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ABSTRACT

Compressive loads can cause local buckling in composite laminates that have a

near surface delamination. This buckling causes load redistribution and secondary

loads, which in turn cause interlaminer stresses and delamination growth. The

goal of this research effort was to enhance the understanding of this instability-

related delamination growth in laminates containing either an embedded or an

edge delamination.

There were three primary tasks: 1) development of a geometrically nonlin-

ear finite element analysis named NONLIN3D; 2) performance of a parametric

analytical study to determine the effects of strain, delamination shape, and de-

lamination size on the distribution of the strain-energy release rate components

along the dclamination front; and 3) performance of a _ombined experimental and

analytical study of instability-related dclamination growth (IRDG). Two material

systems (AS4/PEEK and IM7/8551-7) and two stacking sequences (0/90/90/0)_

and (90/0/0/90)6 were examined. The laminates were fabricated with Kapton

inserts between the fourth and fifth plies from the top surface to give an initial

delamination.

' The analysis predicted a large variation of G I and GII along the delamination

front. The GII1 component was always small. The location of maximum GI

and GII depended on the delamination shape and applied strain. In general,

the strain-energy release rates were small except in a small region. Hence,
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delamination growth was expected to occur over only a small portion of the

delamination front. Experiments corroborated this prediction. The laminate

stacking sequence had a large effect on the shape of the deformed region, the

direction of delamination growth, and the strain at which delamination growth

occurred. These effects were predicted by the analysis. The G i component

appeared to govern initial delamination growth in the IM7/8551-7 laminates.

Matrix ply cracking generally accompanied delamination growth. In some cases

fiber microbuckling also occurred shortly after delamination growth occurred.
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NOMENCLATURE
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h
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U
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W

Labels for nodes used in G calculation

Semi-axes of elliptical delamination in x- and y-

directions, respectively
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Young's moduli for orthotropic material
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Mode I, mode II, mode III, and total strain-energy

release rates

Shear moduli for orthotropic material

Thickness of sublaminate

Thickness of base laminate

Jacobian matrix

Coefficients in tangential stiffness matrix

Shape function for node m

Number of Gaussian quadrature points

Number of shape functions

Transverse load

Nodal displacements

Perimeter coordinate

Displacements in x-, y-, and z-directions

Strain energy

Volume

Transverse displacement in center of plate

Width of finite element model.

Also used to designate Gaussian quadrature

weighting coefficients.



NOMENCLATURE, concluded

x,y,z
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VI2, V23, VI3

]'I
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Rectangular Cartesian coordinates

Increment in delamination length

Local coordinates in parent element, i=1,3

Strains

Poisson's ratios for orthotropic material

Total potential energy

Stresses

Subscripts and Superscrivts

i, j = 1, 6 except as noted

a, /3 = 1, number of nodal displacements

8 = 1, number of Gaussian quadrature points



Chapter 1

INTRODUCTION

In recent years there has beenan an increasing interest in the application of

advancedcompositematerials to structures. Thesematerials exhibit high specific

strength and stiffness. Through the choice of fiber/matrix systems and lamination

stacking sequences, there are great opportunities to tailor the material stiffness and

thermal expansion coefficients in various directions to meet specific design needs.

Some are very resistant to corrosive environments. There are also advantages

in fabrication of certain structures, in which the "part count" can be drastically

reduced by using composites. The list of desirable characteristics is long.

Unfortunately, there are also potential problems associated with the use of

composite materials. One of the primary problems is lack of experience. New

material systems axe being introduced on a regular basis. Even most of the "older"

material systems are only a few years old. Application of composites to strength

critical structures has been very limited.

There are also new modes of failure, such as de]amination, fiber breakage, and

intralaminar cracking. These materials may be very strong in certain directions,

but they can also be surprisingly weak (compared to metals) in other directions.

The use of high strength, low strain to failure fibers severely reduces plastic

deformation. Whereas a metallic structure can experience local yielding to reduce

stress concentrations, a composite structure can do little readjusting to reduce

locally high stresses without local failure.

To expedite the process of safe application of composites to strength critical

structures, much research has been aimed at developing appropriate stress anal-

yses. This is not to say that metal structures do not require sophisticated stress

analyses. But, for the same level of geometric and loading complexity, composites

are much more demanding of the analyst than are metals.

There are basically two types of stress analyses which must be performed. The



first consists of analysing a problem in which the failure is well documented and

understood. The analyst's task is simply to quantify the magnitude of certain

parameters which are known to control the failure mode. For many situations it

is not clear what governs failure. Since it is not possible to model all aspects of

the configuration, approximations must be made. This is the second type of stress

analysis problem.

The problem addressed by this thesis is of the second type. Failure of a

laminated composite material under compression loads is a very complicated

process. Besides all of the failure modes commonly observed under tensile loads,

there are additional failure modes related to instability. There is the possibility of

fiber microbuckling, lamina buckling, and global buckling of the entire laminate.

Usually, the concern is that some initial damage or defect will precipitate the

operation of one of these instability-related mechanisms. The initial defect may

be quite simple: perhaps a disbond between two lamina. Initial damage can be due

to high stresses during service or impact damage. Impact damage is a particularly

messy situation for the analyst. It is impossible to model all of the fiber breaks,

delaminations, and lamina cracks. The task is to make approximations which make

the analysis tractable without losing any of the essential elements of the problem.

Learning to identify the essence of a complicated problem involves dissection of

the original problem into independent, less complicated problems that exhibit one

or two failure mechanisms. These less complicated problems are then carefully

analyzed to determine the basic behavior. Hopefully, certain mechanisms can be

identified as unlikely or at least unimportant. Then potential interactions of the

mechanisms would be considered.

Presently, there is no consensus as to what are the critical mechanisms of

compression failure. Likely, different modes are critical under different situations.

Also, more understanding of the basic mechanisms of compression failure is

needed. This thesis will examine the failure mode instablity-related delamination

growth; that is, delamination growth which is caused by localized buckling of

4



a delaminated group of lamina. This buckling causes load redistribution and

secondary loads, which in turn cause interlaminar stresses and delamination

growth. The next several sections will survey the literature and describe the

scope of this investigation.

1.1 Survey of the State of the Art

Most of the research on instability-related delamination growth (IRDG) has

used one of two configurations: the through-width delamination or the embedded

delamination. These are shown in Fig. 1.1 . When a critical compressive strain

level is reached, the delaminated region buckles. This causes interlaminax stresses

along the delamination front, possibly leading to delamination growth. The term

%ublaminate" will be used to refer to the buckled group of plies. The term "base

laminate" will be used to refer to the unbuckled group of plies. These regions are

labeled in Fig. 1.1.

The literature on instability-related delamination growth differs in the choice

of configuration, the type of stress analysis, and the method of characterizing the

magnitude of _he delamination front stresses. Also, some papers axe primarily

experimental and others concentrate on just the analysis. The literature survey in

the next two sections will be organized according to the configuration considered.

1.1.1 Through-Width Delamination

The primary motivation for considering the through-width delamination is

that it is less complicated than the embedded delamination. Hence, it provides a

convenient vehicle for checking various ideas about modeling.

Kachanov was perhaps the first to analyse the through-width delamination

(ref. 1). He developed an approximate nonlinear beam-column analysis for the

case of thin-film buckling. The change in strain-energy in the thin film due to

delamination was compared with the rupture energy. If sufficient strain-energy

was released, the delamination was assumed to grow. Kachanov did not consider

5



Through-width Delamination

Embedded Delamination

on

sublaminate/ __

base laminate / _

Fig. 1.1 Two configurations which exhibit instability-related delamination growth.
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the individual components Of strain-energy release rate. Whitcomb (ref. 2,3)

developed a geometrically-nonlinear finite element analysis for calculating the

mode I and mode II strain:energy release rates (GI and GII). Linear finite

element analysis was later combined with nonlinear beam theory to obtain results

for many configurations (ref. 4, 5). This hybrid analysis drastically reduced the

computational effort required to perform a parametric study. Chai, et al (ref. 6)

developed a beam-column analysis for calculating total strain-energy release rate

(G T = G I + CII ). G T was calculated based on differentiation of the total strain

energy. This analysis could handle the case of global bending combined with local

buckling. The analysis could also handle multiple delaminations, although no

provision was made to prevent interpenetration of the different groups of buckled

lamina. Wang (ref. 7) performed a finite element analysis of composites with

multiple delaminations. Constraints were included to prevent interpenetration

of adjacent lamina groups. However, only the bifurcation buckling problem was

studied. Since there was no postbuckling analysis, strain-energy release rates could

not be calculated. Ashizawa (ref. 8) also published a beam-column analysis. He

calculated GT based only on the moment at the end of the delamination. Simitses,

et al used plate analysis to study how local buckling of a delaminated group of

lamina affects global stability (ref. 9). In ref. 10 Sallam and Simitses presented

a plate analysis which can be used to calculate the effects of coupling between

bending and stretching on GT.

Experimental measurements of instability-related delamination growth have

been published for both fatigue (ref. 3, 4, 11, 12) and static (ref. 11, 12, 13) loads.

No unusual experimental techniques were used, so individual references will not

be discussed.

1.1.2 Embedded Delamination

Kachanov (ref. 1) was also perhaps the first to analyse the embedded

delamination. He presented a thin-film analysis for a circular delamination in

a plate subjected to uniform radial loads. Prediction of delamination growth was

7



based on the change in strain energy in the buckled thin film versus the rupture

energy. The individual modes of strain-energy release rate were not considered.

Konishi and Johnston (ref. 14) assumed a trigonometric form for the transverse

displacements of a rectangular delamination with an initial imperfection. The

moments along the delamination boundary were estimated by differentiation of

the assumed displacement function. Results from this analysis were used to design

specimens for a study of delamination growth under fatigue loads. However, no

analytical results were presented. Also, experimental results were not compared

with the analytical model. Chai (ref. 15) developed a Rayleigh-Ritz analysis for

the postbuckling of an embedded elliptical delamination. The buckled group of

lamina was assumed to be very thin compared to the rest of the laminate. The

entire laminate was assumed to be isotropic. The total strain-energy release was

obtained by differentiation of the strain-energy with respect to the lengths of the

axes of the ellipse. This procedure gave an average measure of the strain-energy

release rate along the boundary. The analysis was later modified to be able to

analyse orthotropic laminates (ref. 16). Webster (ref. 17) developed a RayIeigh-

Ritz analysis for determining bifurcation buckling of a circular delamination. He

used Ashton and Whitney's technique (ref. 18) to account for bending-extension

coupling of unsymmetric sublaminates. Shivakumar and Whitcomb also presented

a bifurcation buckling analysis (ref. 19). They used both finite element and

Rayleigh-Ritz plate analyses. Orthotropic, elliptical sublaminates with various

orientations relative to the load direction were considered. Since postbuckling

was not considered, there was not the possibility of a strain-energy release rate

calculation in either ref. 17 or 19. Whitcomb and Shivakumar (ref. 20) presented

a technique for calculating the distribution of strain-energy release rate along the

delamination front from plate analysis results. Although this technique is general,

only results for isotropic laminates were presented. Yin (ref. 21) developed a plate

analysis for calculating total strain-energy release rate for axisymmetric loading

of an isotropic plate with a circular delamination. Fei and Yin (ref. 22) developed

a similar analysis for axisymmetric bending of an isotropic plate.



All of the preceding analyses are for quasi-static loading. Bottega (ref. 23)

developed a dynamic plate analysis for estimating the effects of dynamic loading

on delamination growth. Only axisymmetric configurations were considered.

A variety of experimental programs have observed growth of embedded de-

laminations. Konishi and Johnston (ref. 14) used Kapton implants to create

delaminations of a known size. They performed both static and fatigue tests.

Rhodes, et al (ref. 24) observed that impact of compression panels could lead to

delamination, followed by local buckling and delamination growth. Byers (ref. 25)

and Porter (ref. 26) studied the growth of delaminations which originated either

due to impact or an implant. Ramkumar (ref. 11) also performed tests on lam-

inates with implants. Chai et al (ref. 27) combined high-speed photography and

shadow moire to study dynamic growth of delaminations due to combined impact

and compression.

1.2 Scope of Investigation

The literature survey showed that there has been no detailed analysis of any

truly three-dimensional ( 3D ) configuration which exhibits instability-related

delamination growth. Even the approximate analyses that have been performed

have examined only a very limited range of parameters. None of the analyses

have been capable of calculating the individual modes of strain-energy release

rate. The goal _ this investigation is to enhance the understanding of instability-

related delamination growth through detailed stress analysis supplemented by

experiments.

There are two facets of the analytical study: development of a suitable stress

analysis and using it to calculate strain-energy release rates.

Geometrically nonlinear 3D analysis is required to perform the detailed analy-

sis. In particular, finite element analysis will be used. Such analyses are inherently

expensive. However, geometrically nonlinear 3D analysis has become more prac-

tical since the introduction of supercomputers, which have processing capabilities



in the neighborhoodof 200 million floating point operations per second. To fully

exploit the capabilities of a supercomputer requires tailoring of one's program to

fit the architecture of the computer. Programs written for ordinary mainframe

computers are not generally suitable for supercomputer usage. Hence,one of the

tasks in this study was to develop a finite element program which exploits a su-

percomputer architecture. This program is named NONLIN3D. The development

and verification of NONLIN3D will be discussed.

