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NUMERICAL SIMULATION METHODS OF INCOMPRESSIBLE FLOWS

AND AN APPLICATION TO THE SPACE SHUTTLE MAIN ENGINE

J. L. C. Chang, * D. Kwak_, S. E. Rogers++ and R-J Yang §

NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

SUMMARY

This pal)er discusses incompressible Navier-Stokes solulion methods wilh an emphasis on

lhe pseudoconlpressil)ilily mel hod. A steady-slate flow solver based on the pseudocon>

pressihility approadl is lhen described. This flow-solver code has been used to analyze

the internal flow in lhe Space S]mttle main engine h_t-gas manifold. Salient features as-

sociated with this three-dimensional realistic flow simulaiion are discussed. Numerical

solutions relevant to ihe current engine analysis and the redesign effort are discussed along

with experimental results. This example demonstrates the polentia] of COnll)ulational fluid

dynamics as a design tool for aerospace applications.

KEY WORDS Incompressible Flow, Navier-Stokes Equations, Finite Differences

INTRODUCTION

lnc(mlpressible fl_ws are encountered in many reali._lic engineering prol)lems related to

hydr(_dynamics, and also Io Iow-sl)eed aerodynamics, th,wever, to (late, computational

tlow simulation has not been a critical elelnent in res_,lvillg many _)f these prol)lems. For

instance, impellers, aulonlobiles, submarines, chemical rea('l(m.,, etc., have been designe(1

reas(mably well 1)y empirical means. As technol()gies advance, the (lesign of modern flow
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deviceslends to be more compact and highly efficient. Therefore, the approach relying oil

empiricisna and simplified analysis becomes inadequate for resolving problems associated

with those devices requiring advanced analysis. For example, ill analyzing and redesigning

the current Space Shuttle main engine (SSME) power head, computational simulations

became an economical and time-saving supplement to experimental data. There are vast

mnnbers of other real-world problems which demand accurate viscous, incompressible flow

solutions, such as rockel-engine fuel flow, flow through an impeller (as in the turbo pump in

the SSME), and biomedical flow (as in an artificial heart). There have been many compul a-

tional simulations reported in the past on these subjects. In response to these demands the

present study attempts to develop an alternative method for simulaling three-dimensional

(a-D) viscous incompressible flows. This paper is a summary of our recent efforl (NASA

Ames, Rocketdyne, and NASA Marshall Space Flight Center) to develop and apply an

incompressible Navier-Stokes solver wilh a special emphasis on SSME applications.

A major problem involved in solving lhe incompressible Navier-Stokes equations comes

fr_,na the lack of a pressure term in the contimfity equalion. In two-dimensional (2-D)

problems, one can bypass this difficulty by using a stream fimction-vorticity formulation.

In 3-D, a similar approach can be adopted using a vorticity-velocity formulation. ]]owever.

lhe pressure lerm is removed at the expense of introducing three vorticity equalions as

well as requiring vorticity boundary conditions. In 2-D, computational efficiency is not a

major problem; however, in realistic 3-D applications, satisfying conlimfity in a reasonable

;_mount of COml)uling time becomes a. primary issue. NaTurally, c_n_q)ulaliona] efficiency is

of primary inlporiance in addition to accuracy and robustness. For convenience and flexi-

bilily, a primitive variable formulation in generalized curvilinear coordinates is chosen, and

our discussion is limited to this formulation using a finite-difference approach. Derivation

_t' equations and algorilhmic details can be found in our earlier publications 1-3 and only

equati,ms relevant to the present discussion will be given in this paper.

SOLUTION METHODS

Unsleady, 3-D, incompressible flow with constant density is governed ])3' the following

Navier-Stokes equations:
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where I is tile time, xi tile Cartesian coordinales, ui the corresponding velocity corot)orients ,

p the pressure, and Tij the viscous-stress tensor. Here, all variables are nondimensionalized

by a reference velocily and length scale. The viscous-stress tensor can be written as

Wij _- 2uSij - Rij (3)

1 Oui Ouj

s,j = + (4)

tlere, u is the kinematic viscosity, Sij is the strain-rate tensor, and Rij is the Reynolds

stresses. Various levels of closure models for Rij are possil)le. In the presen! study,

turl)ulence is sinmlaied by an eddy viscosity model, using a conslitutive equation of lhe

following form:

1

Rij = -3Rt.,.bij- 2u, Sij (5)

where, ut is lhe turbulent eddy viscosity. By including the normal stress, R_._., in lhe

pressure, u in equation (3) can l)e replaced by (u + 1_), namely,

7ij = 2(l' -]- lJ t )Sij = 21.'3_S_.i

In lhe remainder of lifts pal)er the total viscosily, /':iv, will t)c represented simi)]y by u.

Therefore, the incolnpressible Navier-Stokes equations are modified to alh)w variable vis-

c()sily in the present fornmlalion.

In lhis secti(m, a few solution metlmds used in l)revious flow solver developmen! work are

])riefly discussed.

