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ABSTRACT

Compressive loads can cause local buckling in composite laminates that have a
near surface delamination. This buckling causes load redistribution and secondary
loads, which in turn cause interlaminer stresses and delamination growth. The
goal of this research effort was to enhance the understanding of this instability-
related delamination growth in laminates containing either an embedded or an

edge delamination.

There were three primary tasks: 1) development of a geometrically nonlin-
ear finite element analysis named NONLIN3D; 2) performance of a parametric
analytical study to determine the effects of strain, delamination shape, and de-
lamination size on the distribution of the strain-energy release rate components
along the delamination front; and 3) performance of a combined experimental and
analytical study of instability-related delamination growth (IRDG). Two material
systems (AS4/PEEK and IM7/8551-7) and two stacking sequences (0/90/90/0)6
and (90/0/0/90)¢ were examined. The laminates were fabricated with Kapton
inserts between the fourth and fifth plies from the top surface to give an initial

delamination.

" "The analysis predicted a large variation of Gy and Gy along the delamination
front. The Gy component was always small. The location of maximum Gy
and Gy depended on the delamination shape and applied strain. In general,

the strain-energy release rates were small except in a small region. Hence,



delamination growth was expected to occur over only a small portion of the
delamination front. Experiments corroborated this prediction. The laminate
stacking sequence had a large effect on the shape of the deformed region, the
direction of delamination growth, and the strain at which delamination growth
occurred. These effects were predicted by the analysis. The G; component
appeared to govern initial delamination growth in the IM7/8551-7 laminates.
Matrix ply cracking generally accompanied delamination growth. In some cases

fiber microbuckling also occurred shortly after delamination growth occurred.
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NOMENCLATURE

a,, b, ¢, d; Labels for nodes used in G calculation
a, b Semi-axes of elliptical delamination in x- and y-

directions, respectively

Cy; Constitutive coefficients

Eq1y, Ep3, E33 Young’s moduli for orthotropic material

F® Nodal forces

Gr, Gy, Mode I, mode II, mode III, and total strain-energy
Grir, Gt release rates

G2, G23, G13 Shear moduli for orthotropic material

h Thickness of sublaminate

H Thickness of base laminate

J Jacobian matrix

Kopf Coefficients in tangential stiffness matrix

N™ Shape function for node m

NG Number of Gaussian quadrature points

NS Number of shape functions

P Transverse load

q“ Nodal displacements

S Perimeter coordinate

u,v,w Displacements in x-, y-, and z-directions

U Strain energy

\Y Volume

wo Transverse displacement in center of plate

w Width of finite element model.

Also used to designate Gaussian quadrature

weighting coefficients.



NOMENCLATURE, concluded

X,Y,2 ~ Rectangular Cartesian coordinates

Aa Increment in delamination length

X Local coordinates in parent element, i=1,3
£ , Strains

Vi2, V23, V13 Poisson’s ratios for orthotropic material

n Total potential energy

o, Stresses

Subscripts and Superscripts

i,j =1, 6 except as noted
a, B8 = 1, number of nodal displacements

9 = 1, number of Gaussian quadrature points
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Chapter 1
INTRODUCTION

In recent years there has been an an increasing interest in the application of
advanced composite materials to structures. These materials exhibit high specific
strength and stiffness. Through the choice of fiber/matrix systems and lamination
stacking sequences, there are great opportunities to tailor the material stiffness and
thermal expansion coefficients in various directions to meet specific design needs.
Some are very resistant to corrosive environments. There are also advantages
in fabrication of certain structures, in which the “part count” can be drastically

reduced by using composites. The list of desirable characteristics is long.

Unfortunately, there are also potential problems associated with the use of
composite materials. One of the primary problems is lack of experience. New
material systems are being introduced on a regular basis. Even most of the “older”
material systems are only a few years old. Application of composites to strength

critical structures has been very limited.

There are also new modes of failure, such as delamination, fiber breakage, and
intralaminar cracking. These materials may be very strong in certain directions,
but they can also be surprisingly weak (compared to metals) in other directions.
The use of high strength, low strain to failure fibers severely reduces plastic
deformation. Whereas a metallic structure can experience local yielding to reduce
stress concentrations, a composite structure can do little readjusting to reduce

locally high stresses without local failure.

To expedite the process of safe application of composites to strength critical
structures, much research has been aimed at developing appropriate stress anal-
yses. This is not to say that metal structures do not require sophisticated stress
analyses. But, for the same level of geometric and loading complexity, composites

are much more demanding of the analyst than are metals.
There are basically two types of stress analyses which must be performed. The
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first consists of analysing a problem in which the failure is well documented and
understood. The analyst’s task is simply to quantify the magnitude of certain
parameters which are known to control the failure mode. For many situations it
is not clear what governs failure. Since it is not possible to model all aspects of
the configuration, approximations must be made. This is the second type of stress

analysis problem.

The problem addressed by this thesis is of the second type. Failure of a
laminated composite material under compression loads is a very complicated
process. Besides all of the failure modes commonly observed under tensile loads,
there are additional failure modes related to insta.bilit".y. There is the possibility of
fiber microbuckling, lamina buckling, and global buckling of the entire laminate.
Usually, the concern is that some initial damage or defect will precipitate the
operation of one of these instability-related mechanisms. The initial defect may
be quite simple: perhaps a disbond between two lamina. Initial damage can be due
to high stresses during service or impact damage. Impact damage is a particularly
messy situation for the analyst. It is impossible to model all of the fiber breaks,
delaminations, and lamina cracks. The task is to make approximations which make
" the analysis tractable without losing any of the essential elements of the problem.
Learning to identify the essence of a complicated problem involves dissection of
the original problem into independent, less complicated problems that exhibit one
or two failure mechanisms. These less complicated problems are then carefully
analyzed to determine the basic behavior. Hopefully, certain mechanisms can be
identified as unlikely or at least unimportant. Then potential interactions of the

mechanisms would be considered.

Presently, there is no consensus as to what are the critical mechanisms of
compression failure. Likely, different modes are critical under different situations.
Also, more understanding of the basic mechanisms of compression failure is
needed. This thesis will examine the failure mode instablity-related delamination

growth; that is, delamination growth which is caused by localized buckling of



a delaminated group of lamina. This buckling causes load redistribution and
secondary loads, which in turn cause interlaminar stresses and delamination
growth. The next several sections will survey the literature and describe the

scope of this investigation.

1.1 Survey of the State of the Art

Most of the research on instability-related delamination growth (IRDG) has
used one of two configurations: the through-width delamination or the embedded
delamination. These are shown in Fig. 1.1 . When a critical compressive strain
level is reached, the delaminated region buckles. This causes interlaminar stresses
along the delamination front, possibly leading to delamination growth. The term
“sublaminate” will be used to refer to the buckled group of plies. The term “base
laminate” will be used to refer to the unbuckled group of plies. These regions are

labeled in Fig. 1.1.

The literature on instability-related delamination growth differs in the choice
of configuration, the type of stress analysis, and the method of characterizing the
magnitude of ‘he delamination front stresses. Also, some papers are primarily
experimental and others concentrate on just the analysis. The literature survey in

the next two sections will be organized according to the configuration considered.

1.1.1 Through-Width Delamination

The primary motivation for considering the through-width delamination is
that it is less complicated than the embedded delamination. Hence, it provides a

convenient vehicle for checking various ideas about modeling.

Kachanov was perhaps the first to analyse the through-width delamination
(ref. 1). He developed an approximate nonlinear beam-column analysis for the
case of thin-film buckling. The change in strain-energy in the thin film due to
delamination was compared with the rupture energy. If sufficient strain-energy

was released, the delamination was assumed to grow. Kachanov did not consider
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the individual components of strain-energy release rate. Whitcomb (ref. 2,3)
developed a geometrically-nonlinear finite element analysis for calculating the
mode I and mode II strain-energy release rates (Gy and Gyj). Linear finite
element analysis was later combined with nonlinear beam theory to obtain results
for many configurations (ref. 4, 5). This hybrid analysis drastically reduced the
computational effort required to perform a parametric study. Chai, et al (ref. 6)
developed a beam-column analysis for calculating total strain-energy release rate
(Gt = Gr + Grr1). G was calculated based on differentiation of the total strain
energy. This analysis could handle the case of global bending combined with local
buckling. The analysis could also handle multiple delaminations, although no
provision was made to prevent interpenetration of the different groups of buckled
lamina. Wang (ref. 7) performed a finite element analysis of composites with
multiple delaminations. Constraints were included to prevent interpenetration
of adjacent lamina groups. However, only the bifurcation buckling problem was
studied. Since there was no postbuckling analysis, strain-energy release rates could
not be calculated. Ashizawa (ref. 8) also published a beam-column analysis. He
calculated G7 based only on the moment at the end of the delamination. Simitses,
et al used plate analysis to study how local buckling of a delaminated group of
lamina affects global stability (ref. 9). In ref. 10 Sallam and Simitses presented
a plate analysis which can be used to calculate the effects of coupling between

bending and stretching on Gr.

Experimental measurements of instability-related delamination growth have
been published for both fatigue (ref. 3, 4, 11, 12) and static (ref. 11, 12, 13) loads.
No unusual experimental techniques were used, so individual references will not

be discussed.

1.1.2 Embedded Delamination

Kachanov (ref. 1) was also perhaps the first to analyse the embedded
delamination. He presented a thin-film analysis for a circular delamination in

a plate subjected to uniform radial loads. Prediction of delamination growth was



based on the change in strain energy in the buckled thin film versus the rupture
energy. The individual modes of strain-energy release rate were not considered.
Konishi and Johnston (ref. 14) assumed a trigonometric form for the transverse
displacements of a rectangular delamination with an initial imperfection. The
moments along the delamination boundary were estimated by differentiation of
the assumed displacement function. Results from this analysis were used to design
specimens for a study of delamination growth under fatigue loads. However, no
analytical results were presented. Also, experimental results were not compared
with the analytical model. Chai (ref. 15) developed a Rayleigh-Ritz analysis for
the postbuckling of an embedded elliptical delamination. The buckled group of
lamina was assumed to be very thin compared to the rest of the laminate. The
entire laminate was assumed to be isotropic. The total strain-energy release was
obtained by differentiation of the strain-energy with respect to the lengths of the
axes of the ellipse. This procedure gave an average measure of the strain-energy
release rate along the boundary. The analysis was later modified to be able to
analyse orthotropic laminates (ref. 16). Webster (ref. 17) developed a Rayleigh-
Ritz analysis for determining bifurcation buckling of a circular delamination. He
used Ashton and Whitney’s technique (ref. 18) to account for bending-extensioh
coupling of unsymmetric sublaminates. Shivakumar and Whitcomb also presented
a bifurcation buckling analysis (ref. 19). They used both finite element and
Rayleigh-Ritz plate analyses. Orthotropic, elliptical sublaminates with various
orientations relative to the load direction were considered. Since postbuckling
was not considered, there was not the possibility of a strain-energy release rate
calculation in either ref. 17 or 19. Whitcomb and Shivakumar (ref. 20) presented
a technique for calculating the distribution of strain-energy release rate along the
delamination front from plate analysis results. Although this technique is general,
only results for isotropic laminates were presented. Yin (ref. 21) developed a plate
analysis for calculating total strain-energy release rate for axisymmetric loading
of an isotropic plate with a circular delamination. Fei and Yin (ref. 22) developed

a similar analysis for axisymmetric bending of an isotropic plate.



All of the preceding analyses are for quasi-static loading. Bottega (ref. 23)
developed a dynamic plate analysis for estimating the effects of dynamic loading

on delamination growth. Only axisymmetric configurations were considered.

A variety of experimental programs have observed growth of embedded de-
laminations. Konishi and Johnston (ref. 14) used Kapton implants to create
delaminations of a known size. They performed both static and fatigue tests.
Rhodes, et al (ref. 24) observed that impact of compression panels could lead to
delamination, followed by local buckling and delamination growth. Byers (ref. 25)
and Porter (ref. 26) studied the growth of delaminations which originated either
due to impact or an implant. Ramkumar (ref. 11) also performed tests on lam-
inates with implants. Chai et al (ref. 27) combined high-speed photography and
shadow moire to study dynamic growth of delaminations due to combined impact

and compression.

1.2 Scope of Investigation

The literature survey showed that there has been no detailed analysis of any
truly three-dimensional { 3D ) configuration which exhibits instability-related
delamination growth. Even the approximate analyses that have been performed
have examined only a very limited range of parameters. None of the analyses
have been capable of calculating the individual modes of strain-energy release
rate. The goal of this investigation is to enhance the understanding of instability-
related delamination growth through detailed stress analysis supplemented by

experiments.

There are two facets of the analytical study: development of a suitable stress

analysis and using it to calculate strain-energy release rates.

Geometrically nonlinear 3D analysis is required to perform the detailed analy-
sis. In particular, finite element analysis will be used. Such analyses are inherently
expensive. However, geometrically nonlinear 3D analysis has become more prac-

tical since the introduction of supercomputers, which have processing capabilities
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in the neighborhood of 200 million floating point operations per second. To fully
exploit the capabilities of a supercomputer requires tailoring of one’s program to
fit the architecture of the computer. Programs written for ordinary mainframe
computers are not generally suitable for supercomputer usage. Hence, one of the
tasks in this study was to develop a finite element program which ékploits a su-
percomputer architecture. This program is named NONLIN3D. The development
and verification of NONLIN3D will be discussed.

There are several aspects to the use of NONLIN3D. Even with the use of
supercomputers and special purpose programs, efficient modeling must be used.
This means avoiding excessive mesh refinement and using nonlinear analysis only
where it is necessary. Also, tasks like mesh generation can become intractable
unless approached properly. These aspects of the use of NONLIN3D will be

discussed.

NONLIN3D was used to perform a parametric study of two 3D configurations
which exhibit instability-related delamination growth. In particular, the embedded
delamination (Fig. 1.1) and the edge delamination (Fig. 1.2) will be examined.
A few results will be presented for the through-width delamination, which is

b@ically two-dimensional. The parameterfs'stﬁdied include strain, delamination

—————— Lrsw.loids

" size, and déia matxofnshapefAlis(f):m effect of stacking sequence was studied.
Delamination growth behavior was predicted based on the calculated strain-energy

release rates.

Another use of NONLIN3D was to determine how accurate plate analysis is for
calculating total strain-energy release rates. Plate analysis is potentially attractive
because it is inherently much less expensive than 3D analysis. Results from the

literature were used for the plate analysis. (No plate analysis was performed as

part of this study.)

Some preliminary experiments were performed on a configuration which does

not buckle, but does exhibit geometri'c nonlinearity. This configuration was used to

10



Fig. 1.2 Laminate with postbuckled edge delamination.
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check the degree of agreement one might expect between analysis and experiment

for relatively simple configurations.

Experiments were performed to determine whether instability-related delam-
ination growth could be predicted using strain-energy release rate parameters.
Laminates with embedded and edge delaminations were tested. The deformation
and growth of the buckled region were monitored during the tests. Also, X-rays
and light microscopy were used to determine the extent of delamination and other

types of damage. Predicted and observed behaviors are compared.

The following chapters will begin with a discussion of NONLIN3D. Then the
results of a parametric analysis of homogeneous quasi-isotropic laminates with
either an embedded or edge delamination will be presented. Then the experimental
procedure will be discussed. Finally the results of a combined analytical and

experimental parametric study will be presented.
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Chapter 2
FINITE ELEMENT ANALYSIS

This chapter describes the theoretical a;pects of the finite elerrrrlrentr Wana.lysis
program NONLIN3D. This program was developed as part of this thesis effort to
perform the stress analyses presented in later chapters. There were two primary
reasons for developing a new program rather than using a commercially available
one. The first reason is related to the size of the computational task. Nonlinear
3D analyses generally require large computer resources, both in terms of memory
and number of computations. Supercomputers, such as the CDC VPS-32 and
the CRAY-2, are well suited for the task. To exploit the power of such machines
requires special programming techniques. Unless a program is written specifically
for a supercomputer, the program will usually not perform well. NONLIN3D was
written to exploit the capabilities of the VPS-32, which was the supercomputer
available for this work. The second reason for developing a new program was to
permit tailoring of the source code to suit the needs of this particular research
effort. This tailoring involved all aspects of the analysis, including ease of input
and output, simple techniques for specifying boundary conditions, and automated

strain-energy release rate calculations.
The following topics will be covered in this chapter:
2.1 Governing Nonlinear Equations
2.2 Finite Element Approximation
2.3 Numerical Integration
2.4 Vectorized Implementation
2.5 Eigenvalue Analysis of Stiffness Matrix

2.6 Substructuring

13



2.7 Contact Analysis
2.8 Strain-Energy Release Rate Calculation
2.9 Material Properties

2.1Governing Nonlinear Equations

This subsection discusses the derivation of the equilibrium equations and the
expressions for the internally generated nodal forces and the tangent stiffness

matrix. Also, the strain-displacement relations are discussed.