There are several aspects to the use of NONLIN3D. Even with the use of

supercomputers and special purpose programs, efficient modeling must be used.

This meansavoiding excessivemesh refinement and using nonlinear analysisonly

where it is necessary. Also, tasks like meshgeneration can become intractable

unless approached properly. These aspectsof the use of NONLIN3D will be

discussed.

NONLIN3D was used to perform a parametric study of two 3D configurations

which exhibit instability-related delamination growth. In particular, the embedded

delamination (Fig. 1.1) and the edge delamination (Fig. 1.2) will be examined.

A few results will be presented for the through-width delamination, which is

basically two-dimensional. The parameters studied include strain, delamination

size, and delamination shape. Also, the effect of stacking sequence was studied.

Delamination growth behavior was predicted based on the calculated strain-energy

release rates.

Another use of NONLIN3D was to determine how accurate plate analysis is for

calculating total strain-energy release rates. Plate analysis is potentially attractive

because it is inherently much less expensive than 3D analysis. Results from the

literature were used for the plate analysis. (No plate analysis was performed as

part of this study.)

Some preliminary experiments were performed on a configuration which does

not buckle, but does exhibit geometric nonlinearity. This configuration was used to

10



Fig. 1.2 Laminate with postbuckled edge delamination.
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check the degree of agreement one might expect between analysis and experiment

for relatively simple configurations.

Experiments were performed to determine whether instability-related delam-

ination growth could be predicted using strain-energy release rate parameters.

Laminates with embedded and edge delaminations were tested. The deformation

and growth of the buckled region were monitored during the tests. Also, X-rays

and light microscopy were used to determine the extent of delamination and other

types of damage. Predicted and observed behaviors are compared.

The following chapters will begin with a discussion of NONLIN3D. Then the

results of a parametric analysis of homoyeneous quasi-_sotropic laminates with

either an embedded or edge delamination will be presented. Then the experimental

procedure will be discussed. Finally the results of a combined analytical and

experimental parametric study will be presented.

12



Chapter 2

FINITE ELEMENT ANALYSIS

This chapter describes the theoretical aspectsof the finite element analysis

program NONLIN3D. This program wasdevelopedas part of this thesiseffort to

perform the stressanalysespresentedin later chapters. There were two primary

reasonsfor developinga new program rather than using a commercially available

one. The first reasonis related to the sizeof the computational task. Nonlinear

3D analysesgenerally require large computer resources,both in terms of memory

and number of computations. Supercomputers, such as the CDC VPS-32 and

the CRAY-2, are well suited for the task. To exploit the power of such machines

requiresspecial programming techniques. Unlessa program is written specifically

for a supercomputer, the program will usually not perform well. NONLIN3D was

written to exploit the capabilities of the VPS-32, which was the supercomputer

available for this work. The secondreasonfor developing a new program was to

permit tailoring of the sourcecode to suit the needsof this particular research

effort. This tailoring involved all aspectsof the analysis, including easeof input

and output, simple techniquesfor specifying boundary conditions, and automated

strain-energy releaserate calculations.

The following topics will be covered in this chapter:

2.1 Governing Nonlinear Equations

2.2 Finite Element Approximation

2.3 Numerical Integration

2.4 Vectorized Implementation

2.5 Eigenvalue Analysis of Stiffness Matrix

2.6 Substructuring

13



2.7 Contact Analysis

2.8 Strain-Energy Release Rate Calculation

2.9 Material Properties

2.1Governing Nonlinear Equations

This subsection discusses the derivation of the equilibrium equations and the

expressions for the internally generated nodal forces and the tangent stiffness

matrix. Also, the strain-displacement relations are discussed.

The total potential energy H is given by

1 / FaqaH = _ CiieieidV - (2.1.1)

where the integral term is the strain energy and the second term is the potential

energy of the applied loads. The terms Cii and Ei are terms in the constitutive

matrix and the strains, respectively. The terms r a and qa are the generalized

forces and displacements, respectively. The adjective "generalized" is used to

indicate that F a and qa need not be nodal forces and displacements in the usual

sense. For example, in traditional Rayleigh-Ritz analyses, the qa are simply

unknown coefficients in the series expansion for the displacements. However,

in this discussion the F a and qa will always refer to the nodal forces and

displacements in the z-, y-, and z-directions. The system is assumed to be

conservative; hence, the equilibrium state is obtained by minimizing II, which is

accomplished by setting the first partial derivatives with respect to the unknowns

equal to zero.

OH f Cii_ i Oei F a (2.1.2)cgq-"_ = _qa dV - = 0

Equation 2.1.2 is nonlinear because of the nonlinear strain-displacement rela-

14



tions. The integral in eqn. 2.1.2 gives the magnitude of the internally generated

nodal forces corresponding to the current displacements. Until a converged so-

lution is obtained, the internally generated forces do not equal the externally

OH
applied forces. The differences in the forces, referred to as residuals, equal q3_-a-.

The Newton-Raphson procedure that was used to solve eqn. 2.1.2 requires the

partial derivatives of the residuals with respect to the unknowns. These partial

derivatives of the residuals are the coefficients in the tangential stiffness matrix K

and are given by eqn. 2.1.3.

f 0$ i OSj / 02_i dY (2.1.3)Oq a Oq/3 dV + Cij OqaOq_

The first integral gives the terms for the sum of the linear and large dis-

placement matrices. The second integral gives the terms in the geometric stiffness

matrix. If the strains are equal to zero, the matrix obtained using the first integral

and the nonlinear strain-displacement relations is identical to the matrix obtained

by simply updating the coordinates and using the linear strain-displacement rela-

tions. If the strains are not equal to zero, there is a difference. This was verified

numerically for 2D elements.

A Lagrangian formulation was used in NONLIN3D. For infinitesimal strain the

nonlinear strain displacement relations are (ref. 28)

E 1 = tt x + 1/2(uzuz + vzvr, + wxwz)

_2 '-= Vy + 1/2(UyUy + VyVy + wvwst )

e3 = Wz + 1/2(UzUz + VzVz + WzWz)

e4 = uy + vz + (UzUy + vzvy + WzWy)

cs = vz + Wy + (uzuy + vzvy + WzWy)

e6 = Uz + wx + (uzux + vzvx + wzwz)

(2.1.4)

15



where u, v, and w are displacements in the x-, y-, and z-directions, and the

Ou
subscripts x, y, and z indicate partial differentiation (e.g. uy = _.). The nodal

values of u, v, and w are the unknowns referred to earlier as qa. Note that ¢4,

e5, and _6 are engineering shear strains. Since a Lagrangian formulation is used,

the strains are based on the original configuration. For example, el is the axial

strain of a llne which was originally (i.e., before deformation) parallel to the x-

axis. Although this line could be oriented parallel to the y-axis after deformation,

the axial strain is still _1 (not e2}.

The material coefficients, Cij, were assumed to couple normal and shear strains

in the xy plane only; hence, Csi = 0 for j = 1,2,3,4, and 6 and (76i = 0 for j =

1 through 5. This corresponds to an orthotropic material which has one material

axis parallel to the z direction. In expanded form, the stresses are given by

O'i] --

•Cll C12 Cla C14 0 0

C12 C22 C23 C24 0 0

C13 C23 C33 C34 0 0

C14 C24 C34 (744 0 0

0 0 0 0 Css 0

0 0 0 0 0 6'o6

e2

i _3 /

E4

r _s
.g6 J

(2.1.5)

2.2 Finite Element Approximation

Equations 2.1.1 through 2.1.5 are general equations which can be used with any

procedure based on minimization of total potential energy. In the finite element

method, the body is divided into subregions referred to as elements. Within

an element, the displacements u, v, and w are approximated by interpolation

functions N m and nodal values of the displacements, u m, v m, and wm.

u = N'nu m

v = N'nv 'n

w = Nmw m

where m = 1,NS

(NS = number of shape functions)
(2.2.1)

16



The shape functions for 8- and 20-node elementsare given in the appendix.

Fig. 2.2.1showsschematicsof the two elements.

Since an isoparametric formulation was used, the element geometry is

approximated using the same interpolation functions and the nodal coordi-

nates, x m, ym, and z m.

27 "-- NTrt.T, I'Y$

y = Nmy rn

z = Nrnz rn

(2.2.2)

Calculation of the tangential stiffness matrix (eqn. 2.1.3) requires the first

and second partial derivatives of the strains ei (eqn. 2.1.4} with respect to the

nodal displacements urn, v rn, and w rn. Since the nodal values are independent of

the coordinates, the partial derivatives with respect to coordinate directions take

ON". m Also, the nodal displacements are independent. Hence,the form _ = -D--_ •

Oum -- 6rnn and Ou"' = 0, where 6ran is the Kronecker delta. Equation 2.2.3-g'ffa-

gives the expressions for the derivatives of the strains.

17
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(b) 20-node element

Fig. 2.2.1 Schematics of 8- and 20-node elements.
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[B] =

N m + u:rN_ n

uy N_ n

u,N_

N_ +uzN_ n
+ uvNz"

vx N TM

N_ n + vyN_ a

v.N. _

Nzm + v z N_ n
+ vvNz

N_ n + vvNz m

+vzN_ n

v.-N_" + ,.,,N_m

wzN_

wy N_ n

Nz m + tuzNz m

wzN_ n + N_ n

+
+ tuzN_ n

(2.2.3)

[BI =

Bll B12 B13

B21 B22 B23

B31 B32 B33

t341 B42 B43

B51 /?52 B53

B61 B62 B63

(2.2.4)

The matrix B is introduced to define the terms Bit, which will be used later

to conveniently refer to the derivatives in eqn. 2.2.3. Most of the second partial

derivatives are zero. The non-zero ones are given in eqn. 2.2.5. Note that the

terms are the same for derivatives with respect to u, v, and w.
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02_1 o2e, 0261
OUrnour, _--- _ OWmOWn

02e_ 0_2 02e;
OUmOUn = _ = OWmOp3n

OumOun

02_4 ___ __ owrn otvr_
_umau n

Oumaun = OwmOwr,

O:_e 02eo a:e_
OumOu n : _ : OwmOwn

In n
N_ N x = ar_ n

g_ny_ = a_ n

m n fttngi Yi = a3

n m Tl,
= Ny N_ a_ nNEW;+ =

m _ _ n

= N_ N z + Y z N_ =a_ n

n flq, n : aT_n= N z NxNx Nrz +

(2.2.s)

2.3 Numerical Integration

The integrals in eqns. 2.1.2 and 2.1.3 were evaluated using numerical integra-

tion. The integrations become summations as shown in eqns. 2.3.1 and 2.3.2:

NG
OH .---- Oc_
Oq---g: 2.S,(c,/,-_q_ lJIW)° - F'_ (2.3.1)

0:1

NG 02_i
NG aci oe,. iJiW)O + _(o, IJIW) ° (2.3.2/

K_9 = Z(Cij Oq e' OqB OqaOqB
0:1 0=1

where

NG = number of quadrature points

IJ[ = determinant of the Jacobian (required because integrations

are performed using local coordinate system)

W -- Gaussian quadrature weighting coefficients

and the superscript 0 indicates that the term was evaluated at quadrature
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point 0.

The first summation in eqn. 2.3.2 can be expressed in a symmetric form.

This form is like that in ref. 29, but the motivation is different. Herein, the

symmetry is the valuable characteristic which will be exploited in the vector

implementation of the finite element analysis. The material coefficients C,1 are

replaced by Cii = QisQis, where Q,_8 = 0 for i < s. The terms Qta are obtained

using Cholesky decomposition. Cholesky decomposition is always possible since

the constitutive matrix Cii is symmetric and positive definite. The weighting

coefficients W and the determinant of the Jacobian IJI are positive, so the square

root of [J[W is real (only the positive square root need be considered). Integration

schemes which involve negative weighting coefficients are not considered herein.

Hence, the first summation in eqn. 2.3.2 can be written as

and T sa is defined to be

NG

K_ a- _(T*aT*a) $
o-1

(2.3.3)

= Qis_tljiW].Sa_'" , , s=TSa 1,NSTR

where NSTR = number of strains

(2.3.4)

The product is now that of the transpose of a matrix and itself.

For the 8-node element, the terms related to normal strains were evaluated at

8 points (i.e. a 2 × 2 x 2 integration scheme). To improve the performance of

the 8-node element in modeling bending deformation, terms related to es and e8

were evaluated at the centroid only (ref. 3, 30, 31). The other shear strain terms

related to e4 were evaluated with full integration. Both 2 x 2 × 2 and 3 x 3 x 3

integration schemes were considered for the 20-node element. There was not much

difference in the behavior of the element for the two integration schemes, so the
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2 × 2 x 2 integration scheme was used for the results presented herein.

2.4 Vectorized Implementation

The three-dimensional finite element program NONLIN3D developed for use

in this study was designed to exploit the vector processing capabilities of a

supercomputer, the CDC VPS32. The CDC VPS32 is closely related to the CDC

CYBER 205. In the context of computation on the VP$32, a vector is simply

a list of numbers; it is not a vector in the usual mathematical sense, wherein

a vector has magnitude and direction. The architecture of the VPS32 is such

that long vectors can be manipulated (i.e., multiplied, added, etc.) more than

an order of magnitude faster than the individual terms could be manipulated

separately. Ref. (32,33) gives some quantitative information on the processing

speed. Processing speed is often expressed in terms of millions of floating point

operations per second (MFLOPS). Actually, the speed is not the same for different

operations. For example, multiplication is performed considerably faster than

division. The following rates axe applicable for multiplication and addition. For

scalar operations, the processing speed is approximately 3-5 million MFLOPS. For

very long vectors, the speed is 100-200 MFLOPS. Short vectors are not processed

nearly so fast. However, a vector length of 110 to 160 will result in a rate of 50-100

MFLOPS. Obviously, it is highly advantageous to manipulate long vectors rather

than scalars or short vectors.

