beam (GB) shooting

method (Chapter IV), and the generalized ray expansion (GRE) method (Chapter

V). It was seen that each of these methods have some advantage over the other

methods in terms of applicability and/or reliability, as well as some limitations.

This report is concerned more with the development of the GB and GRE methods;

the other two methods have been developed previously elsewhere but are included

here for comparison.

The hybrid modal method of Chapter II is the most accurate of the four

methods because it uses a high frequency asymptotic approximation to the exact

eigenfunction solution, using the waveguide modes of the interior sections making

up the cavity, and employs that along with the geometrical theory of diffraction

(GTD) combined with the equivalent current method (ECM) to handle the re-

flection and transmission of modes across junctions. The multiple interactions

between the junctions between waveguide sections, the open end and the termi-

nation are handled self-consistently using the multiple scattering matrix (MSM)

concept. It was seen that many of the component reflection type matrices of the
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MSM can be left out becausethey are negligible comparedwith the termination

reflection matrix [SF], greatly simplifying the computation. Smooth junctions be-

tween waveguide sections, such as between a parallel-plate section and an annular

section, are examples where the junction reflection matrix would be minimal.

The main limitation of the hybrid modal method is applicability--it is only

practical to use when the open-ended cavity is made up of sections of uniform

waveguides whose walls coincide with a separable coordinate system for which the

eigenmodal fields can be found. Some common examples of this type of uniform

waveguide are cylindrical (circular), rectangular, 2-D parallel-plate and annular,

linearly tapered (wedge shaped) and conical (spherical). Also, even if waveguide

modes can be defined, it is very difficult to include any effects of loss in 3-D

geometries because of power coupling between the otherwise orthogonal modes.

For some 2-D geometries, the modal perturbation technique of [7] can handle a

small amount of wall loss.

The second limitation of the hybrid modal method is the large number of prop-

agating modes which can exist in some electrically large, realistic cavity geometries,

which make the method inefficient computationally. However, this linfitation can

sometimes be offset using the selective modal scheme of [13] which greatly reduces

the number of modes needed in the calculation, provided it can be applied to the

specific waveguide configuration under consideration.

To overcome some of the limitations of the hybrid modal method, the GO ray

shooting method could be used for electrically large cavities where it is expected

that internal diffraction effects will be minimal. The main advantage of this method

is that it can handle arbitrary non-uniform geometries for which modes cannot be

defined in the conventional sense; also this method can account for the presence of

interior cavity wall loss. It is also conceptually simple and yields results which are
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usually acceptable for practical purposes. However, the method typically requires a

very large amount of ray tracing because a new dense grid of ray-tubes needs to be

tracked for each incidence angle, thus making it computationally time consuming

when scattering data is needed over a wide range of incidence angles. Furthermore,

it is prone to the errors inherent in the GO field, such as ray caustics and non-

inclusion of any interior diffraction effects. These interior diffraction effects could

be due to the rim at the open end, discontinuities in curvature along the inner

cavity walls, and convex interior surfaces which cause creeping waves and non-ray-

optic transition regions to form for near grazing incidence. Consequently, the GO

ray shooting method usually does not give the details of a scattering pattern well

in terms of matching peaks and nulls, but it does give the general trends in the

envelope of the pattern providing useful engineering figures. Recently it has been

demonstrated that the GO ray shooting method, or equivalently the "shooting and

bouncing rays" (SBR) method {17], yields good agreement with modal solutions

for waveguide cavities which are larger than 10A across [38].

The Gaussian beam (GB) shooting method was developed to overcome some

of the problems associated with the GO ray shooting method while retaining its

generality. The GB's by nature have no caustics associated with them. Also, each

beam stands alone as a basis function which is Maxwellian, i.e., a solution to the

wave equation (paraxially), which is valid everywhere from the near to far field,

unlike individual ray-tubes which are discontinuous across their boundaries and

are not valid near caustics. It is noted that the ray-tubes individually are non-

Maxwellian but when combined with all the other ray-tubes they represent a total

GO field which is asymptotically Maxwellian.

The sub-aperture expansion technique of arraying the GB's to represent the

fields radiating from an aperture in free space and in the presence of cavity walls
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followed from a modification of the Gabor expansion used in [26] and [27]. In this

type of expansion, only the expansion coefficients depend oll the direction of the

incident field so the GB's need to be tracked only once for a wide range of incidence

angles; this is in contrast to the GO ray shooting method which requires a new

set of ray-tubes be tracked each time the incidence angle changes. Furthermore,

fewer total GB's need to be tracked than ray-tubes, in general. These properties

make the GB shooting method very computationally efficient.

The main difficulty with the GB shooting method is that the GB's that are

launched by the aperture must be well focussed to maintain resolution aRer being

tracked along their axes via successive reflections off the interior cavity walls. How-

ever the well focussed GB's which are narrow spectrally are typically quite wide

spatially in order to be narrow spectrally (i.e., slowly divergent). This is due to

their independent Maxwellian functional form. And when they reflect from curved

wails in the axial beam tracking scheme they tend to diverge more, so they become

wider the farther they propagate inside the cavity. Eventually they become too

wide spatially to fit inside the cavity or too wide to adequately sample the wall

geometry (i.e., the curvature of the wall may vary too much in the area illuminated

by a beam to obtain an accurate reflected beam). As the GB's become wider, the

axial method of tracking them breaks down and the problem of grazing convex

surfaces becomes much more serious. Therefore, the GB shooting method is lim-

ited to waveguide cavities which are large in terms of wavelength and relatively

shallow in terms of the length to width ratio L/d. Some general rules of thumb

were presented in Section 4.5 for assessing the applicability of the method to a

given cavity configuration. The accuracy of the method is quite adequate for most

practical purposes with some small errors stemming from beam divergence effects

due to reflection from curved wails.

201



The generalizedray expansion(GRE) wasdevelopedto overcomesomeof the

difficulties associatedwith the GB shooting methods by replacing the Gaussian

beam basisfunctions with GO ray-tubes. Thus, the GRE method uses the GO ray-

tube tracking technique of the GO method along the the sub-aperture expansion

technique of the GB method. Using this combination, the angular grid of ray-tubes

needs to be tracked only once for a wide range of incidence angles as in the GB

method and the open-ended waveguide cavity can be made arbitrarily long because

the ray-tubes can be made arbitrarily narrow (because they are non-Maxwellian).

In theory this is true, but in practice it is seen that the errors associated with the

GO ray-tube tracking technique accumulate the farther a ray-tube propagates, so

the accuracy degrades the longer the cavity. It is noted that in all of the latter GRE

and GB shooting methods it is only necessary to trace the fields in the cavity to the

termination and not back out again, by using the termination reciprocity integral

if desired. This greatly reduces the amount of ray or beam tracking and should

theoretically reduce the errors associated with long propagation paths. However,

in practice it is seen that the reciprocity integral tends to be more sensitive to

errors in the fields of the integrand than the aperture integral, so it is difficult

to conclude that the one-way field tracking of the reciprocity integral methods is

more accurate than the two-way field tracing of the aperture integral methods.