The total potential energy IT is given by

1
IMT= § / C,'J'E"Ejdv - Faqa (2.1.1)

where the integral term is the strain energy and the second term is the potential
energy of the apphed loads. The terms C,J- and ¢, are terms in the constitutive
matrix and the strains, respectwely The terms Fo and ¢® are the generahzed
forces and dlspla.cernents, respectively. The adjectxve generahzed” is used to
indicate that F® and ¢ need not be nodal forces and displacements in the usual
sense. For example, in traditional Rayleigh-Ritz analyses, the ¢* are simply
unknown coefficients in the series expansion for the displacements. However,
in this discussion the F® and ¢% will always refer to the nodal forces and
displacements in the z-, y-, and z-directions. The system is assumed to be
conservative; hence, the equilibrium state is obtained by minimizing I1, which is
accomplished by setting the first partial derivatives with respect to the unknowns

equal to zero.

a1l de
o /C’Us,aadV Fe =0 (2.1.2)

Equation 2.1.2 is nonlinear because of the nonlinear strain-displacement rela-
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tions. The integral in eqn. 2.1.2 gives the magnitude of the internally generated
nodal forces corresponding to the current displacements. Until a converged so-
lution is obtained, the internally generated forces do not equal the externally
applied forces. The differences in the forces, referred to as residuals, equal gqﬂu.
The Newton-Raphson procedure that was used to solve eqn. 2.1.2 requires the
partial derivatives of the residuals with respect to the unknowns. These partial
derivatives of the residuals are the coefficients in the tangential stiffness matrix K

and are given by eqn. 2.1.3.

8211 de; Oc; 9%¢;
af _ _ . 1 J .. L
Ko — — - /c,, 7 de+/c., 30537 av (2.1.3)

The first integral gives the terms for the sum of the linear and large dis-
placement matrices. The second integral gives the terms in the geometric stiffness
matrix. If the strains are equal to zero, the matrix obtained using the first integral
and the nonlinear strain-displacement relations is identical to the matrix obtained
by simply updating the coordinates and using the linear strain-displacement rela-
tions. If the strains are not equal to zero, there is a difference. This was verified

numerically for 2D elements.

A Lagrangian formulation was used in NONLIN3D. For infinitesimal strain the

nonlinear strain displacement relations are (ref. 28)

€1 = Ug + 1/2(uzuz + VgV + w:wz)
52 = vy + I/Z(Uyuy + vyvy + Wywy)
€3 = wy + 1/2(uzuz + va2vz + wow;)
(2.1.4)
£4 = Uy + vz + (Uzly + vgVy + Wzwy)

€5 = Uz + wy + (Uzuy + v;0y + wywy)

€6 = Uz + wg + (UzUz + vzvz + Wowg)

15



where u, v, and w are displacements in the z—, y—, and 2-directions, and the
subscripts z, y, and z indicate partial differentiation (e.g. uy = g—'yi) The nodal
values of u, v, and w are the unknowns referred to earlier as ¢%. Note that 4,
€5, and €g are engineering shear strains. Since a Lagrangian formulation is used,
the strains are based on the original configuration. For example, ¢; is the axial
strain of a line which was originally (i.e., before deformation) parallel to the z-
axis. Although this line could be oriented parallel to the y-azis after deformation,

the arial strain is still €1 (not £3).

The material coefficients, C;, were assumed to couple normal and shear strains
in the xy plane only; hence, Cs; = 0 for j = 1,2,3,4, and 6 and Cg; = 0 for j =
1 through 5. This corresponds to an orthotropic material which has one material

axis parallel to the z direction. In expanded form, the stresses are given by

rCy; Ci2 Cia Cig O 0 7 &g
Ciz Cz2 Caz Caq¢ O 0 | |e2
Tyl = Ciz3 Caz Czz Ciy4 0 0 €3
ol = Ci4 Ca¢ C3q4 Cqy4g 0 O €4 (2.1.5)
0 0 0 0 Css 0 €5
. O 0 0 0 0 Cesl Leg

2.2 Finite Element Approximation

Equations 2.1.1 through 2.1.5 are general equations which can be used with any
procedure based on minimization of total potential energy. In the finite element
method, the body is divided into subregions referred to as elements. Within
an element, the displacements u, v, and w are approximated by interpolation

functions N™ and nodal values of the displacements, u™, v™, and w™.

u=N™"ym

v=N"y™ wherem=1,NS

(NS = number of shape functions) (2.2.1)

w=N"w™

16
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The shape functions for 8- and 20-node elements are given in the appendix.

Fig. 2.2.1 shows schematics of the two elements.

Since an isoparametric formulation was used, the element geometry is
approximated using the same interpolation functions and the nodal coordi-

nates, z™, y™, and z™.

z=N"z™
—_ m,m
y=~N"y (2.2.2)

z=N™mz"

Calculation of the tangential stiffness matrix (eqn. 2.1.3) requires the first
and second partial derivatives of the strains &; (eqn. 2.1.4) with respect to the
nodal displacements u™, v™, and w™. Since the nodal values are independent of
the coordinates, the partial derivatives with respect to coordinate directions take
the form g% = Qg‘;lu”‘. Also, the nodal displacements are independent. Hence,
%—"‘7; = 6mn and %‘;‘; = 0, where 6;mn is the Kronecker delta. Equation 2.2.3

gives the expressions for the derivatives of the strains.

17
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Fig. 2.2.1 Schematics of 8- and 20-node elements.
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By Bi2 Bis
By By2 Bz
B3y B3z Bss
(B] = (2.2.4)
: By1 Bs2 Bas
Bsy Bsz Bss

Bs1 Be2 Bes

The matrix B is introduced to define the terms B, which will be used later
to conveniently refer to the derivatives in eqn. 2.2.3. Most of the second partial
derivatives are zero. The non-zero ones are given in eqn. 2.2.5. Note that the

terms are the same for derivatives with respect to u, v, and w.
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2.3 Numerical Integration

The integrals in eqns. 2.1.2 and 2.1.3 were evaluated using numerical integra-

tion. The integrations become summations as shown in eqns. 2.3.1 and 2.3.2:

NG

oll oe;
o = 2 (CucigalIW)’ — F° (2:3.1)
=1
NG NG
Je; 0€; d%e,
"‘ﬂ=§:C~-—‘————J—JW9 E 2t T w)8 2.3.

where

NG = number of quadrature points

|J| = determinant of the Jacobian (required because integrations
are performed using local coordinate system)

W = Gaussian quadrature weighting coefficients

and the superscript § indicates that the term was evaluated at quadrature
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point 8.

The first summation in eqn. 2.3.2 can be expressed in a symmetric form.
This form is like that in ref. 29, but the motivation is different; Herein, the
symmetry is the valuable characteristic which will be exploited in the vector
implementation of the finite element analysis. The material coefficients C,; are
replaced by Cy; = QisQjss where Qs =0 for i < s. The terms Q;, are obtained
using Cholesky decomposition. Cholesky decomposition is always possible since
the constitutive matrix C; is symmetric and positive definite. The weighting
coefficients W and the determinant of the Jacobian |J| are positive, so the square
root of |J|W is real (only the positive square root need be considered). Integration
schemes which involve negative weighting coefficients are not considered herein.

Hence, the first summation in eqn. 2.3.2 can be written as

NG
K2 =S (rreTf) (2.3.3)
=1

and T3 is defined to be

T = Qi 3ek([JIW)®  s=1,NSTR
(2.3.4)

where NSTR = number of strains

The product is now that of the transpose of a matrix and itself.

For the 8-node element, the terms related to normal strains were evaluated at
8 points (i.e. a 2 X 2 x 2 integration scheme). To improve the performance of
the 8-node element in modeling bending deformation, terms related to €5 and €g¢
were evaluated at the centroid only (ref. 3, 30, 31). The other shear strain terms
related to €4 were evaluated with full integration. Both 2x2x2and 3 x3 x3
integration schemes were considered for the 20-node element. There was not much

difference in the behavior of the element for the two integration schemes, so the
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2 x 2 x 2 integration scheme was used for the results presented herein.

2.4 Vectorized Implementation

The three-dimensional finite element program NONLIN3D developed for use
in this study was designed to exploit the vector processing capabilities of a
supercomputer, the CDC VPS32. The CDC VPS32 is closely related to the CDC
CYBER 205. In the context of computation on the VPS832, a vector is simply
a list of numbers; it is not a vector in the usual mathematical sense, wherein
a vector has magnitude and direction. The architecture of the VPS32 is such
that long vectors can be manipulated (i.e., multiplied, added, etc.) more than
an order of magnitude faster than the individual terms could be manipulated
separately. Ref. (32,33) gives some quantitative information on the processing
speed. Processing speed is often expressed in terms of millions of floating point
operations per second (MFLOPS). Actually, the speed is not the same for different
operations. For example, multiplication is performed considerably faster than
division. The following rates are applicable for multiplication and addition. For
scalar operations, the processing speed is approximately 3-5 million MFLOPS. For
very long vectors, the speed is 100-200 MFLOPS. Short vectors are not processed
nearly so fast. However, a vector length of 110 to 160 will result in a rate of 50-100
MFLOPS. Obviously, it is highly advantigeous to manipulate long vectors rather

than scalars or short vectors.

To vectorize a program simply means to implement the mathematical algo-
rithms in such a way that long lists of numbers are manipulated rather than
individual numbers. There is usually no unique vectorization of a particular task.
There is considerable room for ingenuity. In fact, successful vectorization of a task
generally requires discarding of procedures familiar to the scalar programmer (for

example, those procedures in familiar textbooks) and taking a fresh look at what

has to be accomplished.

There are three subroutines which perform essentially all of the computation
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intensive work in NONLIN3D. These are BOBL3D, ESTIF3D, and the equation
solver. The subroutine BOBL3D calculates strains, stresses, and element forces.
The subroutine ESTIF3D calculates element stiffness matrices. The equation
solver will not be discussed, since vectorized versions of banded (ref. 34) and profile

(a vectorized version of that in ref. 35) equation solvers are already available.

Reference 36 describes a vectorized procedure for calculating element stiffness
matrices for linear high-order elements, which require a large number of quadrature
points. The primary technique in ref. 36 was to manipulate the values of a
parameter at all the quadrature points simultaneously, rather than individually.
This resulted in vectors of length equal to NG (the number of quadrature points)
and, at times, NG * NS, where NS = number of shape functions. At one stage of
the stiffness matrix calculation in ref. 36 even larger vectors were manipulated,
but the longer vectors were obtained at the expense of significant replication of
vectors and fairly complicated logic. Reference 37 describes a technique which
results in long vector lengths for low order elements, but it has the same drawbacks
mentioned above for the technique in ref. 36. Also, the technique in ref. 37 has
very large memory requirements. Techniques were developed in the current study
which result in fairly long vector lengths without much replication, complexity,
or memory requirements. Also many of the techniques used can be extended to
process multiple elements at the same time, thereby increasing vector lengths.
Simultaneous multiple element processing was not attempted for two reasons:
1) time constraints and 2) the expected reduction in total computation costs did

not appear to justify further optimization of the routines.

To expedite the discussion of BOBL3D and ESTIF3D, special notation will be
introduced. Also, simple vector programming methods are discussed. Vectors are
given abbreviated names. A bar under a name indicates that it is the name of a
vector. When vectors are separated by the symbol “ * ”, vector multiplication is

implied. For example,
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A+B=C (2.4.1)

is equivalent to 4;B; = C;, with no sum on i. The vectors may also be stacked,

for example,

A] [D] [A4«D
B|+|E|=|B+E (2.4.2)
c| |E] |c+F

In all cases, vector multiplication refers to term by term multiplication without
any summation. A dot “ - ” will be used to denote an inner product. A VPS32

special function is used to perform the inner products as a single vector operation.

It is very convenient to manipulate vectors just like scalars. For example,
suppose we need the determinant of ten 2 x 2 matrices. In vector form, we would

write the matrices as follows

[-g %] (2.4.3)

In eqn. 2.4.3 all 10 values of a coefficient are grouped in a single vector. Hence,
the length of each vector in the matrix is 10. The 10 determinants are obtained

using two vector multiplications and one vector subtraction

the ten determinants = A+ D —-C+ B (2.4.4)

Using scalar methods there would have been 20 scalar multiplications and 10

scalar subtractions.

Often it is desirable to perform replication of a scalar or vector in order to

reduce the number of subsequent vector operations. For example, suppose we
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need 20 copies of the vector a stacked contiguously in the vector D. Consider D

to consist of 20 subvectors d*, each of which have the same length as ga.

The first step is to assign values to d!; that is, set d! = a. Then assign d® =a.

. 4 d
then assign [34] = [Eg]

d® a!
2
Then assign g"‘; = 33
8 d*
- 49 - —41 1
410 42
pist e
& a
Then assign 313 = '3;
214 £
415 4
Lile o L_d.s -
417 dl
18 12
Finally assign '319 = 33
3

By using this technique the number of vector assignments is reduced from 20

to just 6.

The next two subsections describe the two routines BOBL3D and ESTIF3D.

2.4.1 Subroutine BOBL3D

Figure 2.4.1.1 shows a flowchart for BOBL3D. There are 8 primary tasks
performed by this routine. The first task is to calculate local derivatives of

the global coordinates at each of the quadrature points. The shape functions
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Calculate local derivatives
of global coordinates

Calculate determinant of Jacobian
and inverse of Jacobian

Calculate global derivatives of
shape functions

Calculate global derivatives of
displacements

l 5
Calculate strains
| 6

Calculate partial derivatives of strains
with respect to displacements

Calculate products of stresses, determinants
of Jacobians, and weighting coefficients

8

Calculate element forces

Fig. 2.4.1.1 Flowchart for subroutine BOBL3D.
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LA

are expressed in terms of local coordinates 6, (see appendix), but derivatives
with respect to global coordinates are required. The first step towards obtaining
these derivatives is to calculate the local derivatives of the global coordinates,
g{;, g{:, and a’r . Since an isoparametric formulation is used, the geometry is
approximated with the same shape functions as the displacements. For example,

£ = N™z™ where 2™ = the z coordinate of the mt* node. Hence,

dz _3(N™z™) ON™ .,
%, - 85 - o5 T (2.4.1.1)

There are NS shape functions to be differentiated at NG quadrature points.
For a single element type, the %’-\g: are invariant, so they are calculated only once

and stored in DL in the following order.

ON Nl -
L N?
DL = g—% where N = N® (2.4.1.2)
AN :
L j_v_NS ]

and N™ = the mth shape function evaluated at each of the NG quadrature points.

Note that N™ has a length of NG. (The length of DL is 3 * NS * NG.)

The nodal coordinates for an element are stored in vectors X, Y, and Z. Each
nodal coordinate is replicated NG times. The ordering is as follows for the vector

X.
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(2.4.1.3)

|><
ll
H

Note that the vector X has a length of NS * NG. The vectors Y and Z are
ordered the same way. The vectors X, Y, and Z are stacked and replicated once to
obtain a long vector XXYYZZ. This stacking and replication reduces the number

of vector multiplications required in the next step. The organization of XXYYZZ

is given by eqn. 2.4.1.4.

A

N [~ <IN |

XXYYZ2Z = (2.4.1.4)

r
[\

The vector XXYYZZ is of length 6 « NS + NG.

The derivatives of the global coordinates are obtained in two steps. First, three
vector multiplications between DL and parts of XXYYZZ are performed and the

results are stacked in D, as shown in eqn. 2.4.1.5.
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JL

(2.4.1.5)

ar
Ji

IS
1
|U g
~ t~
< I 1N e 10N [~y [ [

The length of D is 9% NS * NG.

As indicated in eqn. 2.4.1.1, there are NS terms to be summed for each of
the nine partial derivatives. After the summations, there will be NG values of
each partial derivative. The vector D in eqn. 2.4.1.5 is organized such that there
are nine subvectors, each of length NS * NG. Recursive addition is used on each
subvector to sum the appropriate terms. The vector product of g% (which is part
of DL) and X will be used to illustrate the recursive addition. The number of
nodes, NS, will be assumed to be 8. This product constitutes the first subvector
in eqn. 2.4.1.5. The vector product of g—% and X creates a vector which consists

of the subvectors d; (see eqn. 2.4.1.6).

QD

Z

QL
Y

I
i
il
|

(2.4.1.6)

Q@
On
-

|

where d™ = the contribution from shape function m. The length of each d™ is

NG.

2
For example, d? = W—aN * 2 evaluated at each of the NG quadrature points.
p 1

Now three recursive additions are performed to add up the d™.
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d; d; ds
ds dp dg
- = 1|5 + 2.4.1.7
d3 d; dy ( )
dy dy ds
then
di| _ |4 d3
a)-[8]+ 2] 2418

finally, &y = d; + &

The vector d; now contains aa-g"i-

other eight derivatives ( -%’;, aa-b‘-‘;, 9 . etc.) are obtained in a similar fashion. For

evaluated at NG quadrature points. The

example, the derivative gg‘; is obtained by replacing §; with 62 and X with Y in
eqn. 2.4.1.6.

The second task in BOBL3D is the calculation of the determinant and inverse of
the Jacobian at each of the quadrature points. The Jacobian consists of derivatives
of the global coordinates with respect to the local coordinates. The scalar form is

shown in eqn. 2.4.1.9.