To vectorizt a program simply means to implement the mathematical algo-

rithms in such a way that long lists of numbers are manipulated rather than

individual numbers. There is usually no unique vectorization of a particular task.

There is considerable room for ingenuity. In fact, successful vectorization of a task

generally requires discarding of procedures familiar to the scalar programmer (for

example, those procedures in familiar textbooks) and taking a fresh look at what

has to be accomplished.

There are three subroutines which perform essentially all of the computation
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intensive work in NONLIN3D. Theseare BOBL3D, ESTIF3D, and the equation

solver. The subroutine BOBL3D calculates strains, stresses,and element forces.

The subroutine ESTIF3D calculates element stiffness matrices. The equation

solver will not bediscussed,sincevectorizedversionsof banded (ref. 34) and profile

(a vectorized version of that in ref. 35) equation solvers are already available.

Reference 36 describes a vectorized procedure for calculating element stiffness

matrices for linear high-order elements, which require a large number of quadrature

points. The primary technique in ref. 36 was to manipulate the values of a

parameter at all the quadrature points simultaneously, rather than individually.

This resulted in vectors of length equal to NG (the number of quadrature points)

and, at times, NG * NS, where NS = number of shape functions. At one stage of

the stiffness matrix calculation in ref. 36 even larger vectors were manipulated,

but the longer vectors were obtained at the expense of significant replication of

vectors and fairly complicated logic. Reference 37 describes a technique which

results in long vector lengths for low order elements, but it has the same drawbacks

mentioned above for the technique in ref. 36. Also, the technique in ref. 37 has

very large memory requirements. Techniques were developed in the current study

which result in fairly long vector lengths without much replication, complexity,

or memory requirements. Also many of the techniques used can be extended to

process multiple elements at the same time, thereby increasing vector lengths.

Simultaneous multiple element processing was not attempted for two reasons:

1) time constraints and 2) the expected reduction in total computation costs did

not appear to justify further optimization of the routines.

To expedite the discussion of BOBL3D and ESTIF3D, special notation will be

introduced. Also, simple vector programming methods are discussed. Vectors are

given abbreviated names. A bar under a name indicates that it is the name of a

vector. When vectors are separated by the symbol " * ", vector multiplication is

implied. For example,
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A* B = C_. (2.4.1)

is equivalent to AiBi = Ci, with no sum on i.

for example,

The vectors may also be stacked,

(2.4.2)

In all cases, vector multiplication refers to term by term multiplication without

any summation. A dot _ " will be used to denote an inner product. A VPS32

special function is used to perform the inner products as a single vector operation.

It is very convenient to manipulate vectors just like scalars. For example,

suppose we need the determinant of ten 2 x 2 matrices. In vector form, we would

write the matrices as follows

In eqn. 2.4.3 all 10 values of a coefficient are grouped in a single vector. Hence,

the length of each vector in the matrix is 10. The 10 determinants are obtained

using two vector multiplications and one vector subtraction

the ten determinants = A * D - C * B (2.4.4)

Using scalar methods there would have been 20 scalar multiplications and 10

scalar subtractions.

Often it is desirable to perform replication of a scalar or vector in order to

reduce the number of subsequent vector operations. For example, suppose we
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need 20 copies of the vector a stacked contiguously in the vector D. Consider D

to consist of 20 subvectors __, each of which have the same length as a.

The first step is to assign values to dl; that is, set d 1 = a. Then assign _d2 = a.

then assign 4 = .d 2.

Then assign tdil

Then assign

. d 9 • .d 1 ,

m

dll d z

dl_ a_

w

d14 d6

.as.

Finally assign

r_d17" rg"

d18 ] ! _po

By using this technique the number of vector assignments is reduced from 20

to just 6.

The next two subsections describe the two routines BOBL3D and ESTIF3D.

2.4.1 Subroutine BOBL3D

Figure 2.4.1.1 shows a flowchart for BOBL3D. There are 8 primary tasks

performed by this routine. The first task is to calculate local derivatives of

the global coordinates at each of the quadrature points. The shape functions
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Calculate local derivatives

of global coordinates

I 2

Calculate determinant of Jacobian]and inverse of Jacobian

!
Calculate global derivatives of

shape functions

I
Calculate global derivatives of

displacements

3

I
4

Calculate strains
5

I
Calculate partial derivativesof strains

with respect to displacements

I
Calculate products of stresses, determinants

of Jacobians, and weighting coefficients

I 8
[Calculate element forces [

6

7

!

Fig. 2.4.1.1 Flowchart for subroutine BOBL3D.
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are expressed in terms of local coordinates 6r (see appendix}, but derivatives

with respect to global coordinates are required. The first step towards obtaining

these derivatives is to calculate the local derivatives of the global coordinates,

3-b';,°_ _, and 3E'az Since an isoparametric formulation is used, the geometry is

approximated with the same shape functions as the displacements. For example,

x = N'nx m where x rn = the x coordinate of the rn th node. Hence,

Ox O(Nrnx 'n) ON =
x m (2.4.1.1)

a6r O6r a6r

There are NS shape functions to be differentiated at NG quadrature points.

ON,,t
For a single element type, the _ are invariant, so they are calculated only once

and stored in DL in the following order.

D_£L=

ON

aN

ON

where N =

y 1

N'NS

(2.4.1.2)

and N m = the mth shape function evaluated at each of the NG quadrature points.

Note that N m has a length of NG. (The length of D_._Lis 3 * NS * NG.)

The nodal coordinates for an element are stored in vectors X, Y, and Z. Each

nodal coordinate is replicated NG times. The ordering is as follows for the vector

x.
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r :r, 1
x 1

x 1

x 2

x 2

x 2

.etc.

(2.4.1.3)

Note that the vector X has a length of NS * NG. The vectors Y and Z are

ordered the same way. The vectors X, Y, and Z are stacked and replicated once to

obtain a long vector XXYYZZ. This stacking and replication reduces the number

of vector multiplications required in the next step. The organization of XXYYZZ

is given by eqn. 2.4.1.4.

-V-J

-- i

XXYYZZ = ""tv, (2.4.1.4)
_---I

. L,,, ,.j

The vector XXYYZZ is of length 6 * NS * NG.

The derivatives of the global coordinates are obtained in two steps. First, three

vector multiplications between D._.L.Land parts of XXYYZZ are performed and the

results are stacked in D, as shown in eqn. 2.4.1.5.
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D

The length of D is 9 * NS * NG.

. .

X

D___LL* __Y
Z

. °

Y

D__LL* ,7

x

1P I

DL* "--._"l

(2.4.1.5)

As indicated in eqn. 2.4.1.1, there are NS terms to be summed for each of

the nine partial derivatives. After the summations, there will be NG values of

each partial derivative. The vector D in eqn. 2.4.1.5 is organized such that there

are nine subvectors, each of length NS * NG. Recursive addition is used on each

oN (which is partsubvector to sum the appropriate terms. The vector product of

of D_..L.L)and X will be used to illustrate the recursive addition. The number of

nodes, NS, will be assumed to be 8. This product constitutes the first subvector

aN
in eqn. 2.4.1.5. The vector product of _ and X creates a vector which consists

of the subvectors d i (see eqn. 2.4.1.6).

rd 1

061 -- !d
6

dT
.d s

(2.4.1.6)

where d m = the contribution from shape function m. The length of each _dm is

NG.

For example, d 2 ONS x 2= _, evaluated at each of the NG quadrature points.

Now three recursive additions are performed to add up the dm.
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dl
d2
4_3 _dl

= d2 +
d_

(2.4.1.7)

then

_dl _dl

finally,dI = _dI + _d2

The vector d 1 now contains ax evaluated at NG quadrature points. The

other eight derivatives ( _3"_'_-3_s'°xc_z _, etc.) axe obtained in a similar fashion. For

example, the derivative _ is obtained by replacing 61 with 62 and X with Y in

eqn. 2.4.1.6.

The second task in BOBL3D is the calculation of the determinant and inverse of

the Jacobian at each of the quadrature points. The Jacobian consists of derivatives

of the global coordinates with respect to the local coordinates. The scalar form is

shown in eqn. 2.4.1.9.

J

C_X

Ox

Oz 0 Oz

(2.4.1.9)

In the vector implementation, the entries in J axe vectors (the vectors which

were calculated in task 1) For example, Jlx is a vector consisting of 0x evaluated.

at NG points. The inversion and determinant are performed explicitly in terms

of these vectors. The result is an inverse which has entries which are vectors of

length NG and a determinant vector of length NG.
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Next the global derivatives of the shape functions are calculated at each

quadrature point (task 3, Fig. 2.4.1.1). These derivatives are calculated by

multiplying the local derivatives by the inverse of the Jacobian. The scalar form

is shown in eqn. 2.4.1.10.

ON"

I J11

I J21

I J31

IJ12 IJ13

I_2 I_3

I_2 I_3

ON "_ I

ON m I

.J

(2.4.1.10)

where the matrix IJ is the inverse of J.

In the vector implementation, the entries in eqn. 2.4.1.10 are replaced by

ON 2
vectors of length NG. For example, the NG values of -WT" axe obtained as follows

ON 2 ON 2 cgN 2 ON 2
-- __ __ -- --=- (2.4.1.11)
Ox = [Jl1" -_1 +I J12. 062 +[!13. a63

where I__J.Jiy= the i, j vector term in the inverse Jacobian matrix, calculated in

task 2, and N 2 is defined in eqn. 2.4.1.2.

The nine global derivatives of the displacements ( ou 0u ...etc.) with respect

to the global coordinates can now be calculated (task 4). A typical term is:

Ou ONto u 'n (2.4.1.12)
Ox ax

For convenience, a subscript is used to indicate the variable of differentiation. For

ou and uz ouexample, uz = _ = _.

This is exactly the same form as in eqn. 2.4.1.1. The local derivative a

has been replaced by the global derivative _-'i, and the nodal coordinates, x 'n,

have been replaced by nodal displacements, um. Consequently, the same vector
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procedurethat was used earlier to calculate local derivatives of coordinates is now

used to calculate global derivatives of displacements. A vector DG is assembled

from the global derivatives of the shape functions.

D__G_G= Ny (2.4.1.13)

Nz

where N is defined in eqn. 2.4.1.2. The subscript indicates the variable of

differentiation. Note that the length of the vector DG is 3 * NG * NS.

Equation 2.4.1.13 is simply a "global derivative" version of eqn. 2.4.1.2. Also,

a displacement vector uuvvww is assembled.

-_u]
7/ !

uuvvww= W l (2.4.1.14)
Ul
T) I
4 •

.W__J

The organization of u, v_, and w are identical to x, Z, and z respectively. For

example, in eqn. 2.4.1.3 replace x 1, x 2, ... by u 1, u 2, ... Now the vector procedure

used earlier can be used by simply replacing D__L_Lby _DG and xx_zz by uuvvww.

Two copies of the shape function derivatives, N=, Ny, and Nz, are stored in

DSXYZ (eqn. 2.4.1.15).

DSXYZ = N (2.4.1.15)

The vector DSXYZ is of length of 6 * NG * NS.

Task 5 is to calculate strains. The strains are calculated using eqn. 2.1.4,
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except that the scalar variables are replaced by vectors of length NG. Thus, the

value of a strain component is calculated at all integration points simultaneously.

For example,

1
_ = _ + _(_ ,_u_ +_v_ ,_v_ +w___,w__)

L
(2.4.1.16)

This is possible because the global derivatives of the displacements (calculated

in task 4) are organized such that for each displacement derivative, all NG values

are contiguous in memory. The strains are stored in the vector e in the following

order.

£2

(2.4.1.17)

where the length of each e i is NG.

Task 6 is to calculate the partial derivatives of the strains with respect to

the displacements. The scalar form of these derivatives is shown in eqn. 2.2.3.

These involve derivatives of the shape functions (for example, N_) and products

of the derivatives of the shape functions and displacements (for example, uzNm).

There are 27 products. To reduce the number of vector operations in forming the

products, stacks of vectors are manipulated, as described next.

The displacement derivatives calculated in task 4 are replicated (for a total of

NS copies of each derivative) and stacked in the vector DD.
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R,y
R..._w_ Ru x = " NS copies
R-----V-vz i

D._..DD= Rw_ u__ (2.4.1.18)

Ruy

" R--2-vz" similarly for other subvectors in DD

Note that the displacement derivative vectors u_x, _vy, etc. are replicated NS

times. Hence, the vector DD is of length 9 * NS * NG. This is in preparation for

multiplication with the shape function derivatives, since, for example, the length of

uz is NG but the length of Ny is NG * NS. To expedite the discussion of the use of

these replicated vectors, the use of the prefix "R" will be used to denote replication.

The required products are calculated by performing vector multiplications of parts

of D_____DDwith parts of DSXYZ. These products are stored in a vector .BLV.
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BLV =

"R___"
R.,
Rw z

Rv z

Rwy

. R...R._u.