In any case, the reciprocity integral method greatly reduces the amount of ray or

beam tracking and so it is always more efficient.

The total nmnber of ray-tubes which need to be tracked in the GRE method

is generally much greater than the number of ray-tubes tracked in the GO ray

shooting method for a single incidence angle. However, the GRE method provides

scattering data over a continuous range of incidence angles, the size of which is

determined by how wide the cone of ray-tubes is in the aperture expansion. To
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obtain the sameinformation using the GO method would generally require a much

larger number of total ray-tubes to be tracked becausea new set is tracked for

eachincidence angle. Therefore, in terms of ray-tube tracking emciency, the GO

or SBR method would be superior to the GRE method only when scattering data

is required over a very narrow range of incidence angles. Furthermore, because

the GRE method includes the effect of interior diffraction by the rim at the open

end, it is generally more accurate than the GO method. This is especially true for

smaller cavities (less than 10A across) for which the interior contribution arising

from the rim diffracted field is more significant.

To summarize, the hybrid modal method should be used for applications re-

quiring highly accurate results where the open-ended waveguide cavity can be

modeled by joining sections of uniform separable waveguides for which the modal

fields are known, and for which the number of propagating modes is not too large

to be prohibitive. It is often used as a reference solution to verify the accuracy

of more general methods which are not as limited by the geometry. The GO ray

shooting method is useful for general non-uniform waveguide cavity applications

where the cavity is large in terms of wavelength and the accuracy of the result

is not as critical. However, the GRE method is generally superior to the GO (or

SBR) method in terms of accuracy and efficiency, with the possible exception being

for cases where only a small number of incidence angles are required in which case

the GRE loses its efficiency but not accuracy over the GO (SBR) approach. In

any case the GRE method is expected to be more accurate than the GO method,

especially for smaller cavities, but not as accurate as the hybrid modal method.

The GB shooting method is applicable to non-uniform open-ended cavities with

large cross-sections but which are not too long. In general the GB method is su-

perior to the GO and GRE methods in terms of accuracy and efficiency, but only
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for large, relatively shallow cavity configurations. For longer non-uniform cavities,

the GRE or possibly the GO (SBR) method is recommended over the GB method.

Because the GB shooting method has demonstrated its usefulness for 2-D

geometries, it should be extended to 3-D to evaluate its effectiveness on such

configurations. In the extension to 3-D it is noted that the Gaussian beam basis

functions would in general become astigmatic after interior cavity wall reflections,

similar to the astigmatic GO ray-tube shown in Figure 34 with two different beam

waists corresponding to the two caustics of the ray-tube. The tracking of such a

3-D GB would be done axially in a manner analogous to GO ray tracing, as was

done for the 2-D case described in Section 4.4. Furthermore, ways to overcome the

linfited application to shallow cavities should be investigated. One likely possibility

would be to generate a new GB expansion at a cross-section inside the waveguide

cavity at some point before the original beam expansion begins to break down.

This process could be repeated for cross-sections deeper and deeper within the

cavity until the termination is reached. If this method is pursued, close attention

should be paid to the possibility of beam turn-around. This means that for some

geometries it is possible that a GB may reflect in such a way that it is turned

around and propagates back to the open end before reaching the termination or

some conveniently pre-defined cross-section near the termination.

More work needs to be done on the GRE method to verify its usefulness in re-

alistic 3-D applications and to overcome some of the errors associated with the GO

ray-tube tracking. As measured data on non-uniform open-ended cavities becomes

available, the GRE method should be verified experimentally, especially for cases

where wall loss is present. Also, methods need to be developed for evaluating the

interior scattering by realistic cavity terminations via a modal reflection matrix

[Sr] or some other self-consistent characterization, so that they can be combined

204



with one of the methods describedin this report for tracking the fields inside the

waveguidecavity to the termination. It would bevery valuableto be ableto obtain

such termination characterization through somesort of measurementtechniqueso

that the terminations could be arbitrarily complex.

To improve the GRE method, one area of investigation would be to consider

different types of expansions of the fields radiating from an aperture, rather than

through the use of sub-apertures. Using spherical vector wave functions (free

space modes in spherical coordinates) to represent the fields radiating from an

aperture which would subsequently be tracked in the presence of the waveguide

cavity walls, is an example of a possible expansion technique. The fields inside

the cavity would appear to be originating from a single point in the open end,

rather than from several sub-apertures. However, the non-ray-opticai nature of

this type of expansion in the near zone of the open end may make field tracking

in the presence of the cavity walls difficult.

Another area of investigation for improving the GRE method would be to

consider different basis functions other than ray-tubes which could possibly over-

come the problem of caustics, like the Gaussian beams did, while remaining narrow

enough to adequately sample the cavity geometry. It would also be useful to have

functions which did not suffer the (½._)2 restriction on cross-sectional areabasis

so that a smaller number of basis functions would have to be traced, similar to the

GB method. It seems likely that a middle ground between the GB method and

the GRE method can be reached which allows arbitrarily narrow ray or beam-like

basis functions to adequately sample the cavity geometry without excessive diver-

gence, but which do not have to be frequency dependent like the (½,_)2 ray-tubes.

These new basis functions may also be valid near caustics, thus eliminating some

of the problems associated with finding the reflection of incident waves that have
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causticsnear the point of reflection. At any rate, it is along theselines that future

researchon ray and beam tracing methods should evolve.
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APPENDIX A

MODAL FIELDS OF 2-D PARALLEL-PLATE AND ANNULAR

WAVEGUIDES

This appendix derives the expressions for the orthonormal modal fields of the

uniform 2-D parallel-plate and annular waveguides. The modal ray form of these

modes is also derived.

"Orthonormal" means that each mode carries power independently of all the

other modes and they are normalized to carry unit power. Mathematically, this is

written

where

A.1

/S (emt x hn*) .dff = gmn (A.1)

(

_mn = _ 1 ifm=n

L0 ifm#n

ernt = transverse component of the electric field of the mth

waveguide mode,

hnt = transverse component of the magnetic field of the n th

waveguide mode,

ff = any complete cross-section of the guide.

Orthonormal Modes of the Parallel-Plate Waveguide

(A.2)

Figure 86 shows a parallel-plate waveguide of infinite extent. The modes will
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Figure 86: Parallel-plate waveguidegeometry.

be split into TEx (E transverse to z) and TMz (H transverse to z) categories.

