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NOMENCLATURE

The display contains a large number of independent pieces of information derived from the

extensive processing of a large number of aircraft sensor signals. The result is that a large nomen°

clature is required to present a detailed analytical description of the display format. To create a

degree of order, some rules have been adopted in the assigning of mathematical symbols to the

various quantifies. These rules are given below.

• With the exception of the display coordinates, (X, Y), all variables are designated by lower

case symbols (Roman or Greek).

• With the exception of the acceleration due to gravity, g, all constants are designated by upper

case symbols (Roman or Greek). Mode identifiers are regarded as constants.

• Each gain or scale factor is designated by a subscripted k, if a variable, or a subscripted K, if

a constant.

• Each time constant is designated by a subscripted T.

• Each mode identifier is designated by a subscripted I.

• All display symbol positions are designated by subscripted coordinates (X, Y).

The nomenclature is divided into the following four categories:

1. Continuous and discrete input variables. The continuous input variables are obtained from the

aircraft's sensors, and the discrete variables are operating-mode alternatives.

2. Intermediate variables used in the description of the display-symbol drive laws
3. Constants

4. Output variables in the form of display coordinates

Continuous

I:lyp

h

h

ht

£1
Yn, Ve

Va

U xc , Ullc

Input Variables

aircraft body-axis lateral acceleration at the cockpit, ft/sec 2

true altitude of the aircraft's center of gravity, (c.g.), ft

vertical velocity of the aircraft's c.g., ft/sec

vertical acceleration of the aircraft's c.g., ft/sec 2

height of the aircraft's c.g. above the reference touchdown point, ft

pilot-commanded vertical velocity of the aircraft's c.g., ft/sec

vertical velocity of the desired touchdown point, ft/sec

north and east velocities of the aircraft's c.g. relative to the

station-keeping point, ft/sec

north and east accelerations of the aircraft's c.g., ft/sec 2

airspeed, ft/sec

pilot-commanded longitudinal and lateral velocities of the aircraft's c.g.

relative to the station-keeping point, ft/sec

pilot-commanded longitudinal acceleration of the aircraft's e.g., ft/sec 2

general coordinates in a north-east-down axis system whose origin is at

the landing pad datum, ft

V



Discrete

d

f=

Ae

A

..'7"

h
.'7"

hc

hg

h,

i

kwg

k_

k,

horizontal coordinates of the aircraft's c.g. in the ( z, 1/, z) axis system, ft

angle of attack, deg

throttle position, deg

longitudinal control input, in.

lateral control input, in.

aircraft roll, pitch, and yaw Euler angles, (leg

aircraft roll, pitch, and yaw Euler-angle rates, deg/sec

engine nozzle angle, deg

engine nozzle angular rate, deg/sec

heading of the mean wind over the landing pad, deg

longitudinal translational command mode in the approach

type of attitude control mode

heave damper select

type of landing (conventional or vertical)

horizontal translational command mode in hover

vertical command mode

Intermediate Variables

distance of the aircraft's c.g. from the station-keeping point,

measured along the reference flightpath track, ft

range at the start of deceleration, ft

horizontal distance of the jth landing-pad vertex from the pilot's

eyepoint, ft

position of the longitudinal acceleration caret relative to the

flightpath symbol, deg

length of the longitudinal acceleration error ribbon, deg

length of the longitudinal velocity error line, deg

displacement of the lateral acceleration ball from the center of the flightpath

symbol, deg

distance of the longitudinal position indicator from the flightpath

symbol, deg

filtered estimate of t:e vertical acceleration, ft/sec 2

estimated commanded vertical velocity, ft/sec

height of the ghost aircraft datum (vertex a), ft

altitude of the reference flightpath at the position of the aircraft's e.g., ft

indicates whether the local reference flightpath is straight ( i = 0) or curved,

and, if curved, whether to the right ( i = +1) or to the left (i = - 1)

ghost lead blending gain

pitch rate blending gain

turn entry-and-exit blending gain

throttle washout gain, ft/deg sec

vi
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tb= , tbv

tlx, tlv

tlh

ts_ , ts_

t_z, t_

t_c

va/

Urt

iJ,

Urt
.1-.
1) rt

t !

_a, Ya

II II It

• p, _lp, Zp

Ol

"lp

%
&r"J

rSV"i

length of the line from the aircraft to the appropriate reference

flightpath circle, ft

Laplace transform variable, 1/sec

coordinates of the velocity predictor ball relative to the trident

symbol, deg

coordinates of the datum of the landing-pad symbol relative to the

trident symbol, deg

position of the landing-pad bar relative to the trident symbol, deg

coordinates of the station-keeping point cross relative to the

trident symbol, deg

coordinates of the moving tip of the velocity vector relative to

the trident symbol, deg

position of the vertical velocity predictor diamond relative to the

trident symbol, deg

length of the vertical velocity limit ribbon, deg
estimated acceleration relative to the airmass, ft/sec 2

filtered airspeed, ft/sec

aircraft speed along the reference flightpath, ft/sec

reference longitudinal acceleration along the reference flightpath

track, ft]sec 2

acceleration along the reference flightpath, ft/sec 2

filtered acceleration along the reference flightpath, ft/sec 2

horizontal longitudinal and lateral velocities relative to the station-keeping

point, ft]sec

limited horizontal velocity relative to the station-keeping point, ft/sec

longitudinal and lateral accelerations relative to the station-keeping

point, ft/sec 2

filtered longitudinal and lateral accelerations relative to the station-

keeping point, ft/sec 2

general coordinates in an axis system whose origin is at the center of the

appropriate reference flightpath circle and whose z axis is parallel to the

final flightpath segment, ft

coordinates of the aircraft's c.g. in the ( x', V') axis system, ft

general coordinates in an axis system whose origin is at the landing-pad

datum, and which is generated by rotating the standard north-east-down axis

system about the vertical axis, through the aircraft's heading angle, ft

coordinates of the pilot's eyepoint in the ( x", V", z") axis system, ft

filtered angle of attack, deg

angle of the mean wind relative to the aircraft's longitudinal axis, deg

inertial flightpath angle, deg

potential flightpath angle, deg

quickened flightpath angle, deg

z coordinate of jth landing-pad vertex, in the (z", V", z") axis system, ft

V coordinate ofjth landing-pad vertex, in the (z", y", z") axis system, ft
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d,e,f,g)

c

Cq

Oc, _c

I I

%, #g

Gu _Gv _Gw

_blo

t_po

1/)t

A

A6t

B_, B_

Db, Dc

19I
Dh

g
H

z coordinate ofjth landing-pad vertex, in the (z", y", z") axis system, ft

distances of the ghost aircraft ahead of the real aircraft for the

lateral and vertical tracking tasks, ft

lateral distance of the aircraft from the reference flightpath track, ft

elevation and azimuth of the defining vertices b, c, d, e, f, g of

the ghost aircraft relative to the ghost beacon (vertex a), deg

correction to the ghost aircraft lateral position to provide turn coordination

at turn entry and exit, (leg

lateral inertial flightpath angle, deg

quickened lateral flightpath angle, deg

pilot-commanded pitch and roll angles, (leg

elevation and azimuth angles of the ghost aircraft relative to the

pilot's eyepoint, deg

elevation and azimuth deviations of the ghost aircraft due to aircraft

position errors relative to the reference flightpath, (leg

elevation and azimuth of the jth landing-pad (or runway) vertex, deg

angle between a line from the aircraft to the center of the reference

flightpath circle and the z axis of the landing pad, deg

angle subtended at the center of the reference flightpath circle by the

remaining arc of the circular flightpath segment, (leg

longitudinal, lateral, and heave damping parameters, 1/sec

heading of the :r axis of the landing pad, (leg

heading of the z axis of the landing pad relative to the aircraft's longitudinal

axis, (leg

heading of the landing-pad pointer relative to the aircraft's longitudinal

axis, deg

heading of the tangent to the reference flightpath track, deg

Constants

approach maximum angle of attack, (leg

change of gross thrust per unit of aircraft mass per unit change of throttle

position, ft/deg sec 2

coordinates of the start of the curved segment of the trajectory, expressed

;n the mean landing-pad axis system, ft

coordinates of the start of the final straight segment of the flightpath,

in the mean landing-pad axis system, ft

ranges at the curved flightpath entry and exit, ft

nominal range at the start of the second-step deceleration, ft

range at which the aircraft would come to a hover if the nominal

first-step deceleration were held constant, ft

acceleration due to gravity (32.2 ft/sec 2)

reference hover altitude, ft

.°.
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R

Ko=, Ka_

Kz, Kh

Kh

K,, , K,,_
g,,,
K&, K%

K6,

K,

Ke_, K_

o

K4,

K_

Lg

R

P_
R(,) _(_)

Sz ,Sy

T,

T4

T5

7"6

T_

T_,
V_

V,

V_t_

recommended maximum touchdown vertical velocity relative to

the landing pad, ft/sec

scale factors converting linear accelerations to display

angles, deg sec2/ft

scale factors converting horizontal distances to display angles, deg/ft

scale factor converting vertical distances to display angles, deg/ft

scale factors converting horizontal velocities to display angles, deg sec/ft

scale factor converting vertical velocities to display angles, cleg sec/ft

longitudinal and lateral conm.,! input gains used in calculations of

estimated longitudinal and lateral accelerations in hover (/at = 0), ft/in, sec

maximum value of k_t, ft/deg sec

lateral flightpath angle scale factor

longitudinal and lateral control input gains used in calculations of

estimated longitudinal and lateral accelerations in hover (Iot = 1), ft/deg sec

vertical flightpath response gain, ft/deg sec

ghost aircraft turn coordination washout gain

lateral flightpath response gain, ft/deg sec

nominal distance of the wheels below the aicraft's c.g., ft

radius of curvature of the reference flightpath track, ft

radius of the circle on which the landing-pad pointer moves, deg

coordinates of the centers of the reference flightpath circles in the mean

landing-pad axis system, ft

coordinates of the station-keeping point in the mean landing-pad axis

system, ft

time constant of the airspeed and angle-of-attack filters, sec

pitch and roll stick-i.iput washout time constant, sec

complementary filter time constant used in the calculation of

filtered acceleration relative to the air mass, sec

filter time constant used in the calculation of filtered inertial

acceleration along the track, sec

complementary time constant used in the calculation of

filtered longitudinal and lateral accelerations in hover, sec

time constant of the desired vertical velocity response, sec

time constant of the desired airspeed response, sec

horizontal tracking time constant, see

ghost aircraft turn coordination washout time constant, sec

reference airspeed, ft/sec

nominal final deceleration, ft/sec 2

nominal i; ';al deceleration, ft/sec 2

inertial lon_ tinal speed below which the "velocity error line

is displayed _ ,len It = l, ft/sec

preset minimum value of the filtered airspeed used in the calculation

of the pitch rate gain, k O, ft/sec

L

4,

!
¢
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Vf,_

X tI'IGZ

Y,_.= , Y,._,:
F

ATgh,A
AxJ,
Az. /

A Db, h D_

A_t

v,z',z-

_C

No

W_

preset maximum value of the filtered airspeed used in the calculation

of the pitch rate gain, k O, ft/sec

preset minimum value of v:t, ft/sec

maximum value of the X display coordinates, deg

maximum and minimum values of the Y display coordinates, deg

reference vertical flightpath angle, deg

time period of the final deceleration, sec

ghost lead times for the vertical and lateral tracking tasks, sec

z, V, z coordinates of the jth landing-pad vertex in a landing-pad fixed-

axis system, ft

lead blend distances at the curved flightpath entry and exit, ft

fin height, semispan, and length of the ghost aircraft, deg

heading of the final flightpath segment relative to the mean z axis of the

landing pad, deg

angle between a line from the aircraft to the center of the reference

flightpath circle and the mean x axis of the landing pad, deg

heading of the final flightpath segment relative to the mean z axis of the

landing pad, deg

nominal pitch angle for the approach and landing, deg

estimates of the aircraft's longitudinal, lateral, and heave damping

parameters in hover, 1/see

estimates of the average rate of change of the longitudinal, lateral,

and heave damping parameters with airspeed over the normal

approach airspeed range, 1/ft

damping constant of the vertical velocity command mode, 1/see

heave damper constant, 1/sex

angle subtended at the center of the reference flightpath circle by the

complete arc of the flightpath's circular segment, deg

mean heading of the x axis of the landing pad, deg

heading of the final segment of the reference fiightpath, deg

heading of the initial segment of the reference flightpath, deg

Output Variables (Display Coordinates)

The position of each symbol on the display is identified by coordinates (X, Y), subscripted

and superscripted to identify the particular symbol.