Method using Poisson's equation for pressure

Perhaps the oldest, and most commonly used method of salisfying the contilmily equation

is wilh lhe use of a derived equation, namely, Poisson's equalion for pressure. 4 The usual

COml)ulalional procedure is t.o solve the pressure field such lhat continuily is sa.listie,1 at ihe
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next time level. This procedure usually requires a relaxation sclleme iterating o11 pressure

until the divergence-free condition is satisfied within a specified nunlerical accuracy. To

obtain a divergence free velocity field numerically, spacial differencing of the Laplacian

operator ill Poisson's equation has to be consistent with the velocity differencing, hlstead

of a Laplacian operator, divergence of a gradient operator may be necessary. Even lhough

this approach in general needs acceleration schemes to further enhance computational

efficiency for 3-D problems, successful computations have been made. s'6

Fractional-step method

The fractional-step naethod Call be used for time-dependent computations of the incom-

pressible Navier-Stokes equalions. 7-_4 Here, the time evolution is approximated by several

steps. Various operator splitting can be adopted by treating the lnomentunl equation as a

colnbination of convection, pressure, and viscous terms. The COmlnon application of this

method is done by two steps. The first step is to solve for an auxilary velocity field using

the monaentum equation in which the pressure-gradient term can be computed from lhe

pressure in the previous time-step TM, or can be excluded entirely. 11 In the second step, the

pressure is conlputed which will map the auxiliary velocity onto a divergence-fi'ee velocity

field.

A generalized flow solver based on this apl)roach using a staggered grid has been de-

vehq)ed in conjulwtion with the present work mainly for time-dependent computations.

Details of the solver, which require lengthy description of various aspects such as the

sp_tial-differencing scheme which lnaintains conservativeness, time inlegration and associ-

ated boundary condilions, can be found in Reference 15.

Pseudoeompressibility method

Recent advances in the state of the arl in co_uputational fluid dynamics (('FD) have been

m;l(te in conjunction with coml)ressible flow coml)utations. Therefore, it is of significant

interesl to be able t_) use some of these conq)ressible flow algorithms. To (1(, this, the arti-

ficial compressi])ility method of Chorin TM can be used. In this formulation, the colllinuily

equati_)n is modified by adding a time-derivative of the pressure term resulting in

10p Ou,

+ o (7)



Togelher with the unsteady momentum equations, this forms a hyperbolic-l)arabolic type

of time-dependent system of equations. Thus fast, implicit schenws developed for com-

pressible flows, such as the approximate-factorization scheme by Beam and Warnfing J4

or Briley and McDonald, ls'16 can be implemented. Various applications evolved from

this concept have been reported for obtaining steady-state solutions) -aaLls Merkle and

Athavale 19 have successfillly computed time-dependent flows by subcycling each time slep

to satisfy the continuity equation.

Strigburger, 2° and independently, Briley el al., 2J interpreted ihe pseudocompressible for-

mulalion as a simplified form of low Mach number compressible equations. Then the low

Mach number approximation of the unsteady compressible flow equal ions becomes

Op 1 )2 Out Op
oU+ + = 0 (s)

where M is the Mach numl)er. Therefore, the pseudocompressible fornmlation represented

by equation (7) does nol fully satisfy the lime-dependent, compressible-flow fornmlation,

and is inlended mainly for sleady-state computations. As shown above, unsleady-flow

calcu]ations may be performed by' including the third term in the above equati(m. If

approxinlate faclorization is applied, where 1/(M :) corresponds to/_, a large value of 3

will inlroduce faclorization error. Therefore, the unfactored forln would be preferable for

time-dependent calculations.

In an incompressible tic)w, a disturbance in the pressure causes waves which lravel with

infinite speed. When pseudoccmlpressibiliiy is introduced, waves of finite sl)eed resu]l in

which lhe magnitude ()f the speed depends Ul)On the pseud()compressibilily conslan( /:/. In

a true incoml)ressible flow, lhe pressure field is affected instantaneously 1)y a disturbance

in lhe flow, but wilh 1)seud()compressil)ility, there will be a lime lag between the flow

dislurbance and its effect on the pressure field. In viscous flows, lhe behavior of the

boundary layer is very sensitive to the streamwise pressure gradienl, especially when the

boundary layer is separa|ed. If separalion is presen(, a pressure wave traveling with finite

speed will cause a change in the local pressure gradient which will affecl the localion of

lhe flow separation. This change in separated flc)w will feed back 1o the pressure field,

t)ossil)ly preventing convergence |o a stea(ly slale. An exlensive nlalhematica] accollnl (-)ll

the l)seudoccmapressibilily approach is given by Tenlam. 2"



Among the various solution techniques,the method of of pseudocompressibility is chosen

to gain efficiency and robustness in solving 3-D, real-world problems which require large

numbers of grid points ill curvilinear coordinates. In the present paper, the algorilhm

and its physical interpretation are described. Also, other practical considerations such

as grid-induced error, boundary conditions, and a multiple-zone approach are presented.

To improve the computational efficiency and accuracy, various acceleration sctlemes and

modifications have been tried. The numerical scheme implemented in the present flow

solver (INS3D code) will be summarized next.

NUMERICAL SCHEME

Governing equations in generalized coordinates

To perform calculations on 3-D, arbitrarily shaped geometries, the physical coordinates are

transformed into general curvilinear coordinates by introducing the following independent

variables:

Applying the transformation to the governing equations (2) and (7) yields

£b 0
0, + - : 0 (9)

where

,
W J

1 I ,,u_+(6),p
k_ = j [ ,,u_ + (b)_p

L wU,+(L):p

and where J is the Jacobian of the transformation. The contravariant velocities, Ui (with-

out liletric normalization), are defiiled as

U_= (6), + (6)_" + (_;)._" + (_,)--w (10)

6



The viscous lerms aregiven by

0
It.

Ou &, 9w
o°Q

(lla)

When u is constant, the contribution of the second group of terms sums up 1o be zero

when lhe velocity field is divergence-free. However, since in general, u varies in space and

lime, these l erms have to be kept. For the flow with constant r, in orthogonal coordinates,

the above full viscous lerms can be siinplified further as follows:

V

E,,i-j 0

L tV

(llb)

Difference equations

There are a number of different ways of defining variables in a grid system. Either standard

cell node orienled or a staggered arrangement can be chosen. In Cartesian coordinales, a

slaggered grid has several favorable properties. TM In generalized coordinates, lhese advan-

tages 1)ecome obscured because of lhe inlerpolalion required. H,,wever, a fully conservalive

differencing schenw can be devised maintaining the convenience of a slaggered arrange-

merit in a Poisson solver. 1_ l:sing any grid system, spatial differencing can be done either

in finile-difference or finite-volulne form. The finite-volume scheme usually behaves be|ler

near geometric singularities. In spacial differencing, bolh central differencing and upwind

differencing have been tried. In lifts report, only the work using central differencing will

be discussed.