" Rvy "

Rw z

Rvx
Rwy

[ Rw: "]

Rwy [

R___I

• Ruy J

Rvy

"R___]
Ruy [

RvzJ

R,_,,I

"N__"
Ny

N__I
Ny

. N_ .

"N z

Ny
Nz

, m

Nx
Ny

.N__.
- Nz ..,,

/Vy I
i

N__'
* N__

Ny
.N._J

I'N_']
* ._Y.Ny

.NzJ

* N z

R_.v_vz , N z

(2.4.1.19)

Note that only 9 vector products are required to form the 27*NS*NG products

in BLV.
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Now it is a simple matter to form avector of the 18strain derivativesby adding

vectors stored in DG and BLV.

Bll

B__21

B__41

8__51

B12

B22

B__z2

B__42

B__£2

_2

__B13

_3

_3

_3

B__s3

_3

(2.4.1.20)

where the B_y are vector versions of the Biy shown in eqn. 2.2.4. The length of
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each is NS*NG. Since the Bij are formed using vector operations, the organization

of each Bij in terms of the NS shape function contributions and NG quadrature

point values is the same as for N, described in eqn. 2.4.1.2. For example,

"--e l1

_11 = : .I and the length of each subvector B_ is NG (2.4.1.21)

• I

I

Task 7 is to calculate the product of the stresses, determinant of the Jacobian,

w IiJ., and weighting coefficient W. The first step is to assemble a vector containing

copies of [Ji . W evaluated at the NG quadrature points.

DDJJWW =

DJW

DJW

DJW

DJW

NSTR replicates of DJW (2.4.1.22)

where DJW = [J[, W evaluated at NG quadrature points and NSTR = number

of strains (NSTR = 6 for 3D analysis)

The vectors of the strains ei are stacked in memory, (see eqn. 2.4.1.17) so

that only a single vector multiplication of the stacked strains and DDJJWW is
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required to obtain the scaled strains __.

= = DDJJWW ,
w

• °

"-_t "-Et

_4 _'4
(2.4.1.23}

The scaled stresses are obtained by linear combination of the scaled strains.

= Cii__i (2.4.1.24)

This is analogous to the unscaled, scalar stresses in eqn. 2.1.5. For efficiency

later, the b_ are stacked contiguously in b in a form which is exactly analogous to

the stacking of Q in eqn. 2.4.1.17.

The final task in BOBL3D is to calculate the element forces R a corresponding

to the current stress state. The element forces are calculated using a vectorized

version of the summation in eqn. 2.3.1. For clarity in the following discussion, the

displacements qa are separated into u, v, and w, the displacements in the x-, y-,

and z-directions. The vector form of the strain derivatives in eqn. 2.3.1 are in the

large vector B (see eqn. 2.4.1.20).

The vector implementation of the summation in eqn. 2.3.1 will be illustrated

by describing the calculation of the x-direction forces next. The first step in

calculating the x-direction forces is to evaluate the products in eqn. 2.3.1 at all

NG quadrature points and for all NS nodes. Recall that values of the triple product

(ai[JiW) ° axe already available in the vector b. At each quadrature point each

stress must be multiplied by NS values related to each derivative of the strains. To

reduce the number of vector multiplications, the weighted stresses are replicated

and Stored as follows _, ....
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R__k_=

FR__k_l
lifO2

. R___.6•

where _ is a replicated form of b i

For ezample,

R_ 1 = -- -- -- N S copies of _1

(2.4.1.25)

The length of R____bis 6 * NS * NG

Now all the products for the x-direction can be formed with a single vector

multiplication (eqn. 2.4.1.26).

_ "a-1"fl" "Bill I
L2 B21 / _2 [

f= ._. = B__31 , a-3! (2.4.1.26)
- _ _1 _1

L._. .B_slJ ._

Now recursive addition is used to sum the fi, as follows.

P

ILl

t _:2

t. J_.3

r -t 7- _ 1

,_I ,_il

--L I÷....J
(2.4.1.27)

then ]'1 = ]'1 + L2 + [-3"

The content of fl is now

NG terms to be summed to obtain E_
NG terms to be summed to obtain rl

L1 =

LNG terms to be summed to obtain F NS

(2.4.1.28)
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where Fzm = x-direction force at node m.

The summations required to obtain the Fzm from the terms in ]'1 are performed

using a VPS32 special function which is optimized for summing contiguous

numbers in storage locations. The y- and z-direction nodal forces are obtained

in a similar manner.

2.4.2 Subroutine ESTIF3D

The routine ESTIF3D is used to calculate the tangential stiffness matrix, which

consists of the large displacement matrix, K L and the geometric (or initial stress)

matrix (eqn. 2.3.2). The large displacement matrix involves derivatives of the

strains (which are in B_i), the Cholesky factors Qis for the constitutive matrix

(Cii = QssQis), and the square root of the products IJ]W. From eqn. 2.3.3, we

see that for each term (KL) °'_, there are NG inner products to be evaluated. For

example,

NG

KL3 =  (T'IT'3) °
9---1

s = 1,NSTR (2.4.2.1)

The vector T is formed which contains the T sm at the NG quadrature points

and is organized such that all NG inner products for a particular stiffness matrix

term can be performed at once. The first step in forming the vector T is to perform

vector version of the product Qss * _'&. The strain derivatives are available ina

the vectors Bsj. Since the Cholesky factor terms Qis are scalars, the resultant

product vectors PIj are simply linear combinations of the vectors Bsj.

= Qt, j (2.4.2.2)

The organization of the product vectors P_i is the same as for B_j (in terms

of contributions for NS nodes and NG quadrature points). Also, the Pii are
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stacked contiguously in memory as P just likethe _j in B (see eqn. 2.4.1.20).

Now the vector isreordered so that terms which willsummed axe contiguous. The

reordering isperformed using a specialVPS32 function referredto as Q8VGATHR.

Equation 2.4.2.3gives the order of T, which isthe reordered version of P.

T

m

T__.zNS

s

. T__._NS ,

similarly for

shape functions

2 through NS

(2.4.2.3)
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In T, the P_ vectors are placed according to the shape function with which the

term is associated. The same is the case for other P_ vectors. Recall that in Pi_,

all NS P_ vectors were stacked together. The subvectors T_T_T__m, T_, and Tzm are

introduced here for convenience later. These subvectors are stored contiguously in

eqn. 2.4.2.3 for convenience later in determining pointers for the inner products.

The length of each subvector is 6 * NG. The subscripts x, y, and z indicate that

these subvectors contain terms related to the x-, y-, and z-directions, respectively.

The terms in T must be multiplied by the square root of the determinants

and weights (i.e. v_W terms) to obtain _. To reduce the number of

vector multiplications, the square root of DJW (which has a length of NG) was

calculated and then replicated to obtain the vector SDJW which has a length of

3 * NS * NSTR * NG. Then only a single vector multiplication is required to form

the vector _.

_=T,SDJW (2.4.2.4)

r=r=r_ ,The terms in KL are simply the inner products involving the subvectors m

and "

For example, the term in K L related to the first shape function and the x-

direction and the fourth shape function and the y-direction is

• TyA4 (2.4.2.5)

The inner products (indicated by the " . ") were performed by a VPS-32 special

function.

The geometric stiffness matrix involves much less manipulation than K/,. The

terms C,iaiIJIW are already available in the vector b_. Equation 2.2.5 gives

the scalar form of the second partial derivatives of the strains. Note that the
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derivatives are independent of the direction of the displacements variable. Hence,

the three nonzero stiffness terms associated with each coordinate direction for each

combination of shape functions axe the same. These derivatives consist of products

of the derivatives of the shape functions with respect to the global coordinates,

which axe stored in the vector DSXYZ. For a particular shape function, the

NG values of each second partial derivative is calculated by performing vector

multiplications and additions with the appropriate subvectors (of length NG) in

DSXYZ. The second partial derivatives are stored contiguously in memory, so

each stiffness term is calculated with a single inner product of the stress vector 0_

and the second partial derivatives.

'a_ n"

k rnn = .0 (2.4.2.6)
_q._n -

where _rnn = 03__ 02_- 024au_au,, = _ : aw,,,aw,,"

The k mn are assembled in the element stiffness matrix as follows.

"k ll 0 0 k 12 0 0 ...

0 k ll 0 0 k 12 0 ...

0 0 k 11 0 0 k 12 ...

k 12 0 0 k 22 0 0 ...

0 k 12 0 0 k 22 0 ...

0 0 k 12 0 0 k 22 ...

: : : : : : "..

(2.4.2.7)
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2.4.3 Execution Times

This section discusses the results of several CPU "time trials" which quantify

the advantages of using vector algorithms on the VPS32. The following discussion

is for the 20-node element and a 2 x 2 x 2 integration scheme, except as noted.

One of the programs available in the Fatigue and Fracture Branch at NASA

Langley Research Center used a non-vectorized algorithm to calculate the linear

element stiffness matrix for the 20-node element. This algorithm took .33 second

of CPU to calculate the linear element stiffness matrix for one element. A vector

version of this program took only .014 second of CPU for the same calculation.

The program NONLIN3D was tailored for geometrically nonlinear analysis. No

provision is provided (as of this writing) for calculating just the linear stiffness

matrix. So a comparable timing is not available for NONLIN3D. However, the

total time for NONLIN3D to obtain 1) the tangential stiffness matrix (which

includes both the large displacement stiffness matrix and the geometric stiffness

matrix), 2) the element strains and stresses, and 3) the element forces was only

.015 second per element. Since these three calculations involve many more terms

than the linear stiffness matrix, the algorithms developed for NONLIN3D can be

considered to be very well vectorized.

Timings were also obtained for NONLIN3D for a 3 × 3 x 3 scheme. For the

three tasks listed in the previous paragraph, the total time was .0215 CPU second

per element. This is only 40 percent more time than for the 2 x 2 x 2 scheme. For

a scalar code, the time per element would have increased by more than a factor of

three, since there are 27 quadrature points for the 3 x 3 x 3 scheme instead of the 8

for the 2 x 2 scheme. The reason that the time increased by only 40 percent is that

the more refined integration scheme has longer vector lengths, but the number of

vector operations is unchanged.
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2.5 Eigenvalue Analysis of the Element Stiffness Matrices

The finite element stiffness matrix should permit rigid body translation and

rotation of the element without inducing any strain- energy. Further, there should

be strain-energy whenever the element is deformed. For displacement formulated

finite elements which are integrated with exact numerical integration, there is

usually no problem. However, at times it is desirable to use a lower order

of numerical integration in order to improve the performance of an element in

modeling bending deformation (ref. 3, 30, 31) or simply to reduce the number of

computations required to form the element stiffness matrix. Whenever a reduced

order of numerical integration is used, there is the possibility of introducing zero-

energy deformation modes; that is, the element can deform in certain modes

without the expenditure of any work.

A convenient method of detecting zero-energy deformation modes is to perform

an eigenvalue analysis on the element stiffness matrix. The eigenva]ue analysis is

described next. The following discussion is based in large part on ref. 38.

The eigenvalue problem has the general form

K6 = ,_6 (2.5.1)

The solution of eqn. 2.5.1 yields _n" eigenvalues and eigenvectors, where n =

the number of degrees of freedom (DOF) in the element. For example, the 20-node

3D element has 60 DOF, so n = 60. For a 3D element there should be 6 rigid

body modes ... 3 translations and 3 rotations. An excess of 6 rigid body modes

indicates the presence of spurious zero-energy deformation modes. Less than 6

rigid body modes indicates that strain is associated even with rigid body motion.

The eigenvalue corresponding to each rigid body mode should equal zero. This is

apparent when eqn. 2.5.1 is pre-multiplied by the transpose of $.
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6TK6 = 6T )_6 (2.5.2)

The left side of the equation is simply twice the strain energy in the element

when it undergoes the displacements 6. For rigid body motion the energy should

be zero. The right hand side of the equation is zero only if all the displacements

are zero (which is the trivial solution ) or if A = 0.

Early check-out runs of NONLIN3D used the reduced integration 8-node

element to analyse a very simple configuration. The stiffness matrix was found

to be singular, which indicted that the zero-energy deformation modes might be

causing problems. Eigenvalue analyses of the element stiffness matrix showed

that there is one zero-energy deformation mode for each shear strain treated

with reduced integration. The cause for this can be seen readily by considering

a set of displacements which causes a shear strain _5 which varies linearly in

the x-dlrection, does not vary with y or z, and is zero at the centroid. If

only the centroidal value of the strain is sampled, the strain will be determined

to be zero and there will be no energy associated with the deformation. For

many problems the boundary conditions are such that the spurious zero-energy

deformation modes do not cause any major problems. Section 4.2 discusses the

results of an attempt to use the reduced integration 8-node element for analysis

of a postbuckled sublaminate.

2.6 Substructuring

The program NONLIN3D was designed to perform analysis by substructures.

A brief description of the substructuring technique is given here. More details

can be found in ref. 39. In addition to reducing computer memory requirements,

substructuring allows the structure to be modeled as a combination of linear and

nonlinear components. For the configurations studied herein (figure 1.1 and 1.2),

linear analysis is appropriate everywhere except the majority of the postbuckled

region. By substructuring into linear and nonlinear regions, expensive iterative
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solution is needed for only a fraction of the equations.