For the TEz case, the electric field is in the i direction and may be sometimes

referred to as the perpendicular (_J_) or soft polarization. For the TMz case, the

magnetic field is in the _ direction and may be sometimes referred to as tile parallel

(]1) or hard polarization. Starting with the TEx case, the electric field is in the

_-direction and is a function of z and y:

/_(x,y) = _Ez(z,y). (A.3)

The E-field is a solution to the wave equation

which in scalar form is

(V 2 + k2)E(z,y) = 0 (A.4)

where

02 02 )+ _y2 + k2 Ez(z,y) = 0 (A.5)

k = free space wave number = 27r/)_

The boundary condition is that Ez equals zero on the walls of the guide. Using

separation of variables and enforcing the boundary conditions the solution is found

to be an infinite summation of modes

OO

= • + Ag .ty)e  " (A.6)
n=l
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where

_.(y)

_n

P_

= _Pn sin (Ty)

= normalization constant of the n th mode,

= modal field expansion coefficients for the n th :l:$ propagating

(or evanescing) modes.

(A.7)

(A.S)

The infinite sum is usually truncated to include only propagating modes. For n

greater than N, the modes are evanescent in nature and die out exponentially

along the axis of the guide. This cutoff number is one less than the value of n

which makes fin pure imaginary, or

N = Int(?), theintegerportionof kd/zr. (X.9)

The H-field of the guide is derived directly from the E-field using one of

Maxwell's equations

V × F_,(x,y) = -jwl.tH(z,y) (A.10)

(A.al)

where

k

Yo

Yo = free space admittance (,_ 1/377 12-1).

This gives

Yo(0 O)Ez(_,v)- jk _)0_ - _Oy

O0

= _ [A+h+(y)e -j_'_x + A-_]r-_(y)e j#'_]
n=l
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where

= +_)hny(Y) + &hn=(y) (A.13)

hny(Y) = -PnYo_-_ sin (_y) (A.14)

P Z n_" cos (n_ "_
hnz(y) =- n o-j-_ _,--_.YJ (A.15)

Pn is found by normalizing to unity the power carried by the n th mode. This

is done by integrating the Pointing vector over a cross-section of the guide and

setting this equal to unity,

[d_n(y) × h_n(y).(+&)dy = 1. (A.16)
JO

Substituting and integrating yields

,/2k_oo (A.17)
P" = Vd#.

where

Zo = free space impedance (,_ 377 It),

= 1/Yo. (A.18)

The ray-optical form of these modes is found by writing the sine function of

equation (A.7) in its Euler (exponential) form and combining the exponentials of

_n(y)eT_J/3,_z _- z2--j^Pn[ej(VyT_,_=) - e j(-_d_yT_'_z)] . (A.19)

(A.6):

By making the substitution

nTr

sint_n - kd' (A.20)
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Figure 87: Modal rays of the parallel-plate waveguide.

and using

grt

= k 1-\kd/

= k¢l-sin 20n

= kcos0n (A.21)

equation (A.19) can be rewritten

= z_j--[e 3k(ysmOn+zc°sO=) --eJk(-ysinOn+xc°sOn)]. (A.22)

This form represents two crossing plane waves which make an angle of On with the

guide walls as shown in Figure 87.

The TMz case is handled analogously to the TEx case, with the boundary

condition now being OHz/Oy equal zero on the walls:

H(:v,y) = _.Hz(z,y) (A.23)

( 02 Oq2 )(V2 + k2l/_(z'Y) = 0-_ + _ + k2 Hz(z,y) = 0 (A.24)

OO

/t(x,y) = _ [A+hn(y)e -jz'_z + A-_hn(y)e jznz] (A.25)
rt=0

gn = k 2 - (A.27)
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V × -_(x,y) = jweE(x,y) (A.28)

k

we- Zo (A.29)

Zo (_) O O ) Hz(x,y )

oo

= _ [A+_+(y)e -j_"x + A_n(y)e j/3'*x] (A.30)
nzO

_(y) = =t=_eny(y) + _:enx(y) (A.31)

eny(y) = PnZo_ cos (d_y ) (A.32)

__ p, 717r
enx(y) -- -- nZo_-_sin(n_-_y) (A.33)

,f 2kYo
pn = (A.34)

2 ifn=O
en -- (A.35)

1 otherwise

and the ray-optical form of the TMx modes is given by

]_n(y)eTJ/3nx = _ Pn [eJk(ysinOnT:zcosOn) e jk(-ysinOnq:zc°sOn)] (A.36)2 + "

Notice that for the TMx case, the n = 0 term is included in the summation. This

corresponds to a TEM mode. Ray-optically this mode is a plane wave traveling

down the guide with On equal zero.

A.2 Orthonormal Modes of the Annular Waveguide

Figure 88 shows an annular waveguide of infinite extent. This does not make

sense physically because the guide would join ends to form a ring. However, it

is allowable mathematically to assume that ¢ goes to infinity in both directions,

instead of being periodic. It is necessary to make this assumption to get the correct

waveguide modes to describe the fields in small sections of an annular guide, such

as the ones used to make up the inlet. Starting with the TEx case, the electric
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Figure 88: Annular waveguide geometry.

field is in the _-direction and is a function of p and ¢

_(p,¢) = _E_(p,¢). (A.3r)

The E-Field is a solution to the wave equation

(V 2 + k2)/_(p,¢) = 0 (A.38)

which in scalar form is (using the cylindrical form of the Laplacian)

o_) + + k2 E_(p,¢) = 0. (A.39)Op 0¢ 2

The boundary condition is that Ez equals zero on the walls of the guide. Separating

variables and substituting into equation (A.39), multiplying by p2 and dividing out

Ez(p, ¢) yields

1 d2_(¢)
p d dR(p)] + +(kp) 2 = 0 (A.40)

R(p) dp p dp j _r_-¢)-d4,_--
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where the separation equation is

Ez(p,¢) = R(p)_(¢). (A.41)

Introducing the separation constant v gives two independent differential equations:

1 d2_(¢)--v 2 (A.42)
¢(¢) de 2 -

d [pdR(p)] + [(kp)2 _ u2lR(p ) = 0. (A.43)
dpj

The solutions to equation (A.42) are

¢(¢) = e jv¢ and e -jv¢. (A.44)

(A.43) is Bessel's equation and has solutions

R(p) = H(a)(kp) and H(2)(kp) (A.45)

where

H_I)(kp), H(r,2) (kp) Hankel functions of the first and second kinds,

respectively, of order r, and argument kp.

Using linear combinations of these solutions and enforcing the boundary conditions

gives the complete solution for tile electric field as

oo

/_(p,¢) = _ [B+_.n(p)e -jv'_¢ + B_n(p)e jt'_¢] (A.46)
n----1

where

_n(P) = £AnRn(kp) (A.47)

I [H(2)ikb_H(1)
- 2j [ r'n, , vn(kp)-H-,)(kb)H,.n)(kp)j

(1.(2]
Rn(kp) (A.48)
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in which Rn(kb) = 0 has been employed, and

Art = normalization constant of the n th mode,

B_ = modal field expansion coefficients for the n th +q5 propagating

(or evanescing) mode.