Subscripts

{1

{le

av
b

f

0

longitudinal acceleration caret

longitudinal acceleration error ribbon

lateral acceleration ball

horizontal velocity predictor ball

flightpath symbol (limited)

flightpath symbol (unlimited)

fin beacon (vertex a) of the ghost aircraft symbol (limited)

X



gu

9-(-=b,

c,d,e,f,9)
h

l

lh

P

8

8¢

sp

t

1)

W

wl

oLm

fin beacon of the ghost aircraft symbol (unlimited)

ghost aircraft vertices b, c, d, e, f, g

center of the horizon

datum of the landing-pad symbol (plan view)

landing-pad bar

conformal landing-pad symbol

longitudinal position indicator

station-keeping point cross

station-keeping point pointer

trident symbol

horizontal velocity vector

velocity error line

vertical velocity predictor diamond

vertical velocity limit ribbon

angle-of-attack warning bar

angle-of-attack reference brackets

Superscripts

j jth vertex of the landing pad

Variables without Subscripts or Superscripts

The list of output quantities needed to drive the HUD symbols is completed by those which

define angular positions.

8¢9

¢
¢g

angle of the ghost aircraft wings relative to the display abscissa (real

aircraft wings), deg

angle of the horizon bar relative to the display abscissa, deg

angle of the ghost wings relative to the horizon bar, deg

xi
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A HEAD UP DISPLAY FORMAT FOR APPLICATION TO

VISTOL AIRCRAFI" APPROACH AND LANDING

Vernon K. Merrick, Glenn G. Farris, and Andrejs A. Vanags*

Ames Research Center

SUMMARY

This paper describes, in detail, a head up display (HUD) format developed at NASA Ames

Research Center to provide pilots of V/STOL aircraft with complete flight guidance and control

information for Category-IIIC terminal-area flight operations. These flight operations cover a large

spectrum, from STOL operations on land-based runways to VTOL operations on small ships in high

seas. Included in this description is a complete geometrical specification of the HUD elements and

their drive laws. The principal features of this display format are the integration of the flightpath

and pursuit guidance information into a narrow field of view, easily assimilated by the pilot with a

single glance, and the superposition of vertical and horizontal situation information. The display is

a derivative of a successful design developed for conventional transport aircraft. The design is the

outcome of many piloted simulations conducted over afc Jr-year period. Whereas the concepts on

which the display format rests could not be fully exploited because of field-of-view restrictions, and

some reservations remain about the acceptability of superimposing vertical and horizontal situation

information, the design successfully fulfilled its intended objectives.

INTRODUCTION

It is well known that, even in an aircraft with good fixed-operating-point handling qualities,

the pilot's perception of the difficulty of performing specific tasks can be sensitive to the technique

used to display situation and guidance information. This sensitivity increases rapidly as the oper-

ating environment deteriorates, eventually reaching the point where not only the method of display

presentation, but also the style of information representation (display format) becomes critical.

Over the past twenty years the head up display (HUD) method of display presentation has

passed from being an acceptable alternative to being a preferred one. This has occurred largely

because of improvements in field of view and in the sensor quality needed to maintain accurate

conformability with the outside visual scene. In concert with the improved HUD technology, there

has been considerable progress in understanding and developing geometrical formats for displaying

the information. This effort has been accompanied by a significant conceptual change.

Early attempts at HUD display formats tended to mimic the electromechanical attitude director

indicator (ADI). Flight guidance was provided by flight directors in the form of error bars that

moved relative to an aircraft-body-fixed reference symbol. Surrounding this datum was an array of

flight status information. The primary problem with this arrangement was that the flight guidance

* Simulator Applications Engineer employed by SYRE Corp., Moffett Field, California.
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information tended to be disassociated from the status information. The danger in this was that

the pilot could easily concentrate on "zeroing out" the flight-director bars to the total exclusion of

any status monitoring. It follows that the potential for flying the aircraft into a hazardous situation

was built into the concept. A solution to this problem, and one that is easier to implement with

an electronic display than with an electromcchanical one, is to integrate the guidance and flight-

critical status information so that pilot awareness of aircraft status is intrinsic. This is the conceptual

change rcterred to earlier.

The primary technique used to achieve guidance and status integration is to redirect pilot atten-

tion away from the somewhat arbitrary body-fixed datum, used in ADI-type formats, to the aircraft's

velocity vector, and to adopt guidance techniques based on pursuit rather than compensatory, or

flight-director, tracking. The advantage of this approach is that it duplicates well-established pi-

loting practice. Such practice lays stress on the importance of looking where the aircraft is going

rather than where it is pointing, and of being aware not only of the tracking error, but also of the

motion of the tracked object and the change of aircraft state required to track it. The latter fea-

tures are fundamental to pursuit tracking. One of the most successtul HUD formats which follows

the new philosophy was developed by Bray (ref. 1), and has been certified for commercial trans-

port operations in Category-IliA visibility. The pursuit display concept has also been applied to

powered-lift STOL aircraft by Hynes et al. (ref. 2), and tested, both "head up" ai_d "head down," on

the Ames Research Center's Quiet Short-Haul Research Aircraft. The primary conclusion was that

the concept "provided well-conditioned guidance commands for following the reference approach

paths and for maintaining situation awareness under a complex instrument flight environment."

Research has been carried on for several years to devise and evaluate HUD formats designed

for the VTOL approach and shipboard landing task (refs. 3-5). From this work, a forniat has

emerged which appears to satisfy display requirements suitable for V/STOL terminal-area oper-

ations to and from small ships, operating in high seas, in Category-lllC visibility. This format

relies heavily on that of references 1 and 2 for the approach phase, and on an Army-sponsored he-

licopter display concept (ref. 6) that uses a horizontal velocity predictor for the hover and vertical

landing phases. The major contribution of the resulting format rests in blending these concepts in

a more or less consistent manner.

Simulation efforts to integrate and refine the concepts involved three piloted evaluations on

the NASA Ames Research Center's Vertical Motion Simulator (VMS). Each of these simula-

tions was preceded by extensive engineering analysis and refinement on a fixed-base simulator.

This "pilot-in-the-loop" workstation was a valuable tool for generating and developing new ideas.

Eleven test pilots from NASA, the Royal Aerospace Establishment, industry, and the military

were involved in the evaluation process. These pilots, and numerous engineers, provided valuable

suggestions.

The HUD format will be described in detail. The geometry of all the elements is defined

consistent with an assumed field of view 16° wide by 16 ° high. All the symbol drive laws are given

in general form, along with a set of drive-law constants appropriate for an AV-8A Harrier. The

geometric specifications of the landing pad are similar to those of a Spruance-class destroyer.

L
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The report is organized so that those who want to obtain an overview of the concepts witho,_t

becoming involved in technical minutiae may skip the section entitled "Symbol Drive Laws" and

the appendices.

HUD CHARACTERISTICS

All HUD formats are compromises resulting from the attempt to pack as much useful infor-

mation as possible into the simplest, least-cluttered display. A pilot's reaction to a HUD format is

necessarily highly subjective and depends strongly on his or her experience in performing the kind

of task for which the HUD format was designed. Many design conjectures about HUD formats are

based, somewhat loosely, on pilot comments. There is a need to place these conjectures on more

scientific foundations. But this can only occur if measurements can be made to support these con-

jectures. Oculometers have not been capable of the less than 1° resolution required for such work,

although promising new developments may soon change this. The best that can be done, currently,

is to translate the least controversial conjectures into the following set of general requirements.

,j

;!

1. Primary guidance should be provided in simple, uncluttered, analog error form, centered on

the flightpath symbol and capable of being assimilated with a single glance.

2. Guidance graphics and dynamics should be representative of a task familiar to the pilot.

3. Where possible within the constraints of the HUD field of view, the graphics should be con-

formal with the outside visual scene.

4. Flight and control system status information should fan out from the guidance information

zone in order of decreasing impo,'tance to safety, with the primary status information within a

10° field of view.

5. All flight-envelope limits should be shown.

6. All control limits not clear from pilot-control positions or forces should be shown.

7. Clutter should be minimized by avoiding unvarying descriptors and, if the equipment permits

it, by using intensity, color and occultation techniques.

8. Relative locations of the guidance and primary status information should match those of the

associated pilot controls.

9. The display should provide the pilot with complete flight status information at all times.

3



NONCRITICAL AND BACKUP

STATUS INFORMATION

(DIGITAL)

10 FOV

Figure 1.- HUD topology.

Requirements (1) and (4) imply a HUD topology as shown in figure 1. For the primary guid-

ance information to be seen without eye motion, it must reside within a 3° field of view. However,

this field of view may move relative to the rest of the display.

General Description

Two pilot-selectable display modes are provided, termed "approach" and "hover." Each mode

has its own display format (fig. 2). Both modes are designed to be "attitude conformal," that is,

elements of the display that indicate changes of attitude move in one-to-one correspondence with
the outside visual references.

The approach mode can be used to make either constant-speed conventional landings, or de-

celerating transitions to a hover followed by a vertical landing. For either type of landing, the

vertical and lateral guidance is contained in a symbol representing a "ghost" aircraft (fig. 2(a)).

This symbol identifies the position of a fictitious aircraft located ahead of the real aircraft and per-

forming the approach task perfectly. The pilot's vertical and lateral control actions are reflected in

the motion of a "'flightpath" symbol (fig. 2(a)). This symbol indicates the direction of the aircraft's

inertial velocity vector. In operation, the pilot maneuvers the aircraft so that the flightpath and ghost

aircraft symbols coincide. The aircraft is then flying along the reference flightpath.

For a conventional landing, the speed guidance symbol is in the form of a line indicating the

longitudinal velocity error (fig. 2(a)). This line starts at the tip of a caret whose vertical position

relative to the right wing of the flightpath symbol indicates long;tudinal acceleration. To maintain

4
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Figure 2.- Approach and hover display formats. (a) Approach; (b) hover.

constant speed, the pilot maintains the tip of the speed error line coincident with the right wing of

the flightpath symbol.

For a decelerating transition to a hover, longitudinal guidance is provided in the form of a

longitudinal acceleration error ribbon (fig. 2(a)). The pilot maintains a deceleration approximating

that of a reference value by "nulling" this ribbon with the appropriate controls.

If the pilot has elected to make a conventional landing, a runway symbol appears on the display

(fig. 2(a)), and the landing is completed using only the approach display mode.

If the pilot has elected to make a vertical landing, then, after coming to a hover at the initial

station-keeping point using the approach display mode, he selects the hover display mode. This

mode presents a superposition of information in both the vertical and horizontal aspects (fig. 2(b)).

The central display element is a fixed "trident" symbol that is a plan-view representation of the

aircraft showing the correct relative locations of the wheels and noseboom. The landing pad is

presented in both the vertical and horizontal aspects. In the horizontal aspect, the pad symbol is

geometrically similar to the real landing pad and is scaled in both size and relative position to match

the trident. In the vertical aspect, the pad ("landing-pad bar" in fig. 2(b)) is shown edgewise at a

distance below the trident proportional to the altitude above the landing pad. The primary guid-

ance information, in hover, is contained in symbols representing the final station-keeping point, the

height above the deck (landing-pad bar), and the vertical velocity allowable within a prescribed

landing-gear limit. In operation, the pilot, using the appropriate controls, moves a predicted hor-

izontal velocity symbol (fig. 2(b)) over the station-keeping point symbol and holds it there, while

maintaining constant altitude. When the aircraft is at the station-keeping point, the pilot moves

5



thepredicted vertical velocity symbol (fig. 2(b)) to establish a rate of descent, within the limits of

the allowable vertical velocity ribbon (fig. 2(b)), until touchdown. The allowable vertical velocity

ribbon is especially useful if the landing pad is moving vertically, as in the case of a ship deck.

Sensor Requirements

The display is designed for an aircraft equipped with a full inertial navigation system providing

aircraft angular and translational positions, velocities, and accelerations. An air data system is

required to provide true airspeed, angle of attack, sideslip, barometric altitude and altitude rate.

Terminal-area navigation information requires a microwave scanning radar, distance-measuring

equipment (DME) and radio altimeter. To achieve high positional accuracy in hover, additional

sensors such as a laser tracker may be required. When operating onto a ship, data on the speed and

direction of the ship and the wind over deck (WOD) must be uplinked to the aircraft. Depending on

the severity of the ship motion, the ship may need to be equipped with an inertial navigation system

providing the position, velocity, and acceleration of the desired touchdown point on the deck. This

information also must be uplinked to the aircraft.