The numerical algorithm used 1.o advance equalion (9) in lime is an implicit, nol,ilerative,

al)t)roximalely factored, finile-difference scheme. 14 J6 The lime-differencing used by this

scheme is generally known as lhe lrapezoidal rule and is given by

9"+ -5;- -+ ig) + (121

7



where lhe superscript n refers to the n _h time step.

The problena is to solve for D "-_1, and this is nonlinear in nature since E.+1

is a nonlinear function of D "+1 The following linearizalion procedure is used.

Taylor expansion aboul, u" yields

^ = _n n+lE_.+' E_ + A,(D - D')+O(Ar 2)

= JE(D "_' )

h local

(13)

where -4i is the Jacobian malrix

Ai- OEi
OD

The Jacol)ian matrices can be rel)resented by the following:

(14a)

L0 L]21 L2/3 Lafl

L, Q + L,,, L2. Lau

L2 Lay Q + LaP L31'

L3 LlU, L2w Q + Law

(14b)

where

Q = L0 + Llu + L2v -+ Law

Lo = (_,),, L, --({i),:, L2 = ({i)v, L3 = (_i):

{, : (_,,t. or()

Sul)stituting equation (13)into equation (9) results in the governing equation in della flwm

{I_. . -

-A_J°+'[,_(&- L,) " +,,,(_- L_) _ +,_(E_- L,_)"]22

J" 1 D"

(Tl5)

_vllel'e

h = Ar for l.rapezoi(tal

= 2(St for Euler

0

_{ = finite - difference operator fl)r 0_



A1 lifts point it should be noted that the notation of the form [_(A - F)]D refers Io
• OA OF

;_(.4D)-  (FD)and ,,or _D- _D.

A_pproyimat e Factorization

The solution of equation (15) would involve a formidable matrix-inversion problem. With

tile use of an allernaling direction implicit (ADI) lype scheme, the l)roblem could be

reduced to lhe inversion of three matrices of small bandwidth, for which there exist, some

efficient solution algorithms. The particular ADI form used here is known as approximale

faclorization (AF). II is difficult, to implement the AF scheme to equa|ion (15) in its full

matrix form. Noling that at steady state the left-hand side of equation (15) approaches

zero, a simplified expression for the viscous term as shown in equation (1 lb) is used on the

left-hand side. To maintain l he accuracy of lhe solution, lhe enlire viscous lerm is used

oll the right-hand side. Using this, the governing equation ])ecomes

L_L,_L¢(o - )= RHS (16)

where

I+- T

[ Arl'-_'a t,i" 32)3 (17)L, - I + _ ",_-'e -

and RH S is the righl-hand side of equation (15). When second-order central differencing is

used, the solution to this problem becomes 1he inversion of lhree block t ridiagonal matrices.

The inversion problem is reduced 1o the three inversions

(L,j )A I) - R H.5'

(L,g)AI)" _ - A_)

These inversions are carried out h)r all in|erior points, and the boundary condilions can

be implemenled explicilly. It is possible, however, to implemenl lhe boundary condillons

implicitly.



The factorization has introduced the following second-order,cross-product ternl into the

equation:

h2" [tS_A1,_,TA2 + &TAz_ Aa + _ As,_A1] AD + O(ha) (19)

where Ar

A, =A;'-_t,, ,42=A_-72, A3 =A_'-_tz, h = _ J"+'

To maintain the second order accuracy of the scheme, the added terms nmsl be kept

smaller than the original terms in the equations everywhere in the computational domain.

This puts a restriction on the size of the pseudocompressibility parameler/3. The proper

choice of fl is discussed in our earlier reports)'2 In applying the approximate factorization

scheme, it has been found that the stability of the scheme is dependeni on the use of some

higher-order smoothing terms. These are used to damp out higher-frequency oscillalions

which arise in the solution because of the use of second-order central differencing, and will

be discussed in a following section.

Numerical dissipation/smoothing

Higher-order smoothing terms are required lo make the present algorithm stable. These

terms help l o damp out the higher-order oscillations in the solution lhat are caused by

the use of second-order central differencing. The smoothing term can be relaied 1o an

upwind finite-difference approxilnation. An exlensive discussion on numerical dissipation

can be found in Reference 23. In this report, specifics relevant to the pseudoconlpressible

fornmlaiion are discussed.

Including these snmothing terms, equations (16) and (17) become

L_L,,L;(D "+_ - D') =: RItS of(15) - e_.[(V_Ae) 2 + (V,,A,) _ + (V/A;)2]D" (16')

wllere

L_ = [I +

L, I : [I +

L; == [I +

At j,,+ , VeA_

2-_T j_t+l ^n
-- (17')

10



Here,V' and A represent forward and backward spacial-differencing operators, respectively.