(2.4.1.9)

"
oSy Sy
fe s Se
s o

In the vector implementation, the entries in J are vectors (the vectors which
were calculated in task 1). For example, J;; is a vector consisting of g{; evaluated
at NG points. The inversion and determinant are performed explicitly in terms
of these vectors. The result is an inverse which has entries which are vectors of

length NG and a determinant vector of length NG.
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Next the global derivatives of the shape functions are calculated at each
quadrature point (task 3, Fig. 2.4.1.1). These derivatives are calculated by
multiplying the local derivatives by the inverse of the Jacobian. The scalar form

is shown in eqn. 2.4.1.10.

-_a.._aNz . rI1Jyy IJy; 1h3] —931%1—-
aNm gNT
Sy | = | I D2 I | | S5 (2.4.1.10)
Tasz IJ3y 1J3z 1J33 %1%3—

where the matrix IJ is the inverse of J.

In the vector implementation, the entries in eqn. 2.4.1.10 are replaced by

vectors of length NG. For example, the NG values of _631\%’_ are obtained as follows

dN? AN? aN? AN?
—a"?-_—_L_]_n* 3?1 +1J;, * 8;2 + IJ,3 % 8—6—3 (2.4.1.11)

where [J;; = the i, j vector term in the inverse Jacobian matrix, calculated in

task 2, and N? is defined in eqn. 2.4.1.2.

The nine global derivatives of the displacements ( g%, -‘3%, ....etc.) with respect

to the global coordinates can now be calculated (task 4). A typical term is:

Jdu ON™ m
ov _ L= 2.4.1.12
9z T 57 ( )

For convenience, a subscript is used to indicate the variable of differentiation. For

example, uz = % and uz = %‘;‘

This is exactly the same form as in eqn. 2.4.1.1. The local derivative 3%;,
has been replaced by the global derivative 333, and the nodal coordinates, z™,

have been replaced by nodal displacements, u™. Consequently, the same vector
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procedure that was used earlier to calculate local derivatives of coordinates is now
used to calculate global derivatives of displacements. A vector DG is assembled

from the global derivatives of the shape functions.

DG=|N (2.4.1.13)

where N is defined in eqn. 2.4.1.2. The subscript indicates the variable of
differentiation. Note that the length of the vector DG is 3 * NG * NS.

Equation 2.4.1.13 is simply a “global derivative” version of eqn. 2.4.1.2. Also,

a displacement vector uuvvww is assembled.

1
A

UUVVWW = (2.4.1.14)

€ ie |2 |81 e

r
L

The organization of u, v, and w are identical to x, y, and z respectively. For

example, in eqn. 2.4.1.3 replace z!, z2, ... by u!l, u?,... Now the vector procedure

used earlier can be used by simply replacing DL by DG and xxyyzz by uuvvww.

Two copies of the shape function derivatives, Nz, Ny, and N, are stored in

DSXYZ (eqn. 2.4.1.15).

DG
DSXYZ = [m] (2.4.1.15)

The vector DSXYZ is of length of 6 * NG * NS.

Task 5 is to calculate strains. The strains are calculated using eqn. 2.1.4,
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except that the scalar variables are replaced by vectors of length NG. Thus, the
value of a strain component is calculated at all integration points simultaneously.

For example,

(g * Uy + Uy % Uy + Wy * W) (2.4.1.16)

1
§zzﬁz+'2'

This is possible because the global derivatives of the displacements (calculated
in task 4) are organized such that for each displacement derivative, all NG values
are contiguous in memory. The strains are stored in the vector g in the following

order.

e
€2

(2.4.1.17)

™
Il

SO

where the length of each g is NG.

Task 6 is to calculate the partial derivatives of the strains with respect to
the displacements. The scalar form of these derivatives is shown in eqn. 2.2.3.
These involve derivatives of the shape functions (for example, N*) and products
of the derivatives of the shape functions and displacements (for example, uzN™).
There are 27 products. To reduce the number of vector operations in forming the

products, stacks of vectors are manipulated, as described next.

The displacement derivatives calculated in task 4 are replicated (for a total of

NS copies of each derivative) and stacked in the vector DD.
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. Lﬂ Ls:

Ry, Ru,=| " — — — —NS coptes

5
i
I
g

(2.4.1.18)

I® ...

stmilarly for other subvectors in DD

Note that the displacement derivative vectors u;, v,, etc. are replicated NS
times. Hence, the vector DD is of length 9 * NS * NG. This is in preparation for
multiplication with the shape function derivatives, since, for example, the length of
uz is NG but the length of Ny is NG * NS. To expedite the discussion of the use of
these replicated vectors, the use of the prefix “R” will be used to denote replication.
The required products are ca.lc;xrla.ted by performing vector multiplications of parts

of DD with parts of _DSXYZ. These products are stored in a vector BLV.
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[Bu, ] [N,]
Ry, Ny
Bu, |, | N,
Ry, N,
Rw, N

LRy, LN,

[Rv,7 [N
Ruw, Ny
Bv, |, |N
Ruw, N
Ru, N,

-sz. .LJ

"Rw,7 [N:]
Ry, N,
RBw, | | N,
Ru, N,
Rw, N,

| Ru,J LN,

Rv, * N,
Rw, N,
Ru, | « | N,
Rv, N,
Ru, « N,
Ru, |, |N;
Ry, N,
Ru,* N,
Rv, * N,

(2.4.1.19)

Note that only 9 vector products are required to form the 27*NS*NG products

in BLV.
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. Now it is a simple matter to form a vector of the 18 strain derivatives by adding

vectors stored in DG and BLV.

(Bin] [ Np+u N,

Ba uyNy

B3, u, N,

Ba Ny +uNy+u,N,

B u Ny +uy N,

Bs: N, +u,N, +u,N,

Bi, v N,

B3, N, +v,N,

By, v.N, |
B |~ | No+v,N, +v,N, (2.4.1.20)
Bs, N,+yN,+v,N,

B v N, + v, N,

B w,N,

Bas wy Ny

B33 N,+w,N,

Bys w, N, +w.N,

Bss Ny+tw, N, +w,N,

Bs3 Ne+w, N, +w, N,

where the B,; are vector versions of the By shown in eqn. 2.2.4. The length of
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each is NS*NG. Since the B,; are formed using vector operations, the organization
of each B;, in terms of the NS shape function contributions and NG quadrature

point values is the same as for N, described in eqn. 2.4.1.2. For example,

1
= @
— D Pt et
b —

J

o]
N
o

B = and the length of each subvector BY} is NG (2.4.1.21)

NS
.ﬁll J

Task 7 is to calculate the product of the stresses, determinant of the Jacobian,
|J!, and weighting coefficient W. The first step is to assemble a vector containing

copies of [J| * W evaluated at the NG quadrature points.

o
<
b

)
<
¥

)
<
¥

DDJIJWW = — — — —NSTR replicates of DJW  (2.4.1.22)

3
< ...
S

where DJW = |J| * W evaluated at NG quadrature points and NSTR = number
of strains (NSTR = 6 for 3D analysis)

The vectors of the strains &; are stacked in memory, (see eqn. 2.4.1.17) so
that only a single vector multiplication of the stacked strains and DDJJWW is
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required to obtain the scaled strains & .

4
L
J

B3 £
&2 €2
¢= || =DDIIWW « | 53 (2.4.1.23)
=4 =4
&s &5
L Eg L €g

The scaled stresses are obtained by linear combination of the scaled strains.

o, = Cj&; (2.4.1.24)
This is analogous to the unscaled, scalar stresses in eqn. 2.1.5. For efficiency
later, the &, are stacked contiguously in & in a form which is exactly analogous to

the stacking of g; in eqn. 2.4.1.17.

The final task in BOBL3D is to calculate the element forces R* corresponding
to the current stress state. The element forces are calculated using a vectorized
version of the summation in eqn. 2.3.1. For clarity in the following discussion, the
displacements ¢* are separated into u, v, and w, the displacements in the x-, y-,
and z-directions. The vector form of the strain derivatives in eqn. 2.3.1 are in the

large vector B (see eqn. 2.4.1.20).

The vector implementation of the summation in eqn. 2.3.1 will be illustrated
by describing the calculation of the x-direction forces next. The first step in
calculating the x-direction forces is to evaluate the products in eqn. 2.3.1 at all
NG quadrature points and for all NS nodes. Recall that values of the triple product
(04| IW)a are already available in the vector & . At each quadrature point each
stress must be multiplied by NS values related to each derivative of the strains. To
reduce the number of vector multiplications, the weighted stresses are replicated
and stored as follows. - -
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where Ro, 13 a replicated form of 3,

P—R_&l -
Ré, For example,
_ | ey
i.‘s Ré, = —.1 — — — NS copies of 6,
L Rog
9,

The length of Rg is 6 * NS * NG

(2.4.1.25)

Now all the products for the x-direction can be formed with a single vector

multiplication (eqn. 2.4.1.26).

f,1 [Bul [é1]
I, By o,
f = £3 = '5'31 * ‘(?'3
- 14 By, 94
Is Bs, s
Lfgd  LBgJ Ldgd

Now recursive addition is used to sum the f;, as follows.

- £1 il 14
[2 =1Lt .[5
13 1 1

then_j_’1=£1+£2+£3.

The content of _j: ) is now

NG terms to be summed to obtain F}
NG terms to be summed to obtain F;

I“N
—
I

NG terms to be summed to obtain F{VS

(2.4.1.26)

(2.4.1.27)

(2.4.1.28)
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where F[* = x-direction force at node m.

The summations required to obtain the F]® from the terms in S | are performed
using a VPGS32 special function which is optimized for summing contiguous
numbers in storage locations. The y- and z-direction nodal forces are obtained

in a similar manner.

2.4.2 Subroutine ESTIF3D

The routine ESTIF3D is used to calculate the tangential stiffness matrix, which
consists of the large displacement matrix, K; and the geometric (or initial stress)
matrix (eqn. 2.3.2). The large displacement matrix involves derivatives of the
strains (which are in B,;), the Cholesky factors Q,, for the constitutive matrix
(Cij = Q45Qj,), and the square root of the products |J|W. From eqn. 2.3.3, we
see that for each term (K)®?, there are NG inner products to be evaluated. For

example,

NG
KPP=> (1'1®)® s=1,NSTR (2.4.2.1)
=1

The vector T is formed which contains the T*™ at the NG quadrature points
and is organized such that all NG inner products for a particular stiffness matrix
term can be performed at once. The first step in forming the vector T is to perform
a vector version of the product Q,, * %’-&. The strain derivatives are available in
the vectors ﬁ,j. Since the Cholesky factor terms Q,, are scalars, the resultant

product vectors P;; are simply linear combinations of the vectors B,;.

Pij = QuBy; (24.2.2)

The organization of the product vectors Py; is the same as for B,; (in terms

of contributions for NS nodes and NG quadrature points). Also, the P,; are
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stacked contiguously in memory as P just like the B,; in B (see eqn. 2.4.1.20).
Now the vector is reordered so that terms which will summed are contiguous. The
reordering is performed using a special VPS32 function referred to as Q8VGATHR.

Equation 2.4.2.3 gives the order of T , which is the reordered version of P.

_ \ -
By,
P 1\ Tl
=T
%11
r TL 1 F?I
E, 4 =61
e e 7
) _
I, ‘
—_— ol
T1 Pl
iz =-22
-—= 2k , _ 7!
Bt
-};12
2
r = = Ezz (2.4.2.3)
/
Ty )
_ %3
TNS };?3 1
:y__ E?z 5 = Iz
3
.LNS ] ?63 J
similarly for
shape functions
| 2 through NS _
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In T, the PT] vectors are placed according to the shape function with which the
term is associated. The same is the case for other P;7 vectors. Recall that in P,j,
all NS PT} vectors were stacked together. The subvectors T3, TJ"*, and T;" are
introduced here for convenience later. These subvectors are stored contiguously in
eqn. 2.4.2.3 for convenience later in determining pointers for the inner products.
The length of each subvector is 6 * NG. The subscripts x, y, and z indicate that

these subvectors contain terms related to the x-, y-, and z-directions, respectively.

The terms in T must be multiplied by the square root of the determinants
and weights (i.e. [JIW terms) to obtain I. To reduce the number of
vector multiplications, the square root of DJW (which has a length of NG) was
calculated and then replicated to obtain the vector SDJW which has a length of
3 * NS * NSTR * NG. Then only a single vector multiplication is required to form

the vector T .

T=T+SDIW (2.4.2.4)

The terms in K are simply the inner products involving the subvectors T7*,

For example, the term in K related to the first shape function and the x-

direction and the fourth shape function and the y-direction is

~1 -4
Y (2.4.2.5)

The inner products (indicated by the “ - ) were performed by a VPS-32 special

function.

The geometric stiffness matrix involves much less manipulation than K. The
terms Cy;o;|J|W are already available in the vector 4. Equation 2.2.5 gives

the scalar form of the second partial derivatives of the strains. Note that the
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derivatives are independent of the direction of the displacements variable. Hence,
the three nonzero stiffness terms associated with each coordinate direction for each
combination of shape functions are the same. These derivatives consist of products
of the derivatives of the shape functions with respect to the global coordinates,
which are stored in the vector DSXYZ. For a particular shape function, the
NG values of each second partial derivative is calculated by performing vector
multiplications and additions with the appropriate subvectors (of length NG) in
DSXYZ. The second partial derivatives are stored contiguously in memory, so
each stiffness term is calculated with a single inner product of the stress vector &

and the second partial derivatives.

kmn

(2.4.2.6)

[
3
3
(LY

&y
3

mn d3e; d%e, 3%¢,
where o = gumzan = Fumger = Fumour
The k™" are assembled in the element stiffness matrix as follows.
'kl 0 0 k2 o0 0 ...
o k% o o k2 o0

K2 o o0 k2 0o o0 .. (2.4.2.7)
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2.4.3 Execution Times

This section discusses the results of several CPU “time trials” which quantify
the advantages of using vector algorithms on the VPS32. The following discussion

is for the 20-node element and a 2 x 2 x 2 integration scheme, except as noted.

One of the programs available in the Fatigue and Fracture Branch at NASA
Langley Research Center used a non-vectorized algorithm to calculate the linear
element stiffness matrix for the 20-node element. This algorithm took .33 second
of CPU to calculate the linear element stiffness matrix for one element. A vector
version of this program took only .014 second of CPU for the same calculation.
The program NONLIN3D was tailored for geometrically nonlinear analysis. No
provision is provided (as of this writing) for calculating just the linear stiffness
matrix. So a comparable timing is not available for NONLIN3D. However, the
total time for NONLIN3D to obtain 1) the tangential stiffness matrix (which
includes both the large displacement stiffness matrix and the geometric stiffness
matrix), 2) the element strains and stresses, and 3) the element forces was only
.015 second per element. Since these three calculations involve many more terms
than the linear stiffness matrix, the algorithms developed for NONLIN3D can be

considered to be very well vectorized.

Timings were also obtained for NONLIN3D for a 3 x 3 x 3 scheme. For the
three tasks listed in the previous paragraph, the total time was .0215 CPU second
per element. This is only 40 percent more time than for the 2 x 2 x 2 scheme. For
a scalar code, the time per element would have increased by more than a factor of
three, since there are 27 quadrature points for the 3 x 3 x 3 scheme instead of the 8
for the 2 x 2 scheme. The reason that the time increased by only 40 percent is that
the more refined integration scheme has longer vector lengths, but the number of

vector operations is unchanged.
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2.5 Eigenvalue Analysis of the Element Stiffness Matrices

The finite element stiffness matrix should permit rigid body translation and
rotation of the element without inducing any strain- energy. Further, there should
be strain-energy whenever the element is deformed. For displacement formulated
finite elements which are integrated with exact numerical integration, there is
usually no problem. However, at times it is desirable to use a lower order
of numerical integration in order to improve the performance of an element in
modeling bending deformation (ref. 3, 30, 31) or simply to reduce the number of
computations required to form the element stiffness matrix. Whenever a reduced
order of numerical integration is used, there is the possibility of introducing zero-
energy deformation modes; that is, the element can deform in certain modes

without the expenditure of any work.

A convenient method of detecting zero-energy deformation modes is to perform
an eigenvalue analysis on the element stiffness matrix. The eigenvalue analysis is

described next. The following discussion is based in large part on ref. 38.

The eigenvalue problem has the general form

K6=2X6 (2.5.1)

The solution of eqn. 2.5.1 yields “n” eigenvalues and eigenvectors, where n =
the number of degrees of freedom (DOF) in the element. For example, the 20-node
3D element has 60 DOF, so n = 60. For a 3D element there should be 6 rigid
body modes ... 3 translations and 3 rotations. An excess of 6 rigid body modes
indicates the presence of spurious zero-energy deformation modes. Less than 6
rigid body modes indicates that strain is associated even with rigid body motion.
The eigenvalue corresponding to each rigid body mode should equal zero. This is

apparent when eqn. 2.5.1is pre-multiplied by the transpose of 6.
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6TK6 =6Tx6 (2.5.2)

The left side of the equation is simply twice the strain energy in the element
when it undergoes the displacements §. For rigid body motion the energy should
be zero. The right hand side of the equation is zero only if all the displacements

are zero (which is the trivial solution ) or if A = 0.