In thisstudy, two substructures were used: one linearand one nonlinear. The

substructuring procedure begins by obtaining a reduced stiffnessmatrix and load

vector for the linearregion. The reduced stiffnessmatrix can be treated as the

stiffnessmatrix for just another type of element. Because of the large number of

nodes, this element will be referred to as a superelement. The stiffnessmatrix

and load vector are "reduced _ in the sense that only the nodes shared by the two

substructures (the interfacenodes) are included.

The technique used for calculating the reduced stiffness coefficients utilized the

formal definition of a stiffness coefficient: a stiffness coefficient is related to the

restraint forces required to maintain unit displacement at one degree of freedom

(DOF) and zero displacement at the remainder of the element DOF. Suppose there

are to be n DOF in the superelement. These n DOF are restrained. One of these

DOF is specified to have a unit displacement (and there are no other loads) and

the governing equations are solved. The restraint forces at all n DOF constitute

one column of the reduced stiffness matrix. This procedure is repeated for all n

DOF. The reduced load vector is obtained in a similar fashion. All n DOF in

the superelement are still restrained. However, now the specified loads for the

linear region are applied. The reduced load vector is equal to the negative of the

restraint forces at the restrained nodes.

Once the superelement stiffnessmatrix and load vector are calculated, the

analysis proceeds to the nonlinear substructure. Whenever the nonlinear stiffness

matrix and load vector are formed, the interactionwith the linearsubstructure

is included by simply adding the superelement stiffnessmatrix and load vector.

When the internallygenerated nodal forcesare calculated to determine residuals,

the contribution of the linearsubstructure consistsof the product of the superele-

ment stiffnessmatrix and the superelement nodal displacements.

For the configuration analyzed, the delamination front is within the linear
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substructure. Hence, further work is required even after obtaining a converged

solution for the nonlinear substructure. After obtaining a converged solution,

the displacements for the interface nodes are known. These displacements fully

account for the effect of the nonlinear substructure on the linear substructure.

That is, the displacements in the linear substructure can be determined as

though there was no other substructure, except that the magnitudes of the

displacements at the interface nodes are specified. To reduce the computer

resource requirements, it is usually advantageous to obtain multiple solutions

for the nonlinear substructure and then obtain multiple solutions for the linear

substructure.

2.7 Contact Analysis

For certain combinations of delamination size and strain level, closure occurs

over part of the delamination front. Unless constraints are imposed, the delam-

ination faces will overlap in the analysis. When contact constraints axe added,

there are two types of geometric nonlinearity: that due to significant rotations

and that due to the unknown contact area. Since the contact area affects the

global response and vice versa, the iterative loop includes two inner iterative loops

for obtaining either the effects of significant rotation or the contact area. Because

of the selected substructuring, there are two substructures in which contact can

occur. But, as mentioned in section 2.6, one of the substructures was treated with

linear analysis. Strictly speaking, there is not a linear substructure now. However,

an "engineering" (as opposed to a purist) approach was taken in implementing the

contact analysis. If only a small fraction of the original interpenetration is per-

mitted, then most of the effect of imposing full contact constraints will be seen.

Also, because of the nature of the problem, large interpenetration cannot occur

in the "linear" substructure if large interpenetration is prevented in the nonlinear

substructure. Hence, the approach taken was to perform nonlinear analysis on the

buckled region only.

There was also an approximation made in how the constraints were imposed.
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Fig. 2.7.1 will be used to explain this approximation. The figure shows a disk

resting on a base. Constraints are imposed to prevent the disk from overlapping the

base. Ideally the constraints would be imposed such that the constraint force on

the disk is provided by the node it contacts on the base. A free-body diagram would

look like Fig. 2.7.1b. In NONLIN3D the constraint force on the disk is supplied

externally, so the free-body diagram looks like that in Fig. 2.7.1c. Obviously there

is some error due to using an external force, but the amount of error and its

importance depends on the individual problem.

Unfortunately, for the postbuckled sublaminate, the computational effort

would have been too large to perform a more rigorous analysis to determine the

amount of error. However, since the base laminate has a w=O boundary condition

on the plane z-0, the effect of applying an external force rather than reacting the

contact force on the base laminate is probably small.

The flow chart in Fig. 2.7.2 outlines the procedure used to perform the

contact analysis. In the flowchart the term nonlinear solution refers to solving

the governing equilibrium equations (eqns. 2.1.2) with the current set of contact

constraints. The first step is to check for w displacements which would cause

overlap. Since the w displacements of the base laminate are so small, it is sufficient

to search for nodes with negative w displacements. If there are none, the current

solution is correct. For each node with a negative w, a constraint and a load

are imposed such that the node will have w=0. Next, a nonlinear solution is

obtained for the current contact constraints and applied load. Then the signs of

the contact forces are checked. Any node with a tensile constraint force must have

the constraint released. If there are no tensile restraint forces, the current solution

is correct. After releasing all tensile constraints, another nonlinear solution is

obtained. Now the loop begins again with checking for negative w.
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I [no_ Any nodes with w < 0 ?
-I

yes

For all nodes with w < O:
* add constraint at node in z-direction
* add corrective load at node to make

W - O.

Iterate to obtain new nonlinear solution
for current set of constraints

Any tensile contact restraint forces ?

yes

Release tensile restraints

Iterate to obtain new nonlinear solution
for current set of constraints

= Stop

Fig. 2.7.2 Flowchart for contact analysis.
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2.8 Strain-Energy Release Rate Calculation

The well-known virtual crack closure technique (ref. 40) served as the basis

of the strain-energy release rate calculation. This procedure determines GI, GII ,

and GIII from the energy required to close the delamination over a short distance,

Aa. The closure energy involves products of delamination front nodal forces and

relative displacements behind the delamination front. The delamination front

nodal forces can be determined by actually closing the delamination over Aa.

Another technique, which requires only a single solution, assumes that the current

delamination front nodal forces are the same as they would be if the delamination

length was reduced by Aa. The single solution method was used herein.

The strain-energy release rate calculation will be illustrated for the 20-node

element, since this element was used for all of the parametric analysis. Figure

2.8.1 shows a schematic of the delamination front region. The nodes of interest

for the strain-energy release rate calculations are indicated by the filled circles.

Because it is not appropriate to close the delamination over part of an element,

there are four sets of nodes (indicated by the letters a, b, c, and d) which are

used to calculate the closure energies. The relative displacements are obtained by
! I

subtracting the displacements at nodes a i and bl from the displacements at nodes

a i and bs, respectively. The forces are equal to the nodal forces transmitted across

the delamination plane at nodes ci and d,. These forces are obtained by evaluating

the integral f Ciie _ _ dV for all elements which are connected to nodes ci or di

and whose centroids lie above the delamination plane. There are two sets of energy

products. One of the sets of energy products consists of the relative displacements

for nodes ai and a's multiplied by the forces for nodes ci. The other set of energy
I

products consists of the relative displacements for nodes bi and b i multiplied by

the forces for nodes d i. The energies equal 1/2 of these products.

Strain-energy release rate is a measure of energy per unit area. Hence, the

energy products must be normalized by the appropriate areas. Unfortunately,

there is not a simple exact way to determine the appropriate areas. The primary
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complication is that the midside nodes and corner nodes are %veighted" differently

by the assumed element shape functions. The result is that, even if the strain-

energy release rates are actually constant along the dela_nination front, there would

be much larger energy products for the midside nodes than for the corner nodes.

For example, in figure 2.8.1 the energy products associated with nodes c2 and

c4 would be much larger than for that associated with nodes ci and c3. An

approximate solution to this dilemma is as follows. The strain- energy release rate

is not calculated for locations like c2 and c4 along the delamination front. Instead,

the energy products associated with those locations are split evenly between the

adjacent nodes. For example, the energy associated with location c 3 along the

delamination front becomes

_- "Easagcs "+-_'bzblzd, -b _ 4zinc, + 14c4 (2.8.1)

where E denotes the energy products associated with GI, GII, and Gill and the

subscripts indicate the nodes involved. The area is approximated by the product

of Aa times the distance between the midside nodes on either side of the corner

node being considered. For example, the area for node c3 is Aa times the distance

from node c2 to node c4.

If the delamination front is not parallel to one of the coordinate axes, it is

preferable to add a coordinate transformation to the procedure outlined above. In

particular, a local coordinate system is defined for each node along the physical

delamination front (i.e., the nodes cl). Figure 2.8.2 shows a schematic of a

delamination plane and the global (xy) and local (x'y') coordinate systems. This

local coordinate system has one axis tangent to the delamination front, one axis

normal to the delamination front, and one axis normal to the delamination plane.
l

For all the cases considered z and z were parallel. The transformed nodal forces

Fz,, Fy,, and f,,, are
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F, = F= cose+ Fy sin e

Fy, = -F_sine + Fycose

_, =Fz

(2.s2)

The relative displacements are transformed similarly. The transformed forces

and relative displacements are then used to calculate the energy products. Figure

2.8.2 also defines the perimeter coordinate _S", which is the distance along the

delamination front measured from the y-axis.

The procedure just outlined was implemented in two slightly different ways

for the results presented here. The difference was "n the way the nodal forces

were calculated. Initially in the study, the nonlinear strain-dlsplacement relations

were used to calculate the nodal forces from the nodal displacements in the linear

region. This is inconsistent, but if the region assumed to be linear is _exactly

linear", it would make no difference. The results for the mesh convergence study

were obtained using this procedure. All of the other results were obtained by

using the linear strain-displacement relations to calculate the nodal forces from the

nodal displacements in the linear region. Because the linear region is not exactly

linear, there is a difference in the results obtained using the two methods. The

configuration used for the mesh convergence study was also used in the parametric

study, so results appear for that configuration using both methods. The second

method is recommended by the author.

2.9 Material Properties

Several kinds of materials were used in this study. Some of the specimens

involved Al or steel. Also, two graphite composite systems were examined:

AS4/PEEK and IM7/8551-7. The material properties used axe given in Table

1. For the two metals, the usual assumed properties were used. The assumed

properties for the PEEK were actually some that are typical for graphite/epoxy

(ref. 41). Since only a qualitative analysis of PEEK was performed, these
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Table 1 Material Properties

Generic Graphite/Epoxy* IM7/8551-7"*

Ell 13.4E10 Pa 16.2E10 Pa

E22 1.02El0 Pa .814E10 Pa

E33 1.02El0 Pa .814E10 Pa

ul2 .3 .22

_23 .49 .22

t_13 .3 .22

G12 .552E10 Pa .648E10 Pa

G23 .343E10 Pa .648E10 Pa

G13 .552E10 Pa .648E10 Pa

* ref. 41

** unpublished data generated by the University of Wyoming under NASA

grant NAG1-674, which began in July, 1986.
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properties were probably sui_cientlyaccurate. The properties for the IM7/8551-7

were based on unpublished data generated by the University of Wyoming under

NASA grant NAG1-674, which began in July, 1986. This grant determined the

inplane properties, En, E22, G12, and u12. Because of a lack of other data, the

remaining 3D properties were assumed.

addition to the materials mentioned above, a fictitious material was used.

For the initial parametric study, the goal was to examine the effect of strain

level gad geometric parameters on GI, GII, and GII I. Material properties were

desired which would have minimal effect on the distribution of the strain-energy

release rates. For quasi-isotropic laminates the in-plane stiffness is independent of

direction. But even for quasi-isotropic laminates the flexural stiffness varies with

direction. Hence, even if the postbuckled region consisted of a quasi-isotropic

group of plies, one would expect variations in the strain-energy release rate along

the delamination front which are due solely to the variation in flexural stiffness.

Also, the properties of the interface plies (i.e., thoee plies on either side of the

delamination) would be expected to at least affect the percentages of GI, and

GII , and GIII.

The simplified material properties chosen for this study are those for a

"homogeneous qua.si-isotropic laminate" throughout the entire specimen {buckled

and unbuckled regions). These properties _/j axe obtained as follows:

8
-- 1

c,i =
¢.=1

{2.91)

where (C,#)t are the constitutive properties for the Ith ply in the 8-ply quasi-

isotropiclaminate (-i-45/0/90)s. With these properties throughout, there axe

obviously no stacking sequence effectsand no variationof material propertieswith

orientation.
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Chapter 3

FINITE ELEMENT MODELING

This chapter describes the technique used for mesh generation and discusses

typical finite element models.

3.1 Mesh Generation

Figure 3.1.1 outlines the procedure used for generating most of the meshes.

This procedure is based on the procedure in ref. 42. A two-dimensional model

is swept through a 90 ° arc to generate a cylindrical 3D mesh. The outer part of

the cylindrical mesh is then transformed to obtain a square boundary. Then an

elliptical transformation is applied to obtain an elliptical delamination front. If

the ellipse is longer in the y- direction than in the x-direction (i.e., b > a), the

conformal transformation is

y' _ b2 -a2 (3.1.I): y 1 + Z2 + y2

I

Z "-Z

If a > b, the transformation is the same except that x and y are interchanged.

To avoid a singularity in eqn. (3.1.1), nodes at zero radius were shifted to lie on

an arc of very small radius, i.e. about 10 -gm.

The transformation in eqn. 3.1.1 maintains the orthogonality of lines which

were orthogonal in the modified cylindrical mesh (Fig. 3.1.1c). This orthogonality

at the delamination front simplifies the pairing of nodal forces and relative

displacements in the strain-energy release rate calculation.