Certain pilot-selected information must be provided to the display computer, namely:

1. Runway heading

2. Runway altitude

3. Approach glideslope

4. Approach deceleration

5. Initial and final station-keeping points relative to the desired touchdown point

6. Final approach track heading

7. Ship type (landing-pad geometry)

APPROACH DISPLAY

Aircraft Fixed Symbols

The construction of the display begins with the fixeq elements shown in figure 3. These ele-
ments are:

1. Aircraft reference symbol

2. Engine speed as a percentage of the nominal maximum

3. Nozzle angle in degrees

6
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4. Range from the station-keeping point, in nautical miles for distances greater than 1 n.mi., and
in feet for distances less than 1 n.mi.

5. Control mode indicator (A for approach, H for hover)

85 75

/ \NOZZLE

ENGINE AIRCRAFT ANGLE

RPM RANGE (DME) REFERENCE
SYMBOL

Figure 3.- Case-fixed display elements.

The gull-winged aircraft reference symbol is equivalent to the reference waterline of the air-

craft. The digital readouts of engine speed and nozzle angle are removable in a HUD declutter

mode selectable by the pilot.

Attitude and Flightpath References

The presentation of roll, pitch, and heading is shown in figure 4. This entire element group

rolls about the aircraft reference symbol (fig. 4). The pitch scale is presented in increments of 4 °

relative to the horizon line. Positive pitch angles are indicated by solid bars, negative pitch angles

by dashed bars. As shown in figure 5, the pitch angle is 6.5 ° . The heading readouts are at every

10° (fig. 4). The aircraft's heading is determined by the perpendicular from the aircraft reference

symbol to the horizon. As shown in figure 6, the aircraft's heading is 55 °.

- --8

_ PITCH

HEADING _ _._ I_" LADDER
SCALE _ -- 4

HORIZON
__ 60 JLINE

"l I I J

- - ---4
REFERENCE FLIGHTPATH
ANGLE

Figure 4.- Attitude cue display elements.
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Figure 5.- Determination of aircraft heading.

FLIGHTPATH

SYMBOL _j__ACCELERATION ERROR

ALTITUDE j501 _'120 RIBBON

\
_" AIRSPEED

VERTICAL

VELOCITY / __DECELERATION SCALE

ACCELERATION (1 FT/S INCREMENTS)

ALONG THE

FLIGHTPATH

Figure 6.- Flightpath symbol and associated elements.

The flightpath reference, shown in figure 5 as a dashed line parallel to the horizon, indicates the

desired approach glideslope. The position of this reference is set by the pilot. It is especially useful

in visual approaches by providing a cue to start the descent. As shown in figure 4, the flightpath

reference is set for a -3°glideslope.

Flightpath Symbol Group

With the exception of the flightpath reference lit, e, which is deleted in the hover mode, the

two symbol sets described above arc present in all display modes. The remaining symbols to be

described arc present only in particular display modes. The major additional symbol set (fig. 6) used

in the approach mode comprises the flightpath (velocity vector) symbol; the airspeed, altitude, and

altitude rate digits; the longitudinal acceleration caret; and the longitudinal guidance error ribbon.

$
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This set of symbols moves with the flightpath symbol as a group, and rolls with the aircraft, h

follows that the wings of the flightpath symbol are always parallel to the 'aircraft reference sym-

bol (fig. 7). This arrangement was selected to aid in indicating roll angle, and makes the digital

information easier to read, especially at high roll angles.

APPROXI MATE

ANGLE OF

ATTACK

PITCH

ATTITUDE, 0 /,_ AIRCRAFT

_ ROLL

/ -- ANGLE, 0

"_ INERTIAL

I / _FLIGHTPATH, "r v

BRACKET

ALPHA WARNING BAR

Figure 7.- Flightpath presentation in a roll.

Flightpath Symbol- The flightpath symbol is the central element of the approach and tran-

sition display and is the pilot controlled element for flight in the vertical and lateral degrees of

freedom. The vertical position of the flightpath symbol relative to the horizon, read from the pitch

attitude scale, is the inertial vertical flightpath angle of the aircraft. As shown in figure 2(a) the

flightpath angle is -3 °. The lateral position of the flightpath symbol shows the crosstrack angle

of the aircraft, which is the difference between the aircraft's heading and its velocity vector rela-

tive to the station-keeping point. This crosstrack angle is a function of the winds and the aircraft

sideslip. At low speeds the sideslip angle becomes very sensitive to changes in lateral velocity,

and, in fact, flightpath angle becomes undefined at zero speed. To maintain the flightpath symbol

within the HUD field of view at low airspeeds, the symbol drive laws are modified so that below a

certain speed, the symbol indicates lateral and vertical velecities rather than flightpath angles. To

indicate to the pilot that the change of drive law has taken place, the flightpath symbol is changed

to a diamond shape (fig. 8).

Since the flightpath symbol is a primary pilot controlled element during the approach and

transition, it must have response dynamics acceptable to the pilot. Unaugmented flightpath angle

response to pitch, roll, or throttle changes is usually very sluggish at approach speeds, and "flying"

this symbol can be difficult. This problem is overcome by adding some quickening logic to the pilot

control inputs. The level of quickening employed has been found, by simulation, to significantly

reduce the pilot workload, especially in the IMC (Instrument Meteorological Conditions) landing

approach task.
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Figure 8.- Desensitized flightpath.

Digitized Flight Status- During the approach, altitude, vertical velocity, and airspeed are dis-

played digitally. To avoid any possibility of obscuring the flightpath symbol, these digital readouts

are fixed relative to the flightpath symbol, and they therefore move with it. The readouts are close

enough to the flightpath symbol so that the entire symbol group can lie within the pilot's high-

definition field of view. The airspeed is in knots, updated every 1 kn; the altitude is in feet, updated

every 10 ft above 200 ft and every 1 ft below 200 ft; the vertical velocity is in feet per minute,

updated every 50 ft/min.

Longitudinal Acceleration- The acceleration caret (fig. 6) indicates the horizontal accelera-

tion. This symbol is referenced to the flightpath symbol wing and, for constant speed approaches

to a conventional landing, is scaled such that it can be used as a "potential flightpath angle" for

energy management. For small angles, the potential flightpath is defined to be

180
"/I, - 1),, + 7 (1)

lrg

where

,/

g

inertial flightpath angle

longitudinal acceleration

acceleration due to gravity

It follows that the acceleration caret is scaled to move an angular distance on the display of

1.78" (180/lr0") for every ft/sec 2 of longitudinal acceleration. With this scaling, the position of

the caret always indicates the steady-state (zero longitudinal acceleration) position of the flightpath

symbol. The principal value to the potential flightpath concept is that it gives the pilot a preview

of the steady-state flightpath angle and angle of attack, provided that the pitch angle and engine

power setting remain constant. The concept, in essence, provides an explicit indicator of the ap-

propriate pitch and power changes needed either to accomplish a desired maneuver or to counter

an impending problem. For example, the concept provides a timely indicator of the presence of

wind shear.
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While an acceleration caret scaled to represent a potential flightpath provides useful infor-

marion during conventional and STOL approaches, where longitudinal accelerations are small, its

importance is diminished considerably in approaches to a vertical landing. In the latter, decelera-

tions of 3 ft/sec 2 are nominal and may often reach 6 ft/sec 2. With decelerations of even 3 ft/sec 2, an

acceleration caret with potential flightpath scaling would be 5.34" below the level of the flightpath

symbol. With a nominal glideslope of -3 ° the acceleration caret would be 8.34* below the hori-

zon, and therefore outside the field of view regarded as optimal for safety-of-flight monitoring. Of

more practical concern is the fact that with current HUD technology the acceleration caret would

be very close to the lower edge of the display, and increases of pitch angle, deceleration, or flight-

path angle could easily cause the acceleration caret to move beyond the HUD field of view. These

considerations have forced the abandonment of the potential flightpath concept for approaches to a

vertical landing. Instead, the acceleration caret is scaled to 0.5 ° sec2/ft. With this scaling the pilot

can easily monitor the approach deceleration.

Longitudinal Guidance- Longitudinal, or speed, guidance is presented only if such guidance

is selected by the pilot. If the pilot desires to capture and hold a given airspeed (or groundspeed),

a velocity error line appears that is attached to the longitudinal acceleration caret (fig. 9(a)). This

line is scaled such that if its free end always coincides with the flightpath symbol wing, a smooth

convergence to the desired speed occurs. If the pilot desires to make a decelerating approach to

hover, then an acceleration error ribbon is displayed (fig. 9(b)). The length of the acceleration error

ribbon displays the difference between the aircraft's deceleration and the constant deceleration re-

quired to bring the aircraft to a hover at the initial station-keeping point, based on the instantaneous

range and the horizontal speed.

LATERAL ACCELERATION BALL
\

\\ _VELOCITY ACCELERATION

___'" ERROR RIBBON

.<

(a) SPEED CONTROL MODE (b) DECELERATION

CONTROL MODE

Figure 9.- Speed and acceleration control elements. (a) Speed control mode; (b) deceleration
control mode.

In the final stage of transition, when the horizontal speed relative to the station-keeping point

is less than 35 ft/sec, the acceleration error ribbon is automatically removed from the display and is

replaced by the velocity error line (fig. 10). The length of this line is now proportional to the hori-

zontal speed relative to the station-keeping point. An additional symbol is introduced representing

the initial station-keeping point (fig. 10). The vertical distance of this symbol from the flightpath

symbol represents the range from the station-keeping point. If the pilot controls the aircraft so that

I
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POSITION INDICATOR

LONG. DISTANCE

ACCELERATION

Figure 10.- Station-keeping point capture elements.

the tip of the velocity error line coincides with the station-keeping point symbol, then the aircraft

will smoothly converge to the station-keeping point.

Lateral Acceleration- Lateral acceleration is indicated by a small circle that moves across the

"wings" of the flightpath symbol (figs. 9, 10). This symbol is scaled such that when the circle is

at the slope discontinuity of the flightpath symbol wings, the lateral acceleration is the lesser of

4-0.2 g and the maximum lateral acceleration consistent with safe aircraft operation.

Angle-of-Attack References

Two angle-of-attack references are provided. One, termed the alpha warning bar, indicates

excessive angle of attack. It is in the form of a horizontal bar whose vertical position relative to

the aircraft reference symbol is equivalent to the maximum recommended approach angle of attack

(fig. 7). This symbol translates horizontally so that its center always lies on the display fixed vertical

through the flightpath symbol. The other angle-of-attack reference, termed the alpha reference

bracket, is designed to provide the pilot with prominent angle-of-attack and pitch-angle references

during the approach. The bracket has the orientation of the display fixed reference frame and is

depressed relative to the aircraft reference symbol by a distance equivalent to the desired approach

angle of attack. The nominal approach pitch angle for the AV-8A aircraft is 6.5* and the reference

approach flightpath angle is -3 °, resulting in a nominal approach angle of attack of 9.5*. The

depression angle of the alpha reference bracket may be varied to match the characteristics of the

particular aircraft. In operation, the pilot flies the aircraft so that both the flightpath symbol and

ghost aircraft symbol coincide (fig. 7) and lie on a line parallel to the horizon, passing through the

midpoint bar of the alpha bracket. The preferred piloting technique is to "fly" the alpha reference

bracket to the ghost aircraft symbol using longitudinal stick and to fly the flightpath symbol to the

ghost, using power. Essentially, this technique amounts to maintaining a constant angle of attack

while controlling the flightpath with power, which is, of course, the appropriate technique for flight

below the minimum-drag speed.

Consider now the situation in which the aircraft is in conventional flight, and the pilot wishes

to perform a decelerating transition to a hover. In conventional flight, the pilot will most likely

be controlling flightpath angle with longitudinal stick, and speed with the throttle. However, if

this technique is continued in a decelerating transition to too low an airspeed, the aircraft can be

flown, inadvertently, to dangerously high angles of attack. While this error is unlikely in visual

conditions, in instrument conditions, when the pilot's attention is on the flightpath symbol, "alpha

,3
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creep" can be insidious. Simulation has shown that the presence of the angle-of-attack references

is effective in providing an early warning of an inappropriate control technique during decelerating

approaches.

Ghost Aircraft Symbol

The ghost aircraft symbol (fig. 2(a)) provides the vertical and lateral guidance during the ap-

proach. The symbol is in the form of a delta-wing aircraft, with a flashing beacon on the tip of

the fin. The ghost aircraft can be thought of as being some distance ahead of the real aircraft and

performing the approach task perfectly. By tracking the flashing beacon on the ghost with the flight-

path symbol, the pilot performs a simulated pursuit task. Since it is desirable to provide constant

convergence dynamics at all speeds, the ghost is maintained at a position equivalent to a constant

time ahead of the real aircraft. In other words, the ghost lead distance is directly proportional to

the real aircraft's inertial speed. Another important feature of the ghost is that it performs perfectly

coordinated turns, thus providing the pilot with an indication of the bank angle appropriate to the

reference flightpath (fig. 11 ).