Early check-out runs of NONLIN3D used the reduced integration 8-node
element to analyse a very simple configuration. The stiffness matrix was found
to be singular, which indicted that the zero-energy deformation modes might be
causing problems. Eigenvalue analyses of the element stiffness matrix showed
that there is one zero-energy deformation mode for each shear strain treated
with reduced integration. The cause for this can be seen readily by considering
a set of displacements which causes a shear strain €5 which varies linearly in
the x-direction, does not vary with y or z, and is zero at the centroid. If
only the centroidal value of the strain is sampled, the strain will be determined
to be zero and there will be no energy associated with the deformation. For
many problems the boundary conditions are such that the spurious zero-energy
deformation modes do not cause any major problems. Section 4.2 discusses the
results of an attempt to use the reduced integration 8-node element for analysis

of a postbuckled sublaminate.

2.6 Substructuring

The program NONLIN3D was designed to perform analysis by substructures.
A brief description of the substructuring technique is given here. More details
can be found in ref. 39. In a.ddition to reducing computer memory requirements,
substructuring allows the structure to be modeled as a combination of linear and
nonlinear components. For the configurations studied herein (figure 1.1 and 1.2),
linear analysis is appropriate everywhere except the majority of the postbuckled

region. By substructuring into linear and nonlinear regions, expensive iterative
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solution is needed for only a fraction of the equations.

In this study, two substructures were used: one linear and one nonlinear. The
substructuring procedure begins by obtaining a reduced stiffness matrix and load
vector for the linear region: The reduced stiffness matrix can be treated as the
stiffness matrix for just another type of element. Because of the large number of
nodes, this element will be referred to as a superelement. The stiffness matrix
and load vector are “reduced” in the sense that only the nodes shared by the two

substructures (the interface nodes) are included.

The technique used for calculating the reduced stiffness coefficients utilized the
formal definition of a stiffness coefficient: a stiffness coefficient is related to the
restraint forces required to maintain unit displacement at one degree of freedom
(DOF) and zero displacement at the remainder of the element DOF. Suppose there
are to be n DOF in the superelement. These n DOF are restrained. One of these
DOF is specified to have a unit displacement (and there are no other loads) and
the governing equations are solved. The restraint forces at all n DOF constitute
one column of the reduced stiffness matrix. This procedure is repeated for all n
DOF. The reduced load vector is obtained in a similar fashion. All n DOF in
the superelement are still restrained. However, now the specified loads for the
linear region are applied. The reduced load vector is equal to the negative of the

restraint forces at the restrained nodes.

Once the superelement stiffness matrix and load vector are calculated, the
analysis proceeds to the nonlinear substructure. Whenever the nonlinear stiffness
matrix and load vector are formed, the interaction with the linear substructure
is included by simply adding the superelement stiffness matrix and load vector.
When the internally generated nodal forces are calculated to determine residuals,
the contribution of the linear substructure consists of the product of the superele-

ment stiffness matrix and the superelement nodal displacements.

For the configuration analyzed, the delamination front is within the linear
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substructure. Hence, further work is required even after obtaining a converged
solution for the nonlinear substructure. After obtaining a converged solution,
the displacements for the interface nodes are known. These displacements fully
account for the effect of the nonlinear substructure on the linear substructure.
That is, the displacements in the linear substructure can be determined as
though there was no other substructure, except that the magnitudes of the
displacements at the interface nodes are specified. To reduce the computer
resource requirements, it is usually advantageous to obtain multiple solutions

for the nonlinear substructure and then obtain multiple solutions for the linear

substructure.

2.7 Contact Analysis

For certain combinations of delamination size and strain level, closure occurs
over part of the delamination front. Unless constraints are imposed, the delam-
ination faces will overlap in the analysis. When contact constraints are added,
there are two types of geometric nonlinearity: that due to significant rotations
and that due to the unknown contact area. Since the contact area affects the
global response and vice versa, the iterative loop includes two inner iterative loops
for obtaining either the effects of significant rotation or the contact area. Because
of the selected substructuring, there are two substructures in which contact can
occur. But, as mentioned in section 2.6, one of the substructures was treated with
linear analysis. Strictly speaking, there is not a linear substructure now. However,
an “engineering” (as opposed to a purist) approach was taken in implementing the
contact analysis. If only a small fraction of the original interpenetration is per-
mitted, then most of the effect of imposing full contact constraints will be seen.
Also, because of the nature of the problem, large interpenetration cannot occur
in the “linear” substructure if large interpenetration is prevented in the nonlinear

substructure. Hence, the approach taken was to perform nonlinear analysis on the

buckled region only.

There was also an approximation made in how the constraints were imposed.
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Fig. 2.7.1 will be used to explain this approximation. The figure shows a disk
resting on a base. Constraints are imposed to prevent the disk from overlapping the
base. Ideally the constraints would be imposed such that the constraint force on
the disk is provided by the node it contacts on the base. A free-body diagram would
look like Fig. 2.7.1b. In NONLIN3D the constraint force on the disk is supplied
externally, so the free-body diagram looks like that in Fig. 2.7.1c. Obviously there
is some error due to using an external force, but the amount of error and its

importance depends on the individual problem.

Unfortunately, for the postbuckled sublaminate, the computational effort
would have been too large to perform a more rigorous analysis to determine the
amount of error. However, since the base laminate has a w=0 boundary condition
on the plane z=0, the effect of applying an external force rather than reacting the

contact force on the base laminate is probably small.

The flow chart in Fig. 2.7.2 outlines the procedure used to perform the
contact analysis. In the flowchart the term nonlinear solution refers to solving
the governing equilibrium equations (eqns. 2.1.2) with the current set of contact
constraints. The first step is to check for w displacements which would cause
overlap. Since the w displacements of the base laminate are so small, it is sufficient
to search for nodes with negative w displacements. If there are none, the current
solution is correct. For each node with a negative w, a constraint and a load
are imposed such that the node will have w=0. Next, a nonlinear solution is
obtained for the current contact constraints and applied load. Then the signs of
the contact forces are checked. Any node with a tensile constraint force must have
the constraint released. If there are no tensile restraint forces, the current solution
is correct. After releasing all tensile constraints, another nonlinear solution is

obtained. Now the loop begins again with checking for negative w.
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no

yes

Any nodes with w < 0 ? |—GStop

For all nodes with w < 0:
¢ add constraint at node in z-direction
* add corrective load at node to make
w = 0.

Iterate to obtain new nonlinear solution
for current set of constraints

Any tensile contact restraint forces ?

LU Stop

yes

Release tensile restraints

Iterate to obtain new nonlinear solution
for current set of constraints

Fig. 2.7.2 Flowchart for contact analysis.
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2.8 Strain-Energy Release Rate Calculation

The well-known virtual crack closure technique (ref. 40) served as the basis
of the strain-energy release rate calculation. This procedure determines G, Gy,
and Gy from the energy required to close the delamination over a short distance,
Aa. The closure energy involves products of delamination front nodal forces and
relative displacements behind the delamination front. The delamination front
nodal forces can be determined by actually closing the delamination over Aa.
Another technique, which requires only a single solution, assumes that the current
delamination front nodal forces are the same as they would be if the delamination

length was reduced by Aa. The single solution method was used herein.

The strain-energy release rate calculation will be illustrated for the 20-node
element, since this element was used for all of the parametric analysis. Figure
2.8.1 shows a schematic of the delamination front region. The nodes of interest
for the strain-energy release rate calculations are indicated by the filled circles.
Because it is not appropriate to close the delamination over part of an element,
there are four sets of nodes (indicated by the letters a, b, ¢, and d) which are
used to calculate the closure energies. The relative displacements are obtained by
subtracting the displacements at nodes a: and b: from the displacements at nodes
a; and b;, respectively. The forces are equal to the nodal forces transmitted across
the delamination plane at nodes ¢; and d;. These forces are obtained by evaluating
the integral [ C,-je‘g—qi,';- dV for all elements which are connected to nodes ¢; or d;
and whose centroids lie above the delamination plane. There are two sets of energy
products. One of the sets of energy products consists of the relative displacements
for nodes a; and a: multiplied by the forces for nodes ¢;. The other set of energy
products consists of the relative displacements for nodes b; and b: multiplied by

the forces for nodes d;. The energies equal 1/2 of these products.

Strain-energy release rate is a measure of energy per unit area. Hence, the
energy products must be normalized by the appropriate areas. Unfortunately,

there is not a simple exact way to determine the appropriate areas. The primary
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complication is that the midside nodes and corner nodes are “weighted” differently
by the assumed element shape functions. The result is that, even if the strain-
energy release rates are actually constant along the delamination front, there would
be much larger energy products for the midside nodes than for the corner nodes.
For example, in figure 2.8.1 the energy products associated with nodes ¢, and
¢4 would be much larger than for that associated with nodes ¢; and ¢3. An
approximate solution to this dilemma is as follows. The strain- energy release rate
is not calculated for locations like ¢z and ¢4 along the delamination front. Instead,
the energy products associated with those locations are split evenly between the
adjacent nodes. For example, the energy associated with location c3 along the

delamination front becomes

E=F

’
a3d4Cs

(2.8.1)

1 -
+Eb;b;d; + E [ dza;C) + Eau:"q]

where E denotes the energy products associated with Gy, Grr, and Gyrr and the
subscripts indicate the nodes involved. The area is approximated by the product
of Aa times the distance between the midside nodes on either side of the corner
node being considered. For example, the area for node ¢3 is Aa times the distance

from node ¢2 to node cq4.

If the delamination front is not parallel to one of the coordinate axes, it is
preferable to add a coordinate transformation to the procedure outlined above. In
particular, a local coordinate system is defined for each node along the physical
delamination front (i.e., the nodes ¢;). Figure 2.8.2 shows a schematic of a
delamination plane and the global (zy) and local (z'y’) coordinate systems. This
local coordinate system has one axis tangent to the delamination front, one axis
normal to the delamination front, and one axis normal to the delamination plane.

For all the cases considered z and z' were parallel. The transformed nodal forces

F, Fy:, and F ., are
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Fx, = Fzcosf + Fysind
Fy, = —F;sinf + Fycosd (2.8.2)
le Fz

The relative displacements are transformed similarly. The transformed forces
and relative displacements are then used to calculate the energy products. Figure
2.8.2 also defines the perimeter coordinate “S”, which is the distance along the

delamination front measured from the y-axis.

The procedure just outlined was implemented in two slightly different ways
for the results presented here. The difference was ‘n the way the nodal forces
were calculated. Initially in the study, the nonlinear strain-displacement relations
were used to calculate the nodal forces from the nodal displacements in the linear
region. This is inconsistent, but if the region assumed to be linear is “exactly
linear”, it would make no difference. The results for the mesh convergence study
were obtained using this procedure. All of the other results were obtained by
using the linear strain-displacement relations to calculate the nodal forces from the
nodal displacements in the linear region. Because the linear region is not exactly
linear, there is a difference in the results obtained using the two methods. The
configuration used for the mesh convergence study was also used in the parametric
study, so results appear for that configuration using both methods. The second

method is recommended by the author.

2.9 Material Properties

Several kinds of materials were used in this study. Some of the specimens
involved Al or steel. Also, two graphite composite systems were examined:
AS4/PEEK and IM7/8551-7. The material properties used are given in Table
1. For the two metals, the usual assumed properties were used. The assumed
properties for the PEEK were actually some that are typical for graphite/epoxy
(ref. 41). Since only a qualitative analysis of PEEK was performed, these

56



Table 1 Material Properties

Ey
Ej;
E3;3
V12
V23

Vi3

* ref. 41

Generic Graphite/Epozy

*

IM7/8551-7**

13.4F10 Pa

1.02E10 Pa

1.02E10 Pa

3

.49

3

.552F10 Pa

.343F10 Pa

.552E10 Pa

16.2E10 Pa
.814E10 Pa
.814F'10 Pa
.22
.22
.22
.648E10 Pa
.648E10 Pa

.648E10 Pa

** unpublished data generated by the University of Wyoming under NASA

grant NAG1-674, which began in July, 1986.
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properties were probably sufficiently accurate. The properties for the IM7/8551-7
were based on unpublished data generated by the University of Wyoming under
NASA grant NAG1-674, which began in July, 1986. This grant determined the
inplane properties, Ei11, E22, G12, and vy2. Because of a lack of other data, the

remaining 3D properties were assumed.

In addition to the materials mentioned above, a fictitious material was used.
For the initial parametric study, the goal was to examine the effect of strain
level and geometric parameters on Gy, Gy, and Gjyy. Material properties were
desired which would have minimal effect on the distribution of the strain-energy
release rates. For quasi-isotropic laminates the in-plane stiffness is independent of
direction. But even for quasi-isotropic laminates the flexural stiffness varies with
direction. Hence, even if the postbuckled region consisted of a quasi-isotropic
group of plies, one would expect variations in the strain-energy release rate along
the delamination front which are due solely to the variation in flexural stiffness.
Also, the properties of the interface plies (i.e., those plies on either side of the
delamination) would be expected to at least affect the percentages of Gy, and

Gyr, and Gypr.

The simpliied material properties chosen for this study are those for a
“homogeneous quasi-isotropic laminate” throughout the entire specimen (buckled

and unbuckled regions). These properties ?7_,-,' are obtained as follows:

8
E,‘j = Z(C,‘j)l (2.9.1)
=1

Qo r—

where (C,j)‘ are the constitutive properties for the &% ply in the 8-ply quasi-
isotropic laminate (+£45/0/90)s. With these properties throughout, there are
obviously no stacking sequence effects and no variation of material properties with

orientation.
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Chapter 3
FINITE ELEMENT MODELING

This chapter describes the technique used for mesh generation and discusses

typical finite element models.

3.1 Mesh Generation

Figure 3.1.1 outlines the procedure used for generating most of the meshes.
This procedure is based on the procedure in ref. 42. A two-dimensional model
is swept through a 90° arc to generate a cylindrical 3D mesh. The outer part of
the cylindrical mesh is then transformed to obtain a square boundary. Then an
elliptical transformation is applied to obtain an elliptical delamination front. If
the ellipse is longer in the y- direction than in the z-direction (i.e., b > a), the

conformal transformation is

T =X

o1 B (3.1.1)
y =y g e |

!

2 =2

If a > b, the transformation is the same except that x and y are interchanged.
To avoid a singularity in eqn. (3.1.1), nodes at zero radius were shifted to lie on

an arc of very small radius, i.e. about 1072 m.

The transformation in eqn. 3.1.1 maintains the orthogonality of lines which
were orthogonal in the modified cylindrical mesh (Fig. 3.1.1c). This orthogonality
at the delamination front simplifies the pairing of nodal forces and relative

displacements in the strain-energy release rate calculation.

A peculiarity of the transformation in eqn. 3.1.1 is the unusually close
spacing of the elements close to the delamination front on the long axis of

the ellipse (Fig. 3.1.2b). Also note what appears to be a triangular element
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¢) Mesh with straight

b) Cylindrical mesh

a) 2-D mesh
d) Elliptic mesh

boundaries

ating three-dimensional finite element models.

Fig. 3.1.1 Procedure for gener
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in Fig. 3.1.2c¢ . This element has two sides which are essentially colinear. A
modified transformation which results in more even mesh refinement is obtained

by introducing a scale factor for the “stretching”

b2 — a2

"=y(y[1+ L F_F+1

(3.1.2)

\/ §+ §
where F = Y2 7Y for r > V22 + ¢
r

and F =1 for r < V12 + y?

By choosing the parameter r a little less than the radius of the delamination
front in the cylindrical mesh, orthogonality is maintained in the neighborhood of

the delamination front during the elliptical transformation.

After the elliptical transformation the midside nodes are no longer at the
middle of an element edge. Therefore, the coordinates of the midside nodes are

recalculated as the average of the coordinates of the adjacent corner nodes.

In section 5.3 results are presented for a square and a rectangular delaminated
_region. For the square delamination circular arcs in a mesh like 3.1.1c were
stretched to form the side of a square. A typical mesh is shown in 7Fig. 3.1;3.
For a rectangular delamination the coordinates were magnified in one direction
to elongate the delaminated region. The transformations for the square and
rectangular delaminations are not conformal. Hence, the orthogonality of the lines
which are orthogonal in Fig. 3.1.1c was not preserved in the model in Fig. 3.1.3.

 This probably reduced the accuracy of the modeling.

3.2 Finite Element Models

In the course of this investigation the following configurations were examined:

1) a laminate with an embedded delamination, 2) a laminate with an edge
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Fig. 3.1.3 Mesh used for analysis of the square delamination.
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delamination, and 3) a laminate with a through-width delamination. The loading
was in-plane compression except for the transversely loaded circular delamination.

The finite element models for these configurations are discussed in this section.