To preserve the tridiagonal nature of the system, only second-order smoothing can be used

on the left-hand side of the equation, whereas fourth-order smoothing is used on the right-

laand side. When the diagonal algorithm (described in a later section) is used, however,

it is feasible to increase the bandwidth of the systeln to a pentadiagonal. This makes il

possible to use fourth-order smoothing on the left-hand side of the equations also. When

this combination of dissipation terms is used, the AF algorithm will be stable if _i and %

satisfy a certain relation. 2a

To study the nature of the numerical smoothillg, one-dimensional form of dissipation terms

are represented as follows:

[1 - ,_V_A_] (p"+' - p") = -,,_(V_A_)'_p"

Suppose p is represented by the discrete Fourier expansion

(20)

p = Z[_(1,.)ei_'_ (21)
%1

where

27r
_" -- 1_ ---- tt'(IPC 7_It_Tbtr

NA_

n = -N/2,...O, 1,..(N/2 - 1)

N = numberof mesh points

Sul)stituting equal ioll (22), equation (21) can be written as

where

k' = -2 + 2cos(k)

(1,') 2 6 - 8cos(k) ÷ 2cos(2k)

From tiffs, the amplification factor call be defined as

O" ---

_n+l
! ')_.' (_(_.)-][1 - _i -

(22)

(23)

II



To damp out the numerical fluctuations as time advances, the absolute value of the am-

plification factor o has to be less than one for all possible frequencies, i.e.

lot < 1

Noting that k' is always negative, this requirement leads to the following relation:

t¢ < 2(1 - tik') (24a)

It can be shown that the above inequality is always satisfied if

2e¢ _< ci (24b)

The exact relation between these two coefficients can be determined only by a nonlinear

slability analysis. Ill the present code, ¢i is taken to be three times larger than to- From lhe

expression given in equation (23), it is clear thai if ¢i is too large, the rate of damping wilt

be diminished. II may not be advantageous to take an excessively large value for ¢i over

¢,_. The choice of e_. depends on the Reynolds number and the grid spacings. However, as

discussed later, large values of _ adversely affect the accuracy of the continuity equalion.

Therefore, the magnitude of ¢¢ is usually taken to be small. If grid sizes are fine enough

to resolve the changes in the flow field, it can be taken as small as 10 -3

There are two major sources of inaccuracy associa|ed wilh the numerical dissipation terms;

namely, (1) the numerical dissipation terms effeclively change the Reynolds number of

the flow, and (2) the explicit smoothing terms added to the continuity equation do not

conserve mass. In particular, the explicit smoothing on the pressure can affect whether

or not the s_lution converges to an incompressible flow field. Chang and Kwak 2 showed

that lhe pseudo-pressure waves decay exponentially with lime, and vanish as the solution

converges. Thus the change in pressure with time approaches zero. When there is no

explicit smoothing added to the equation, the divergence of the velocity field identically

approaches zero. However, when explicit smoothing is included, as the change in pressure

al)l)roaches zero, lhe divergence of velocity al)l)roaches

Ou i

O,r i
___ -÷ _ e_(1) [(V_A_)2 + (V,,A,,)_ + (V¢A_)_] P (25/

 3Ar

12



where_,.(1)is the explicit smoothing parameter for the pressure.If _ is scaledby h, i.e.,

q = Are_, equation (25) becomes independent of time step. This term can deteriorate

the conservation of mass depending on the magnitude of/3 and the local pressure gradient.

When the pressure gradients become substantial, as in the case when a region of sepa-

ration is present, the smoothing term does not approach zero, and this contaminates the

divergence of the velocity field. In this situation, mesh refinement usually does not help

reduce the magnitude of this term. To allievate this problem, it may become necessary to

decrease the smoothing coefl]cient in the continuity equation as the solulion converges.

Diagonal algorithm

In a diagonal algorithm, a silnilarity transform is used to diagonalize the Jacobian lnatri-

ces and uncouple the set of equations. The equations can then be solved by solving scalar

Iridiagonal matrices instead of solving block tridiagonal matrices. A similarity trans-

form which symmetrizes and diagonalizes the matrices of the compressible gas dynamic

equations has been used by Warming et al. 24 and Turkel. 2s This method was used by Pul-

liam and Chaussee 2, to produce a diagonal algorithm for the Euler equalions. This can

be applied to the compressible Navier-Stokes equations to obtain a considerable savings

in compuling time. 2r In this section, similarity transforms for the matrices used in the

method of pseudocompressibility are presented. They are used in a diagonal algorithm

which results in a substanlial reduction in computer time.

Similarily transformations exist which diagonalize the Jacobian matrices

.4i = Yi_ i Ti -1 (26)

where/",i is a diagonal matrix whose elements are the eigenvalues of the Jacobian matrices

which is given by
Q o o o

o Q o o
o o Q+c o
0 0 0 Q - c

and where (' is the pseudospeed of sound, which is given by

(27)

C :: V/(Q - Lo) 2 +3(L_ -_ L_ + L'.])

13



Tile Ti matrix is composed of the eigenvectors of the Jacobian matrix. For i= 1 (_-sweep),

the first two eigenvectors are given by

[0]
For i-2 (71-sweep), they are

For i=3 ((-sweep), they are

E°] E°]k_ X2 = k_

[0] i0]
The deternainant of Ti is given by

&t(T_) = 2(__

(2s)

(29)

(30)

which remains bounded independent of the geometry. For more detail on the derivation of

these matrices, see Reference 3.

The implemenlation of the diagonal scheme involves replacing the Jacobian matrices in the

implicit operators with the product of the similarity-transform matrices and the diagonal

matrix as given in equation (26). The identity matrix in lhe implicit operators is replaced

by the producl of the similarity-transform matrix and ils inverse. A modification is made

lo the implicit viscous terms so t hal the transfox'malion matrices may also be factored out

of these terlns. This implicilly adds an additional viscous dissipation term to the pressure.