Y

J
J

/

_RCRAFT ROLL, ,:,

f GHOST ROLL

...____ _ _ __. RELATIVE TO

__._ ,_,:_g AIRCRAFT

Figure 11 .- Ghost aircraft rolling maneuver.

Runway Symbol

In order to provide the pilot with a greater awareness of the location of the final destination, a

runway outline conformal with the real runway is provided (fig. 12). In instrument conditions, this

symbol provides useful confirmation of the consistency of guidance information.

HOVER DISPLAY

Relationship to Approach Display

All the fixed elements, the horizon, and the pitch attitude ladder described for the approach

display are retained for the hover display. The digital display of altitude, vertical velocity, and

13
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Figure 12.- Runway symbol.
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Figure 13.- Precision hover elements.

airspeed are also retained, but the vertical velocity is given in ft/sec, updated every 1 ft/sec. In

addition, the longitudinal velocity relative to the station-keeping point, in kn, updated every 1 kn,

is displayed below the airspeed (fig. 13). These digital readouts have a fixed location relative to the

trident symbol, described below.

Additional Aircraft Fixed Elements

Whereas in the approach format the central reference symbol is the flightpath, in the hover

format it is the trident symbol (fig. 13). The trident represents a plan view of the aircraft showing

the relative locations of critical items such as wheels and noseboom. This symbol is depressed
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below the aircraft reference symbol so that it lies on the horizon when the aircraft is at the landing

pitch angle (6.5 ° for the AV-8A). All other elements specific to the hover display are referenced to
the trident.

An indication of the horizontal velocity and direction relative to the landing pad is provided

in the form of a vector, one end of which is fixed to the trident datum (fig. 13).

Landing Guidance Symbols

Whereas in the approach display, guidance is provided to the pilot by the ghost aircraft symbol

and the longitudinal velocity and acceleration error symbols, in the hover display it is provided by

the station-keeping point cross and the allowable vertical velocity ribbon (fig. 13). The station-

keeping point cross indicates the position of the nominal station-keeping point (either initial or

final). The initial station-keeping point is fixed relative to the mean landing-pad position, whereas

the final station-keeping point is fixed relative to the landing pad itself. Attached to the station-

keeping point cross is a WOD pointer (fig. 13). The length of the allowable vertical velocity ribbon

is proportional to the maximum instantaneous vertical velocity consistent with a prescribed landing
gear limit (fig. 13).

Pilot-Controlled Symbols

Whereas in the approach display the pilot-controlled symbols are the flightpath and longitu-

dinal (speed or acceleration) error, in the hover display they are the predicted longitudinal velocity

ball and the predicted vertical velocity diamond (fig. 13). The predicted horizontal velocity ball

provides the pilot with quickened horizontal velocity with respect to the mean position of the land-

ing pad. In fact, for many control systems, the distance between the ball and the tip of the horizontal

velocity vector (fig. 13) may be interpreted as the horizontal acceleration of the aircraft. It follows

that the symbol is useful for trimming the aircraft in hover. To perform an approach to the final

station-keeping point, the pilot controls the position of the ball so that it leads the velocity vector in

the direction of the station-keeping point cross. In the final phase of station-keeping point capture,

the position of the ball is maintained coincident with the station-keeping point cross.

The predicted vertical velocity diamond provides information in the vertical degree of freedom

analogous to that provided by the ball in the horizontal degrees of freedom. The piloting task for

the descent to a vertical landing is to maintain the ball over the station-keeping point cross while

controlling the diamond so that it always lies within the allowable vertical velocity ribbon. With this

guidance and control the pilot is assured that landing-gear limits will not be exceeded at touchdown.

In the case where the aircraft control system provides translational velocity command in hover,

the ball and diamond simply indicate the horizontal and vertical velocities commanded by the pilot.

In other words, the positions of the ball and the diamond are in one-to-one correspondence with the

positions of the appropriate pilot controls.
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Landing-Pad Symbols

The landing pad is represented in both horizontal and vertical aspects (fig. 13). The horizontal

representation is geometrically similar to the real landing pad and is scaled in both size and location

to match the trident. In essence, the pilot is presented with a bird's-eye view of the landing situation.

Any obstacle close to the landing pad (such as a hangar) is marked with a series of crosses (fig. 13)

that flash if any part of the aircraft passes within a predetermined distance (say 10 ft) from the
obstacle.

In its vertical aspect, the landing pad is represented by the landing-pad bar (fig. 13). The

distance from the landing-pad bar to the base of the trident is proportional to the altitude above the

deck. The landing-pad bar is useful in indicating to the pilot, during the final stage of the vertical

landing, the appropriate time to increase his or her level of concentration on the task of maintaining

the predicted vertical velocity diamond within the span of the allowable vertical velocity ribbon.

SYMBOL DRIVE LAWS

Preliminary Comments

The equations governing the positions of some of the display symbols are dependent on the

aircraft's flying qualities and, in particular, on the type of control system augmentation. The aircraft

dependent equations presented here are tailored to the AV-8A Harrier.

Some of the variables used in the equations are dependent on the reference flightpath definition.

For completeness, the reference flightpath definition used in the ;iloted simulations leading to the

HUD design described here is given in appendix B. Values of ali the constants used in the symbol

drive equations are given in table 1.

The headings of the following sections, which deal with the drive equations for the various

symbols, are accompanied by letters A or H, or both, to indicate the display mode(s) in which the

particular symbol is used.

Display Coordinate System

The origin of the display coordinate system is located at the aircraft reference symbol. A

general coordinate pair is designated (X, I,), in degrees, with appropriate subscripts to identify

particular symbols. To distinguish the display coordinate system from all others, the display hor-

izontal coordinate will always be referred t_ as the "abscissa" and the vertical coordinate as the
"ordinate."

Horizon Line and Pitch Ladder (A,H)

Since the horizon line and the pitch ladder are fixed relative to each other, they can be treated

as a single symbol. The angle, 4', of the horizon to the display abscissa is the aircraft's roll angle

(fig. 14). The coordinates of the center of the horizon ( Xh, Yh) are given by
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TABLE 1.- DRIVE LAW CONSTANTS USED IN AV-8A HARRIER SIMULATIONS

Parameter

A

A_

De

H

H

Value

Kla

14.0

0.3

1000.0

82.0

-9.0

K,_ 0.5

K, w 5.0

Kt 0.05882

0.03

Kh 0.05882

Units

,:leg

ft]deg

fi

fi

ft]sec

deg/g

deg/ft

deg/ft

deg/ft

K_, 0.2 deg sec/ft

K,,_ 0.2 deg sec/fi

K_, 0.2 deg sec/ft

3.45 ft/in, sec

3.45 ft/in, sec

0.4

K¢ 0.3

ft/deg sec

ft/degKoc 3.45 sec

K¢c 3.45 ft/deg sec
0.1

0.25

1.75K¢
Lg

7'1

5.0

ft/deg sec

ft/deg sec

ft

R 8000.0 fl

_q_ - 100.0 ft

Sv __ - 100.0 ft
2.5 sec

10.0 sec

5.0 sec

T5 0.5 sec

7"6 10.0 sec

1.11 sec

Parameter

T.
To ( I,,t = 1)

Value

5.0

1.11

To (/,t = 0) 2.0

15.0

v_

Wl

Ymaz

F

AT

AT_
AT_
A Db

A D_

O

x,,

y,

z-

_wd

q_

100.0

-1.5

-3.0

35.0

90.0

100.0

100.0

7.0

-13.0

1.0

-3.0

35.0

10.0

10.0

500.0

500.0

6.5

0.05

0.05

0.02

0

0

0.00164

0.88

0.77

0

0

60.0

deg

deg

deg

sec

sec

sec

ft

ft

deg

l/sec

l/sec

l/sec

lift

1/ft

1/ft

l/sec

l/sec

deg

deg

deg
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Xh = 0 sin

Yh = -0 cos

(2)

(3)

where 0 is the pitch angle (fig. 14).

Ymax

...-DISPLAY FRAME

t EFFECTIVE

DISPLAY

FRAME

Figure 14.- Flightpath and horizon coordinates.

Reference Glideslope (A)

The glicleslope reference consists of a dashed line (fig. 2(a)) parallel to the horizon and dis-

placed from the horizon by the reference glideslope, F. Although all the simulations were per-

formed using a constant reference glideslope, this is not a fundamental restriction of the concept.

Flightpath (A)

The wings of the flightpath symbol are always parallel to the display abscissa. The vertical

flightpath angle, _, relative to a coordinate frame of reference that is parallel to the earth fixed axis

system, but moving at the constant horizontal velocity of the station-keeping point (fig. 15), is given

by

3

where

arctan (4)
3'= It
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h
l) t

inertial vertical velocity of the aircraft

inertial horizontal velocity measured with respect

to the station-keeping point (fig. 15)

The inertial horizontal velocity, vt, is given by the equation

Vt = *_Un 2 + Ve 2 (5)

where v,_ and ve are the north and east velocities measured in the inertial reference frame moving
with the station-keeping point.

NORT_ IGHTPATH

- .,

Figure 15.- Flightpath angle definition.

During an approach to a vertical landing, as the airspeed decreases, the effectiveness of pitch

and power changes on flJghtpath angle and airspeed vary considerably. At the higher speeds (greater

than 120 kn) the pilot prefers to use pitch rather than power to change the flightpath (front side

technique), because of the smaller response time. However, even using pitch the response time can

be exessive, and significant pilot compensation is required to achieve a desired flightpath angle. The

pilot compensation can he reduced by quickening the flightpath symbol's response to pitch changes

so that the symbol gives the pilot a preview of the steady-state flightpath angle corresponding to a

pitch change. One way to achieve this effect is to add to equation (4) a term proportional to washed-

out pitch rate. At low airspeeds (less than 120 kn), pitch gradually becomes a poor controller of

flightpath, because large pitch changes produce only small steady-state changes of flightpath and,

at high angles of attack, these changes can be in the reverse direction to those that occur at high

airspeed. In fact, at airspeeds below about 60 kn, it is appropriate to remove the pitch quickening

term. At speeds below about 100 kn, the pilot prefers to change his control technique to one of using

power rather than pitch to change the flightpath angle (back side technique). Again, because of the

slow response of the flightpath to power changes, pilot compensation can be reduced by replacing

the rate of climb in equation (5), by a variable that gives the pilot a preview of the commanded
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steady-staterate of climb. This can be done either by using commanded rate of climb, if the control

system permits, or by adding to the measured rate of climb a term proportional to the estimated

vertical acceleration resulting from throttle input. The resulting quickened flightpath angle, _q, is

given by

where

K0

ke

8

O'w
.'7"

hc

1Jtl

+- arctan (6)

pitch rate gain

pitch rate blending gain

pitch rate

Laplace transform variable

heave damping constant

estimated commanded vertical velocity

limited longitudinal velocity

4

The pitch rate blending gain, ko, is varied linearly from unity above an airspeed of VI,,. to

zero below an airspeed of Vf.,.. as follows:

where

1
k, = ( - vf.,.) /( vf_. - yr.,.)

0

if v_f > Vf,,,,_

if VI,,,,_ >_ v.,f >_ Vf,...

if VoI < 1/),.,.

%f

Vf.,.

Vf.,_

filtered airspeed

preset minimum value of %1

preset maximum value of Vo!

A first-order filter is used to smooth the measured airspeed, vo, thus:

(7)

vo (8)
v,,! = Ti8+ 1

where 7"1 is the filter time constant.

The pitch rate gain, k#, is varied with filtered airspeed (eq. (7)), to approximately match the

sensitivity of the flightpath angle to pitch-angle changes.

The heave damping parameter, or,o, is given by the equation
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where

(9)

estimate of the aircraft's heave damping parameter

in hover (v,,! = O)

estimate of the average rate of change of the heave damping

parameter with airspeed over the approach airspeed range

heave damper constant

heave damper engage indicator

Equation (9) accounts for the effect of a heave damper mode operating through the engine. If

a damper is available and is engaged, then la = 1 ; otherwise Id = 0.