Figure 3.2.1 shows a typical finite element model for a laminate with an
embedded delamination. The elements are 20-node isoparametric hexahedra.
Because of symmetry it is sufficient to model only one fourth of the specimen
and impose the constraints 4 = Oon z = 0 and v = 0 on y = 0. There is also
a constraint w = 0 on z = 0. This constraint was imposed to remove global
bending from the analysis. In reality, there might be global bending (particularly
if the buckled region is thick), but the amount of global bending would depend
on the region modeled and the boundary conditions at the external boundaries.
Imposition of w = 0 on z = 0 simply removes overall specimen size and external
boundary conditions as parameters to be considered in this study. The constraint
on w represents a laminate which is well constrained globally. Of course, one could
also view the imposition w = 0 on z = 0 as an indication of symmetry about the

z = 0 plane. This implies the presence of two delaminations.

Along the boundary z = W, all u displacements are specified to equal Weg,
where ¢ is the specified compressive axial strain. To initiate transverse deflections,
a transverse load was applied at the center of the delaminated region. After
a converged solution was obtained, the load was removed, and solutions were

obtained with only compression loading.

Figure 3.2.2 shows a typical model after division into substructures. Most of
the postbuckled region is included in the nonlinear substructure. The distance
between the delamination front and the beginning of the nonlinear substructure

was £ In all cases, ¢ was approximately equal to the sublaminate thickness h.

The edge delamination models were similar to the embedded delamination
models. Because the plane y = 0 is now a free surface, the constraint v = 0 on

¥ = 0 used for the embedded delamination was not used for the edge delamination.
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Fig. 3.2.1 Typical finite element model.
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The model for a laminate with a through-width delamination (Fig. 3.2.3)
had exactly the same boundary conditions as the model for a laminate with an
embedded delamination, except an additional constraint v = O on y = W was

imposed to cause a plane strain response.

A transversely loaded laminate with a circular delamination was analyzed to
help verify NONLIN3D. The model for this configuration was like that in Fig. 3.2.1,
except the delaminated region was circular and a transverse load (i.e 2 load in the

z-direction) was applied at (x,y,z)=(0,0,H+h).
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Chapter 4
EVALUATION of NONLIN3D

A variety of checks were made to verify the reliability of the finite element
program NONLIN3D and the models used with the program. Some of these

checks are presented in the following subsections.

4.1 Analysis of Transversely Loaded Plate

A closed form solutidn for a circular isotropic plate subjected to a central
point load is given in ref. 43. This solution is exact for linear deflections and

approximate for large deflections. The equation for the central deflection w, is
oS

Pa?
Eht

w°3

. ) = 217 (4.1.1)

%+.443(

Finite element analyses were performed using a mesh similar to that in
Fig.3.2.1, but with a circular debond. The thickness and radius of the debonded
region were .4 mm and 15 mm, respectively. The Young’s modulus was 207 GPa

and the Poisson’s ratio was .3 .

Figure 4.1.1a compares the deflection at the center obtained from the closed
form solution and NONLIN3D. The agreement between the two analyses is
excellent in the linear and the initial nonlinear region. There is a 10 percent
difference in the deflections at the highest load level considered. This is not

surprising, since the closed form analysis is not exact for large deflections.

The closed form solution in ref. 43 can be used to calculate the total strain
energy release rate. Because the configuration is axisymmetric, Gr is constant
around the boundary. The strain-energy release rate is —(3U/da)/(27a). The
strain energy U can be calculated as the work done by the applied load (since all

of the work is stored as strain-energy).
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Fig. 4.1.1 Analysis of a transversely loaded plate with a circular delamination.
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U =/P dwg (4.1.2)

Equation 4.1.2 yields

2ER3 4Eh
U = 230222 + 51022
a

a2

(4.1.3)

An expression for Gt is obtained by differentiating eqn. 4.1.3 with respect to

a and dividing by the circumference.

Gr =

Ehw? [ h?
217

et |35 1.02w2] (4.1.4)

Figure 4.1.1b shows G vs. load. Results are shown for the linear closed-form
solution (eqn. 4.1.4 without the fourth order w, term), the nonlinear closed-form
solution (eqn. 4.1.4), and NONLIN3D. The results are plotted with log-log axes
because of the wide range of the parameters. In the linear range all three solutions
agree very well. Even after nonlinear effects become important, the nonlinear

closed-form solution and NONLIN3D still agree very well.

These comparisons indicate that NONLIN3D does account for geometric

nonlinearity and that the strain-energy release rate calculation technique is valid.

4.2 Failure of 8-Node Element

Initially, the 8-node element with reduced integration was to be used for the
stress analyses. As pointed out earlier, it was known that the element could
exhibit spurious zero-energy modes. However, initial tests with the element seemed
to show good performance. The critical test involved analysis of a postbuckled
sublamanate, since this is the focu:_s problgm for this tj.hgs_is._ _Fq‘r_ qi_;pplicity only
the sublaminate was modeled and constraints were applied to thé lower‘ surface

to simulate a very stiff base laminate. As mentioned in the analysis chapter,
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postbuckling was initiated by applying both in-plane compression and transverse
loads. After obtaining a converged solution, the transverse load was removed.
Then the desired solutions could be obtained. For this particular test of the 8-
node element, the transverse load was removed in steps. (In all the other cases

presented in this thesis, the transverse load was removed all at once, not in steps.)

Fig. 4.2.1 shows the deformed meshes for the four load cases. Converged
solutions were obtained for all four load cases. For the first three cases, the
deformed shape is quite smooth. All spurious oscillations are very small. When
the last of the transverse load was removed, the deformed shape shows clearly
that the zero energy modes are no longer subdued. A close-up of the central part
of the plate for the case P=0 is shown in Fig. 4.2.2. These results show that
the contribution of spurious zero-energy deformation modes depends on both the
displacement constraints applied on the boundaries and the load system. Because
of this behavior, it was decided that this element is not reliable. Hence, the 20-

node element was used exclusively for the strain-energy release rate analyses.

4.3 Check of Mesh Refinement

Several configurations were analyzed as part of this study. Consequently, it
was neither practical nor warranted to perform a convergence study for all cases.
Instead, a systematic convergence study was performed for a single configuration.
Mesh refinementg for other configurations were selected based on the results of the

convergence study.

The configuration selected for the convergence study had a circular delamina-
tion with a radius of 15 mm. The sublaminate thickness h was .4 mm and the
base laminate thickness H was 4 mm. The overall laminate width W was 50 mm.
The material properties were those for the homogeneous quasi-isotropic laminate
described earlier. Figure 4.3.1 shows the extremes of refinement used for the 2D
meshes. The elements in the coarse mesh were subdivided to obtain the refined

mesh. Note that for the coarse mesh, only two elements are used to model most of
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the buckled region. As described earlier, the 2D meshes were swept through a 90°
arc to generate the 3D meshes. Figure 4.3.2 shows four of the meshes generated.
As shown in the figure, the nymber of slices of elements was also varied. Models
with 4 and 8 slices are shown. A 12-slice model was also used. Information on all
of the models used in the convergence study are given in Table 2. As shown by

the figures and the table, a fairly wide range of refinement was examined.

Since strain-energy release rates were of primary importance, variations in Gy,
Grr, and Gyrr were used to determine the adequacy of the mesh refinement.
Figure 4.3.3 shows the distribution of Gy and Gy along the delamination front
_ for three strain levels and four models (models 1,3,4, and 6). Only symbols are
shown for the crudest mesh, model 3. These meshes bracket the entire range of
refinement in Table 2. The mode IIl component G;r; was negligible for all cases.
Of interest here are the differences in the results obtained using the various meshes.
Except for model 3, which only had 4 slices of elements, the results from all of the
models are essentially equal. Even a coarse 4-slice model gives the correct trends.
Apparently, a fairly crude model is sufficient to calculate Gy and Gyy. Models
with 8 slices were selected for the parametric analyses in Chapter 5, which will

discuss the significance of the magnitude and the distribution of G; and Gyj.

The preceding convergence study was for a homogeneous quasi-isotropic lam-
inate, which is a fictitious material. Chapter 7 presents strain-energy rates for
actual laminates. Because a minimum of one element was required through the
thickness of ea.'ch lamina, the 2D mesh used to generate the 3D mesh had more
nodes than the homogeneous laminate required. Unfortunately, the required com-
putational effort prevented a systematic convergence study. In fact, to keep the
computational effort manageable, the number of slices in the models was lim-
ited to just four (instead of the 8 slices used for the homogeneous quasi-isotropic
laminates). Fig. 4.3.4 shows one of the models. Based on the convergence study

presented for a homogeneous laminate, one might estimate that the four slice mod-

els for actual laminates underestimate the maximum G; and Gy by about 15-20
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Fig. 4.3.3 Strain-energy release rates calculated using different meshes. The

symbols indicate the results for model 3.
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percent.

4.4 Determination of Allowable Residual

NONLIN3D solves the governing nonlinear equations using a modified Newton-
Raphson solution procedure. During each iteration the internally generated forces
are compared with the externally applied loads. The differences are the residuals.
If all of the residuals are identically zero, the governing equations are exactly
satisfied. Of course, in practice exact agreement is seldom obtained. Iteration
could continue until the algorithm’s best approximation of zero is obtained. The
size of this “numerical” zero will depend on the computer and variable type
specifications (i.e. single or double precision) in the program. However, negligible

residuals are in general orders of magnitude larger than a numerical zero.

To determine what is a negligible residual, three residual tolerances were
considered: 1000., 1., and .0001 Newtons. A laminate with a 30 x 60 mm
delamination was analyzed for five strain levels. The range of strains was such
that the maximum lateral deflection for the buckled region varied from about .6
to 2.2 times the thickness of the buckled region. The tolerance of 1000 Newtons
gave erroneous results. The other two tolerances gave virtually identical results
except for the lowest strain level (¢; = —.001), for which there were differences of
about 6 percent. Figure 4.4.1 shows G and Gy for €z = —.001 (i.e., the worst
case). Results for the other strains are not shown, since the differences are very

small.

Based on these results, a tolerance of .0001 Newton was selected for all
the analyses. Probably a somewhat larger residual could have been tolerated.
However, the residuals tend to decrease quite rapidly during the iterations, so
there is little to be gained (in terms of reduced cost) by trying to specify the
largest acceptable residual. Also, a larger tolerance might give poor results for

some cases in which the loads are small.
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Fig. 4.4.1 Effect of specified residual tolerance on G; and Gy;. Applied

strain = -.001.
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4.5 Verification of Substructuring

The configuration used for the convergence study was also used to verify
the validity of the substructuring. Model 3 was analyzed with and without
substructuring. The calculated G; and Gy distributions from these analyses are
shown in Fig. 4.5.1. The small difference in the results verifies the substructuring

technique.
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Fig. 4.5.1 Effect of substructuring on calculated G; and G distributions. The
solid curves are for analysis with substructures. The dashed curves are for analysis

without substructures.

84



Chapter 5
PARAMETRIC ANALYSIS OF HOMOGENEOUS QUASI-ISOTROPIC LAMINATES

This chapter will discuss the results of a parametric study of homogeneous
quasi-isotropic laminates containing a postbuckled embedded or edge delamina-
tion. This fictitious homogeneous laminate was selected so that the effects of strain
level and various geometric parameters on deformation and strain-energy release
rate could be examined without the additional complications due to stacking se-

quence effects.

The following sections begin with a parametric study on the effect of strain
level, delamination shape, and delamination size on deformation and the distribu-

tion of Gy, Gy, Grrr and G along the delamination front.

5.1 Deformation and Strain-Energy Release Rates For an
Embedded Delamination

The parameters considered were strain level, delamination shape, and delami-

nation size.

Fig. 5.1.1 shows lateral displacement in the middle of the delaminated region
vs. axial strain for two circular and two elliptical delaminations. The dimensions
of the delaminations are shown on the figure. Before buckling the lateral deflection
is essentially zero. When the buckling load is exceeded, the displacement increases
rapidly at first with increased strain. Then the rate of increase in displacement

decreases. Obviously, the response is quite nonlinear.

Fig. 5.1.2 shows plots of deformed finite element meshes for a circular and
an elliptical delamination. The displacements have been multiplied by 10 to
improve visualization. The deformed shape is relatively simple except near the
delamination front. For both cases the delamination front is open near the
intersection of the delamination front with the x=0 plane. However, for the

circular delamination, the delamination faces actually overlap near the y=0 plane.
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Even at strains smaller and larger than that shown, the circular delamination
exhibited closing. For the elliptical delamination “small” strains result in opening
along the entire length. At larger strains (not shown), the elliptical delamination
also exhibited closure. Strictly speaking, constraints should be added to prevent
overlapping of the delamination faces. However, including constraints to prevent
overlapping further complicates an already complicated stress analysis problem.
Consequently, no contact constraints were added for any of the results presented
in this section. Section 5.4 presents a few results which illustrate the effect of
including contact constraints. In the results that follow, dashed lines will be used

for the Gy and Gy distribution curves in regions where overlap occurred.

Figure 5.1.3 shows the G; and G distributions for a circular delamination for
five strain levels. This is the same configuration used for the convergence study
in section 4.3. Grr was essentially zero for this and all other cases considered
in this study. In general, one would not necessarily expect Gy to be zero. The
strain-energy release rates are plotted in Fig. 5.1.3 using the perimeter coordinate
S. This coordinate is zero where the delamination front meets the y-axis and is
maximum where the delamination front meets the z-axis. Both G; and Gy; show
large variations along the front and are maximum at S = 0. There is overlapping
of the delamination surfaces over a large portion of the front, as indicated in figure
5.1.3a. Although G is larger than Gy for the five strain levels, the difference is
not large; this is definitely a mixed mode situation. Since both G; and Gy are
largest at S = 0, one would expect delamination growth to occur preferentially

perpendicular to the load direction, i.e. in the y-direction.

Since a circular delamination is expected to become elongated perpendicular
to the load direction, a 30x60 mm elliptical delamination was analyzed. Fig. 5.1.4
shows the distribution of Gy, Gy, and G for this elliptical delamination. There is
a large variation of both G; and G along the front. Note that the location of the
G peak shifts slightly with strain level. In contrast to the circular delamination,

the peak values of G; and Gy occur at different locations. Also, the peak value
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Fig. 5.1.3 Strain-energy release rate distributions for a circular delamination.
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of Gy is larger than the peak value of G| except for the case €z = —.005. The
total strain-energy release rate (Fig. 5.1.4c) varies significantly along the front for
the larger strains, but for the smaller strains the magnitude is almost constant.
Depending on one’s choice of growth criterion, very different predictions of even
the direction of growth are possible. A criterion based only on Gy would predict
growth perpendicular or nearly perpendicular to the load direction for all of the
strain levels. A criterion based only on Gy would predict growth parallel to the
load direction. For the smaller strains, a criterion based on total strain-energy

release rate would predict almost uniform growth along the delamination front.

Fig. 5.1.5 shows G; and Gy for a 60x60 mm delamination. Comparison
of Figs. 5.1.3 and 5.1.5 show the effect of delamination size on Gy and Gyy
for two circular delaminations. Both delaminations were subjected to the same
strain levels. Figs. 5.1.3a and 5.1.5a show that the larger delamination is
closed (actually over-lapping) for more of the delamination front. Also, note
that the distribution in the overlapping region is more complicated for the larger
delamination. This is because the strains for the larger delamination are larger
multiples of the bifurcation buckling strain. This conclusion was verified by
subjecting the smaller delamination to higher strains. (These results are not
presented in this dissertation.) The larger delamination has a much larger Gy
for the region near S = 0. Figs. 5.1.3b and 5.1.5b show that Gy is also larger for
the larger delamination near S = 0. Hence, one might expect unstable extension of
the delamination once it begins to grow. However, based on the calculated strain-
energy release rates, a circular delamination is not expected to grow self-similarly

into a larger circular delamination. It should become elliptical.

Figures 5.1.3 and 5.1.4 show results for 30x30 and 30x60 mm delaminations.
Comparison of Figs. 5.1.3 and 5.1.4 shows that except for the lowest strains, the
smaller (circular) delamination actually has a larger G;. Hence, the growth rate
based on G is expected to be larger for the smaller delamination. As pointed out

earlier, the distributions of Gy for circular and elliptical delaminations are quite
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different. Even the location of maximum Gy is different. The peak values of Gy
for the two delaminations are similar. Hence, based on G the growth rate should
be about the same for both delaminations, but the direction of growth would be

different.

5.2 Interpretation of Deformation and Load Transfer

Section 5.1 presented some numerical results for strain-energy release rates.
Several trends were observed and discussed. The purpose of this section is to
present an intuitive explanation of the process by which load is redistributed

and secondary loads created which lead to instability-related delamination growth

(IRDG).

The mechanics of IRDG for the through-width delamination have been de-
scribed previously in refs. 3, 4, 5. The mechanics of IRDG for the embedded
delamination will be derived here. Both axisymmetric and uniaxial loading of the
embedded delamination will be considered (even though axisymmetric loading is
not considered elsewhere in this thesis). The approach will be to present first G,
and G results which illustrate the different behaviors of several configurations
which exhibit IRDG. Then mechanics arguments will be offered to explain the

different behaviors.