The transfi)rmation malrices are now factored out of lhe implicit operators to give

Ar

£,, = T,,[I 4- _- J,_,,(A, - %)IT,, ' (31)
1

14



where the implicit viscous terms are now given by

l]

Since the transformation matrices are dependent on the metric quantities, factoring them

outside the difference operators introduces an error. No modification has been made to

the righl-hand side of the equation; therefore, these linearization errors will not affect the

steady-state solution, only the convergence path toward the solution.

The implementation of this algorithm over the block algorithna will result in a substantiM

reduction in computational tilne per iteration because of the decrease in the number of

operations performed. Additionally, considerably less memory is required to store the

elements on the left-hand side. This additional memory was used to further vectorize

the existing code as follows. Since the solution of a tridiagonal block or scalar malrix

is recursive, i! is not vectorizable for loops which use the current sweep direction as the

inner do-loop index. However, if a large number of these matrices are passed into the

inversion routines al once, then vecti_rization can take place in the 'non-sweep' direction.

This diagonalized version is given as an option in the INS3D code.

Boundary conditions

An important part of any computer code is the proper implementalion of boundary con-

dirt,ms. The code must be capable of handling the several different types of boundaries

encounlered in numerical sinmlations, which include solid-surface, in-flow and oul-flow,

and far-field boundaries.

Solid surface

At a solid-surface boundary, lhe usual no-slip condition is applied. In general the grid

point a.djacenl to the surface will be sufficiently fine so that conslan| pressure normal t,_

the surface in the viscous boundary layer can be assumed. For a (_ = constant surface, |his

can be expressed as

/3 t
0_//_=_

15



In-flow, out-flow and far-field conditions

The in-flow and the out-flow boundary conditions for an internal flow problem and far-

field boundary conditions for an external flow problem can be handled in much the same

way. Tile incoming flow for both problems can be set to some appropriate constant as

dictated by the problem. For example, at the inlet to a pipe, the pressure can be set to

a constant, and the velocity profile can be specified to be uniform. The conditions at the

downstream, however, are the most difficult to provide. Simple upwind extrapolation is not

well-posed. The best convergence rate is obtained if global mass is conserved. So to ensure

lhe best results, the velocities and pressure are first updated using a second-order upwind

extrapolation. Then these extrapolated velocities are integrated over the exit boundary

to obtain the outlet mass flux. The extrapolated velocity components are weighted by the

mass-flux ratio to conserve global mass, i.e.,

_7,_+1 _ rbi,_ _7,_ (33)
?_ou t

If nothing further is done to update the boundary pressure, this can lead to discontinuities

in the pressure because momentum is not being conserved. A method of weighting i he

pressure by a momentum correction is used to obtain a pressure which corresponds to |he

mass-weighted velocities

-- - L<:[(,,,w)"+' -(.,w) + re) - 0¢ /

where W is the contravariant velocity. In obiaining this formula, it has been assumed

that the st.reanflines near the exit plane are nearly straight. Any appreciable deviation

will cause a discontinuity in the pressure, and may lead to an instability. To avoid this, a

momentum-weighied pressure was used. This was obtained by integrating the momentum-

corrected pressure, p"+_, and the extrapolated pressure, p_, across the exit.

I_ +1 = _ t ''_-_ldh
ziI

xit

The final outlet pressure is then taken to be

pn+l = :P

I__,

(35)

fi
p (36)
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Using these downstream boundary conditions, global conservation of mass and naonaentum

are ensured, and the scheme will not. introduce instabilities into the flow field.

SSME POWER HEAD FLOW SIMULATION

Validation of flow solver

Tile present flow solver (INS3D code) has been validated by computing fundamental fluid

dynamics problems such as channel flow, the flow over a backward-facing step, and flow

over a circular cylinder. Three-dimensional cases include flow over an ogive cylinder, flow

through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow, and flow

through multiple posts mounted between two plates. These results have been reported

in our earlier publications, and will not be repeated here. 1-3'2s-3° The most striking

application of the present, code is the flow simulation in the power head portion of the

SSME. 31'32 In the remaining part of this section, several important results obtained to

date will be presented.

Background of SSME flow analysis

For future scientific and commercial applications, an upgrade of the SSME power head

has been under way which will substantially increase the operating margin and the engine

durability. To achieve this goal without increasing the weigh! and size of the existing

engine, it became essenlial to understand the dynamics of ihe hot-gas flow in the engine

power head. Because of the complexity of the geometry, an experimental apl)roach is

extremely difficult as well a.s time consuming. Compulational simulation, therefore, offers

an economical alternative Io complenaent the experimenlal work in analyzing the current

configuration, and to suggest new, improved design possibilities. In the past few years,

major milestones have been established from this effort. In this report, highlights of our

iuilial task are presented.

In the SSME staged combustion cycle, the filel is partially burned at very high pressure

and relatively high temperalure in the preburners. The resulting hot gas is used to run

the turl)ine and is then routed to the maiu injector where, along with additional oxidizer,

it is injected into the main combustion chanaber. The Reynolds nunabcr of the primary
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flow in the manifold is of order l0 s per inch. Becauseof the high gas telnperature, the
Mach number is lessthan 0.12. The flow is turbulent and is practically incompressible.