."7"

The quickened vertical velocity, ho used in equation (5) is obtained by adding to the measured

vertical velocity a term proportional to washed-out pilot control input. If the control system is

operating in either a flightpath or a vertical velocity command mode ( I,o = 1), then

_. shc
he=h+ ifI,o= 1 (10)

S + Y'wc

where

commanded vertical velocity

damping constant of the vertical velocity command mode

If altitude is controlled directly through the throttle ( I,, = 0), as with the basic AV-8A, then

where

_. k_,s6t
he=h+ -_ iflw = 0 (11)

B+ (2 w

St

kt_

throttle position

throttle washout gain

The throttle washout gain, kt_, is determined by the requirement that the change of steady-state

vertical velocity be approximately equal to the change of throttle position multiplied by k6,. An

acceptable value for k6, is given by

where

At_
kt_ ._ -- sin Oj (12)

O"w
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change of gross thrust per unit mass of the

aircraft per unit change of throttle position

engine nozzle angle; defined as 0 °

when the nozzles point aft

For the AV-8A, it has been found adequate to make A6, a constant (0.3 ft/deg sec 2 ) over the

normal approach speed range (0-120 kn). However, at low speeds it has been found necessary to

limit the value of kt_ to avoid oversensitivity of the flightpath symbol to throttle inputs, thus

if ke_ >K6,, then k_= K_ (13)

Furthermore, to avoid excessive sensitivity of the flightpath symbol at low speeds, a limited hori-

zontal speed, va, is used in equation (6). This limited speed is given by

vt if vt >_ Vt,.,.va = Vt,,, ifvt < Vt,,, (14)

It follows that when vt < Vt,,,, the flightpath symbol responds to changes of vertical velocity

rather than flightpath angle. The pilot is alerted to the switch to a desensitized flightpath symbol

by a change of symbol shape from a circle to a diamond (figs. 7, 8). The limit speed, Vt,=,, is

inversely proportional to the desired sensitivity of the symbol at low speed. Experience has shown a

sensitivity of about 0.6 ° of movement on the display per foot per second of aircraft vertical velocity

to be satisfactory.

The lateral inertial flightpath angle, c, (fig. 15) is given by the equation

where vt_ is the lateral inertial velocity of the aircraft relative to the station-keeping point, given by

v v = v, cos q) -- v,_ sin Ik

and where Xbis the heading (fig. 15).

The lateral response of the flightpath symbol to pilot commands is quickened by adding to the

lateral velocity a term proportional to roll rate, as follows:

22



(15)

where

K_
Ke

O"v

roll rate

lateral response quickening gain

lateral scaling gain

lateral velocity damping parameter

It should be noted that the limited horizontal speed (eq. (14)) is used in equation (15) to de-

sensitize the lateral motion of the flightpath symbol, at low speed, in the same way that vertical
motions are desensitized.

The lateral velocity damping parameter, cry, like or,,,, is made a linear function of the filtered

airspeed, thus

where

_ = _ + %I Y_ (16)

estimate of the aircraft's lateral damping parameter

in hover (va! = O)

estimate of the average rate of change of the lateral velocity

damping parameter with airspeed, over the approach airspeed

range

To calculate the display drive signals, it is necessary to transform the quantities % and % into

the display frame of reference, scale the resultant quantities appropriately, and limit the final values

so that the flightpath symbol is always on the display. The equations for the unlimited flightpath
drive signals are

Xyu = ca cos ¢ - ( % - O) sin ¢

gl. = c_ sin 4' + ("t_ - O) cos ¢
(17)

7

The values of XI,, and I"/. are limited so that the flightpath symbol never moves closer than 1°

from the edge of the display. The following equations provide this limiting function and complete

the specification of the flightpath symbol display coordinates.

i
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i
XluX! = X,n,z sign(X/,,)

D= r=_.
Ymaz

if IXIu [ < X=,s

if Ix1. I > x=.,

if Y,,un < Ylu < Y,,,oz

if Ylu <- Y,_in

if Ylu -> Y,m_

(18)

The flightpath symbol coordinates are shown in figure 14, which also shows that when the

flightpath symbol is limited, the pilot is alerted by the addition of a cross to the flightpath symbol

circle.

Ghost Aircraft (A)

The elevation angle of the ghost aircraft relative to the real aircraft, r/g, is given by the equation

71g-- ]80- _ arctan (19)
7r _zgh )

where

hg

h

8xah

height of the ghost aircraft

height of aircraft

lead distance of the ghost aircraft for the vertical tracking task

To keep the closure dynamics roughly constant, the ghost lead distance, 6zah, is made pro-

portional to the horizontal speed. To avoid the singularity that would occur in equation (19) if

6Xgh were to become zero in hover, 6Xah is made proportional to the limited horizontal speed, vtl

(eq. (14)):

"4

6xah = vti a Tab (20)

where A Tgh is the ghost lead time for the vertical tracking task.

Since the ghost aircraft is assumed to be on the constant reference glideslope, F, its altitude,

h a , may he expressed as follows:

where

H - (d - 8xlh k_ a) tan Fha = H
if d > 8xqh k,,, a (21)
if d < tSXah kwa

H

F

reference hover altitude

reference flightpath angle
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distance of the aircraft from the station-keeping point,

measured along the reference flightpath ground track

ghost lead blending gain

The purpose of the ghost lead blending gain, kwh, is to ensure that when the velocity vt becomes

zero (hover), the ghost aircraft is at the hover altitude. The equation for k,,,g is

1k_g = vt / va
0

if vt > va

if va >_ vt > 0

if vt < 0

(22)

To provide horizontal guidance to the predetermined curved flightpath, the ghost aircraft must

appear to be located on the tangent to the flightpath at the aircraft's location (fig. 16). It follows from

the geometry of figure 16 that the azimuth angle of the ghost aircraft relative to the longitudinal

axis of the aircraft,/_g, is given by the equation

where

0, = K. [(,h - ¢)kwg+ 8.,]
180

71"
- _ arctan (23)

8y

_Xgl/

_/Jw

The lead distance,

aircraft heading

heading of the tangent to the reference flightpath track (fig. 16)

lateral distance of the aircraft from the reference flightpath

track (fig. 16)

distance of the ghost aircraft ahead of the real aircraft for the

lateral tracking task (fig. 16)

correction to provide turn coordination at turn entry and exit

8xg_, is calculated similarly to 6Xgh, thus

= '7"6x_ vtt A.gv (24)

where A Tg¢ is the ghost lead time for the lateral tracking task.

It should be noted here that the ghost lead distances _Sxgh and 8x_h are not necessarily equal,

their values being set by the aircraft's vertical and lateral control dynamics and the required closure

dynamics.

With crosswinds and a control technique aimed at maintaining low values of lateral acceler-

ation, the crosstrack angle, ( _'t - _b), can become as high as 45*. To avoid lateral limiting of the

ghost aircraft on the display, it is necessary to multiply the crosstrack angle by the lead blending

gain, k_,g, (eq. (22)).
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Figure 16.- Lateral ghost position.

The display coordinates of the ghost aircraft symbol are calculated in the same manner as for

the flightpath symbol. The resulting equations for the unlimited ghost symbol coordinates are

Xgu = #g cos _b- ( r/g - 0) sin _b

Yg,, = #g sin ¢ + ( % - 0) cos _b
(25)

The ghost aircraft symbol is subject to the same display size limits as the flightpath angle. The

following equations complete the ghost symbol position specification.

Xg=X_ = X,,,.= sign(Xg_)

go= Y,..,
Yma:¢

if Ix_,,I< x,.==
if Ix,.I _>x,.,=

if g..,, < rg. < r,..=
if Y_,, < y,n,,

if Ya_ 2 Y,_x

(26)

As stated earlier, the ghost aircraft symbol indicates to the pilot the angle of bank required to

follow the flight path laterally. This feature is particularly useful when entering or leaving a curved

segment of the flightpath, since the ghost can be programmed to give some lead information and

thereby minimize any tendency to overshoot or undershoot at the turn entry and exit. The equation

used for the ghost aircraft angle of bank, _g, is

where

180., (v2'_
_g = --_---I_, arctan \Rg,/

(27)
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k¢
R

indicates whether the local reference flightpath is

straight (i = 0) or curved, and if curved, whether to the

right (i = + 1 ) or to the left (i = - 1 )

turn entry or exit blending function

radius of curvature of the reference flightpath track

and the ghost aircraft angle of bank relative to the real aircraft (fig. 11), 6¢g, is

64,g= ¢,g- ¢, (28)

The blending function, k_, ramps the ghost aircraft bank angle in or out over preset distances,

to provide a smooth turn entry and exit (fig. 17), and is defined by the equations

0

DI_+ A Db-d
A Db

k¢ = 1

A Dc
0

ifd > Db + ADb

ifDb + A Db > d > D_

ifDb > d > Dc + ADo

if De + AD, > d > D_

ifd < Dc

(29)

where

Db, Dc ranges at curved flightpath entry and exit

A Db, A D¢ lead blend distances at curved flightpath entry and exit

In addition, to make the ghost aircraft's position and bank angle consistent with a coordinated turn

at the turn entry and exit, it is nessesary to include the correction term 6u, in equation (23). It has

been found to be adequate to represent 8_,, by a suitably scaled, washed-out ghost aircraft bank

angle, thus

K¢, s¢ 9 (30)
80' TC_,s + 1

where

washout gain

washout time constant
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D_

END OF

CENTER OF CURVATURE CURVE

Figure 17.- Ghost bank angle blend geometry.

Values for K4, ' and T4,' have been found (table 1) which keep the lateral tracking error to less than

8 ft during turn entry and exit, provided the pilot keeps the ghost aircraft symbol beacon close to the

center of the flightpath symbol. Furthermore, the motion of the ghost aircraft symbol itself appears
to the pilot to be well coordinated.

Angle-of-Attack Warning Bar (A)

The angle-of-attack warning bar is positioned on the display (fig. 18) such that if the flightpath

symbol passes below this bar, then the operatior,,.I maximum angle of attack has been exceeded.

The problem here is that the angular distance between the aircraft reference and flightpath symbols

is equal to the true angle of attack only if the air mass is moving at the same constant horizontal

speed as the station-keeping point, and then only if the roll angle is small. Therefore, if the angle-

of-attack warning bar were to be located at a fixed distance (in degrees) relative to the aircraft

reference symbol and equal to the maximum operational angle of attack, the effects of wind shear

and updrafts would not be apparent on the display. To overcome this problem, the angle-of-attack

warning bar is located at a variable position, Y=_, relative to the aircraft reference symbol, obtained

by the equation

where

A

I",_ = F I + ( _ - A ) k w

approach maximum angle of attack

(31)
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Figure 18.- Angle-of-attack warning bar and reference bracket positions.

& filtered measured angle of attack

If _ > A, then it follows from equation (31) that Y_,,_ > Y/, and the flightpath symbol

is below the angle-of-attack warning bar, as required. Furthermore, equation (31) provides the

correct angle-of-attack interpretation of the relative positions of the flightpath and angle-of-attack

warning symbols independently of roll angle.

The filtered angle of attack, _, is calculated from the equation

O_
& = (32)

Tis+l

where o_ is the measured angle of attack.

The parameter k=g in equation (31) is used to desensitize the term ( _- A) at low speeds, in the

same way that the flightpath symbol is desensitized. At airspeeds below 30 kn the angle-of-attack

warning bar ceases to be of significance and is removed from the display.

The warning bar is always parallel to both the aircraft reference and the flightpath symbols and

has a lateral position, Xa,,, that is always the same as that of the flightpath symbol ( X_,,n = X/).

If YI < Y_,,,, the warning bar flashes with a frequency of 3 Hz.
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Angle-of-Attack Reference Bracket (A)

The angle-of-attack reference bracket provides a set of depressed pitch references to aid the

pilot in maintaining an approximately constant angle of attack and pitch attitude during the ap-

proach. In the display coordinate system, the bracket is always parallel to the ordinate, and has

a fixed horizontal position relative to the flightpath symbol (fig. 18). The equations defining the

position of the center element are

Xar = X! - 1.875

Y,_ = -O + k,_g F
(33)

Acceleration Caret (A)

The vertical displacement of the acceleration caret relative to the right wing of tLe flightpath

symbol is proportional to some suitable measure of longitudinal acceleration. If the landing is to be

conventional ( Il = 0), then it is presumed that the maximum thrust/weight ratio may be less than

unity. In this event it is important that wing lift be maintained to touchdown. This, in turn, dictates

that airspeed rather than inertial speed be maintained constant, and that acceleration relative to the

air mass, v,_, be indicated on the display for use with the potential-flightpath concept. A smoothed

estimate of 6,_, namely /_,_, is calculated by complementary filtering of the inertial longitudinal

acceleration, bx, and the airspeed, v,,, as follows:

vo T4s+ 1 6_+ _ if It=O (34)

where 7"4 is the filter time constant.

The inertial acceleration along the track, vx, is given by the equation

vz = 6,_ cos _b + 1)e sin ¢, + (v_ cos _b - v,_ sin q;) 18"-6" (35)

where b,, and 6e are the inertial accelerations of the aircraft in the north and east directions,

respectively.