5.2.1Comparison of Behaviors for the Through-Width and
the Embedded Delamination

Four cases were analyzed: the through-width delamination, the axisymmet-
rically loaded embedded circular delamination, the uniaxially loaded embedded
circular delamination, and the uniaxially loaded embedded elliptical delamina-
tion. In all cases the thicknesses H and h were 4 and .4 mm, respectively. The
through-width delamination was 30mm long. The circular delaminations were
30mm in diameter. The elliptical delamination was elongated along the y-axis

and had dimensions of 30x60mm. The same strain range was used for all the

cases.
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Figures 5.2.1.1 and 5.2.1.2 show the effect of strain level on Gy and Gy for
the through-width delamination and the embedded delamination. The mode III
component is not shown because it was essentially zero for all the cases considered.
In general, one would not necessarily expect Gyrr to be zero. Both uniaxial
and axisymmetric loads were considered for the embedded delamination. For
the uniaxially loaded embedded delamination, both a circular and an elliptical
delamination were analyzed. Figs. 5.2.1.1c, 5.2.1.1d, 5.2.1.2¢, and 5.2.1.2d show
the variation with strain level at two points along the delamination front of the
uniaxially loaded embedded delamination: at § = 0° and § = —90°. See Fig. 2.8.2
for the definition of 4.

The variation of Gy with strain level is dramatically different for the four
cases. For the through-width delamination G increases very rapidly after buckling
occurs (Fig. 5.2.1.1a). After reaching a peak, G decreases. For the axisymmetric
case, G increases monotonically. Also, the magnitude of G; in Fig. 5.2.1.1b is

much larger than in Fig. 5.2.1.1a.

Fig. 5.2.1.1c shows the variation of G; at § = —90° for a uniaxially loaded
embedded delamination. Only the results for the elliptical delamination are
shown here, since G was zero at § = —90° for all strain levels for the circular
delamination. The shape of the curve for the elliptical delamination is similar
to that for the through-width delamination (Fig. 5.2.1.1a), but the magnitude is
less. At @ = 0°, G is shown for both the circular and elliptical delaminations
(Fig. 5.2.1.1d). Note that the magnitude of G is much larger than in Figs.
5.2.1.1a-5.2.1.1c. Also, G increases rapidly and monotonically with applied strain.

Fig. 5.2.1.2 shows the Gj; variations with strain level. In all cases Gy
increased monotonically with strain. Gy is of the same order of magnitude for
all the cases except for the uniaxially loaded circular delamination at § = —90°
(Fig. 5.2.1.2c). This contrasts with the very wide range of magnitudes in
Fig. 5.2.1.1 for Gj.
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Even though the strain-energy release rates in all the cases illustrated in
Figs. 5.2.1.1 and 5.2.1.2 are a result of local buckling, the variety of behavior
suggests that there must be variations in the mechanism by which local buckling
causes strain- energy release rates. The next section will attempt to explain these

mechanisms.

5.2.2 Mechanics of IRDG for the Embedded Delamination

In highly simplified anthropomorphic terms, a strip of the buckled region which
is parallel to the load direction (strip A in Fig. 5.2.2.1) wants to buckle outward. A
strip of the buckled region which is perpendicular to the load direction (strip B in
Fig. 5.2.2.1) has no desire to deform outward; it is pushed out by strip A. Strip A is
analogous to the through-width case. The constraint provided by strip B reduces
G for strip A. Conversely, strip A causes high G at the ends of strip B when
strip A pushes strip B outward. Of course, the buckled region is not comprised
of strips, but this simplified interpretation helps explain the behavior observed.
The following paragraphs present a more rigorous and detailed discussion of the

mechanics of instability-related delamination growth (IRDG).

The through-width delamination will be discussed first. After describing
the mechanics for the through-width delamination, its close relationship with
the embedded delamination with axisymmetyric loads will be discussed. Next,
tractions will be applied to the through-width delamination configuration which
transform it into a uniaxially loaded embedded delamination. The required
tractions should give some feel for why the behaviors differ for the embedded

delamination and the through-width delamination under uniaxial loads.

The discussion of the through-width delamination can be expedited by first
transforming this geometrically nonlinear problem into a linear one with nonlin-
early related loads (ref. 4). Fig. 5.2.2.2a shows a schematic of a laminate with
a postbuckled through-width delamination. In Fig. 5.2.2.2b the buckled region is
replaced by the loads Pp and M, the axial load and moment,respectively, in the
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Fig. 5.2.2.1 Strips of sublaminate aligned perpendicular and parallel to the load

direction.
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buckled region where it is cut. The total applied load Pr is equal to Pg+ Po. The
load system in Fig. 5.2.2.2c, (which is the same as Fig. 5.2.2.2b) can be divided
into the two load systems shown in Figs. 5.2.2.2d and 5.2.2.2e. Because Pc and
Ppg are calculated using rule of mixtures, the load system in Fig. 5.2.2.2e causes
a uniform axial strain state and no interlaminar stresses. Accordingly, for strain-
energy release rate calculation, the configuration in Fig. 5.2.2.2d is equivalent to
the original configuration (Fig.5.2.2.2a). The moment M opens the delamination,
contributing to Gy. It also contributes to some Gy (ref. 4). Also, the load
(Pc — Pp) contributes to Gr. In addition, because of the offset of the line of
action of Po — Pp relative to the delamination, this force creates a moment which
tends to close the delamination and reduce the Gy component caused by M. The
result of the competing mechanisms are strain-energy release rate variations like
that in Fig. 5a and 5.2.1.2a. The mode I strain-energy release rate first increases
very rapidly with increasing strain and then decreases to zero. The mode II strain-
energy release rate increases monotonically with applied load, since both M and

(Pc- Pp) contribute to G-

The axisymmetrically loaded circular delamination is very similar to the
through-width delamination. In fact, the schematics in Fig. 5.2.2.2 are applicable
if the forces are replaced by forces per unit length. The load in a column, Pp, is
essentially constant after the applied strain is increased beyond the buckling strain,
but the load in an axisymetrically loaded plate continues to increase significantly
after buckling. The load P¢ increases linearly with the applied load. Hence, (Pc-
Pp) is large for the through-width delamination but is relatively small for the
axisymmetric case. As a result, there is little attentuation of the effects of M by
(Pc - Pp) for the axisymmetric case. Consequently, G is much larger for the

axisymmetric case (Compare Figs. 5.2.1.1a and 5.2.1.1b).

Now the uniaxially loaded embedded delamination will be considered. Figs.
5.2.2.3-5.2.2.6 illustrate the transformation of a through-width delamination

(Fig. 5.2.2.3) into an embedded delamination (Fig. 5.2.2.6). The letters A through
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Fig. 5.2.2.3 Schematic for transformation of through-width delamination into an

embedded delamination.



Fig. 5.2.2.4 Slice of laminate showing tractions r

by closing buckled part of boundary BF.
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Fig. 5.2.2.5 Slice of laminate after tractions have closed boundary.
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Fig. 5.2.2.6 Entire laminate after transformation to embedded delamination.
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G are added to aid the discussion. They are not related to the letters in Fig. 5.2.2.2.
To expedite the discussion, the embedded delamination will be assumed to be rect-
angular. Tractions are required to close the buckled part of region AEFB. These
will only be non-zero near the new delamination front and are, in fact, the inter-

laminar stresses.

Fig. 5.2.2.4 shows a slice removed from the laminate. The figure shows the
forces required to close the buckled part of the boundary BF. These forces are
generated when the region AEFB is closed. These forces indicate some of the
interaction of regions AEFB with BFGC. There are in-plane forces Fy, transverse
forces F;, and a moment My. Fig. 5.2.2.5 shows the same slice after the forces

have closed the buckled part of BF.

The moment My would operate in the direction indicated in Fig. 5.2.2.4 based
on the curvature in Fig. 5.2.2.5. Likewise, the transverse force, F,, would be
expected to act downward to help close the delamination front. The force, Fy, is
a result of two things : transverse deflection and Poisson’s ratio. When transverse
deflection occurs, the length of a line from A to D (Fig. 5.2.2.6) increases, hence
the buckled region must be stretched in the y-direction. When the laminate is
compressed in the x- direction, it expands in the y-direction due to Poisson’s effect.
If the base laminate has a larger Poisson’s ratio than the sublaminate, then a force
Fy is required to enforce compatibility when the buckled part of BF is closed. The
sign of Fy due to Poisson’s ratio would depend on the relative magnitudes of the

Poisson’s ratios. Differences in Poisson’s ratio were not considered in this study.

The magnitude of Fy should be related to the in-plane stiffness in the y-
direction. The magnitude of My should be related to the flexural stiffness in
the y-direction. The effect of material properties on F; is not as straight-forward,

so no prediction will be offered.

The dimensions of the embedded delamination should affect the forces and

moment. For the same transverse deflection, the curvature in the y-direction is
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less for a larger dimension b , so My should decrease with increasing b. Also, the
strain in the y-direction due to the increased length A-D (Fig. 5.2.2.6) would be
less for larger b. Hence, for the same transverse deflection Fy should decrease with

increasing b.

The moment My should contribute primarily to G, but it also contributes to
Gy1. The force Fy should contribute to Gy and reduce Gy. The reduction is due
to the offset between the delamination plane and the middle of the sublaminate.
This offset causes a moment relative to the delamination plane which is opposite
to My. Based on the large G in Fig. 5.2.1.1d, the opening effects of My must

dominate the closing effects of Fy.

The original configuration with a through-width delamination (Fig. 5.2.2.3)
had some distribution of G and Gy along x= a. The application of the forces
Fy, Fy, and the moment My changes the load flow significantly. Closing the
ends of the through-width delamination (area AEFB) contributes a compressive
component of interlaminar stresses along the front x=a, thus reducing Gr. In fact,
because of this reduction, Gy was zero for all strain levels at § = —90° for the
circular delamination under uniaxial loads. For the elliptical delamination, the
magnitude of G at § = —90° was less than for the through-width delamination

for the same reason (Fig. 5.2.1.1a and 5.2.1.1c).

Based on the preceeding discussion, one would expect the behavior of a
through-width delamination and the uniaxially loaded embedded delamination
to have some similarity, but probably more differences. Fig. 5.2.1.1 illustrates this
very well. For an embedded delamination highly elongated perpendicular to the
load direction, one would expect the behavior to be like that for the through-width
delamination. No highly elongated delaminations were examined in this study, but
even the 1:2 aspect ratio ellipse has a Gy variation at § = —90° (Fig. 5.2.1.1c)
which is very similar to that for a through-width delamination (Fig. 5.2.1.1a) .
But this similarity has little importance for this case, since the G was very much

larger at § = 0° (Fig. 5.2.1.1d).
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5.3 Comparison of Full 3D, Thin-film 3D, and Thin-film Plate Analyses

For an Embedded Delamination

Geometrically nonlinear 3D finite element analysis is inherently very expensive.
Hence, there is considerable motivation to use simplified and less rigorous (and less
expensive) analysis techniques. An obvious approximation is to assume that the
base laminate is so much thicker and stiffer than the sublaminate, that the base
laminate strains are independent of how the sublaminate deforms. For most of the
configurations analyzed herein, the base laminate deformation can be expressed in
closed form. Because of the base laminate dominance, only the sublaminate needs
to be analyzed. This is referred to as a thin-film analysis. Boundary conditions
consist of displacements prescribed to impose compatability of the sublaminate
with the known base laminate deformations. This thin-film assumption can be

used with 3D or with plate analysis.

The thin-film assumption has been used with plate analysis by several re-
searchers, as mentioned in Chapter 1. However, only ref. 21 gives distributions of
total strain-energy release rate. This section will compare results for a square and
a rectangular delamination from ref. 21 with 3D solutions.The sublaminates are

assumed to have an initial waviness of a sinusoidal shape, as given by eqn. 5.3.1.

.05 T e
Winitial = T(l + cos —a—)(l + cos —by—) mm (5.3.1)

The sublaminate and base laminate thicknesses were .51 mm and 5.1 mm,
respectively. The entire laminate is assumed to be isotropic with a Young’s
modulus of 53.3 GPa and a Poisson’s ratio of .31. Both full 3D and thin-film

3D results will be presented.

Fig. 5.3.1 shows the distribution of G along the delamination front for the
square delamination (25.4 x 25.4 mm). Three strain levels were considered. Results

are shown for full 3D, thin-film 3D, and thin-film plate analysis. There is good
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Fig. 5.3.1 Total strain-energy release rate distribution for a square delamination

calculated using 3D, thin-film 3D, and plate analysis. (2a x 2b = 25.4 x 25.4mm)
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agreement between the three analyses for all three strain levels. Fig. 5.3.2 shows
the distribution of G along the delamination front for a rectangular delamination
(25.4 x 50.8 mm). The agreement between the three analyses is not as good as for

the square delamination, but it still is fairly good.

For the cases compared, thin-film plate analysis gave reasonably good predic-
tions of Gr. When one considers the high sensitivity of G to parameters such
as sublaminate thickness, delamination size, and initial imperfection and the un-
certainty of knowing these parameters precisely, the differences between the plate
analysis and 3D analysis appear negligible. Of greater importance is the limitation
that plate analysis can only calculate GT, not the components. A hybrid analysis
which uses 3D analysis near the crack front and plate analysis elsewhere appears
to be a good alternative. Such a technique was used in ref. 4 for the through-width

delamination.

The results in Figs. 5.3.1 and 5.3.2 also serve a secondary purpose. Totally
different analyses were used to obtain the results in ref. 20 and the 3D results.
Also, the method for calculating strain- energy release rates were different. But the
agreement is good. Hence, the results give additional validation to both the virtual

crack closure technique presented in ref. 20 and to the 3D analysis developed

herein.

5.4 Effect of Contact Constraints

Earlier it was shown that for certain combinations of delamination size and
strain level, closure occurs over part of the delamination front. Unless constraints
are imposed to prevent interpenetration, overlap of the crack faces will occur in
an analysis. The results presented in section 5.1 are based on an analysis which
allowed interpenetration of the crack faces. This section examines the effects of
including contact constraints on the calculated distribution of strain-energy release

rates.
The configuration analyzed is a “homogeneous” quasi-isotropic laminate with
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a circular delamination (2a x 2b = 30 x 30 mm). The thickness of the sublaminate
is .4 mm and the base laminate is 4.0 mm. For the circular delamination, closure
occurred near § = —90° for all of the strain levels considered. The amount of
closure at 90° relative to the amount of opening elsewhere along the front increased
with the ratio of applied strain to the bifurcation buckling strain. Hence, only large
strains will be considered here: -.005 and -.02 . These are about 3 to 11 times the
bifurcation buckling strain. Of course, -.02 strain is unrealistically large for current
composites. But larger delaminations or thinner sublaminates can be subjected
to strains more than 11 times the buckling strain. The -.02 strain case should
simply be considered a case where the applied strain is quite large compared to

the buckling strain.

Fig. 5.4.1 and 5.4.2 show the deformation of the sublaminate for the two
strains before and after imposing contact constraints. Only the top surface of
the sublaminate is plotted. The displacements were scaled up by a factor of 10
and 2.5 for the cases € = —.005 and -.02, respectively. The interpenetration is

much more severe for the larger strain.

Fig. 5.4.3 shows G rand G Hfor ra”straii; of -.005. For éoﬁiparison, results
with and without contact constraints are shown. Because of the approximations
mentioned earlier in imposing the constraints, G is not computed to be identically
zero in the contact region. But it is now negligibly small. In the region where the
delamination front is open, Gy is not very sensitive to whether or not contact
constraints are imposed. In absolute terms, Gj; is also not affected much.
Fig. 5.4.4 shows G; and Gy for a strain of -.02. Since the overlap (before
constraints are imposed) is much greater for the larger strain, one would expect
a larger effect on G; and G;. Comparison of Figs. 5.4.3 and 5.4.4 shows this is
the case. But the trends are the same for both strain levels. That is, imposition
of the constraints reduces G to a negligible magnitude in the contact region and

increases G in the non-contact region. Gy is increased along the entire front.
For a strain level of -.005, little error is incurred by not imposing contact
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Fig. 5.4.1 Deformation of top surface of postbuckled sublaminate with and without

contact constraints. Displacements multiplied by 10. (e; = —.005)
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(b) with contact constraints

Fig. 5.4.1, Concluded.
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(a) without contact constraints

Fig. 5.4.2 Deformation of top surface of postbuckled sublaminate with and without

contact constraints. Displacements multiplied by 2.5. (ez = —.02)
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Fig. 5.4.3 Effect of contact constraints on G; and Gy distributions (ez = —.005).
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constraints and just recognizing that Gy is zero in the contact region. For a
strain of -.02, significant errors occur when contact constraints are not imposed.
Since there is a significant computational cost associated with including contact
constraints, constraints probably should not be imposed unless the overlap is quite

extensive.

515 Strain-Energy Release Rates For an Edge Delamination

This section will discuss the results of a limited parametric study of homoge-
neous quasi-isotropic laminates containing a postbuckled edge delamination. The
parameters varied were strain level, delamination shape, and delamination size.
The effects of these parameters on deformation and strain-energy release rate were

determined.