Figure 1 illustrates the current arrangementfor the SSME power head components. Hot

gas dischargedfrom the gas turbine enters the annular turnaround duct (TAD), and ex-
periencesa 180° turn before it. diffuses into the fuel bowl. This asselnbly is called the hot

gas manifold (HGM). The gas flows into the main injector through three transfer ducts

on the left-hand side of the power head (fuel preburner side) and enters into the region

of the main injector posts. On the right-hand side of the power head (oxidizer preburner

side), there are two transfer ducts connected to the right-hand side of the main injector

assembly. Around the bottom portion of each liquid oxygen (LOX) post in lhe main in-

ject.or assembly, there are a number of small holes through which the hot gas flows into

the main combustion chamber. There it mixes with the oxidizer, which comes through

circular passage along the centerline of each LOX post. As a part of the current redesign

effort, a CFD study has been conducted to simulate the dynanfics of the hot-gas flow in

the power head.

The computer model and the grid

A computational model of the power head is chosen to analyze critical areas where dynam-

ics of the trot-gas flow is expected to have a significant effect, on the overall performance

of the SSME. As shown in Figure 2, the model starts fi'om the gas turbine exit on the

filel preburner side, and extends to the main injector assembly. The main injector consists

primarily of a t)undle of LOX posts, which is physically modeled by a porous media.

Figures 2a and 21) demonstrate the 3-D grid for the SSME HGM. They show a

horizontal and a vertical cross section, respectively, of the HCM. Figure 2c illustrates the

details of H-grids for the cross-section of the three transfer ducts. This H-grid is generated

for a unit circle. Near the boundary the grid lines are concentric circles except in the

vicinity of the four singular points. Using the nearly orlhogonal grid in this unit circle,

one can obtain H-grid for tubes or ducts of any given shape and dimension by a simple

linear transformation. Figure 2d shows an unwrapped surface of the annular fuel bowl with

openings. The elliptical transfer duct shown in Figure 2c represents an advanced two-duct

design, which will be explained later in this section.
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The grid for the entire HGM systemis generatedby usingalgebraicfunctions, and iswritten

with a high degreeof flexibility for changing geometricconfigurations. By specifying the

shape,the dimension,and the desirednumber of transfer ducts, a grid for a variety of new

HGM configurations can be obtained in a short time. The ducts describedin this paper
are connecteddirectly to tile fuel bowl without any fairings, while ill the current enginethe

three transfer ducts are connectedsmoothly to the annular fuel bowl with fairings. This

configuration with an al)rupt changein geometryis moredemandingcomputationally than

smooth configurations.

Multiple-zone computation

A large number of mesh points is required to resolve the 3-D turbulent flow in the SSME.

To overcome the lilnitation in computer core memory, the domain of interest is divided into

several zones. This requires a special treatment at the interface for a smooth continuation

of the solution between zones. Figure 3 illustrates a five zone arrangement for the HCM

flow field. Zone 1 is allocated for the TAD and fuel bowl. Zones 2, 3, and 4 are for the

three transfer ducts. The racetrack of the main injector is represented by Zone 5. Also

shown in the figure are some overlapping grids in the various zonal interfaces. The grid

is chosen Io be continuous and smooth across the zonal boundaries. In lhis paper, the

racetrack (Zone 5) is not included in the COlnputalion. Since the vertical plane lhrough

the center of the fuel bowl and the main injector is taken to be a plane of symmetry, only

half of the HGM is computed.

The equations of lno|rion given in equations (2) and (7) are of hyperbolic type with

parabolic-type viscous diffusion terms. Waves are propagating in both up- and down-

stream directions while the solution approaches a sleady state. The interfaces between

zones of the present problem are locations where the geomelry changes abruptly. There-

fore, in the neighborhood of those interfaces, flow is expected to experience a rapid change.

To maintain a Slnoolh continuat.ion of the solutions across these zones, and hence to achieve

a stable and fast-converging computation, a means of providing adequate communication

for the traveling waves nmst be established. Overlapping regions and a proper zonal in-

terpolatoll scheme are thus required for this purl)ose.

A h_rward or backward differencing, if applied to the inlerfaces of multiple zones, would

distort the geometric representation. To maintain a smooth transition of the flow field
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acrossa zonalboundary, the Jacobianand the metrics at the interfacesarecomputedusing

grid points in neighboring zones. Then the pressure and the velocities, Q, are updated

explicitly at each iteration. Let values at. (n + 1/2) denote the state of conditions to be

used to advance the computation to n + 1. The values of Q,_+1/2 for Zone 1 at the exit

plane are obtained from the values of the corresponding plane of Zone 2 at n, i.e.,

Q.-Vlt2] = [Qi',,,,_io.}Zo._2 (37)
B.C. ] Zonel

And values of Q,+i/2 for Zone 2 at the zonal interfaces are taken from the latest computed

result of Zone 1 as

,_+1/2] = [0 "+1 . t (38)
B.C. J zone2 L'_ _nteworJ Zo_el

When more than two points are overlapped, the latest values in the interior of this over-

lapping region nmst be properly transmitted to the next zone. There are a number of ways

to treat this problem. The simplest one is take an average of the two values computed in

Zone 1 and 2, as below:

1 (39)

A scheme using updated zonal boundary values, but with no interior updates, has also

been tested. Either way, converged steady-state solutions have been obtained. However,

the scheme with interior updates converges at. a much faster rate.

Grid-induced error

To generate grids for realistic 3-D problems like the SSME, it is convenient to combine

different types of grids, depending on the problem's geometric characteristics. In the

present al)plication, for continuity and smoothness across zonal boundaries, an H-type grid

is chosen for the circular transfer duct as shown in Figure 2c. This is then is connected to

the side-wall grid of the HGM as illustrated in Figure 2(t. In generating this grid for the

SSME, errors are introduced mainly due to grid singularities, skewness, and stretching.