If the landing is to be vertical ( It - 1), then the maximum thrust-to-weight ratio must be

greater then unity, and it is assumed that any loss of wingborne lift can be compensated for by an

increase of thrust. In addition, the task of decelerating to a hover at a precise point in space requires

knowledge of accelerations relative to inertial space, rather than relative to the air mass. These

considerations lead to the selection of bz, suitably smoothed, to be represented by the acceleration
caret.
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The position of the acceleration caret on the display, fo (fig. 19), is

= f 180v°/Ir 0 if It - 0fo
Lgoz'bz/(Ts8+ 1) ifll = I

where

filter time constant

scale factor converting longitudinal accelerations to display angles

The position of the acceleration caret in display coordinates (Xo, Yo) is

(36)

s

X° = X! + 1.5

Y,, = Y! + f,_ (37)

Velocity Error Line (A)

The symbol drive law for the velocity error line (fig. 19) depends on the type of landing. For

a conventional landing ( It = 0), the length of the line is proportional to the difference between the

airspeed, v,_, and a preset reference approach airspeed, Va. For this type of approach, the velocity

error line is displayed throughout. The pilot's task is to maintain the tip of the line coincident with

the fight wing of the flightpath symbol. For a vertical landing ( h = 1), the velocity error line is

active only when the longitudinal inertial speed, vx, is less than some preset value V,_t (35 ft/sec has

been shown to be satisfactory), and its length is proportional to t,z. The pilot's task is to maintain

the tip of the line on the initial-station-keeping-point indicator when this symbol appears on the

display. The equations defining the length, f,,, of the velocity error line (fig. 19) axe

forfi = 0

,/

180
f_ = --( t,,_ - Vo) (38)

_Tu9

forIt = 1

where

{K,,ovz ifvx _< V,_L (39)f'_ = 0 if v,, > V,_t

Ku°

time constant selected for the airspeed response

scale factor converting velocities to display angles
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and the longitudinal inertial velocity, v=, is determined from the equation

w, = v,= cos g, + v= sin _b

LONGI'rUDAL-POSITION

INDICATOR _ =m

LONG.-ACCELERATION E RROR _N"_l ) is

fay -I'_" "_--

Figure 19.- Flightpath symbol referenced information.

The display coordinates of the end of the velocity error line (X,,x, Y,.,x) are given by the

equations

X.= = X/+ 1.25

Y,,== r,f+ fa + A (40)

Longitudinal Position Indicator (A)

The longitudinal position indicator identifies the position of the initial station-keeping point.

This symbol (fig. 19) appears on the display at the end of the approach transition, when the aircraft

is within 280 ft of the initial station-keeping point. When the indicator is coincident with the

right wingtip of the flightpath symbol, the aircraft's c.g. is at the station-keeping point. Since

the aircraft's longitudinal control changes the velocity along the aircraft's longitudinal axis, the

distance f0 (fig. 19) is made proportional to the projection of the distance from the station-keeping

point onto this axis, thus

A = Kzo[dcos(¢_ - _b=) - 6l/sin(_b - g't)} (41)

where Kt= is the scale factor converting horizontal distances to display angles, in the approach

display mode.
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The display coordinates of the longitudinal position indicator (X,, Y,) are given by the

equations

Xs = X I + 1.25

Y_ = YI + fs (42)

Acceleration Error Ribbon (A)

The acceleration error ribbon (fig. 19) is used only for decelerating approaches to a hover.

This symbol is designed to provide longitudinal deceleration guidance to enable the pilot to bring

the aircraft to a low speed in the vicinity of the initial station-keeping point. At a predetermined

low speed (V,,l = 35 ft/s) relative to the initial station-keeping point, the acceleration error ribbon

disappears, and, simultaneously, the velocity error line appears. The final transition task of acquir-

ing the station-keeping point is performed using the velocity error line and the longitudinal position

indicator (fig. 19). The switch in the longitudinal guidance symbology occurs when the aircraft is

about 400 ft from the station-keeping point.

The length of tl-z acceleration error ribbon, f,_,, is proportional to the difference between the

acceleration along the track, 0,.t, suitably filtered, and a reference acceleration, £,,., thus

1

{ K_=( v,t - v,) if v,t > V,_t (43)f'_"= 0 ifv,t< V,,t

"7".

The smoothed acceleration, v,t, is calculated as follows:

where

_ v,t/(T58 + 1) if I,, = 0

"b,t = / (44)/,=_/cos( t/0 - g_t) if I,, = 1

&
1)rl

'l)'rc

acceleration command mode indicator

acceleration along the reference flightpath

pilot-commanded longitudinal acceleration

The value of O,t is calculated using the equation

v,t = t',, cos ¢'t + 0, sin £'t + ( v, cos 9t - v,, sin g't) --i_v,_._.
R

(45)

where v,t is the velocity resolved along the reference flightpath, obtained by the equation
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v,-t" v,Lcos _t + ve sin _bt

On straight segments of the reference flightpath, 1/R = 0 and equation (45) reduces to the
first two terms.

The acceleration command mode indicator, Io, is unity if the aircraft has a longitudinal accel-

eration command system; otherwise it is zero. When Io = 1, the commanded acceleration, {_xe, is

used in preference to aircraft acceleration, because of its noise-flee quality. However, since _ze is

the commanded acceleration along the longitudinal axis of the aircraft, it is necessary to correct it

(eq. (44)) for the crosstrack angle of the aircraft relative to the reference flightpath (_b - _bt). The

appropriate lateral acceleration required to produce a resultant acceleration along the flightpath is

automatically supplied by the pilot as he keeps the flightpath symbol coincident with the ghost

aircraft symbol.

The reference acceleration,/_,, which is computed continuously, is that required to bring the

aircraft to a hover at the initial station-keeping point, consistent with the particular deceleration

technique adopted for the longitudinal guidance. In most of the simulation evaluations of the HUD,

a two-step deceleration technique was adopted. The equations for _, appropriate to this type of

guidance are given in appendix C.

The display coordinates of the center of the free end of the acceleration error ribbon ( Xo,, Y_e)

are given by the equations

X.e = X! + 1.09

V°,=Y.t+ f°.

Lateral Acceleration Ball (A)

The distance, fo_, of the lateral acceleration ball from the vertical marker atop the flightpath

symbol (fig. 19) is proportional to the body-axis lateral acceleration at the cockpit, a_p, thus

where K,t 0 is the scale factor convening lateral acceleration, in 'g' units, to display angles, in

degrees. Since the maximum deflection of the ball on the display is 4-1", it follows that the full

scale deflection of the acceleration ball is equivalent to -1-I/Ko_, in 'g' units.

The display graphics arc designed to move the acceleration ball across the top of the flightpath

symbol, with the position of the ball uniquely specified by the value of f, t0.
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Runway and Landing-Pad Symbols (A,H)

The runway and landing-pad symbols are conformal outlines of the re_ runway and landing

pad. The equations to be presented are general for a landing pad of arbitrary polygonal shape, and

therefore also apply to the runway as a special case. The equations are adaptable to most commonly

used landing pads, such as heliports, oil rig platforms and ships. The landing pad illustrated in

figure 20 consists of two perpendicular rectangles, and has been used in past simulations to represent

the landing deck and hangar wall of a destroyer.

\

\

\ \

j/

X

I

P
/ HANGAR

/

_-LANDING

PAD

Figure 20.- Geometry of displayed landing-pad position.

If the landing pad has n vertices, then the elevations, rl_ (j = 1, n), of these vertices relative

to the horizontal, and their azimuths,/_, (j = 1, n), relative to the aircraft's heading, are given

(fig. 2 l) by

where

_ 180 (z_-tSz ''i )
= _ arctan

,80
= Tarctan \_ x-_//

d_= _'(_z"' - z;_)2+ (_V'_- _;;)2
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j = l,n (46)

,j = l,n (47)

j = 1, n (48)
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and where

_I! _ II ZII
p'Yp' P

&z "j, _y"J, 6z"/

coordinates of the pilot's eyepoint relative to the

landing-pad datum, in a local horizontal coordinate

system generated by rotating the standard north-east-down

system about the vertical, through the aircraft's heading angle

coordinates of the jth landing-pad vertex in the above

local horizontal coordinate system

y"

N,_r......_ _ LANDING PAD

/,7--_ I (,_ x"J_ ;, y"J, }, Z ''l)

_p_dp //_ _..
I dl " "

" PILOT (x_ y;; Zp )

Figure 21.- Horizontal situation geometry.

The coordinates (6x ''j, 61/'j, 8z 'd) are obtained from the coordinates (A x j, A _, A z j) of the

vertices in a landing-pad fixed-axis system, by standard Euler-angle transformations.

The positions of the pad vertices in display coordinates (fig. 20) are given by

X_=p_cos_b-(_-O) sin_b j= 1,n (49)

Y_=(_-O)cos_+/_sin_b j= l,n (50)

Trident (H)

The aircraft trident symbol is fixed in the display coordinate axis system, at a vertical distance

below the aircraft reference symbol equal to the landing attitude, O (fig. 22), thus,
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Figure 22,- Display position of aircraft Trident.

Horizontal Velocity Vector (H)

The horizontal velocity vector (fig. 23) is a line, originating at the datum of the aircraft trident

symbol, whose length and direction correspond to those of the horizontal velocity vector of the

aircraft with respect to the station-keeping point.

The coordinates tvz and t_ v of the moving tip of the velocity vector relative to the trident are

given by the equations

t_, = K.v V (52)

where vz and vy are the longitudinal and lateral components of the horizontal velocity of the aircraft

relative to the landing pad (fig. 15). The equations defining vz and vv arc

37

i



Figure 23.- Position and velocity indicators in hover mode.

v= = v,_ COS V) + ve sin

v v = v, cos _b - v, sin

(53)

(54)

The display coordinates of the tip of the horizontal velocity vector (Xv, Y_) are given by the

equations

X_ = t,= (55)
Y_ = Y, + t_

Velocity Predictor Ball (H)

The velocity predictor ball (fig. 23) is used by the pilot to control the horizontal position of

the aircraft. The position of this symbol leads that of the tip of the horizontal velocity vector. In

the steady state (zero horizor tal acceleration), the predictor ball and the tip of the velocity vector

coincide.

The laws governing the motion of the predictor ball depend on the type of control system used

for low speed and hover. The two classes considered here are identified by/'_, where/',, = 1 for
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translational velocity command and I_ - 0 for attitude command. The case I_ = 0 includes all

control systems that employ only feedback of attitude motion.

The position of the predictor ball (t_, tt_) is proportional to the estimated commanded trans-

lational velocities vzc and vvc, thus

tb,, = K,,_e (56)

t_ = K,,_,c

If the control system is operating in a translational velocity command mode (/'_ = 1), then

the estimated commanded translational velocities are the true commanded velocities,

".!

_:=c = v_c (57)

_c -" Vyc

If the control system employs only feedback of attitude motion ( I_ = 0) (attitude command,

attitude rate command, etc.), then the estimated commanded velocities are obtained by adding, to

the aircraft velocities, terms proportional to smoothed estimates of the translational accelerations,

vz and v v, and "washed-out" control inputs. If the control mode is attitude rate command or attitude

acceleration command ( _rat = 0) then

where

K6, T2 s&,

T2s+l

Ks, T2 siS_ (58)

T2s+l

K_., K_,

pilot's control inputs

control input gains

control input washout time constant

horizontal tracking time constant

If the control mode is attitude command or rate command with attitude hold (/'_t = 1), then

the input variables/i_ and/5 v in equation (58) are replaced by the commanded pitch and roll angles,

0c and ¢c; also, the gains Ks, and Kt, are replaced by gains K0, and K_,. In addition, the value of

T_ (table 1) depends on the type of control mode, indicated by [at.

Filtered estimates of the translational accelerations, v= and v_, are obtained by complementary

filtering of the measured attitudes and translational accelerations, thus
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where

A

l) z =

A
°

1)lj -----

l p-_gT68(o+os) ] ir68+ 1 L N7¥ _) +_: :i
(59) ;_

r._ + 1 LlsO_+ L) + '_' ";

• °

Vz t UIt

o,.
r.