Figure 5.5.1 shows the variation of G, Gy, and G along the delamination
front for a semi-circular edge delamination of radius 15mm. The strain-energy
release rates increase rapidly with increased strain. There is a large variation of
the strain-energy release rates along the delamination front. The maximum value
of G is a little larger than the maximum value of Gy for each strain level. Note
that there is no overlap region for this configuration, in contrast to the response
for the circular embedded delamination (see Fig. 5.1.3). The maximum Gj and
Gy occur at different locations for the edge delamination, which is also different
than the circular embedded delamination behavior. In fact, the semi-circular
edge delamination behaves somewhat like an elliptical embedded delamination.
Fig. 5.1.4 shows that an elliptical embedded delamination exhibits little overlap
and has maximum values of G; and Gj; at the same locations that the edge
delamination has its maximum values. However, Gr increased monitonically
with perimeter coordinate S for the elliptical embedded delamination. For the
edge delamination Gy decreases and then increases with S. For the elliptical
embedded delamination G was almost constant for some strain levels. The Gt
is far from constant for any strain level for the edge delamination. The predicted

direction of delamination growth depends on the assumed growth criterion, since
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circular edge delamination with a radius of 15mm.
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the peak Gy and Gy occur at different locations. However, growth should occur

preferentially either near the x- or y-axés, and not in between.

Figure 5.5.2 shows the variation of Gy, Gy, and G along the delamination
front for a semi-elliptical edge delamination. The maximum values of Gy and Gyf
still occur at different locations. Now the maximum value of Gy is much larger
than that for G;. The predicted direction of growth is still dependent on the
assumed growth criterion. However, the semi-elliptical is more likely to grow in

the load direction than is the semi-circular delamination.

Figure 5.5.3 shows the variation of Gy, Gy, and G along the delamination
front for a semi-éircular edge delamination of radius 30mm. The distributions are
similar to the distributions in Fig. 5.5.1 for the smaller semi-circular delamination.
The magnitudes of the strain-energy release rates are larger for the larger semi-
circular delamination. Note that in Fig. 5.5.3 there is a small amount of overlap,
which did not occur for the smaller delamination. This is because the ratio of the

applied strain to the buckling strain is larger for the larger delamination.
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Fig. 5.5.3 Strain-energy release rate distributions for a laminate with a semi-

circular edge delamination with a radius of 30mm.
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CHAPTER 6
DESCRIPTION of SPECIMENS and EXPERIMENTAL PROCEDURES

This chapter describes the various specimens which were tested and the
procedures used to conduct the tests. There are two subsections in this chapter :

1. Specimen configurations and 2. Measurement of deformation and damage.

6.1Specimen Configurations

There were three basic specimen configurations: the transversely loaded
plate, a laminate with an embedded delamination, and a laminate with an edge

delamination.

Fig. 6.1.1 shows a schematic of the transversely loaded plate configuration. A
thin sheet of steel was bonded to a thick aluminum plate with a room temperature
cure adhesive. The aluminum plate had a 50.5mm diameter through-hole. A single
transverse load was applied to the center of the steel using a 12.7mm diameter
indenter. Fig. 6.1.2 shows the specimen and the test fixture. This set-up is the
same as that used in ref. 44. Direct-current differential transformers were used
to monitor load point deflections. The purpose of these tests were to obtain load

versus deflection. No debond measurements were performed on these specimens.

Several types of specimens with embedded delaminations were fabricated. One
of the specimens consisted of spring steel bonded to aluminum. Fig. 6.1.3 shows a
schematic of the specimen. This specimen type was tested to provide postbuckling
deformation data for a laminate without stacking sequence effects. As indicated
in the figure, EA934NA room-temperature cure adhesive was used for bonding.
A teflon insert was used to prevent bonding over a circular region, resulting in a

simulated delamination.

Another type of specimen with an embedded delamination consisted of a thin
AS4/PEEK laminate with a delamination. The stacking sequence was either

(0/90/90/0), or (90/0/0/90)s. Fig. 6.1.4 shows a photograph of a typical laminate.
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ORIGINAL pAGE
BLACK AND WHITE PHOTOGRAP

Fig. 6.1.2 Experimental set-up for transversely loaded plate.
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As shown in the figure, the laminates were badly warped. The PEEK laminate was
bonded to an aluminum sheet to increase resistance to global buckling. Fig. 6.1.5
shows a schematic of the specimen. A double layer of thin Kapton film (thickness
of each layer= .013mm) was used to provide an initial delamination of 30, 40 or
60mm diameter between the fourth and fifth plies. The double layer of Kapton
was used because Kapton might bond with the PEEK, but it should not bond to
another piece of Kapton. Apparently the high temperature and pressure used in
processing the PEEK laminates caused a small amount of bonding. Even a small
amount of bonding was sufficient to prevent local buckling of the delamination
region prior to global collapse. Hence, a small block of aluminum was bonded to
the sublaminate using a low strength bond, as illustrated in Fig. 6.1.6, and small
forces were applied by hand to loosen the Kapton bond. Because of this poorly
quantified “preconditioning” and the bad warpage problem, the specimens were

only used for qualitative measurements of delamination growth.

Twenty-four ply composite specimens with embedded delaminations were
fabricated from IM7/8551-7 prepreg. The stacking sequences were (0/90/90/0)¢
and (90/0/0/90)g. A double layer of Kapton film was used to provide an initial
delamination between the fourth and fifth plies. Delamination sizes were 30, 40,
or 60mm. Unlike the PEEK laminates, the Kapton film did not exhibit spurious

sticking in these specimens.

Several of the PEEK specimens described above were sliced longitudinally to

obtain laminates with semi-circular edge delaminations.

The specimens with embedded or edge delaminations were tested in compres-
sion. Steel guide plates were used to prevent global buckling. Most of the tests
were conducted using a solid guide plate on one side of the specimen and a plate
with a 82mm window on the other side. A few tests were performed using plates
with windows on both sides. The guide plates are shown in Fig. 6.1.7. The guide
plates were 19mm thick. For specimens with an embedded delamination, the

window was centered over the delaminated region. For specimens with an edge
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delamination, the guide plates were offset to one side to provide extra support.

6.2 Measurement of Damage

Several techniques were used for detecting damage in the compression spec-
imens. Because delamination growth resulted in a larger buckled region, visual
inspection during the loading proved to be fairly accurate for detecting when de-
lamination growth initiated. A more refined technique was measurement of the
deformed shape of the buckled region. The delamination boundary corresponded
to the location where transverse displacements were negligible. The measurements
were obtained using the fixture illustrated in Fig. 6.2.1. This fixture is very similar
to that described in ref. 45. Basically, the fixture consists of a machinist’s vise
with three DCDT’s. One of the DCDT’s measures the transverse deflection of the
buckled region and the other two indicate where the transverse deflection is being
measured. In some cases, two DCDT’s were used to monitor transverse displace-
ments; one DCDT monitored back face displacement and the other monitored front
face (i.e. where the buckling occurred) displacement. By subtracting the outputs
of the two transducers, a change in thickness could be measured. Essentially all
change in thickness would be due to postbuckling displacements. This technique
using two DCDT’s was less sensitive to artifacts due to slight misalignment of the

specimen and the machinist’s vise.

Another technique for measuring damage was applying an X-ray opaque
dye penetrant and then taking an X-ray. The dye highlighted ply cracks and
delaminations. However, if little or no surface damage occurred, the dye penetrant
was not able to reach the internal damage area. In those cases, aftér all testing
of those specimens were completed, a small hole was drilled in the center of the

specimen. Then, the dye could be applied internally.

134



ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Fig. 6.2.1 Deflection measurement fixture.
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Some specimens were sectioned using a diamond saw and polished. The cross
sections were examined using light microscopy. This technique was particularly
useful for determining the distribution of cracking through the thickness and

details of the types of damage.
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CHAPTER 7
COMPARISON of ANALYTICAL and EXPERIMENTAL RESULTS

The primary purpose of this chapter is to describe the results of a combined
experimental and analytical study of instability-related delamination growth.
Specimens were designed based on the trends observed in the analytical study
discussed earlier. Based on the analytical study differences in the buckling strain,
the shape of the postbuckled region, the strain at which delamination growth would
occur, and the direction of growth were expected. The experimental program was
conducted to determine whether the expectations based on analysis were correct.
Also, it was hoped that a strain-energy release rate parameter would be identified

which could be used to quantitatively predict the onset of delamination growth.

Two composite material systems were considered: AS4-PEEK and IM7/8551-7.
Because of the processing difficulties described earlier in Chapter 6, only quali-
tative comparisons of analysis and experiments will be presented for the PEEK

specimens.

A secondary purpose of this chapter is to present results for two “check cases™:
the transversely loaded plate and the steel bonded to aluminum compression
specimen. These configurations were examined because they were expected to
behave in a fairly predictable fashion. Hence, they provided a good starting point
for comparison of analytical and experimental results. These check cases will be

presented first, 4nd then the primary study will be discussed.
7.1 Check Cases

Two types of experiments were conducted just to help verify the finite element
program NONLIN3D. One of the experiments involved central transverse loading
of a circular plate (see Fig. 6.1.2). The other test consisted of spring steel bonded to
aluminum and loaded in compression to cause local postbuckling of a delaminated
region (see Fig. 6.1.3). The results for these two check cases are described in this

section.
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Figure 7.1.1 shows experimentally measured load point deflection versus ap-
plied load for the transversely loaded plate. Results are shown for two specimens.
Each specimen was loaded and unloaded more than once, so there are multiple
data for each load level. Also shown are the results from NONLIN3D. The fig-
ure shows that NONLIN3D predicts the deflection quite well, even though the

response is highly nonlinear.

Figure 7.1.2 shows results from the steel/Al postbuckiing tests. This figure
shows the deformation of the specimens and the finite element models along the
planes z = 0 and y = 0. The finite element analysis was performed at a slightly
different strain level than was present in the test. Ideally, the same strain would
have been used for both the analysis and the experiments. However, the deflection
increases rapidly with applied strain and even small imperfections can shift the
load versus deflection curve. To expedite the comparison of the shape of the
buckled region with the prediction, the strain for the finite element analysis was
chosen so that the peak deflection would be about the same as was observed in

the experiment.

Figure 7.1.2 shows the deformation for a specimen with a 60mm diameter
delamination. The predicted and observed deformed shape agree quite well. Note
that the deformation is much different along the z = 0 and y = O planes. Along
the y = O plane the large deformation is restricted to a much narrower region than
along the z = 0 plane. This restricted deformation caused the delaminated region
to appear elliptical during the test, even though the delamination was known to

be circular.

7.2 Qualitative Study of AS4/PEEK Laminates

As described earlier in the experimental procedures section, there were prob-
lems with the fabrication of the AS4/PEEK specimens.Consequently, only a qual-
itative study was performed on this material system. Observations were made of

the shape of the buckled region, the location of delamination growth, the direction
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Fig. 7.1.1 Comparison of measured and predicted load point displacement for a

transversely loaded circular plate.
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Fig. 7.1.2 Deformation of the x = 0 and y = O planes in a steel/AL specimen with

a postbuckled 60mm diameter delamination.
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of growth, and ply cracking. Fatigue loads were used to cause delamination growth
in most of the tests because of the high resistance of PEEK to static delamination
growth. A few specimens were tested statically. However, effects due to problems
with specimen fabrication prevented isolation of fatigue versus static behavior.
Laminates with either an embedded or an edge delamination were tested. Two
sublaminate stacking sequences for the sublaminate were considered: (0/90/90/0)
and (90/0/0/90). The embedded delamination will be discussed first, then the

edge delamination.

Fig. 7.2.1 shows sketches of two specimens (which had a 60mm diameter initial
delamination). The boundary of the initial delamination is indicated by dashed
lines. The region which actually buckled outward is indicated by solid lines. This
region was determined by visual inspection. Only part of the delaminated region
buckles outward for both sublaminates. Also, the buckled region is much narrower
for the (90/0/0/90) sublaminate than for the (0/90/90/0) sublaminate. The same

trends were observed for 40mm delaminations.

Finite element analysis was performed before the tests were conducted. In
fact, the stacking sequences for the experiments were selected because the analysis
predicted that the behaviors of the two laminates should be different. These pre-
liminary analyses were performed for a 30mm delamination. Since problems with
fabrication precluded quantitative comparisons, the analyses were not repeated for
the actual dela.mi'nation sizes. Fig. 7.2.2 shows the y=0 plane for deformed finite
element models for the two stacking sequences. These particular models were for
a 30mm delamination, but the trends are independent of delamination size. Note
that the analysis prediction agrees with the experiments, i.e. that the buckled

region should be narrower for the 90/0/0/90 sublaminate than for the 0/90/90/0

sublaminate.

Fig. 7.2.3 shows strain-energy release rate distributions for a 30mm delami-
nation for the two stacking sequences. Both G; and Gy are maximum at S=0

and are much less elsewhere. These results suggest that delamination growth
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(b) (90/0/0/90) sublaminate

Fig. 7.2.2 Deformation of the y = 0 plane for two AS4/PEEK laminates. Diameter

of delamination is 30mm.
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(a) (0/90/90/0) sublaminate

Fig. 7.2.3 Strain-energy release rate distributions for two AS4/PEEK sublami-

nates. Delamination diameter is 30mm.

145



Curve Strain y
-.002
-.003

~.004 X
-.005

e c— e A— A— AL

e — I — ——

0 .005 .010 .015 .020 .025

S, m
800 -
600 |-
G"’
I/m* ool

200

J

0 005 .010 .015 .020 .025
S, m

(b) (90/0/0/90) sublaminate

Fig. 7.2.3 Concluded.

146



should initiate in a small area and should propagate transverse to the load di-
rection. Figure 7.2.4 shows X-rays for the two stacking sequences. The observed
initial delamination growth is very localized and the growth is transverse to the
load direction. Of course, after a small amount of growth the analytical results
in Fig. 7.2.3 are not applicable, since the configuration has changed considerably.
The X-rays show matrix cracking, which is apparently caused by the flexure during
postbuckling. The delamination growth was usually very rapid. Sometimes there

was essentially instantaneous propagation to the guide plates, but not always.

Stacking sequence effects were quite obvious for the edge delamination speci-
mens also. It was difficult to obtain delamination growth for the 30mm diameter
delamination for the (0/90/90/0) sublaminate. Except for one case, global failure
occurred simultaneously with delamination growth. In the one case that growth
could be observed before global failure, only a small amount of growth occurred
and approximately the same amount of growth occurred in both the load direction
and transverse to the load direction. Fig. 7.2.5 shows an X-ray of a laminate with
a 20mm radius initial delamination and a (0/90/90/0) sublaminate. In this case,
the dominant delamination growth is definitely in the load direction. Also, when-
ever catastrophic growth occurred, there was significant delamination growth in

the load direction.

Only 30mm delaminations were examined for the (90/0/0/90) sublaminmate.
The X-ray in Fig. 7.2.6 shows that for this case the delamination growth is
definitely transverse to the load direction. Even when extensive delamination
growth occurred, it was transverse to the load direction. Matrix cracking was
more obvious for the 90/0/0/90 sublaminate (Fig. 7.2.6) than for the 0/90/90/0
sublaminate (Fig. 7.2.5).

Figures 7.2.7 and 7.2.8 show strain-energy release rate distributions for two
specimens with edge delaminations. The analytical results are for approximately
the same range of strains that were used in the tests. Results are shown for three

strain levels.
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Fig. 7.2.4, Concluded.
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Fig. 7.2.6 Radiograph of PEEK laminate with an initial semi-circular edge
delamination of radius 15mm. The sublaminate is (90/0/0/90).
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Fig. 7.2.7 Strain-energy release rate distributions for (0/90/90/0) AS4/PEEK

sublaminate with a semi-circular edge delamination.
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Fig. 7.2.8 Strain-energy release rate distribution for a (90/0/0/90) AS4/PEEK

sublaminate with a semi-circular edge delamination.
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The strain-energy release rate distributions for a 40mm edge delamination and
(0/90/90/0) sublaminate are shown in figure 7.2.7. Based on G one would expect
growth transverse to the load direction. But based on Gjj, one would expect
growth along the load direction. Without a mixed-mode delamination growth
criterion, it is not possible to predict the direction of delamination growth. The
experiments usually exhibited dominant growth in the load direction. The figure
shows that the peak G is about twice the peak G;. Hence, it appears that the

load direction.

The strain-energy release rate distributions for a 30mm delamination and a
(90/0/0/90) sublaminate are shown in Fig. 7.2.8. The peak G;; component is
much smaller than the peak G, and would not be expected to play much of a role.
Based on G one would clearly expect dominant delamination growth to occur

transverse to the load direction. This agrees with the experimental observations.

In summary, there are significant qualitative agreements between the observed

and predicted behaviors.