A peculiarity of the transformation in eqn. 3.1.1 is the unusually close

spacing of the elements close to the delamination front on the long axis of

the ellipse (Fig. 3.1.2b). Also note what appears to be a triangular element
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in Fig. 3.1.2c . This element has two sides which are essentiallycolinear. A

modified trarmformation which resultsin more even mesh refinement isobtained

by introducing a scale factor for the _stretching"

52 _ a2= F-F+1)
y_ y( I + Z2 + y2

where F - _/x2 + y2 for r _> V/x 2 + y2 (3.1.2)
r

and F: 1 for r <_ V/Z 2 + y2

By choosing the parameter r a little less than the radius of the delamination

front in the cylindrical mesh, orthogonality is maintained in the neighborhood of

the delamination front during the elliptical transformation.

After the elliptical transformation the midside nodes are no longer at the

middle of an element edge. Therefore, the coordinates of the midside nodes are

recalculate_] as the average of the coordinates of the adjacent corner nodes.

In section 5.3 resultsare presented for a square and a rectangular delaminated

region. For the square dela_nination circular arcs in a mesh like 3.1.1c were

stretched to form the side of a square. A typical mesh is shown in Fig. 3.1.3.

For a rectangular delamination the coordinates were magnified in one direction

to elongate the delaminated region. The transformations for the square and

rectangular delaminations are not conformal. Hence, the orthogonality of the lines

which axe orthogonal in Fig. 3.1.1cwas not preserved in the model in Fig. 3.1.3.

This probably reduced the accuracy of the modeling.

3.2 Finite Element Models

1)

In the course of this investigation the following configurations were examined:

a laminate with an embedded delamination, 2) a laminate with an edge
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Fig. 3.1.3 Mesh used for analysis of the square delamination.
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delamination, and 3) a laminate with a through-width delamination. The loading

was in-plane compression except for the transversely loaded circular delamination.

The finite element models for these configurations are discussed in this section.

Figure 3.2.1 shows a typical finiteelement model for a laminate with an

embedded delamination. The elements axe 20-node isoparametric hexahedra.

Because of symmetry it is sufficientto model only one fourth of the specimen

and impose the constraintsu = 0on z = 0and v = 0on y = 0. There is also

a constraint w -- 0 on z = 0. This constraint was imposed to remove global

bending from the analysis.In reality,there might be global bending (particularly

ifthe buckled region is thick),but the amount of global bending would depend

on the region modeled and the boundary conditions at the external boundaries.

Imposition of w = 0 on z = 0 simply removes overallspecimen sizemad external

boundary conditions as parameters to be considered in thisstudy. The constraint

on torepresents a laminate which iswell constrained globally.Of course, one could

also view the imposition to = 0 on z = 0 as an indication of symmetry about the

z = 0 plane. This implies the presence of two delaminations.

Along the boundary x -- W, allu displacements are specifiedto equal W_0,

where c0 isthe specifiedcompressive axialstrain.To initiatetransversedeflections,

a transverse load was applied at the center of the delaminated region. After

a converged solution was obtained, the load was removed, and solutions were

obtained with only compression loading.

Figure 3.2.2 shows a typical model after division into substructures. Most of

the postbuckled region is included in the nonlinear substructure. The distance

between the delamination front and the beginning of the nonlinear substructure

was & In all cases, _ was approximately equal to the sublaminate thickness h.

The edge delamination models were similar to the embedded delamination

models. Because the plane y = 0 is now a free surface, the constraint v = 0 on

y = 0 used for the embedded delamination was not used for the edge delamination.
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The model for a laminate with a through-width delamination (Fig. 3.2.3)

had exactly the same boundary conditions as the model for a laminate with an

embedded delamination, except an additional constraint v = 0 on y = W was

imposed to cause a plane strain response.

A transversely loaded laminate with a circulardelamination was analyzed to

help verifyNONLIN3D. The model forthisconfigurationwas likethat in Fig.3.2.1,

except the delaminated region was circularand a transverse load (i.ea load in the

z-direction)was applied at (x,y,z)=(0,0,H+h).
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Chapter 4

EVALUATION of NONLIN3D

A variety of checks were made to verify the reliability of the finite element

program NONLIN3D and the models used with the program. Some of these

checks are presented in the following subsections.

4.1 Analysis of Transversely Loaded Plate

A closed form solution for a circular isotropic plate subjected to a central

point load is given in ref. 43. This solution is exact for linear deflections and

approximate for large deflections. The equation for the central deflection wo is

T + .443 = .217_-
(4.1.1)

Finite element analyses were performed using a mesh similar to that in

Fig.3.2.1, but with a circular debond. The thickness and radius of the debonded

region were .4 mm and 15 ram, respectively. The Young's modulus was 207 GPa

and the Poisson's ratio was .3.

Figure 4.1.1a compares the deflection at the center obtained from the closed

form solution and NONLIN3D. The agreement between the two analyses is

excellent in the linear and the initial nonlinear region. There is a 10 percent

difference in the deflections at the highest load level considered. This is not

surprising, since the closed form analysis is not exact for large deflections.

The closed form solution in ref. 43 can be used to calculate the total strain

energy release rate. Because the configuration is axisymmetric, GT is constant

around the boundary. The strain-energy release rate is -(cgU/cga)/(2ra). The

strain energy U can be calculated as the work done by the applied load (since all

of the work is stored as strain-energy).
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Equation 4.1.2 yields

U = f P dwo (4.1.2)

U 2.30 w2Eh3 .510 w4°Eh= +
a 2 a 2

(4.1.3)

An expression for G T is obtained by differentiating eqn. 4.1.3 with respect to

a and dividing by the circumference.

2_.a-....--.T .-_ ÷ 1.02wo 2 (4.1.4)

Figure 4.1.1b shows GT vs. load. Results are shown for the linear closed-form

solution (eqn. 4.1.4 without the fourth order wo term), the nonlinear closed-form

solution (eqn. 4.1.4), and NONLIN3D. The results are plotted with log-log axes

because of the wide range of the parameters. In the linear range all three solutions

agree very well. Even after nonlinear effects become important, the nonlinear

closed-form solution and NONLIN3D still agree very well.

These comparisons indicate that NONLIN3D does account for geometric

nonlinearity and that the strain-energy release rate calculation technique is valid.

4.2 Failure of 8-Node Element

Initially, the 8-node element with reduced integration was to be used for the

stress analyses. As pointed out earlier, it was known that the element could

exhibit spurious zero-energy modes. However, initial tests with the element seemed

to show good performance. The critical test involved analysis of a postbuckled

sublamanate, since this is the focus problem for this thesis. For simplicity only

the sublaminate was modeled and constraints were applied to the lower surface

to simulate a very stiff base laminate. As mentioned in the analysis chapter,
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postbuckling was initiated by applying both in-plane compression and transverse

loads. After obtaining a converged solution, the transverse toad was removed.

Then the desired solutions could be obtained. For this particular test of the 8-

node element, the transverse load was removed in steps. (In all the other cases

presented in this thesis, the transverse load was removedall at once, not in steps.)

Fig. 4.2.1 shows the deformed meshes for the four load cases. Converged

solutions were obtained for all four load cases. For the first three cases, the

deformed shape is quite smooth. All spurious oscillations are very small. When

the last of the transverse load was removed, the deformed shape shows clearly

that the zero energy modes are no longer subdued. A close-up of the central part

of the plate for the case P=0 is shown in Fig. 4.2.2. These results show that

the contribution of spurious zero-energy deformation modes depends on both the

displacement constraints applied on the boundaries and the load system. Because

of this behavior, it was decided that this element is not reliable. Hence, the 20-

node element was used exclusively for the strain-energy release rate analyses.

4.3 Check of Mesh Refinement

Several configurations were analyzed as part of this study. Consequently, it

was neither practical nor warranted to perform a convergence study for all cases.

Instead, a systematic convergence study was performed for a single configuration.

Mesh refinements for other configurations were selected based on the results of the

convergence study.

The configuration selected for the convergence study had a circular delamina-

tion with a radius of 15 mm. The sublaminate thickness h was .4 mm and the

base laminate thickness H was 4 mm. The overall laminate width W was 50 mm.

The material properties were those for the homogeneous quasl-isotropic laminate

described earlier. Figure 4.3.1 shows the extremes of refinement used for the 2D

meshes. The elements in the coarse mesh were subdivided to obtain the refined

mesh. Note that for the coarse mesh, only two elements are used to model moat of
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the buckled region. As describedearlier, the 2D mesheswere swept through a 90 °

arc to generate the 3D meshes. Figure 4.3.2 shows four of the meshes generated.

As shown in the figure, the number of slices of elements was also varied. Models

with 4 and 8 slices axe shown. A 12-slice model was also used. Information on all

of the models used in the convergence study axe given in Table 2. As shown by

the figures and the table, a fairly wide range of refinement was examined.

Since strain-energy release rates were of primary importance, variations in GI,

GII, and GIII were used to determine the adequacy of the mesh refinement.

Figure 4.3.3 shows the distribution of G I and GII along the delamination front

for three strain levels and four models (models 1,3,4, and 6). Only symbols are

shown for the crudest mesh, model 3. These meshes bracket the entire range of

refinement in Table 2. The mode III component GIII was negligible for all cases.

Of interest here are the differences in the results obtained using the various meshes.

Except for model 3, which only had 4 slices of elements, the results from all of the

models are essentially equal. Even a coarse 4-slice model gives the correct trends.

Apparently, a fairly crude model is sufficient to calculate GI and GII. Models

with 8 slices were selected for the parametric analyses in Chapter 5, which will

discuss the significance of the magnitude and the distribution of G I and GII.

The preceding convergence study was for a homogeneous quasi-isotropic lam-

inate, which is a fictitious material. Chapter 7 presents strain-energy rates for

actual laminates. Because a minimum of one element was required through the

thickness of each lamina, the 2D mesh used to generate the 3D mesh had more

nodes than the homogeneous laminate required. Unfortunately, the required com-

putational effort prevented a systematic convergence study. In fact, to keep the

computational effort manageable, the number of slices in the models was lim-

ited to just four (instead of the 8 slices used for the homogeneous quasi-isotropic

laminates). Fig. 4.3.4 shows one of the models. Based on the convergence study

presented for a homogeneous laminate, one might estimate that the four slice mod-

els for actual laminates underestimate the maximum G I and GII by about 15-20
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Fig. 4.3.3 Strain-energy release rates calculated using differentmeshes. The
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Fig. 4.3.4 Typical finite element mesh used for analysis of actual laminates.
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percent.

4.4 Determination of Allowable Residual

NONLIN3D solves the governing nonlinear equations using a modified Newton-

Raphson solution procedure. During each iteration the internally generated forces

are compared with the externally applied loads. The differences are the residuals.

If all of the residuals are identically zero, the governing equations are exactly

satisfied. Of course, in practice exact agreement is seldom obtained. Iteration

could continue until the algorithm's best approximation of zero is obtained. The

size of this _numerical" zero will depend on the computer and variable type

specifications (i.e. single or double precision} in the program. However, negligible

residuals are in general orders of magnitude larger than a numerical zero.

To determine what is a negligible residual, three residual tolerances were

considered: 1000., 1., and .0001 Newtons. A laminate with a 30 x 60 mm

delamination was analyzed for five strain levels. The range of strains was such

that the maximum lateral deflection for the buckled region varied from about .6

to 2.2 times the thickness of the buckled region. The tolerance of 1000 Newtons

gave erroneous results. The other two tolerances gave virtually identical results

except for the lowest strain level (ez = -.001), for which there were differences of

about 6 percent. Figure 4.4.1 shows GI and GII for vz -- --.001 (i.e., the worst

case). Results for the other strains are not shown, since the differences are very

small.

Based on these results, a tolerance of .0001 Newton was selected for all

the analyses. Probably a somewhat larger residual could have been tolerated.

However, the residuals tend to decrease quite rapidly during the iterations, so

there is little to be gained (in terms of reduced cost) by trying to specify the

largest acceptable residual. Also, a larger tolerance might give poor results for

some cases in which the loads are small.
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4.5 Verification of Substructuring

The configuration used for the convergence study was also used to verify

the validity of the substructuring. Model 3 was analyzed with and without

substructuring. The calculated G I and GII distributions from these analyses are

shown in Fig. 4.5.1. The small difference in the results verifies the substructuring

technique.
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Chapter 5

PARAMETRIC ANALYSIS OF HOMOGENEOUS QUASI-ISOTROPIC LAMINATES

This chapter will discuss the results of a parametric study of homogeneous

quasi-isotropic laminates containing a postbuckled embedded or edge delamina-

tion. This fictitious homogeneous laminate was selected so that the effects of strain

level and various geometric parameters on deformation and strain-energy release

rate could be examined without the additional complications due to stacking se-

quence effects.

The following sections begin with a parametric study on the effect of strain

level, delamination shape, and delamination size on deformation and the distribu-

tion of GI, GII, GIII and G T along the delamination front.

5.1 Deformation and Strain-Energy Release Rates For an

Embedded Delamination

The parameters considered were strain level, delamination shape, and delami-

nation size.

Fig. 5.1.1 shows lateral displacement in the middle of the delaminated region

vs. axial strain for two circular and two elliptical delaminations. The dimensions

of the delaminations are shown on the figure. Before buckling the lateral deflection

is essentially zero. When the buckling load is exceeded, the displacement increases

rapidly at first with increased strain. Then the rate of increase in displacement

decreases. Obviously, the response is quite nonlinear.