If ¢ had a periodic boundary condition corresponding to a 360 ° degree annular ring,

the eigenvalues vrt would be completely determined. However, for the annular guide

of infinite extent, the eigenvalues must be found using the remaining p dependent

boundary condition. Thus, they are found from the transcendental equation

Rrt(ka) = 0 (A.49)

which usually must be solved numerically.

As in a parallel-plate guide, the summation generally only includes values of

n for which urt is real. This is because for some values of n, un will be purely

imaginary and the mode will die out exponentially along the axis of the guide.

The H-field of the guide is derived directly from the E-field using one of

Maxwell's equations

which gives

where

v × £'(p,_) = -j.,_#(p,¢,) (A.50)
k

wit- Yo (A.51)

Yo ^1

oo

rt=l

(A.52)

(A.53)
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Vn

hnp(p) = AnYo_pRn(kp) (A.54)

• I khn¢(p) = -3A,WoRn(p). (A.55)

An is found by normalizing to unity the power carried by the n th mode. This

done by integrating the Poynting vector over a cross-section of the guide and setting

this equal to unity,

rjba(p) × (±¢)dp = 1. (A.56)

Substituting and changing the variable of integration to u = kp gives the normal-

ization coefficient
1

un 2 dul -_

The integral of equation (A.57) can be written in closed form using a property of

Hankel functions. However, the resulting equation is quite long and cumbersome

aud contains derivatives with respect to the order un of the Hankel functions. It

was found that it is easier to just do the integration numerically.

The ray-optical form of the waveguide modes in the annular guide is obtained

using the large argument approximation to the Hankel functions (also known as

the Debye Tangent approximation). For the Hankel function of the second kind,

it is given by

2)(z) _/ j2 -j(z sin't-uT)H ( _ e forx>>l,z#u (A.58)
7rz sin 3'V

where

v
cos7 - • (A.59)

X

Using this approximation, the H(2,_) term of a mode with the ¢ variation included

can be written as

j2 -j[kpsinT+vn(¢-7)]H(u2n)(kp)e -ju=* _ _rkp_n3" e
(A.60)
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Figure 89: Geometrical significance of the asymptotic form of the modes in an
annular waveguide.

un (A.61)
cos3' -- kp"

Changing variables gives the ray-optical form

where

u = psin7 (A.63)

¢ = 3'+ ¢o (A.64)

and ¢o is a constant. This is the form of an outward traveling cylindrical wave.

Figure 89 shows the geometrical significance of this derivation. Notice that u is the
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distance from a concentric caustic of radius un/k and "7 is the angular displacement

from this caustic. The H (1) term is handled tile same way,

i -j2 eJ(zsin.y_v7 )Hv(1) (x) _ 7rx-_m 7 (A.65)

H(1)(kp)e-Jv'_¢ _ 4_e j(ku+vn¢°) (A.66)
~

which is the form of the corresponding inward traveling (converging) cylindrical

wave.

Figure 90 illustrates the modal ray form of the modes of the annular waveguide.

It consists of crossing cylindrical waves which share a concentric caustic of radius

vn/k. The angles the rays make with the walls of the guide are obtained easily

from tile ray-optic geometry,

0an

Obn = cos -1 (V_b) • (A.68)

It happens that the modal ray caustic can lie inside the guide, as shown

in figure 91. This special case is referred to as a "Whispering Gallery" (WG)

mode. The significance of this type of mode is that almost all of the power in the

mode is confined between the modal caustic and the outer wall of the guide. The

propagating portion of the fields never "see" the inner wall (although the modal

caustic radius vn/k depends on it) because the fields are evanescent between the

caustic and the inner wall, as shown in figure 92.

The TMz case is handled similarly, with the boundary condition being OHz/Oy

equal zero o11 the walls,

(v 2+ k2) q(p, ¢)

= _.Hz(p, ¢)

[;oo lO2 ]+ p2 0q52 + k2 Hz(p,¢)

(A.69)
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Figure 90: Modal rays of the annular waveguide.

Figure 91: Whispering gallery modal rays of the annular waveguide.
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Figure 92: Field of a whispering gallery mode.
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= 0
oo

fi(e,¢) = E [n-+h-(P)_-j_"* + B_h"(P)d"*]
n=l

h,,(p) = _A,,R,,(ke)

R,,(kp)- 2j

(A.70)

(A.71)

(A.72)

(A.73)

R'(ka) = 0

V × #(e,¢) = J_E(P,¢)
k

Zo

(^1 0 _O)Hz(p,¢)Zo -P-po+/_(P' ¢) - jk

oo

= E [B.+_-+(p)_-J_*+ B; _ (p)d_]
n=l

enp(p) - AnZo_pRn(kp)

en¢(p ) -- jAnZoR_(kp)

(A.74)

(A.75)

(A.7_)

(A.77)

(A.78)

(A.79)

(h.80)
1

An = -_o b

Notice that the eigenvalues _'n for this case are found from the transcendental

equation (A.74). The ray optical form for the TMx case is the same as the TEx

case with the appropriate change of constants.
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APPENDIX B

APERTURE INTEGRATION OF GO RAY-TUBES

A simple method of obtaining the scattering by open-ended waveguide cavities

using ray-tube tracking methods, such as the geometrical optics with aperture

integration (GO/AI) and the generalized ray expansion with aperture integration

(GRE/AI) methods, is to perform a physical optics (PO) aperture integration on

the ray-tubes which exit the cavity. The scattering by external features of the

waveguide cavity must be added separately. The scattering by the rim at the open

end of the cavity is an important component of external scattering and is usually

included in open-ended waveguide cavity scattering calculations. High frequency

asymptotic methods such as the geometrical theory of diffraction (GTD) and the

equivalent current method (ECM) are often used for such calculations. Details of

this can be found in [5,6,1,3,10] and in Chapter II of this report, so this scattering

mechanism will not be discussed further here.

Figure 93 shows the geometry of the aperture (open end) of a waveguide cavity

with a single ray-tube exiting through the aperture. For this n th ray-tube:

ion = unit vector pointing in the direction of propagation of the central

ray of the n th ray-tube,

--,I
vn = vector from the origin to the point where the central ray intersects

the aperture.
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r

Figure 93: Open end of a waveguide cavity with a single ray-tube exiting.

The cavity scattered field can be written as the sum of the fields radiated by all of

the N ray-tubes leaving the cavity through the open end as

N

E'c(r') = y: EnSC(r") (B.I)
n-----I

where

= field radiated by the equivalent sources in the aperture of the

n th ray-tube.