O'u, O'v

longitudinal and lateral accelerations

engine nozzle angle rate

complementary filter time constant

damping parameters for longitudinal and lateral translations

The longitudinal acceleration, %, is given by equation (35). The corresponding equation for

the lateral acceleration, £'v, is

_37t

t)v = _, cos ¢, - 1), sin _b - ( v,, cos ¢, + ve sin _b) 18-"--O
(60)

The lateral damping parameter, or,. is given by equation (16). The corresponding equation for

the longitudinal damping parameter, _r,,, is

where

#
cr,, = _ + Z_v.f (61)

x,, estimated longitudinal damping parameter in hover ( v_ I -- O)

estimated average rate of change of the longitudinal damping parameter,

with airspeed, over the approach airspeed range

The display coordinates of the velocity predictor ball (Xt,, Yb) are given by the equations

Landing-Pad Planform (H)

The coordinates (ti,_, tiv) of the datum of the landing-pad planform symbol, relative to the

trident datum, are derived from those of the aircraft's e.g. relative to the landing pad (x,, V,),

suitably scaled. The coordinates ( zo, V°) are reladve to a north-east-down coordinate axis system

whose origin is at the datum of the landing pad. Since tv, and tlv are relative to the aircraft fixed

coordinate system, it is necessary to perform a rotation of the ( z,, V,) coordinate system about the

"down" axis througb the aircraft's yaw angle, ¢,. The final result is
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by

tL, = -Kt(yo cos ¢ - zo sin _)

try = -KR zo cos ,_ + _ sin _)
(62)

The heading of the landing pad relative to the aircraft's longitudinal axis, _bt_, (fig. 23) is given

_bt_ = _/'t- ¢ (63)

The display coordinates of the landing-pad symbol (Xl, Yt) are given by the equations

9

il

Xt = tt, (64)
Yt = Yt+t_ v

Station-Keeping Point Cross (H)

The location of the station-keeping point cross relative to the trident datum (fig. 23) represents

the location of the station-keeping point relative to the aircraft's c.g., scaled to match the sizes of

both the aircraft and the landing pad. The initial station-keeping point is located at a fixed position

relative to the mean position and orientation of the landing pad. The coordinates ts= and tsv of the

initial station-keeping point cross relative to the trident are given by

t,_ = --KlIdsin(¢ - ¢t) + @cos(tb- ¢'t)]

ts_ = Kl[ dcos( _2 - Ct) - 8ysin( _, - Ct)]
(65)

where Kt is the scale factor converting horizontal distances to display angles in the hover display

mode.

The final station-keeping point is located at the desired touchdown point, assumed to be the

datum of the landing pad. This point therefore moves as the landing pad moves. The coordinates

ts: and tsv of the final station-keeping point cross relative to the trident are given by

ts= = tt= (66)

tsv =tlv

The angle _ of the wind indicator attached to the station-keeping point cross, relative to the

aircraft's (trident's) longitudinal axis, is determined by
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where ¢_d is the angle of the WOD relative to the longitudinal axis of the landing pad, measured

at the landing pad.

The display coordinates of the station-keeping point cross (X,c, Y,c) are given by the equa-
tions

X,¢ = t._ (68)
Y,_ = Ft + to_

Station-Keeping Point Pointer (H)

The station-keeping point pointer (fig. 23) is used to indicate the direction of the landing pad

when the aircraft is too far away (greater than 136 ft) for the station-keeping point cross to be on

the display. The pointer moves in a circle centered on the trident datum.

The coordinates of the station-keeping point pointer (tp_,, t_) are given by the equations

t w =/_ cos _b_ (69)

tn = 1% sin Cm

where/_ is the radius of the circle on which the pointer moves, and

Cr_ 180 (ts_._ '_= _ arctan (70)

The display coordinates of the station-keeping point pointer (X,p, Y,_,) are given by the

equations

Landing.Pad Bar (H)

The distance of the landing-pad bar from the base of the trident (tth in fig. 23) is proportional

to the average wheel height above the landing pad. The following equation is used to calculate tZh"

t_h = -Kh( ht - Lg) (71)
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where

Kh

ht

Lff

scale factor converting vertical distances to display angles

height of aircraft's c.g. above the

reference touchdown point

average distance of the wheels below the aircraft's c.g.

The display coordinates of the center of the upper edge of the landing-pad bar (Xlh, Yth) are

given by the equations

XLh = 0

_h = Yt + t_h -0.5 (72)

Vertical Velocity Predictor (H)

The vertical velocity predictor (fig. 23) aids height control in much the same way that the

velocity predictor ball aids horizontal position control. The predictor diamond moves vertically

relative to the left base of the trident, such that its displacement provides the pilot with an estimate
.'7"

of the commanded vertical velocity, he. The displacement of the diamond, two, is given by

t,_e = K,ohc (73)

.'7"

If the control system is operating in a vertical velocity command mode ( I,,, = 1) then he is

given by equation (lO), repeated here for convenience:

_. she
he = h+ ifI_,= 1 (10)

8+ ,_wc

If vertical control is achieved directly through the engine throttle ( I,_ = 0), with or without a
.7"

height damper, then one possibility for hc is given by equation (11), which is used for the approach.

However, in hover, the vertical acceleration measurement h is less noisy than in the approach, and

a better estimate can be obtained from the equation

h_ =/a + T hh ifI_ = 0 (74)

where T h is the time constant selected for the desired vertical velocity response, and the smoothed
.'7".

vertical acceleration h is obtained by complementary filtering of h and the throttle input _St:
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K6,T6s28t.
I "h+

h= T6s+ I (s + a,.)
(75)

The display coordinates of the center of the vertical velocity predictor diamond ( X,o, Y,_) are

given by the equations

X,_ = - 1.6025

Y,,, = _ + t,,,c - 0.5
(76)

Vertical Velocity Limit Ribbon (H)

The vertical velocity limit ribbon (fig. 23) continuously indicates the maximum acceptable

vertical velocity at touchdown. In operation, during the final moments of vertical descent, the

pilot maintains the vertical velocity predictor diamond within the span of the vertical velocity limit

ribbon, t_t. The equation for twl is

where

= hi (77)

hi

recommended maximum touchdown vertical

velocity (positive upward)

vertical velocity of the landing pad at the touchdown point

The display coordinates of the free end of the vertical velocity limit ribbon (Xwl, Ytoz) are

given by the equations

X,_L = -0.685

F_I = Yt + t,,,z - 0 5 (78)

CONCLUDING REMARKS

Although the display format described here goes an appreciable way toward meeting the re-

quirements postulated in the section entitled HUD Characteristics, it does not satisfy all of them. Of

particular note is the fact that in the approach mode, the flightpath symbol gives the true direction

of vertical flight only. Because of HUD field-of-view restrictions, lateral motion of the flightpath

symbol has had to be reduced to only 30% ( K, = 0.3) of its full value. This scale reduction,

coupled with the fact that the yaw scale is conformal, gives the pilot an inaccurate impression of

the lateral motion of the aircraft. No difficulties due to the lack of conformality of the flightpath
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symbol have been encountered in simulation, and moreover, it passed without comment from those

who were not informed about it. This may be because the simulator visual attachment, although

it has four windows and is wide angle, lacked texture, and may not have provided cues about the

direction of flight that were comparable to those provided by the real world. This conjecture will be

tested when the display is flown on the NASA V/STOL Research Aircraft. Currently there seems

to be no solution to this design problem other than the obvious one of increasing the lateral field of

view of the HUD equipment, although a large lateral field of view would almost certainly change

the HUD topology from that shown in figure 1.

It should be noted that the described HUD format employs neither color nor occultation. This

is because the equipment used did not permit such techniques. It is known from past studies (ref. 8)

that color is beneficial in differentiating _nd highlighting the various symbols, and that it can al-

leviate the feeling of being overwhelmed by a profusion of symbols. The authors are unaware of

any HUD format work in which occultation is _ing used, although this technique could help by

producing an illusion of depth and emphasizing a symbol hierarchy. It is only relatively recently

that equipment has become available that permits the use of color and occultation. There is a need

for research in these areas.

Another issue that is both important and controversial is the mixing of vertical and horizontal

situation information. Admittedly, the result of such mixing is aesthetically unsatisfactc, ry, s_nce

not only are the horizontal situation symbols nonconformal, but the pilot is forced to change his or

her mental frame of reference between approach and hover. Failure to do the latter can result in

confusion, which can cause control reversals, disorientation, and possibly airsickness. An attempt

has been made to use vertical situation informat:,on and associated guidance in hover (ref. 5), but the

result was unsatisfactory. The prime difficulty with the use of vertical situation information is that

of representing distances and speeds--particularly closure rates--in a manner that is comparable to

the way this information is provided by the real world. The result is a lack of the essential, visually

derived lead information needed to perform precise hovering tasks. This could be an important

area for future research.

Despite these flaws, the display format appears to meet the requirements of the task i_,r which

it was designed. For example, shown in figure 24 are the results of a simulation, performed on the

Ames Research Center's VMS, to compare the pilot workload involved in performing shipboard

landings using either the simulator visual attachment or the HUD display (but not both). The model

of the Spruance-class destroyer described in this report was used, and the sea state varied up to sea

state 6 (the precise environment is defined in ref. 8). Two types of control system were tested: one

with attitude command, but no control augmentation in the vertical axis, the other with translational

velocity command in all three 'axes. It is clear that, for all the cases tested, the pilot workload was

less when the display was used, the reduction being particularly marked (Cooper-Harper handling

qualities rating reduction of over 4) in high seas. "l'he workload reduction is largely due to the fact

that the display provides the pilot with precise information about the position and velocity of the

aircraft relative to the desired touchdown point. "rhis is of particular benefit in the final phase of

landing, when the touchdown point is outside the pilot's field of view and its location can only be
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Figure 24.- Pilot ratings for landing.

inferred from the position and orientation of the superstructure--a task that becomes increasingly

difficult with increasing sea state.

3

J

POSTSCRIPT

Research aimed at further improving the display format and symbol drive laws continues.
Some recent contributions are discussed below.

It can be seen from figure 1 that the altitude information is displayed on the left side of the

flightpath and trident symbols, and the speed information is displayed on the right. During the

latter part of the approach and for hover and vertical landing, the pilot uses a "back side" control

technique in which he controls altitude with the left hand (with the throttle or some other advanced

controller) and speed with the right hand (with the longitudinal stick or some other advanced con-

troller). Therefore, for the approach and vertical landing, the controls and display are compatible

with regard to handedness. In conventional flight, however, most pilots prefer a"front side" control

technique, in which altitude is controlled with the right hand and speed with the left. Traditionally,

flight instruments have been arranged to be compatible with control handedness in conventional

flight, which is, of course, the reverse of that provided by the display described here. Since it is ob-

viously unwise to switch, in flight, the handedness of the displayed information to match whichever

control technique is appropriate, and since all pilots are currently trained with the conventional dis-

play handedncss, the consensus of the pilots currently associated with the display research is that the

display should exhibit conventional handedness. To meet this requirement all the symbols that are

in fixed positions relative to both the flightpath (fig. 27) and trident (fig. 30) symbols are currently

located in positions that are the mirror images of those shown in figures 27 and 30. In addition,

the angle-of-attack reference bracket (fig. 28) has been moved to the other side of the flightpath
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symbol. Pilots have expressed satisfaction with these changes and have adapted to them rapidly,

which is remarkable since they had many hours of experience with the display in its previous form.

The original tests used to develop the display format concentrated largely on the more ad-

vanced control systems, particularly those with attitude command. With a good attitude command

system, the attitude of the aircraft is virtually unaffected by power changes, thrust deflection, and

external disturbances. It follows that the pilot's need for attitude awareness is minimized, which

allows more time to concentrate on the guidance task. Recently, the display has been used in simula-

tion tests which offered an opportunity to more closely examine its effectiveness in limited-visibility

approaches using the basic rate-augmented Harrier control system. It was found that, because this

control system does not have the disturbance rejection properties of an attitude command system,

the pilots needed to be much more conscious of the aircraft's attitude in order to actively prevent

the large deviations that can complicate the guidance task. To help increase this attitude aware-

ness, the aircraft reference symbol has been increased to three times the size shown in figures 25

and 26, so that it now spans 6 ° and is correspondingly thicker and bolder. This modification was

an improvement, but is probably not the final answer to the problem.
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APPENDIX A

GEOMETRICAL SPECIFICATIONS

Fixed Geometry Symbols

The displayed information used in the piloted simulation experiments was presented within a

total field of view measuring 16° horizontally and 16 ° vertically. The specifications of those sym-

bols whose geometry is either invariant or simply dependent on aircraft state are given in figures 25

through 31.
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Figure 25.- General arrangement of approach display.
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ALL DIMENSIONS ARE IN DEGREES
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Figure 26.- General arrangement of hover display.

Ghost Aircraft Symbol Geometry

The ghost aircraft symbol (figs. 32, 33) is unique in that its geometrical specification is depen-

dent on aircraft position in a relatively complex way.

The ghost aircraft is a perspective outline drawing of a delta dart configuration, including a

vertical fin. The longitudinal axis of the ghost is always tangential to the reference flightpath at

the aircraft's location. If the aircraft is exactly on the reference flightpath, the pilot's view of the

ghost is that of an inverted 'T' (fig. 8) with a flashing beacon at the tip of the fin. If the aircraft

is laterally displaced from the reference flightpath, the pilot sees a projection of the fin. If the

aircraft is displaced vertically from the reference flightpath, the pilot sees a projection of the wing.