Fig. 5.1.2 shows plots of deformed finite element meshes for a circular and

an elliptical delamination. The displacements have been multiplied by 10 to

improve visualization. The deformed shape is relatively simple except near the

delamination front. For both cases the delamination front is open near the

intersection of the delamination front with the x=0 plane. However, for the

circular delamination, the delamination faces actually overlap near the y=0 plane.
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Even at strains smaller and larger than that shown, the circular delamination

exhibited closing. For the ellipticaldelamination "small" strainsresultin opening

along the entirelength. At largerstrains (not shown), the ellipticaldelamination

also exhibited closure. Strictlyspeaking, constraints should be added to prevent

overlapping of the delaxnination faces. However, including constraints to prevent

overlapping further complicates an already complicated stressanalysis problem.

Consequently, no contact constraints were added for any of the resultspresented

in this section. Section 5.4 presents a few resultswhich illustratethe effectof

including contact constraints. In the resultsthat follow,dashed lineswillbe used

for the G I and GII distributioncurves in regions where overlap occurred.

Figure 5.1.3shows the GI and GII distributionsfor a circulardelamination for

fivestrain levels.This isthe same configuration used for the convergence study

in section 4.3. GH! was essentiallyzero for this and all other cases considered

in thisstudy. In general, one would not necessarilyexpect GIll to be zero. The

strain-energy releaserates are plotted in Fig. 5.1.3using the perimeter coordinate

S. This coordinate is zero where the delamination front meets the y-axis and is

maximum where the delamination front meets the x-axis.Both GI and GII show

large variationsalong the front and are maximum at S = 0. There isoverlapping

of the delamination surfacesover a largeportion of the front,as indicated in figure

5.1.3a. Although GI is largerthan GH for the fivestrain levels,the differenceis

not large;this is definitelya mixed mode situation. Since both GI and GI! are

largest at S = 0, one would expect delamination growth to occur preferentially

perpendicular to the load direction,i.e.in the y-direction.

Since a circular delamination is expected to become elongated perpendicular

to the load direction, a 30x60 mm elliptical delamination was analyzed. Fig. 5.1.4

shows the distribution of GI, GII, and G T for this elliptical delamination. There is

a large variation of both GI and GII along the front. Note that the location of the

G I peak shifts slightly with strain level. In contrast to the circular delamination,

the peak values of G I and GII occur at different locations. Also, the peak value
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of GII is larger than the peak value of GI except for the case vz -- -.005. The

total strain-energy release rate (Fig. 5.1.4c) varies significantly along the front for

the larger strains, but for the smaller strains the magnitude is almost constant.

Depending on one's choice of growth criterion, very different predictions of even

the direction of growth are possible. A criterion based only on GI would predict

growth perpendicular or nearly perpendicular to the load direction for all of the

strain levels. A criterion based only on GII would predict growth parallel to the

load direction. For the smaller strains, a criterion based on total strain-energy

release rate would predict almost uniform growth along the delamination front.

Fig. 5.1.5 shows GI and GII for a 60x60 mm delamination. Comparison

of Figs. 5.1.3 and 5.1.5 show the effect of delamination size on G I and GII

for two circular delaminations. Both delaminations were subjected to the same

strain levels. Figs. 5.1.3a and 5.1.5a show that the larger delamination is

closed (actually over-lapping) for more of the delamination front. Also, note

that the distribution in the overlapping region is more complicated for the larger

delamination. This is because the strains for the larger delamination are larger

multiples of the bifurcation buckling strain. This conclusion was verified by

subjecting the smaller delamination to higher strains. (These results are not

presented in this dissertation.) The larger delamination has a much larger GI

for the region near S = 0. Figs. 5.1.3b and 5.1.5b show that GII is also larger for

the larger delamination near S = 0. Hence, one might expect unstable extension of

the delamination once it begins to grow. However, based on the calculated strain-

energy release rates, a circular delamination is not expected to grow self-similarly

into a larger circular delamination. It should become elliptical.

Figures 5.1.3 and 5.1.4 show results for 30x30 and 30x60 mm delaminations.

Comparison of Figs. 5.1.3 and 5.1.4 shows that except for the lowest strains, the

smaller (circular) delamination actually has a larger GI. Hence, the growth rate

based on GI is expected to be larger for the smaller delamination. As pointed out

earlier, the distributions of GII for circular and elliptical delaminations are quite
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different. Even the location of maximum GII is different. The peak values of GII

for the two delaminations are similar. Hence, based on GII the growth rate should

be about the same for both delaminations, but the direction of growth would be

different.

5.2 Interpretation of Deformation and Load Transfer

Section 5.1 presented some numerical results for strain-energy release rates.

Several trends were observed and discussed. The purpose of this section is to

present an intuitive explanation of the process by which load is redistributed

and secondary loads created which lead to instability-related delamination growth

(IRDG).

The mechanics of IRDG for the through-width delamination have been de-

scribed previously in refs. 3, 4, 5. The mechanics of IRDG for the embedded

delamination will be derived here. Both axisymmetric and uniaxial loading of the

embedded delamination will be considered (even though axisymmetric loading is

not considered elsewhere in this thesis). The approach will be to present first G I

and GII results which illustrate the different behaviors of several configurations

which exhibit IRDG. Then mechanics arguments will be offered to explain the

different behaviors.

5.2.1Comparison of Behaviors for the Through-Width and

the Embedded Delamination

Four cases were analyzed: the through-width delamination, the axisymmet-

rically loaded embedded circular delamination, the uniaxially loaded embedded

circular delamination, and the uniaxially loaded embedded elliptical delamina-

tion. In all cases the thicknesses H and h were 4 and .4 mm, respectively. The

through-width delamination was 30mm long. The circular delaminations were

30mm in diameter. The elliptical delamination was elongated along the y-axis

and had dimensions of 30x60mm. The same strain range was used for all the

cases.
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Figures 5.2.1.1 and 5.2.1.2 show the effect of strain level on G I and GH for

the through-width delamination and the embedded delamination. The mode III

component is not shown because it was essentially zero for all the cases considered.

In general, one would not necessarily expect Gill to be zero. Both uniaxial

and axisymmetric loads were considered for the embedded dela_nination. For

the uniaxially loaded embedded delamination, both a circular and an elliptical

delamination were analyzed. Figs. 5.2.1.1c, 5.2.1.1d, 5.2.1.2c, and 5.2.1.2d show

the variation with strain level at two points along the delamination front of the

uniaxially loaded embedded delamination: at 0 : 0 ° and 0 - -90 °. See Fig. 2.8.2

for the definition of 0.

The variation of GI with strain level is dramatically different for the four

cases. For the through-width delamination GI increases very rapidly after buckling

occurs (Fig. 5.2.1.1a). After reaching a peak, GI decreases. For the axisymmetric

case, GI increases monotonically. Also, the magnitude of GI in Fig. 5.2.1.1b is

much larger than in Fig. 5.2.1.1a.

Fig. 5.2.1.1c shows the variation of GI at 0 -- -90 ° for a uniaxially loaded

embedded delamination. Only the results for the elliptical delamination axe

shown here, since GI was zero at 0 = -90 ° for all strain levels for the circular

delamination. The shape of the curve for the elliptical delamination is similar

to that for the through-width delamination (Fig. 5.2.1.1a), but the magnitude is

less. At 0 -- 0 °, GI is shown for both the circular and elliptical delaminations

(Fig. 5.2.1.1d). Note that the magnitude of GI is much larger than in Figs.

5.2.1. la-5.2.1, lc. Also, GI increases rapidly and monotonically with applied strain.

Fig. 5.2.1.2 shows the GII variations with strain level. In all cases GII

increased monotonically with strain. GII is of the same order of magnitude for

all the cases except for the uniaxially loaded circular delamination at 0 = -90 °

(Fig. 5.2.1.2c). This contrasts with the very wide range of magnitudes in

Fig. 5.2.1.1 for GI.
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Even though the strain-energy release rates in all the cases illustrated in

Figs. 5.2.1.1 and 5.2.1.2 are a result of local buckling, the variety of behavior

suggests that there must be variations in the mechanism by which local buckling

causes strain- energy release rates. The next section will attempt to explain these

mechanisms.

5.2.2 Mechanics of IRDG for the Embedded Delamination

In highly simplified anthropomorphic terms, a strip of the buckled region which

is parallel to the load direction (strip A in Fig. 5.2.2.1) wants to buckle outward. A

strip of the buckled region which is perpendicular to the load direction (strip B in

Fig. 5.2.2.1) has no desire to deform outward; it is pushed out by strip A. Strip A is

analogous to the through-width case. The constraint provided by strip B reduces

GI for strip A. Conversely, strip A causes high G I at the ends of strip B when

strip A pushes strip B outward. Of course, the buckled region is not comprised

of strips, but this simplified interpretation helps explain the behavior observed.

The following paragraphs present a more rigorous and detailed discussion of the

mechanics of instability-related delamination growth (IRDG).

The through-width delamination will be discussed first. After describing

the mechanics for the through-width delamination, its close relationship with

the embedded delaminatlon with axisymmetyric loads will be discussed. Next,

tractions will be applied to the through-width delamination configuration which

transform it into a uniaxially loaded embedded delamination. The required

tractions should give some feel for why the behaviors differ for the embedded

delamination and the through-width delamination under uniaxial loads.

The discussion of the through-width delamination can be expedited by first

transforming this geometrically nonlinear problem into a linear one with nonlin-

early related loads (ref. 4). Fig. 5.2.2.2a shows a schematic of a laminate with

a postbuckled through-width delamination. In Fig. 5.2.2.2b the buckled region is

replaced by the loads PD and M, the axial load and moment,respectively, in the
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buckled region where it is cut. The total applied load PT is equal to PB + Pc. The

load system in Fig. 5.2.2.2c, (which is the same as Fig. 5.2.2.2b) can be divided

into the two load systems shown in Figs. 5.2.2.2d and 5.2.2.2e. Because PC and

PB are calculated using rule of mixtures, the load system in Fig. 5.2.2.2e causes

a uniform axial strain state and no interlaminar stresses. Accordingly, for strain-

energy release rate calculation, the configuration in Fig. 5.2.2.2d is equivalent to

the original configuration (Fig.5.2.2.2a). The moment M opens the delamination,

contributing to GI. It also contributes to some Gr.l (ref. 4). Also, the load

(Pc - PD) contributes to GII. In addition, because of the offset of the line of

action of PC- P/) relative to the delamination, this force creates a moment which

tends to close the delamination and reduce the GI component caused by M. The

result of the competing mechanisms are strain-energy release rate variations like

that in Fig. 5a and 5.2.1.2a. The mode I strain-energy release rate first increases

very rapidly with increasing strain and then decreases to zero. The mode II strain-

energy release rate increases monotonically with applied load, since both M and

(Pc" PD) contribute to GII.

The axisymmetrically loaded circular delamination is very similar to the

through-width deJamination. In fact, the schematics in Fig. 5.2.2.2 are applicabJe

if the forces are replaced by forces per unit length. The load in a column, PD, is

essentially constant after the applied strain is increased beyond the buckling strain,

but the load in an axisymetrically loaded plate continues to increase significantly

after buckling. The load PC increases linearly with the applied load. Hence, (Pc-

PD} is large for the through-width delamination but is relatively small for the

axisymmetric case. As a result, there is little attentuation of the effects of M by

(Pc - PD) for the axisymmetric case. Consequently, G I is much larger for the

axisymmetric case (Compare Figs. 5.2.1.1a and 5.2.1.1b).

Now the uniaxially loaded embedded delamination will be considered. Figs.

5.2.2.3-5.2.2.6 illustrate the transformation of a through-width delamination

(Fig. 5.2.2.3) into an embedded delamination (Fig. 5.2.2.6). The letters A through
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Fig. 5.2.2.3 Schematic for transformation of through-width delamination into an

embedded delamination.
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Z

Fig. 5.2.2.4 Slice of laminate showing tractions required to perform transformation

by closing buckled part of boundary BF.
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Fig. 5.2.2.5Sliceof laminate aftertractionshave closed boundary.
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G

Fig. 5.2.2.6 Entire laminate after transformation to embedded delamination.
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G are added to aid the discussion.They are not relatedto the lettersin Fig.5.2.2.2.

To expedite the discussion,the embedded delamination willbe assumed to be rect-

angular. Tractions are required to close the buckled part of region AEFB. These

willonly be non-zero near the new delamination front and are, in fact,the inter-

laminar stresses.

Fig. 5.2.2.4 shows a slice removed from the laminate. The figure shows the

forces required to close the buckled part of the boundary BF. These forces are

generated when the region AEFB is closed. These forces indicate some of the

interaction of regions AEFB with BFGC. There are in-plane forces Fy, transverse

forces Fz, and a moment My. Fig. 5.2.2.5 shows the same slice after the forces

have closed the buckled part of BF.

The moment My would operate in the direction indicated in Fig. 5.2.2.4 based

on the curvature in Fig. 5.2.2.5. Likewise, the transverse force, F=, would be

expected to act downward to help close the delamination front. The force, Fy, is

a result of two things : transverse deflection and Poisson's ratio. When transverse

deflection occurs, the length of a line from A to D (Fig. 5.2.2.6) increases, hence

the buckled region must be stretched in the y-direction. When the laminate is

compressed in the x- direction, it expands in the y-direction due to Poisson's effect.