To find the fields radiated by the n th ray-tube, the far zone PO based radiation

integral is used. However, instead of integrating the fields in the ray-tube over

its projection in the aperture, as might be expected for an aperture integration

problem, it is easier to integrate over the cross-section of the ray-tube where it

intersects the aperture [18] because the fields in a ray-tube are assumed constant
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Z n

Figure 94: Geometry and relative coordinate system of the cross-section of the

n th ray-tube at the point where it intersects the aperture.

in a given cross-section. Figure 94 shows the geometry of the cross-section of the

n ttt ray-tube and its relative coordinate system, (x,, Yn, z,), which is centered at

the point where the ray-tube intersects the aperture. The zn-axis is along the

direction of kn of Figure 93.

The far zone fields radiated by the equivalent sources of the n th ray-tube in

the open end is given by the following PO based radiation integral:

where

= jk e-Jkr= [ . , _Isn x _ne jk_'''rndSI
41r r n , JA.

E, no _ Hlrl.o

(B.2)

= kn x J_no (B.3)

= JEno x k,+ (B.4)

= electric and magnetic fields in the cross-section of the ray-tube
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in the open end,

_'n = vector from the point where the central ray of the ray-tube

intersects the open end to tile observer,

--.!r = vector to a source point in the ray-tube cross-section from the

point where the central ray intersects the open end,

An = cross-sectional area of tile ray-tube in the open end,

Zo = free space impedance (_ 377fl)

and the integration is over _l in tile xn-V,t plane.

Because of the ray-optical nature of the fields of the ray-tube, E'no and Hno

in (B.3) and (B.4) can be written as

-#,no = #enEno (B.5)

-_Ino = #hnHno (B.6)

where

#en = electric polarization unit vector of the ray-tube in the open end,

_Shn = magnetic polarization unit vector,

= k_x #_..

Using (B.3)-(B.7) and the following relations:

(B.2) now reduces to

_.'c(F)

rn ----

rn = r -- r n

k,, x i'h. = -i,_n,

.÷

_4_ e-'ik" EnoAne.ikF#'# Sn( ÷ )= -[_x #h_+ ÷x (÷x#_)]

(B.7)

(B.S)

(B.9)

(B.10)
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(B.11)

where Sn(÷) is the shape function given by

1

Sn(i) - An f fan eJkr "rdS" (B.12)

The form of (B.11) is that of a spherical wave originating at the point where the

central ray of the n th ray-tube intersects the aperture with a pattern determined

by the shape function of (B.12). This is similar to the result found in [17] and [18].

The integral in (B.12) is actually a two-dimensional Fourier transform of the

polygonal shape of the ray-tube cross-section and can therefore be evaluated rather

efficiently if the shape is known [17]. However, as suggested in Chapter III of this

report, the recommended way of tracking a ray-tube is to ray-trace the central ray

using the laws of GO and to choose an initial cross-sectional area so that the area

of the ray-tube is less than (½A) 2 when it exits through the open end. If this is

done then the exact shape of the ray-tube when it exits is not known. But if the

ray-tube is small enough it is expected that only the cross-sectional area affects the

shape function and not the shape. If this assumption is true, the shape function

of (B.12) is expected to give a pattern that is rotationally symmetric about the Zn

axis for a given cross-sectional area and arbitrary shape. This will be investigated

by considering the shape function for a small rectangle.

Assume the shape of the ray-tube is a rectangle which is of length a in the zn

direction and of width b in the yn direction. The shape function of (B.12) for this

1 f__b f)a eJkf"_- I- t
Sn(÷) = a-"b _b ½a axnayn

1 f_b f_a eJk(ztncosCnsinOn+yWnsinCnsinO n , t
= J-½bJ-½o )a .au.

1 sin On)= sinc(lkacosqbnsinOn) sinc(-_kbsinqbn (B.13)

case is
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where

sine(x)

Oft, en

sin x
(B.14)

= angular spherical coordinates of the observer in the relative

coordinate system of the n th ray-tube where it intersects

the open end.

So far, this result shows that the integral is shape dependent, i.e., it is not rota-

tionally symmetric about the Zn-axis because it has a en dependence. Now impose

the requirement

1A (B.15)
a,b < 2 "

The sinc functions are now well approximated by the quadratic portions of their

Taylor series expansions and (B.13) becomes

[ 1

l(__kacosCnsinOn)2][1 1 1( sin On) 2]- - \_kbsin Ca

1 (kbsinOn)2sin2¢n= 1 - 2--41(kasin0n)2 cos2 ¢n - _-_

1

+5_ (kasinOn)2 (kbsinOn)2 c°s2 en sin2 en. (B.16)

Using (B.15), the second and third terms of (B.16) are at most .411 sin 2 On and

the last term is at most .042 sin 4 0n. Therefore, the last term can be dropped but

the second and third terms should be kept, leaving

Sn(_) ._ 1-_(kasinOn) 2 cos2¢n+_sin2¢n • (B.17)

This result is still shape dependent because it depends on en. However, if the

rectangle becomes approximately square, i.e.,

b _ a (B.18)

227



then the _bndependencedisappearsand (B.17) becomes

sn(÷) ,,_ 1 - l (kasinOn)2

1 lk_nsinOn)2= 1-6( 2

,_ sinc(_k_nsinOn) (B.19)

where

An = a 2 (B.20)

= cross-sectional area of the ray-tube.

This result can be compared with the result given in [18] for a circular cross-section

of equal area. The shape function for this case is given by

Sn(÷)- 2Jl(u) (B.21)
U

where

u = kVZ_-:sin0n

Jl(u) = first order Bessel function of the first kind.

(B.22)

The quadratic portion of the Taylor series expansion of (B.21) for small u is given

by

2Jl(u) 1

1 - Lu 2 (B.23)
u 8

SO

1 (k_nsinOn) 2Sn(÷) _ I- 8_ (B.24)

which isnearly identicalto (B.19) for the square cross-section.This resultlends

support to the assumption that ifthe cross-sectionissmall enough, the pattern of
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the shape function depends on the area and not the shape. (B.17) shows that if

(B.18) is not satisfied, i.e., if the shape is not roughly symmetric about tbe zn axis,

the pattern does depend on the shape somewhat. However, the approximation of

(B.19) has been shown to give numerically convergent results provided that

An < A , (B.25)

as mentioned earlier. The convergence was tested by making the ray-tubes smaller

and smaller in cross-sectional area. Furthermore, it can be shown using (B.16),

(B.19), or (B.24)that Sn(_)'_ l ifAn < (_A) 2. In other words, the shape function

disappears completely from (B.11) for a ray-tube with a cross-section of less than

The shape function can now be well approximated under the constraint of

(B.25) by

Sn(÷) _ sinc (!k_ _ ×/_n ) (B.26)\2

where the relation

sin0n = + x kn[ (B.27)

has been used. The output area of a ray-tube is found by conserving power and is

given by

[_i[2

An = _L2"Ain (B.28)

where

/_/n/o = electric field of the n th ray-tube, without wall loss, as

it exits through the open end,

/_i = electric field of the incident plane wave,

Ain = input cross-sectional area of the ray-tube,
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for when the GO/AI method is used, and

An m

where

On = beam solid angle of the rt th ray-tube when it is launched,

for when tile GRE/AI method is used.