7.3 Quantitative Study of IM7/8551-7 Laminates

A variety of measurements and observations were made for IM7/8551-7 lami-
nates with an embedded delamination. As was the case for PEEK, two stacking
sequences were used: (0/90/90/0)s and (90/0/0/90)¢ . The initial delamination
was located between the fourth and fifth plies, No edge delamination tests were
performed. Because there were no major manufacturing induced artifacts (like
the Kapton sticking problem in the PEEK laminates), quantitative comparisons
were made between analysis and experiments for postbuckling deformations and
initiation of delamination growth. Also, the stability of delamination growth was
monitored. A combination of techniques were used to determine the extent and
types of damage. These techniques included measurement of deflections, X-ray,

ultrasonic C-scans, and sectioning followed by light microscopy.
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Figures 7.3.1-7.3.3 show load versus deflection for the six laminate configura-
tions considered (2 stacking sequences and three delamination sizes). The deflec-
tion is that in the center of the delaminated region. For each delamination size
the agreement between the observed and predicted load versus deflection is fair for
the (0/90/90/0) stacking sequence. For the (90/0/0/90) stacking sequence, the
agreement is fair for the 30mm delamination. For the 40 and 60mm delaminations,
there is a large discrepancy, except at the lower strain levels. This divergence at
the larger strains may be due in part to the overlapping of the delamination faces,
which occurs in the analysis, but not in reality. The significance of the overlap
tends to increase as the ratio of the applied strain to the bifurcation buckling
strain increases. This ratio increases with strain for a fixed delamination size and
with delamination size for a fixed strain. This may explain the better agreement

at lower strains and for smaller delamination sizes.

Figures 7.3.4 and 7.3.5 show the deformed shape of the y=0 plane for the
two stacking sequences and a 60mm delamination as measured during tests and
as predicted from analysis. The strain for the tests was -.0026. The analytical
results are for a strain of -.003. This small difference in strain is not important
for the comparisons of deformed shape. There is considerable difference in the
deformation for the two laminates for the y=0 plane. The buckled area is
noticeably wider for the (0/90/90/0) laminate than it is for the (90/0/0/90)
laminate. The deformation for the x=0 plane is not much different for the two
laminates. The analysis predicted interpenetration of the delamination faces (since
contact constraints were not imposed). The measured and predicted deformed
shape agree reasonably well except, of course, where the analysis predicted

interpenetration.

Strain-energy release rate distributions were calculated for the six configu-
rations for a range of strains which bracketed the strain at which delamination
growth from the Kapton insert occurred. In all cases the Gyrr component was

negligible. Figures 7.3.6-7.3.11 show the results of the analysis. There is one figure
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Fig. 7.3.1 Measured and predicted deflection versus ¢; for two IM7/8551-7

laminates. Diameter of initial delamination is 30mnt.
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Fig. 7.3.2 Measured and predicted deflection versus e for two IM7/8551-7

laminates. Diameter of initial delamination is 40mm.
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Fig. 7.3.3 Measured and predicted deflection versus e; for two IM7/8551-7

laminates. Diameter of initial delamination is 60mm.
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Fig. 7.3.4 Deformation of the y=0 plane for a (0/90/90/0) sublaminate. Initial

delamination diameter was 60mm.
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Fig. 7.3.5 Deformation of the y=0 plane for a (90/0/0/90) sublaminate. Initial

delamination diameter was 60mm.
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Fig. 7.3.6 Strain-energy release rate distributions and maximum strain-energy

release rate versus £;. The material is IM7/8551-7 and the sublaminate is 30mm

in diameter and has a stacking sequence of (90/0/0/90).
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Fig. 7.3.7 Strain-energy release rate distributions and maximum strain-energy
release rate versus £;. The material is IM7/8551-7 and the sublaminate is 30mm

in diameter and has a stacking sequence of (0/90/90/0). 162
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Fig. 7.3.8 Strain-energy release rate distributions and maximum strain-energy
release rate versus £;. The material is IM7/8551-7 and the sublaminate is 40mm
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Fig. 7.3.9 Strain-energy release rate distributions and maximum strain-energy

release rate versus £;. The material is IM7/8551-7 and the sublaminate is 40mm

in diameter and has a stacking sequence of (0/90/90/0).
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Fig. 7.3.10 Strain-energy release rate distributions and maximum strain-energy
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for each configuration. Each figure shows the variation of G;, Gy, and G along
the delamination front. Also shown is the variation of the peak magnitude of Gy,
G 1, and G with applied strain level. In all cases there is a large variation of the
strain-energy release rates along the delamination front. The peak magnitudes oc-
curred at S = 0 and the magnitudes were small except close to S = 0. Obviously,
one would expect delamination growth to occur preferentially near S = 0, which
corresponds to growth transverse to the load direction. During the tests, one could
visually determine that the delamination growth was localized near S = 0. Fig-
ures 7.3.12-7.3.15 show X-rays of several specimens after appreciable delamination
growth had occurred. In these particular specimens there was sufficient through-
the-thickness damage to permit the dye penetrant to reach the interior. These
figures show that the analysis was correct in predicting preferential growth near
S=0. The X-rays show that significant ply cracking accompanied the growth. Ply
cracking occurred both in 0° and 90° plies. The large horizontal cracks in Figs.
7.3.12 and 7.2.14 could be seen on the specimen surface with the naked eye. These
cracks formed after delamination growth had occurred. The tests were stopped

when the large horizontal cracks formed.

Several specimens were sectioned and polished after testing. Micrographs of
these specimens are presented in Figs. 7.3.16-7.3.18. Fig. 7.3.16 shows two
cross-sectional views of a 0/90/90/0 sublaminate which had an initial diameter
of 40mm. During the test of this specimen, the delamination growth occurred
followed (after a’few minutes at constant load) by the formation of a horizontal
crease in the sublaminate. There was no visible surface damage. Fig. 7.3.16a
shows that the crease was a result of fiber microbuckling of the interior surface ply
of the sublaminate. Fig. 7.3.16b shows a micrograph taken near the delamination
front. Recall that the Kapton implant was located between the fourth and fifth
plies. The delamination in Fig.7.3.16b is between the third and fourth plies. the
delamination has switched interfaces by way of a matrix crack in the fourth ply.
This figure also shows angled matrix cracks in the 90° plies. The angled orientation

was typical in all of the specimens examined.
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sublaminate

|

Fig. 7.3.16 Cross-section of IM7/8551-7 laminate with a (0/90/90/0)

and an initial delamination diameter of 40mm.

sublaminate
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(b) View 2

Fig. 7.3.16, Concluded.
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sublaminate ’

\ |

(a) View 1

Fig. 7.3.17 Cross-section of IM7/8551-7 laminate with an (90/0/0/90) sublaminate

and an initial delamination diaméter of 60mm.
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sublaminate

(b) View 2

Fig. 7.3.17 Concluded.
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Fig. 7.3.17 shows two cross-sections of a 90/0/0/90 sublaminate which had an
initial diameter of 60mm. Fig. 7.3.17a shows that even after some growth, the
delamination is still at the original interface (i.e. between the fourth and fifth
plies). The view in 7.3.17a is of an area near the y-axis. In Fig.7.3.17b the view is
of an area offset slightly from the y-axis. There are many ply cracks in this area,

but the delamination is still between the fourth and fifth plies.

Fig. 7.3.18 shows a montage of four micrographs of a 90/0/0/90 sublaminate
which had an initial delamination diameter of 40mm. In this case the delamina-
tion has grown along the interface between the fourth and fifth plies. After some
growth, the stresses were such that a crack formed at both ends of the delamina-

tion. At one end the crack grew all the way to the surface of the laminate.

The micrographs and the X-rays indicate that even when a configuration starts
out fairly simple (m this case a single delamination separating the laminate into
two balanced and symmetric laminates), the damage development tends to be
complicated. Matrix ply cracking was prevalent in all the tests. The density of
the cracks varied with location in the sublaminate. The delamination sometimes
switched interfaces, depending on the stacking sequence. In some cases fiber

microbuckling occurred.

The strain at which the delamination began to grow was recorded for each
configuration. Using these strains and the analytical results in Figs. 7.3.6-7.3.11
one can estimate the peak strain-energy release associated with delamination
growth for each specimen. These results are summarized in Fig. 7.3.19. Both
G and Gy are shown. Delamination growth appears to be dominated by G.
The critical magnitude of G; based on Fig. 7.3.19 is not much different than the
392-513 J/m? reported by the materials manufacturer (ref. 46). When G; was

large, the critical Gy tends to be somewhat less.

For the 30mm delamination with a (0/90/90/0) stacking sequence, Gy was
quite low. This was probably due to the high strain which would have been
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Fig. 7.3.19 Mode I and Mode II strain-energy release rates for delamination
growth. Results are shown for two stacking sequences and three delamination

sizes.
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required to reach a value of G of about 400J/m?. Fig. 7.3.20 summarizes the
strains at which delamination growth began for each configuration. For each
delamination size the strain was significantly larger for the (0/90/90/0) stacking
sequence. For the 30mm case the strain for growth was -.0055. This nominal strain
plus the flexure of the buckled region results in a very high compressive strain in
some areas. One might guess that this very high compressive strain could trigger
other damage mechanisms which would augment the effect of the postbuckling
induced interlaminar stresses. In fact, for both 30mm (0/90/90/0) specimens
tested, a horizontal crack formed shortly after delamination growth occurred
(see the X-ray in Fig. 7.3.12). This horizontal crack formed when microbuckling

occurred on the interior surface of the sublaminate.

The two stacking sequences differed considerably in terms of the stability of
delamination growth. The (90/0/0/90) laminate always exhibited at least some
slow incrémentil delamination growth with increased load. The delamination
growth in the (0/90/90/0) laminate tended to be abrupt and often the initial

growth was quickly followed by formation of a lafger horizontal crack.
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Fig. 7.3.20 Strain at which delamination growth began for IM7/8551-7 laminates

with an embedded delamination.
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Chapter 8
SUMMARY AND RECOMMENDATIONS

There are many mechanisms which contribute to compression failure of lam-
inated composites. This study has focused on delamination growth driven by
local buckling of a delaminated group of plies. This mechanism was referred to
as instability-related delamination growth (IRDG). A review of the literature in-
dicated that no detailed analysis had been performed for any three-dimensional
configuration which exhibits IRDG. Detailed stress analysis helps identify which
material and geometric parameters govern IRDG. Also, without detailed stress
analyses it is difficult to determine the accuracy of less expensive approximate

analyses.

The goal of this study was to enhance the understanding of IRDG in 3D
configurations through a combination of analyses and experiments. There were
three tasks in this study: development of a suitable stress analysis program,
performance of a parametric analytical study, and performance of a combined

experimental and analytical program.

A geofriétrically nonlinear 3D finite element analysis program, NONLIN3D, was
developed to perform the required stress analysis. This program was tailored to
exploit the vectoriprocéssing capability of the CDC VPS32 supercomputer. The
program uses a 20-node isoparametric hexahedron element. The program was
designed to perform analysis by substructures. This resulted in a large reduction
in computational effort, since nonlinear analysis could be restricted easily to just
that part of a configuration which needed it. An approximate contact analysis
was also implemented. A variety of checks were performed to assure the accuracy

of the analysis.

The parametric analytical study was performed on a fictitious material which
had the same in-plane stiffnesses as a quasi-isotropic laminate, but had no stacking

sequence effects. This material was used so that the effects of strain level and
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geometric parameters could be studied without the additional complications due
to stacking sequence. Both embedded and edge delaminations were considered.
These configurations were found to behave in a complex manner. Some of the

observations and accomplishments were:

1. The configurations were definitely mixed mode. In some cases G was larger

than Gpy. For other cases the opposite was true.

2. In general, there was a very large variation of the strain-energy release
rates along the delamination front. Usually, one would expect initial delamination

growth to occur only along a small portion of the front.

3. The locations of maximum G and Gy depended on the delamination shape

and the applied strain.
4. The mode III component was much smaller than G and Gyj.

5. The analysis predicted that for some configurations the sublaminate
would overlap the base laminate unless contact constraints were added. Most
of the analyses were performed without imposing contact constraints, since the
addition of the constraints further complicates an already complicated problem.
To determine the errors caused by not including contact constraints, a few
strain-energy release rate results were calculated both with and without contact
constraints. Trese results showed that for moderate postbuckling strains, the

errors were fairly small.

6. The distribution of total strain-energy release rate can be calculated fairly

accurately using plate analysis.

7. An intuitive interpretation of the deformation and load transfer for the
embedded delamination was presented. This interpretation explains much of the

observed variation of the strain-energy release rates.

The combined experimental and analytical program involved a variety of
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configurations. A few preliminary tests were conducted strictly for verifying
NONLIN3D. The primary goals of this phase of the study was to determine
whether the behaviors predicted by NONLINBD would occur in actual specimens
and to determine if a strain-energy release rate parameter could be used to predict

the onset of IRDG.

IRDG was studied for two material systems: AS4/PEEK and IM7/8551- 7.
Two sublaminate types were considered: (0/90/90/0) and (90/0/0/90). Because
of problems in fabricating the PEEK specimens, only qualitative comparisons of
analysis and experiments were possible. Quantitative comparisons were made for

the IM7/8551-7 material system. Some of the major conclusions were:

1. The shape of the postbuckled sublaminate depended on the stacking
sequence. The predicted shapes agreed well with the experimentally measured

shapes.

2. The direction of delamination growth depended on stacking sequence for

the edge delamination. This behavior was predicted by the analysis.

3. Delamination growth occurred along only a small portion of the delamina-

tion front, as predicted by the analysis.

4. Initial delamination growth in the IM7/8551-7 laminates appeared to be
governed by the magnitude of Gy.

5. Matrix ply cracking generally accompanied delamination growth. In some

cases fiber microbuckling also occurred shortly after delamination growth occurred.

Instability-related delamination growth was defined to be delamination growth
caused by buckling of a delaminated group of plies. The tests showed that other
damage mechanisms can also become operative when buckling occurs. Explaining
the interaction of these various mechanisms with IRDG is beyond the scope of

this study. In fact, there is so much that needs to be done to fully understand
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IRDG, that it is difficult to make just a few recommendations for future work.
The following non-comprehensive comments are offered as general guidelines for

future work in the area of instability-related delamination growth.

1. Considerable effort was expended in developing and using NONLIN3D. The
3D analysis is still quite expensive, in spite of the techniques used to reduce the
computational effort. These techniques served only to make it possible to make
the calculations presented herein. If the synergistic effects of various damage
mechanisms are to be studied with any rigor, new approaches must be developed.
Hopefully, the results presented will be used to provide direction and insight for

developing approximate analyses.

2. A more complete characterization of basic material properties is needed. A
full 3D set of material moduli is obviously needed for accurate 3D stress analysis.
Also needed is better interlaminar fracture toughness characterization, particularly

for mixed mode situations.

3. The effects of the following on IRDG need to be examined for 3D

configurations:
a. unsymmetric sublaminates
b. global bending
c. thermal stresses
d. initial imperfections
e. multiple delaminations

4. Synergistic effects due to the presence of multiple damage types need

considerable experimental investigation.
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APPENDIX
SHAPE FUNCTIONS FOR 8- AND 20-NODE ELEMENTS

This appendix gives the shape functions for the 8- and 20-node elements. The

node numbering sequence was given earlier in Fig. (2.2.1).

The shape functions for the 8-node element are :

S(1)=(1+61)*(1-62) + (1 -63)/8
5(2) = (1 +61) * (1 +52) * (1 —-(53)/8
5(3) = (1'1'-61) *( +52) * (1+53)/8
S4)=(1+6&)+(1-8)«(1+463)/8
S(8) = (1-461) (1 -62) « (1~ 63)/8
5(6) = (1—61) * (1 +62) » (1~ 63)/8
S(T)=(1-6)«(1 +52) *(1+63)/8
3(8) = (1—51)*(1— v) *(1+63)/8

The shape functions for the 20-node element are :

Corner nodes:

S(1) = 125*(1—51)*(1—52)*(1—63)*( 6y — 62— 63 -2)
S(B)=125+«(1=6)x (1 +62) x (1 —83) * (=61 + 62 — 83 — 2)
S(5) = 125 % (1 —81) * (14 62) * (1 + 83) + (- 51+52+53—-2)
5(7)2 125*(1—61)*(1—(52)*( +63)*( 1 — 62+ 63 — )
S5(13) =125+ (1 + 6;) * (1 52)*(1—-53)*(51—52—-53—2)
S(15) =125+ (1 4+ 681) * (1 + 62) = (1 — 83) * (61 + 82 — 63 — 2)
5(17):.125*(1+51)*(1+52)*(1+53)*(51+52+53—2)
S(19) =.125+ (1 + 6;) « (1 —62) * (1 + 63) * (6, — 62 + 63 — 2)

Mid-side nodes on the plane §; =0 :

5(9) = .25% (1 =61 %6;) * (1 - 62) * (1 - &3)
S(10) = 25+ (1 — 61+ 61) » (1 + &) + (1 — &)
S(ll)—.25*(1—51*61) (1+52)*(1+53)
5(12)=.25#(1—-61*51)*(1—52)*(1+63)
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Mid-side nodes on the plane 62 =0 :

S(2) =25+ (1 - 62 8) + (1 - 6) « (L - &3)
5(6) = 25+ (1 6y )+ (160 {1+ 8)
S(14) = 25 (1= by 63) « (1+61) + (1 - b3)
S(18)=25*(1—62t62)*(1+51)*(1+63)

Mid-side nodes on the plane 63 =0:

4) 25*(1—-53*53) (1—51)*(1+52)
8) 25*(1— 3*63) (1—61)*(1—5‘2)
25% (1 —83+63)+ «(1+61) (1 +62)
25 % (1— 634 83) + (1 +61) * (1 - 62)
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