The present AF algorithm integrates the difference equations along the trans-

ft)rmed coordinates, _, q, and (_ directions. At the junction of the two It-grid directions,

flow particles in the two coordinate directions could comnmnicate only indireclly via the

interior mesh points. This produces some corner-effect error. Even though this error is
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not as severeas the one causedby external flows, an ad hoc method of eliminating this

corner effect is devisedbasedon a finite-element concept. Let j and k denote the indices

for the grid points along the increasing _ and 71directions, respectively. And let j = k = 1

be the corner point, which is singular. First, the pressure at this point, pll, is determined

by an extrapolation along the diagonal direction j = k. Second, pa3 and Pal are obtained

in a usual manner. Then P12 and P21 are established by an interpolation along the circular

surface.

The full viscous term given by equation 1 la can be simplified to equation 1 lb when the grid

is orthogonal. Even though full viscous terms can be used, it is convenient and economical

to keep only the orthogonal part. It is, therefore, of practical interest to estimate overall

error caused by orthogonal formulation when a nonorthogonal grid system is used. Using

the notation defined in Figure 4a, the skewness can be related to the metric terms as

)2ds . = 2 +

., dT1).,.•ds2 = (G; + -j-

,, d_ dT1,

dsl • as:
COS 0

(ds12dsf')lf 2

As a quick measure of an overall error caused by grid skewness, a 2-D channel flog- is com-

pu| ed using two grids, namely, 1 ) stretched Car| esian grid (orl hogonal) and 2) nonorthog-

ona] grid where the skewness is controlled on the upper half of the channel as sketched

in Figure 41). ]n the computation only orthogonal terms are kept. Converged solulions

on lhe lower half, where the two grids are identical, are lhen compared as shown in Fig.

4b. Total error depends additionally on the Reynolds number and the third-directional

skewness. However, this quick experiment indicates that the orthogonal assulnption can

be used without significantly impacting on the overall solutions if the grid is reasonably

orl hogonal.
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Turbulence models

Several levels of turbulence models have been implemented into the code. These include

the Baldwin and Lomax 33 algebraic model in which length scale is determined by the

location of the maxilnuna moment of vorticity. This model has been widely applied in

the external flow problems. However, the maximun_ moment of vorticity is not as well

defined for fully turbulent internal flows as for external flows. In particular, the moment

of vorticity is ahnost constant for a fully developed pipe or channel flow except in the

sublayer region. For the present problem, it is proposed that the length scale is deternfined

by the point of minimum vorticity. This length scale is incorporated into an extended

Praadtl-Karnaann mixing-length theory. The combination of these automatically account

for curvature effect. Full details of this model are given in other reports. 3"_'34 For the

present SSME flow computations, this extended Prandtl-Karmann mixing-length model is

used. A review on various levels of turbulence models calf be found in Reference 35 or 36.

Computed results

In this part, flow solutions in a variety of different HGM configurations at various Reynohts

immbers are presented. Here, the Reynolds number is based on the mean velocity and the

duct width at the entrance of the TAD.

Three-circular-duct HGM

First, steady-state solutions are obtained for the currenl three-circular-duct HGM at

Re-1000. As illuslraled in Figure 5, in the present analysis, the racetrack of the main

injeclor is not connected to the ducts. The three transfer ducts are assumed to discharge

the flow separately. There is no communication of the pressure between lhe center and

the outer ducts al their exit planes. For this reason, small residual waves have remained

in the computed results. However, the root mean square value of the change in the flow

variables, AQ, has dropped below 10 -5, and an essentially steady-slate solution has been

obtained.

lu Figure_ 6a and 6b, velocity vectors are shown in the horizontal an(t vertical cross-section._

corresponding to Figures 2a and 2b. The flow in the center |ransfer duct, as illustrated in

Figure 6b is highly nonuniform, and a large separation region is formed jusl downsireanl

of the entrance to the transfer ducts. By comparison of lhe vector length in Figure 6a,
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the flow ill the centerduct is much slowerthan it is in the outer ones. The results shown

in these figures agreequalitatively with the airflow test data conducted at a Rc of about

10 6 . The predicted mass flow through the center duct is 9.8% of the total mass flow, which

agrees with the test data.

Figures 7a and 7b illustrate tile 3-D velocity vectors at the unwrapped center plane and at

a plane near the inner wall of tile fuel bowl. A reverse-flow pattern is clearly visible near the

inner wall. Three-dimensional swirl patterns are predicted ill the vicinity of the entrance

to the transfer ducts. Figure 7c is a photograph that indicates, by means of surface-streak

(shear-pattern) visualization, the similar swirls at the corresponding locations in the airflow

test..

The existence of the swirls can be explained as follows: The flow coming from below has

a large momentum due to the relatively small width of the annular duct. Among the

streamlines of this flow in between the two ducts there exists a dividing streamline. This

streamline has a stagnation point at. the top of the fuel bowl as shown in Figures 7a and

7b. On the left-hand side of this dividing streamline, flow is bent leftward to the center

duct. Because of symmetry, a rightward flow is also approaching the center from the other

side. When these opposite currents approach each other, another dividing streamline is

formed with a stagnation point again at the top wall. The stagnation pressure forces the

streams to bend downward, and at the same time, the streams make a right-angle turn

into the circular duct. Conservation of momentum thus requires the formation of swirls.

The pattern of the swirl and its center depends on the relative strength of the appoaching

currents. Near the center duct, double swirls of equal strength are formed because of

symmetry. In the vicinily of the entrance to the outer duct, the current approaching

leftward from the rear part. of the bowl is more massive than the one approaching rightward.