(B.29)
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APPENDIX C

TERMINATION RECIPROCITY INTEGRAL DERIVATION

In this appendix, the method of using a termination reciprocity integral to find

the cavity scattered fields is briefly described. The main advantage of this method

is that the fields only need to be tracked from the open end of the waveguide cavity

to the termination. It is not necessary to track them back from the termination to

the open end. The other advantage is that this method allows the termination to

be arbitrarily complex, as long as the reflection properties of the termination are

known (e.g., through a modal reflection matrix or a plane wave spectral expansion).

C.1 General Bistatic Scattering Derivation for Three Dimensional Cav-
ities

Figure 95 shows an arbitrary open-ended waveguide cavity illuminated by an

infinitesimal electric current element/_l at point pl. The cavity is semi-infinite to

the right with an interior obstacle or termination existing somewhere inside the

cavity to the right of the arbitrarily chosen cross-section St, as shown in the figure.

Let the fields due to/Y' be denoted by/_' and H'. Let V_ be the volume defined by

the external region of Figure 95 plus the interior of the cavity up to the plane St in

front of the termination. _ is the surface enclosing this volume and is decomposed

as

E = Eoo + Sw + St (C.1)
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St

Figure 95: Open-ended waveguide cavity with an interior obstacle (termination)
illunfinated by an infinitesimal electric current element.

where

Sw

St

as shown in Figure 96.

vr:

= the free space surface at infinity in the exterior region,

= the semi-infinite exterior surface of the waveguide cavity and the

interior surface of the waveguide cavity up to St,

= the cross-section of the waveguide in front of the termination,

The fields gl and/_t satisfy Maxwell's curl equations in

v × #' = jkYo_' + f't(P') (c.2)

- v ×_' = jkZo#' (c.3)

where

k = free space wavenumber (27r/_),

Zo = 1/Yo = free space impedance (_ 377f/),

/5(P _) = delta function which is non-zero only at P_.
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Figure 96: The surface E enclosing the volume VE, composed of Too, Sw and St.

The fields/_l and/_I can be decomposed into incident and scattered compo-

nents as

where

= fields due to the current element f_ in the absence of the

termination,

= fields due to the current element T71 scattered by the

termination.

So, the incident fields are defined by the same geometry as in Figure 95, but with

the termination beyond St removed, and it is assumed that these incident fields
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$,

Figure 97: Cavity geometry of Figure 95 without the termination and
illuminated by an electric current element at P.

are known. It is desired to find the scattered fields of (C.4) at some point P in the

external region due to the presence of the termination.

Now consider the related configuration of Figure 97 which shows the same

cavity geometry as in Figure 95 in the absence of the termination, illuminated by

an infinitesimal electric current element ig located at point P. Let the fields in

the same volume V_ for this case be denoted by /_'i and /ti, with the subscript

i denoting an incident field because the termination is not present. These fields

satisfy Maxwell's curl equations in V_ similar to (C.2) and (C.3) above:

V × Hi = jkYoE, i + _,5(P) (C.5)

-v × = jkZoJq (c.6)

where

Ei,/'ti = fields due to the electric current element igin the absence of

the termination.

Following the procedure in [32, pages 116-117], the differential form of the reci-

procity relationship between the fields of (C.2), (C.3), (C.5) and (C.6) is given
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by

-V.(/_'x/1i-/_ix/l') = JE"_f(P)-Ei'_'f(P') (C.7)

which is valid in V_. The procedure involves straightforward algebraic manipula-

tion and a single differential vector identity.

Integrating (C.7) over the volume V_3 and using the divergence theorem yields

= (c.s)

where

h

/_'(P)

= unit surface normal pointing into V_.

= electric field due to the source f' in tile presence of the

termination, evaluated at P,

= electric field due to the source gin the absence of tile

termination, evaluated at P_.

The surface integral of (C.8) is over the three surfaces which make up E as defined

in (C.1),

× Hi- ff'i × _t). _dS X Hi- Ei × Hi)" ¢zdS.

(c.9)

On the surface at infinity E¢¢, it can be shown that the integrand of (C.8) vanishes

due to the radiation condition, so

fE (/_t × Hi-/_i x /1').hdS ---- O. (C.IO)
O0

On the interior and exterior surfaces of the waveguide cavity walls Sw, it can be

shown that the integrand of (C.8) also vanishes because the two sets of fields/_t,/_,
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and Ei,/_i satisfy the same boundary conditions, so

fs (_'' x Hi- E'i x .H') .hdS = O. (C.11)

(C.9)-(C.11) reduce (C.8) to

fs (ff" ×'Hi- ff'i × H') "hdS = ff.'(P)'_- ffTi(P')'_' (C.12)
t

which only requires an integration of the fields ove_ the cross-section St near the

termination.

By replacing/_ and/1_ in (C.12) with their incident and scattered components

defined in (C.4), (C.12) becomes

E,_(P) ._+ E,'s(P)._- F_,i(P')._'. (c.la)

The first integral on the left side of (C.13) is a function of only the incident fields

(in the absence of the termination), as are the first and last terms on the right side

of (C.13). If the termination were not present, Els and /-I_ would be zero so the

second integral on the left side of (C.13) and the second term on the right would

vanish, leaving only terms which depend on the incident fields. It therefore follows

that (C.13) can be decoupled as

E_(P) •/7- Ei(P') • _7'

g,,(p)

= _t (if': × -Hi- E'i x H_).hdS (C.14)

= fs (E/s × 1_i- E'i x His)..dS (C.15)
t

The first of these equations (C.14) yields no useful information, but the second of

these (C.15) is the desired reciprocity integral which gives the termination scattered

field at P in terms of an integration of fields over the cross-section St near the

termination inside the cavity.
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Typically,/_1s is the desired quantity because it is the electric field due to/_,

which is scattered by the termination. /_ is also of interest because it includes all

other scattering by the open-ended cavity, such as the scattering by the rim at the

open end and the scattering due to energy which couples into the cavity which is

reflected back before it reaches the termination. The total field at P due to the

source lff t is of course the sum of these two incident and scattered fields. It is noted

that ((3.15) intrinsically includes all multiple wave interactions between the open

end of the cavity and the termination; however, in practice it may be very difficult

to include these multiple interactions in evaluating /_s and Hs_ at the plane St in

((3.15). Luckily, for most realistic applications these higher order effects can be

neglected because the first order reflection of incident energy by the termination is

usually by far the most dominant. The multiple wave interactions could be added

separately if so desired, but this leads to a very complicated analysis which is

usually not necessary because these higher order effects are not of primary interest.

See Chapter II on the multiple scattering matrix (MSM) method as applied to the

hybrid modal method, for a further discussion of multiple interaction effects.