It follows that the appearance of the ghost provides the pilot with status information on the position

of the aircraft with respect to the flightpath.

Ghost Aircraft Symbol Equations: The elevation and azimuth deviations ( r/j, P'e ) of the ghost

aircraft symbol caused by aircraft position errors relative to the reference trajectory are given by
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Figure 27.- Flightpath symbol group.

, _180 (h,-h)rig= "n 8zgh (AI)

, -180 (,7..LV _ (A2)
/Jg- _. \ozgt,/

where h, is the altitude of the reference flightpath at the location of the aircraft, given by

h, = H + d tan F (A3)

The elevation and azimuth of the defining vertices b, c, d, e, f, and g of the ghost aircraft

(fig. 32), relative to the ghost beacon (vertex a), are given by

8ri'# = -A .q

#=0

= (
'/TL_ x

J - An
180+ *tAX; /

(A4)

(AS)

(A6)
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Figure 28.- Angle-of-attack reference bracket.
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!
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Figure 30.- Trident symbol group.

where AT, A/a, and A X are the dimensions of the vertical fin, wing semispan, and length of the

ghost aircraft in display angles (fig. 32).

The conditions for the existence of the various lines comprising the ghost are (fig. 33)

w

bc if r/; < 0

a'-E if rl; < 0 or 16_'9sI > A_
_ff if not 5E

de if/_>0 or_>O or_gg>O

d-g if not d"c

ec if/_'g <0 or_'g >0 or/Srlg q>0

e-_ if not

The display coordinates of the defining vertices of the ghost aircraft symbol (X__,Y__ where

- = b,c,d,e,f,g) axe given by

Xg_ = X9 + 6ta__' cos 65_ + _rlg_' sin/5$g

vg_= v, +_ 'rig_ cos 8_g - _5_g_ sin 8ff_

(AI6)

(AI7)

where the roll angle, 6$g, of the ghost relative to the aircraft is given by equation (28) and the

display coordinates (Xg, Yg) of the ghost beacon (vertex a) arc given by equation (26).

54



l_ jl II I I"1 I JI II I I Iil111111 I I I I

ALL DIMENSIONS ARE IN DEGREES
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Figure 31.- Landing pad details (hover mode).
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APPENDIX B

FLIGHTPATH SYNTHESIS

Preliminaries

It is assumed that the onboard navigation sensors provide sufficient information and that there

is sufficient processing capability to permit onboard continuous synthesis of a reference flighoath

that is a member of a predefined class of flightpaths. When the synthesized flightpath is acceptable

to the pilot, he selects it by "freezing" the synthesizing process.

The class of approach flightpaths used in conjunction with the HUD is illustrated in figure 34.

The heading, W.¢, and length, De, of the final straight segment of the flightpath, along with the

radius, R, of the two circles, are preset by the pilot. From any aircraft position, the instantaneous

reference flightpath is defined as the line tangential to one of the circles and passing through the

aircraft, followed by a segment of the circle and finally by the preset straight-line segment. The

flightpath ends either at touchdown or at the station-keeping point. The horizontal plane is divided

into two parts by a line coincident with the final straight segment. This division determines which of

the two circles will be used. If the aircraft flies across the boundary during the process of continuous

flightpath synthesis, the first segment of the flightpath moves from being tangential to one circle to

being tangential to the other. If the aircraft passes within either of the circles before the pilot selects

a flightpath, the first segment switches from the circle entered to the other circle (fig. 34).

/

i . /

CIRCLE A /

- SELECTED _ / /

/ \ /_ LANDING _CIRCLE B

\ SELECTED

[ R ^ _ I\ W_/" POINT (Sx, Sy)

/ CIRCLE A / /

,/ / _.ECTED /
/

/

Figure 34.- Class of reference flightpaths.
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Required Data

The following information must be provided to the system:

,,p

Dc

R

touchdown or station-keeping point coordinates in the landing-pad
reference frame

landing-pad heading (0 _< _P < 360)

heading of the final flightpath segment (0 _< tpf < 360)

length of the final flightpath segment

radius of the circular flightpath segments

These parameters are generally constant, but they may be changed up to the time the pilot selects

the reference flightpath. After the reference flightpath has been selected, no further changes in these

parameters can be made. In addition to these parameters, the navigation system must continuously

provide the coordinates ( xa, yo) of the aircraft in the landing-pad reference frame.

Synthesis

From the basic data, the coordinates of the point C (fig. 35) and the centers of the circles can

be calculated. The coordinates of point C are given by the equations

2

,/

Cz = S:_ - D_ cos AtPI

C v = S_ - Dcsin AWl

(B1)

(B2)

where A_f is the heading of the final flightpath segment relative to the x axis of the landing pad,

and is given by the equation

AWl = _I - W (B3)

The coordinates ( R (i) Rte ) of the centers of the circles are given by the equations

R(') = Cx - iR sin A_Pj-

R(O = C v + iR cos A_P!

(B4)

(B5)

where i = +1 or i = -1 denotes the circle for flight in the clockwise or anticlockwise direction,

respectively.

The appropriate circle depends on the distances/('), i = +1, - 1, of the aircraft from the

centers of the circles, given by
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Figure 35.- Flightpath geometry.

q _ _(o)2l (O = (x_ --R(-I)) 2 + (Ya "_v i = +1,-1 (B6)

and the circle selection conditions

ifl(+l) < Rtheni=-I

if/(-1) < R then i = +1

if/(+l) > Rand/(-_) > Rand/(+_) > V -u then i = -1

if/(+ll > R and t(_l) > R and/(+i) </(-1) then/= +1

Further calculations require knowledge of the angles AWl and _. The former angle is that

between the line from the aircraft to the center of the appropriate circle (AL or AR of fig. 35) and

the x axis of the landing pad. The latter is the angle between AL or AR and the first flightpath

segment. These two quantities are calculated from the equations

2(O )
180 "'_ -Y° 0 <A_< 360 (B7)

= _-- ",?d'ctarl D(i)

x = _ arcsin , 0 <_ ,X _< 9(I (B8)
11"
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The track angle of the initial flightpath segment relative to the z axis of the landing pad, A_i,

may now be calculated from the equation

A_i = AWl - iX (B9)

and the initial flightpath heading is given by

Wi =W+AWi, 0 <_Wi<360 (BI0)

The coordinates (Bx, B v) of the point B at the start of the circular segment may now be

calculated using the equations

B_ = _,(o + iRsin AqJi (Bll)

B v = R (i) - iR cos AhUi (BI2)

The angle No that the circular segment subtends at the center of the circle is obtained using

the equation

No = 180(i + 1) - i(_, -- qQ), 0 <_ qJ, - qJ! < 360 (BI3)

The calculation is completed by determining the distances Db, from point B to point S, and d,

from the aircrMt to point S (measured along the reference flightpath), thus

,r RNo
Db = D, + --- ( B 14)

180

d = l _0 cos ), + Db (BI5)

The quantities i, q_, B_,, B v, d, and Db are calculated continuously up to the instant that the

pilot selects the reference flightpath. Before the selection, _Sy = 0. After selection, the quantities

i, W,, Bz, B_, and Db ( in addition to S,, S'y, W, WI, D,, and R ) remain constant at their values at

the instant of flightpath selection.
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APPENDIX C

GUIDANCE

Lateral Guidance

Lateral guidance is provided by the ghost aircraft symbol, and the lateral guidance law is

provided by the geometrical relationship between the aircraft and the ghost (fig. 16). To calculate

the azimuth angle of the ghost,/zg, (eq. (23)) and the ghost bank-angle-blend function, k4,, (eq. (29)),

requires knowledge of the range, d, the lateral offset of the aircraft from the reference flightpath

track, 6_/, and the heading of the reference flightpath, _t- Which equations are needed to determine

these quantities depends on which segment of the reference flightpath the aircraft is located in
(fig. 36).

S

POINT OF FLIGHTPATH ///

SELECTION 1,) (,) /////"
tR x R ) / / /

_"_'-_ L.. Db-d_C (C x . Cy)

/ a B (B x . By)

AIRCRAFT

(a)

o) (t) D/_ _ S

A (R x Ry) ,/d,C// (h)

_Cy)

IF_'("_,B ,,_ )

N _r"" S

1,, (,) I_; _1_//

(R_ By . #_ /

' C

Figure 36.- Illustration of variables d, 6I/, _bt in the three flightpath segments.
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Segment AB (fig. 36(a)) d > Db

d = Db -- (zo -- B_) cos A_g_ -- (Vo - By) sin A_,

6V = -( z. - B_) sin h_g, + (V,, - B_) cos AW,

(C1)

(C2)

(C3) '7

Segment BC (fig. 36(b)) Db > d > De

7rRv
d = D_ + _ (C4)

180

6v = i( R - l (°) (C5)

et = _ ! - iv (C6)

where v is the angle subtended at the center of the circle by the remaining part of the circular-arc

segment. The value of v is determined by the equation

180v=_arctan 0 <v< 360 (C7)

! I
where xo, yo are the coordinates of the aircraft in an axis system (z',y') whose origin is at the

center of the appropriate circle and whose x' axis is parallel to the final flightpath segment (fig. 35).

The coordinates X'o and Y" are calculated from previously determined quantities by the equations

' ri't') ) R (')) sin AW lx°=(zo-..t cos AW l+(y*-..v

_ _ R(o,_ AWl]y°' = i[ ( x_ - --zrt(')) sin AW 1 ( Y,_ --v - cos

(C8)

(C9)

Segment CS (fig. 36(c)) Dc .>_d

d = -( x,_ - St) cos AW l - ( Yo -- Sv) sin AW/

61/= ( It, - S_) cos AW l - ( x° - St) sin AW 1

Ct = W�

(CI0)

(Cll)

(CI2)
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Vertical Guidance

Vertical guidance, like lateral guidance, is provided by the ghost aircraft symbol. In this case

the key variable is the altitude of the ghost, hg, given by equation (21).

Longitudinal Guidance

It is assumed that the deceleration profile should contain flexibility to permit the pilot to select

the maximum deceleration. It is also assumed that both the final deceleration and its period should

be constant. The latter assumption is motivated by the viewpoint that the kinematics of the critical

final approach to the initial station-keeping point should be independent of the aggressiveness of the

initial deceleration. A two-step deceleration profile (fig. 37) is compatible with these assumptions.

=" 0l,
z

,_c2_

,..u_ Vf - -re

° V i._ _ ....
I

r"

t=l

I"

\
CONTINUOUSLY

COMPUTED

REFERENCE

ACCELERATION

.......................... 1_.....
d RANGEd Of Dh_ De0 \,

" \ , HOVERSTART OF START OF ,," "
FIRST SEGMENT SECOND SEGMENT \', \'RIBBON

DECELERATION DECELERATION \ \ DISAPPEARS

IRIBflON APPEARS) FICTITIOUS

HOVER POINT

Figure 37.- Two-step deceleration technique.

The selection of the final deceleration and its period rests on pilot judgment of the maximum

comfortable closure rate to the station-keeping point, which, in turn, depends on the proximity of

solid obstacles to the station-keeping point. When operating to ships, simulation indicates that a

final deceleration of !.5 ft/sec _ and period of 35 sec are acceptable. Without obstacles, a higher

final deceleration for a reduced period may be acceptable.

Given the nominal final deceleration, -_'/, and period, A 'If, the nominal range, Dr, at the

start of the final deceleration is given by
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D/ = aT:) 
2 (Cl3)

The pilot selects the value of the nominal initial deceleration, - _. The guidance system then

calculates the range, Dh, at which the aircraft would come to a hover if the deceleration were held

constant at -_, as follows:

o,--o,(, (C14)

I

g:

:':

Before the aircraft reaches the start of the deceleration, the guidance system continuously

calculates the reference initial deceleration, -Or, appropriate to the current position, d, and the

speed of the aircraft along the reference trajectory, vrt, from the equation

2

Or = --13rt
2(d- Dh) (C15)

In addition, a continuous calculation is made to establish the range, d,, at which the aircraft's

acceleration, O,, will equal the selected value, -_, where

2

d_ = v'----_t. + Dh ( C 16)
2¼

When d < ok, the deceleration error ribbon appears on the display and flashes for 2 seconds

at 3 Hz, to prompt the pilot to start the deceleration. The reference deceleration, -0r, continues

to be calculated using equation (C15) until the range is less than DI, after which the calculation is
switched to

2

v, - - vrt ( O 17)
2d

When the longitudinal velocity is less than V,,z, the acceleration error ribbon is removed from

the display, as described in the section entitled "Acceleration Error Ribbon (A)."
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