A stronger swirl is thus forlned and is located sideways toward the weaker stream.

Figures 8 and 9 are the t)erpendicular cross-sectional views showing three different sections

of the transfer ducts; namely, near the entrance, at the midsection, and near the exit

plane. Near the entrance (Figures 8a and 9a), the velocity vectors in the cenler duct have

synlmetric double swirls, while the outer duct has a strong swirl accompanied by a nmch

weaker one. The swirling velocities are largely reduced at the midsection and are physically

dissipated before entering the main injector regions.

23



New two-elliptical-duct HGM

From this computational flow analysis and also from experiments, the center duct of the

current three-duct HGM is found to transfer a limited amount of mass flow (about 10% of

the total flow). Also the transverse pressure gradient, remains large together with a large

bubble of separation after the 180 ° turn. To improve the quality of the flow, a large-area,

two-duct design concept has been developed. In addition, the ducts are chosen to have an

elliptical shape in order to distribute the mass flow evenly to the main injector region. An

outer-surface grid for a two-duct model is illustrated in Figure 10.

First, to reduce the large separation bubble after the 180 ° turn, a paralnetric study is

performed to find the best possible configuration. In Figures lla and llb, COlnparison

of the current three-duct configuration and the new two-duct design is illustrated. As

shown in Figure 1 la, a large separation bubble existing in the present design is practically

removed in the new configuration shown in Figure 1lb. This is confirmed by experiment as

shown in Figures 1 lc and 1 l d for the current and new designs, respectively, where velocity

measurements at five different locations across the channel between the inner and the outer

wall are shown.

Figure 12a illustrates an example of the triple-swirl pattern in the eJliptical duct near

the entrance at Re=103. Here, because of the absence of the cenler duct, the stream

approaching from the left-hand side is much stronger than in the previous case. Another

point of interest is that the upcolning stream entering the elliptical duct directly t'ron_ below

is also more massive. The three currents are ahnost of the same strength, result.ing in a

triple-swirl flow. The swirling is greatly dissipated along the duct. Figure 12b shows the

remailfing small swirling vectors at. the duct exit. A steady-state, turbulent-flow solution

for an HGM with two elliptical transfer ducts at Re - l0 s has been obtained. 32 In Figure

13, the swirling flow in the elliptical transfer duct is illustrated. In comparing these results

with the laminar solution in Figure 12, it is seen that only a double-swirl pattern exists.

The most significant aspect of the present study is to pinpoint the locations where flow

experiences the lnost energy losses. An important measure of the energy losses is the

mass-weighted average total pressure along the flow. Figure 14 illustrates the decreasing
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coefficient of the mass-weightedtotal pressurealong the centerline of the TAD, the fllel

bowl, and the transfer duct. The total pressurecoefficient ('p0 is defined as

where

t50 = _-_ P+ (u 2+v 24-w 2) dm

The discontinuilies shown in the fgure correspond to the entrance of the duct where energy

fluxes are computed over different planes. In the figure, three different HGM configurations

are compared. The initial two-duct design shows 28% less total pressure drop compared to

the current three-duct version. After fine-tuning the two-duct configuration computation-

ally, the pressure drop decreased even further to 36% less than the original configuration.

This final configuration is then tested using cold air flow, which shows 40% reduction in

pressure loss.

CONCLUDING REMARKS

This paper presents a summary of incompressible Navier-Stokes flow-solver development

work. The SSME power head has been simulated using this flow solver. Computational

resulls are favorably compare(t with test. data, and offer information not readily availal)le

from experiments. The results show that CFD can reduce the development time and cos!

by suggesting the bes! possible configurations for final verification by experimenls. For

example, in redesigning the TAD, over 20 different configuralions were studied computa-

iionally, thus providing the best geometry to designers. Further study is in progress, and

the tolal performance improvement will be compared in the future. At the time the present

SSME analysis was performed, the computational model of the power head was designed to

obtain solutions within a reasonable turnaround time. Therefore, the total nmnber of grid

points was linfited and the model could include the TAD and transfer ducls only. Despite

its limitation, the present application provides an excellent example how the present C.FD

and computer capabilities can be integrated into the aerospace design process.
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Figure2. Gridof theSSMEhot-gasmanifold.
a)Horizontalview(crosssectionA-A); b) verticalview(cross
sectionB-B.
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a) Definition of grid skewness; b) Relative error due to skewness.
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Figure 5. Inner and outer surface grid for a three-duct HGM.
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Figure 6. Conlpu|,ed velocity distribution at Re=1000.

a) Top view; b) Vertical cross section of center transfer duct.
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(c)

Figure 7. Velocity vectors on unwrapped surfaces.

a) Unwral)ped cenler plane; b) near the inner wall; c) experiment.
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Figure 8 Velocity vectors at cross sections of cenler ducl in three-duct HGM.
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Figure 9 Velocity vectors at, cross sections of outer duct in three-duct HGM.
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Figure 10. Outer-surface grid for a l wo-ducl H(;M.
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Figure ] l. Turn-Around-Duct redesign.

a) Coniputed velocity vectors for the currenl design;

b) Computed velocity vectors for lhe new design;

c) Experimental velocity head measuremenls for the current design

(0 defined ill Figure 2a);

d) Experimental velocity head measurenlents for l,he new design.
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Figure 12. Velocity vectors a,t cross sections of transfer duct in two-duct HGM (Re=103).
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Figure 13. Velocity vectors at cross sections of transfer duct in two-duct HGM (Re=10 s).
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Figure 14. Pressure losses in three-duct and two-duct HGM.
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