In the following it is assumed that/_,/-I_,/_i and/_i are known a priori using

methods such as those discussed in this report and elsewhere in the literature. It is

also assumed that the fields from fit reflected by the termination,/_l s and -',H 3 , are

known at the cross-section St but without the multiple wave interactions with the

open end of the cavity as discussed above. From these, the termination scattered

field /_s at P can be found using (C.15) without having to track the fields from

the termination back down the waveguide to radiate from the open end.

/_s(P) can now be extracted from (C.15) by choosing an appropriate tY. For

example, to find the _: component of the scattered field, simply replace/Yin (C.15)
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with & to obtain

Etsx(P)

(c.16)

where

EIsx(P) = _ component of E.tP).

At this point it may be useful to review the fields radiated from an infinitesimal

electric current element/7 in free space, for use in identifying the fields incident on

the open end of the cavity from the sources at P and pt. The electric field/_ of

such a current element is given by

jkZo
E_R) = -R x [L x/7-4_Re-JkR, for kR >> 1 (C.17)

where

= /_R = vector from the current element to the receiver.

The magnetic field radiated by an electric current element is then given by

1/_ x/_P). (C.18)- Zo

For the present case,/_ would be the vector from the source at P or pt to some

point in the vicinity of the open end of the waveguide cavity.

C.2 Modal Form of the Termination Reciprocity Integral

If the termination of tile open-ended waveguide cavity is complex, as shown

in Figure 95, finding the fields E' and H' in the integral of (C.15) may be difficult.

However, if the region of the cavity near the termination is a uniform waveguide
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section for which tile waveguide modal fields are known, then the scattered fields

E_s and H_ can be found in terms of the incident fields E_ and H_ using the modal

termination reflection matrix [Sr] described in Chapter II (assunfing of course

that [SF] is known). For example, the region near the termination in Figure 95 is

a circular waveguide, as is most often the case for realistic geometries. First, the

incident and scattered fields in the vicinity of the termination are expanded as a

sum of N ortho-normal waveguide modes propagating in the +7) directions as

N

n=l
N

n=l

N

n-1

(C.19)

(C.20)

(C.21)

where

_n

= n th electric and magnetic waveguide modal fields propagating

in the =t=_/directions, respectively,

= propagation constant of the n th modal field,

= axial coordinate of the waveguide, increasing towards the

termination.

The modal reflection matrix [St] then relates the incident modal coefficients to

the reflected modal coefficients, as

[A-'] = [Srl[A +'1 (C.22)

where [A +l] are column matrices of order N composed of the modal coefficients

A_ t and [Sr] is a square matrix of order N × N. These modal fields are illustrated

in Figure 98. Notice that the region near the cavity termination is modeled by
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Figure 98: Modal reflection of fields from a termination.

a senti-infinite uniform waveguide in Figure 98. See Chapter II for a more com-

plete discussion on waveguide modal methods, and especially Section 2.2.4 on the

termination reflection matrix [Sr].

The waveguide modal fields in (C.19)-(C.20) can be decoupled into transverse

(to r)) and axial (_) components as

where

= +h.,+ (c.24)

eno, hnrl

= transverse components of the n th electric and magnetic modal

fields, respectively,

= scalar portions of the axial component of the n th electric and

magnetic modal fields, respectively.
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The ortho-normality property of these modes can then be expressed as

(c.25)

where

1 : ifi=j0 : ifi#j

any planar cross-section of the waveguide,

(c.26)

which states that each mode carries unit power, independently of all other modes.

This ortho-normality condition can

integral of (C.15) using (C.19) and

be used to simplify the termination reciprocity

(C.20) thru (C.24). (C.15) then becomes

dS

dS

N N

: - z
m=l n=l

N N

m=l n=l

N N

= -2 y_ y_ A+mAX'6mr_

m=l n=l

N

F_/s(P)._ = -2 y_ A+A-_ '. (C.27)
n----1

This result along with (C.22) can be used to find the termination scattered field

E'_s(P), if the coefficients A + and A +_ of the incident modal fields of (C.19) and

(C.20) are known.
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If the coefficients of the incident modal fields are not known, they can be

found easily from the incident fields, again using the ortho-normality property of

From (C.19), assuming rt = 0 is chosen to coincide with the cross-the modes.

section St,

N

E (c.2s)= Amh m.
m=l

Crossing both sides of this with _nt and integrating the dot product of this with

over St gives

( )= ent x y_ Amh m •
t rn=l

N

= _ A+mffSt (_ntxhmt)'ildS
m=l

N

= E A+_Snm = A +.
m=l

So_

A + = ffs,(_nfxHi)._IdS.
(c.29)

and similarly,

In other words, the modal coefficient of the n th incident waveguide mode is found

by the integrating the cross product of transverse component of the electric field

of the n th mode and the incident magnetic field at St. The incident magnetic field

is found by tracking the fields coupled through the open end from io and i_ I, down

the waveguide cavity to the cross-section St using, for example, one of the methods

described in this report.
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C.3 Plane Wave Bistatic Scattering Using the Termination Reciprocity

Integral

The plane wave bistatic scattering by an open-ended waveguide cavity can be

found using the termination reciprocity integral of (C.15) by letting the sources

at P and pt recede to infinity. The co-polarized and cross-polarized bistatic radar

cross-sections (RCS), or "echo areas", are usually the figures of interest. In terms

of 0 and ¢ polarizations, the two co-polarized echo widths are _r0e and o_¢ and the

two cross-polarized echo widths are a0¢ and _r¢0. For example, a0¢ is defined by

lim IE'so(P)I2
aO¢ = 4_'r2 I .I (C.31)

where

Etso(P)

I

Eo¢ =

EPs(P)" f f=O

component of the scattered field at P,

distance from the open end of the cavity to P and pt,

magnitude of the ¢ polarized plane wave field incident on the

cavity from the direction of pt.

(C.32)

The other three bistatic echo widths are defined in exactly the same manner with

appropriate interchanges of 0 and ¢.

(C.31) can be simplified using (C.17). The plane wave field due to the t_

oriented current element at P incident on tile cavity can be written as

[ jkZo e_Jk R (C.33)lim _ ./_ x /_ x 0 4_..___:-g:O:=o=

where

/_ = -_ (C.34)
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= vector from P to the open end of the cavity.

Using (C.34), (C.33)becomes

jkZo _kr

= OEooeJkr (C.35)

where

EoO =
lim jkZo

47rr
r ---_ oo

(C.36)

= magnitude of the 0 polarized plane wave field incident on the

cavity from the direction of P.

Therefore, from (C.36)

lim
47rr 2

7"--'-+OO

which makes (C.31) become

jkZo 2= 47r_

(kZo) 2

- 4_ IEool2
(c.37)

aO¢- (kZ°)2 [EIso(p) 2 (C.38)

4. iZoOt IF,o,
The other three bistatic echo widths are found using this same equation with the

appropriate interchanges of 0 and ¢. The form of (C.38) is easy to use computa-

tionally because the echo width is given in terms of tile scattered field found using

the termination reciprocity integral as in (C.32) and (C.15) or (C.27), and in terms

of the components of the plane waves incident on the cavity from tile directions of

P and pt. The monostatic RCS (backscatter echo area) is found by simply making

P and pt tile same point.
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APPENDIX D

SUB-APERTURE FIELD EXPANSION METHOD IN 2-D

The method of expanding the fields in an aperture in terms of the fields of

smaller sub-apertures which make up the aperture is described in this appendix.

For simplicity, the derivation is for the two dimensional (2-D) case. The extension

to 3-D is straightforward and is not included in this appendix, but is described for

application to the generalized ray expansion method in Chapter V.

Figure 99 shows the geometry of an aperture in the z = 0 plane with a known

incident field _Ti(x ) inside the aperture. Throughout this appendix, L7 represents

the field which is normal to the plane of the page, either electric or magnetic,

depending on polarization. U means "the scalar portion of U".

Using equivalent currents in the aperture and the 2-D radiation integral, the

field for z > 0 is given by

--- e-jkpt t

where

k = free space wave number 27r/)_,

= free space wavelength,

I
p = distance from a point in the aperture (z', 0), to a field point (p, 0).
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Figure 99: Geometry of an aperture with a known incident field.

The aperture integral in (D.1) can be broken up into 2M + 1 equally sized sub-

aperture integrals of width A:

where

d
A _

2M+l"

(D.2)

(D.3)

Define a new variable of integration,

! !
z m = x -mA (D.4)

and define pm and 8m as shown in Figure 100 for the mth sub-aperture, pt is now

given by

' V/p2m + z_ 2pmZlm sinSm. (D.5)tO =

where

Pro, Ore = polar coordinates of the mth sub-aperture with their origin

at (x,z) =
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Figure 100: Geometry of the mth sub-aperture defining Pm and Om.

' =0Keeping the first three terms in the Taylor series for / expanded around x m

gi yes

,2 1 (x_ - 2pmmtm sin 0m)2
' ' _ Z_m - (D.6)

P _ Pm -- Zm sin Om+ 2 Pm 8 p3

Getting rid of all terms of higher order than quadratic reduces (D.6) to

, , I z_
-- cos 2 Ore. (D.7)

P _ Pm- Zm sin Om + _ Pm

The quadratic term can be dropped if its phase contribution to the exponential

term of (D.2) is small enough, i.e., if

1 Ztm2 lr
-- cos 2 6m <k2pm (D.8)

Then

' sin 0m, (D.9)P' _ Pm --Zm

where it is assumed that r/8 is a small enough phase to be neghgible. The max-

' ' andinmm value that z m can attain is A/2. Substituting this into (D.8) for z m
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Figure 101: Far field region of an aperture of width A = 2)t.

rearranging yields the result

pm > 2--_ cos 2 0,n (D.10)

which is the far field condition often encountered in aperture antenna problems.

This region is plotted in Figure 101 for a sub-aperture of width A = 2A. (D.10)

can be rewritten as

pm A
> 2T cos2 0m (D.11)-h- A

which shows that the far field distance relative to the sub-aperture size increases as

the sub-aperture gets large in terms of wavelength. In other words, the distance to

far field increases with frequency. The inequality of (D.10) or (D.11) is important
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because it determines how close the observer can be to the sub-aperture and still

use the far field form of the radiation integral for a given sub-aperture size.

Substituting the far field form of pO (D.8) back into (D.2) along with the

change of variables in (D.4) and integrating reduces (D.2) to

f(m+l)z,  -ikom [½,,
m_l)A j_½,,

Ui(zlm + mA )e jkz_ sinOmdx_

(D.12)

Therefore, thewhich is recognized as a simple Fourier transform relationship.

fields radiating from a sub-aperture look like they are due to a non-isotropic line

source located in the middle of the sub-aperture with a pattern given by the Fourier

transform integral in (D.12).

Substituting this result into (D.2) and (D.2) into (D.1) gives the fields radi-

u,(.', +  t,)eJk" 0..d."

(D.13)

ating from the full aperture,

U(p,O) = 2_fJkcosO
V 8_r m=-m

which is valid anywhere as long as the observer is in the far field of all the sub-

apertures, according to (D.10). (D.13) says that the fields radiating from an aper-

ture can be represented by a discrete array of non-isotropic line sources which is

valid even in the near field of the aperture, subject to the constraint of (D.10).

One advantage of using the sub-aperture expansion of (D.13) is that the far

field region of each sub-aperture is much closer to the aperture plane than the far

field region of the whole aperture which is given by

p > 2 cos20. (D.14)

Inspection of (D.3) and (D.10) indicates that the fields of the whole aperture can

be found arbitrarily close to the aperture plane using (D.13) by increasing the
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number of sub-apertures (2M + 1) appropriately. However, the main advantage of

using the sub-aperture expansion technique is that the fields from any particular

sub-aperture appear to be originating from a source located at the center of the

sub-aperture, provided the observer is in the far field of the sub-aperture. This

allows the fields from a particular sub-aperture to be traced in the presence of

obstructions, such as waveguide walls, as long as tbese obstructions are in the far

field region of the sub-aperture, using an appropriate field tracing method. The

Gaussian beam shooting method developed in Chapter IV and the Generalized

Ray Expansion method of Chapter V are examples. However, as is seen in Section

4.3, the Gaussian beam expansion is accurate at any distance from the aperture,

not just in the far field of the sub-apertures.

The most common form of excitation of the aperture for scattering problems

is a plane wave because it represents a source located at infinity, such as a radar

antenna. This is the excitation used throughout this report, although any general

aperture field Ui(x t) could be used. Therefore, as an example, let the incident

field be due to a plane wave which propagates from left to right at an angle of 8i

with the z-axis, as shown in Figure 102. Using the Kirchhoff approximation, the

incident field in the aperture is given by

Ui(z') -: Uoe -jkz'sinOi (D.15)

where

Uo = magnitude of the incident plane wave,

Oi = angle between the direction of propagation of the incident plane

wave and the z-axis.
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Figure 102: Plane wave field incident on an aperture of width d in the z = 0
plane.

Integrating (D.15) in (D.13) gives the fields radiating from the aperture as

U(p,O) = 2UO_m=_M _ e-Jk(P'=+mAsin_O_)smc.[_kA(sin0m-sinO_) 1

where

sin z
sinc(z) - (D.17)

;E

The Kirchhoff approximation used in (D.15) is very accurate for high frequencies

and values of 0i and 0 which are not too close to grazing. A more accurate rep-

resentation could be found using, for example, the Physical Theory of Diffraction

(PTD) [11], but the improvement in accuracy would usually not be enough to

outweigh the added complexity for realistic aperture sizes.
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