If the base laminate has a larger Poisson's ratio than the sublaminate, then a force

Fy is required to enforce compatibility when the buckled part of BF is closed. The

sign of Fy due to Poisson's ratio would depend on the relative magnitudes of the

Poisson's ratios. Differences in Poisson's ratio were not considered in this study.

The magnitude of Fy should be related to the in-plane stiffness in the y-

direction. The magnitude of My should be related to the flexural stiffness in

the y-direction. The effect of material properties on Fz is not as straight-forward,

so no prediction will be offered.

The dimensions of" the embedded delaminat_on should affect the _forces and

moment. For the same transverse deflection, the curvature in the y-direction is
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lessfor a larger dimension b , so My should decrease with increasing b. Also, the

strain in the y-direction due to the increased length A-D (Fig. 5.2.2.6) would be

less for larger b. Hence, for the same transverse deflection Fv should decrease with

increasing b.

The moment My should contribute primarily to GI, but it also contributes to

GII. The force Fy should contribute to GII and reduce GI. The reduction is due

to the offset between the delamination plane and the middle of the sublaminate.

This offset causes a moment relative to the delamination plane which is opposite

to My. Based on the large GI in Fig. 5.2.1.1d, the opening effects of My must

dominate the closing effects of Fy.

The original configuration with a through-width delamination (Fig. 5.2.2.3)

had some distribution of G I and GII along x= a. The application of the forces

Fy, Fz, and the moment My changes the load flow significantly. Closing the

ends of the through-width delamination (area AEFB) contributes a compressive

component of interlaminar stresses along the front x-a, thus reducing GI. In fact,

because of this reduction, GI was zero for all strain levels at 0 = -90 ° for the

circular delamination under uniaxial loads. For the elliptical delamination, the

magnitude of GI at 0 = -90 ° was less than for the through-width delamination

for the same reason (Fig. 5.2.1.1a and 5.2.1.1c).

Based on t]_e preceeding discussion, one would expect the behavior of a

through-width delamination and the uniaxially loaded embedded delamination

to have some similarity, but probably more differences. Fig. 5.2.1.1 illustrates this

very well. For an embedded delamination highly elongated perpendicular to the

load direction, one would expect the behavior to be like that for the through-width

delamination. No highly elongated delaminations were examined in this study, but

even the 1:2 aspect ratio ellipse has a GI variation at 0 = -90 ° (Fig. 5.2.1.1c)

which is very similar to that for a through-width delamination (Fig. 5.2.1.1a) .

But this similarity has little importance for this case, since the G I was very much

larger at $ = 0 ° (Fig. 5.2.1.1d).
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5.3 Comparison of Full 3D, Thin-film 3D, and Thin-film Plate Analxses

For an Embedded Delamination

Geometrically nonlinear 3D finite element analysis is inherently very expensive.

Hence, there is considerable motivation to use simplified and less rigorous (and less

expensive) analysis techniques. An obvious approximation is to assume that the

base laminate is so much thicker and stiffer than the sublaminate, that the base

laminate strains are independent of how the sublaminate deforms. For most of the

configurations analyzed herein, the base laminate deformation can be expressed in

closed form. Because of the base laminate dominance, only the sublaminate needs

to be analyzed. This is referred to as a thin-film analysis. Boundary conditions

consist of displacements prescribed to impose compatability of the sublaminate

with the known base laminate deformations. This thin-film assumption can be

used with 3D or with plate analysis.

The thin-film assumption has been used with plate analysis by several re-

searchers, as mentioned in Chapter 1. However, only ref. 21 gives distributions of

total strain-energy release rate. This section will compare results for a square and

a rectangular delamination from ref. 21 with 3D solutions.The sublaminates are

assumed to have an initial waviness of a sinusoidal shape, as given by eqn. 5.3.1.

BO5

(1+ + costoinitial : _ a tP

(5.3.1)

The sublaminate and base laminate thicknesses were .51 mm and 5.1 mm,

respectively. The entire laminate is assumed to be isotropic with a Young's

modulus of 53.3 GPa and a Poisson's ratio of .31. Both full 3D and thin-film

3D results will be presented.

Fig. 5.3.1 shows the distribution of GT along the delamination front for the

square delamination (25.4 x 25.4 ram). Three strain levels were considered. Results

are shown for full 3D, thin-film 3D, and thin-film plate analysis. There is good
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Fig. 5.3.1 Total strain-energy release rate distribution for a square delamination

calculated using 3D, thin-film 3D, and plate analysis. (2a x 2b = 25.4 x 25.4mm)
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agreement between the three analyses for allthree strain levels.Fig. 5.3.2 shows

the distribution of G' T along the delamination front for a rectangular delamination

(25.4 x 50.8 mm). The agreement between the three analyses is not as good as for

the square delamination, but it still is fairly good.

For the cases compared, thin-film plate analysis gave reasonably good predic-

tions of GT. When one considers the high sensitivity of G T to parameters such

as sublaminate thickness, delamination size, and initial imperfection and the un-

certainty of knowing these parameters precisely, the differences between the plate

analysis and 3D analysis appear negligible. Of greater importance is the limitation

that plate analysis can only calculate GT, not the components. A hybrid analysis

which uses 3D analysis near the crack front and plate analysis elsewhere appears

to be a good alternative. Such a technique was used in ref. 4 for the through-width

delamination.

The results in Figs. 5.3.1 and 5.3.2 also serve a secondary purpose. Totally

different analyses were used to obtain the results in ref. 20 and the 3D results.

Also, the method for calculating strain- energy release rates were different. But the

agreement is good. Hence, the results give additional validation to both the virtual

crack closure technique presented in ref. 20 and to the 3D analysis developed

herein.

5.4 Effect of Contact Constraints

Earlier it was shown that for certain combinations of delamination size and

strain level, closure occurs over part of the delamination front. Unless constraints

are imposed to prevent interpenetration, overlap of the crack faces will occur in

an analysis. The results presented in section 5.1 are based on an analysis which

allowed interpenetration of the crack faces. This section examines the effects of

including contact constraints on the calculated distribution of strain-energy release

rates.

The configuration analyzed is a Uhomogeneous" quasi-isotropic laminate with
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Fig. 5.3.2 Total strain-energy release rate distribution for a rectangular de-

lamination calculated using 3D, thin-film 3D, and plate analysis. (2a x 2b =

25.4 x 50.8ram) (_z = -.0043)
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a circular delamination (2a x 2b = 30 x 30 mm). The thickness of the sublaminate

is .4 mm and the base laminate is 4.0 mm. For the circular delamination, closure

occurred near 0 - -90 ° for all of the strain levels considered. The amount of

closure at 90 ° relative to the amount of opening elsewhere along the front increased

with the ratio of applied strain to the bifurcation buckling strain. Hence, only large

strains will be considered here: -.005 and -.02. These are about 3 to 11 times the

bifurcation buckling strain. Of course, -.02 strain is unrealistically large for current

composites. But larger delaminatlons or thinner sublaminates can be subjected

to strains more than 11 times the buckling strain. The -.02 strain case should

simply be considered a case where the applied strain is quite large compared to

the buckling strain.

Fig. 5.4.1 and 5.4.2 show the deformation of the sublaminate for the two

strains before and after imposing contact constraints. Only the top surface of

the sublaminate is plotted. The displacements were scaled up by a factor of 10

and 2.5 for the cases ez = -.005 and -.02, respectively. The interpenetration is

much more severe for the larger strain.

Fig. 5.4.3 shows GI and GII for a strain of -.005. For comparison, results

with and without contact constraints are shown. Because of the approximations

mentioned earlier in imposing the constraints, G I is not computed to be identically

zero in the contact region. But it is now negligibly small. In the region where the

delamination front is open, GI is not very sensitive to whether or not contact

constraints are imposed. In absolute terms, GII is also not affected much.

Fig. 5.4.4 shows G I and GII for a strain of-.02. Since the overlap (before

constraints are imposed) is much greater for the larger strain, one would expect

a larger effect on G I and GII. Comparison of Figs. 5.4.3 and 5.4.4 shows this is

the case. But the trends are the same for both strain levels. That is, imposition

of the constraints reduces GI to a negligible magnitude in the contact region and

increases (71 in the non-contact region. GI1 is increased along the entire front.

For a strain level of-.005, little error is incurred by not imposing contact
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X

Fig. 5.4.1 Deformation of top surface of postbuckled sublaminate with and without

contact constraints. Displacements multiplied by 10. (ez = -.005)
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(b) with contact constraints

Fig. 5.4.1, Concluded.
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(a) without contact constraints

Fig. 5.4.2 Deformation of top surface of postbuckled sublaminate with and without

contact constraints. Displacements multiplied by 2.5. (Ez = -.02)
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(b) with contact constraints

Fig. 5.4.2, Concluded.
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constraints and just recognizing that G! is zero in the contact region. For a

strain of-.02, significant errors occur when contact constraints are not imposed.

Since there is a significant computational cost associated with including contact

constraints, constraints probably should not be imposed unless the overlap is quite

extensive.

5.5 Strain-Energy Release Rates For an Edge Delamination

This section will discuss the results of a limited parametric study of homoge-

neous quasi-isotropic laminates containing a postbuckled edge delamination. The

parameters varied were strain level, delamination shape, and delamination size.

The effects of these parameters on deformation and strain-energy release rate were

determined.

Figure 5.5.1 shows the variation of G I, GII, and GT along the delamination

front for a semi-circular edge delamination of radius 15ram. The strain-energy

release rates increase rapidly with increased strain. There is a large variation of

the strain-energy release rates along the delamination front. The maximum value

of G I is a little larger than the maximum value of GII for each strain level. Note

that there is no overlap region for this configuration, in contrast to the response

for the circular embedded delamination (see Fig. 5.1.3). The maximum GI and

GII occur at different locations for the edge delamination, which is also different

than the circular embedded delamination behavior. In fact, the semi-circular

edge delamination behaves somewhat like an elliptical embedded delamination.

Fig. 5.1.4 shows that an elliptical embedded delamination exhibits little overlap

and has maximum values of GI and GII at the same locations that the edge

delamination has its maximum values. However, GII increased monitonically

with perimeter coordinate S for the elliptical embedded delamination. For the

edge delamination GII decreases and then increases with S. For the elliptical

embedded delamination GT was almost constant for some strain levels. The GT

is far from constant for any strain level for the edge delamination. The predicted

direction of delamination growth depends on the assumed growth criterion, since

119



GI,

Jlmz

50o[
400I

3OO

2O0

100

Curve Strain

a -.002
b -.003
c -.004

d -.005

0
0

d

C

1

.OO5 .01 .015
S, m

GII,

J/m 2

]

.02

500

400

300

200

100

0
0

d

C

b

.005 .01 .015 .02
S, m

500[
4OO

300

200 e d

100

0
0 .005 .01 .015 .02

S, m

I_
30mm

Fig. 5.5.1 Strain-energy release rate distributions for a laminate with a semi-

circular edge delamination with a radius of 15mm.
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the peak GI and GII occur at different locations. However, growth should occur

preferentially either near the x- or y-axes, and not in between.

Figure 5.5.2 shows the variation of GI, GII , and G T along the delamination

front for a semi-elliptical edge delamination. The maximum values of GI and GII

still occur at different locations. Now the maximum value of GII is much larger

than that for G I. The predicted direction of growth is still dependent on the

assumed growth criterion. However, the semi-elliptical is more likely to grow in

the load direction than is the semi-circular delamination.

Figure 5.5.3 shows the variation of GI, GII, and G T along the delamination

front for a semi-circular edge delamination of radius 30ram. The distributions are

similar to the distributions in Fig. 5.5.1 for the smaller semi-circular delamination.

The magnitudes of the strain-energy release rates are larger for the larger semi-

circular delamination. Note that in Fig. 5.5.3 there is a small amount of overlap,

which did not occur for the smaller delamination. This is because the ratio of the

applied strain to the buckling strain is larger for the larger delamination.
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Fig. 5.5.2 Strain-energy release rate distributions for a laminate with a semi-

elliptical edge delamination.
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CHAPTER 6

DESCRIPTION of SPECIMENS and EXPERIMENTAL PROCEDURES

This chapter describes the various specimens which were tested and the

procedures used to conduct the tests. There are two subsections in this Chapter :

1. Specimen configurations and 2. Measurement of deformation and damage.

6.1Specimen Confiizurations

There were three basic specimen configurations: the transversely loaded

plate, a laminate with an embedded delamination, and a laminate with an edge

delamination.

Fig. 6. I. 1 shows a schematic of the transversely loaded plate configuration. A

thin sheet of steel was bonded to a thick aluminum plate with a room temperature

cure adhesive. The aluminum plate had a 50.hmm diameter through-hole. A single

transverse load was applied to the center of the steel using a 12.7ram diameter

indenter. Fig. 6.1.2 shows the specimen and the test fixture. This set-up is the

same as that used in ref. 44. Direct-current differential transformers were used

to monitor load point deflections. The purpose of these tests were to obtain load

versus deflection. No debond measurements were performed on these specimens.

Several types of specimens with embedded delaminations were fabricated. One

of the specimens consisted of spring steel bonded to aluminum. Fig. 6.1.3 shows a

schematic of the specimen. This specimen type was tested to provide postbuckling

deformation data for a laminate without stacking sequence effects. As indicated

in the figure, EA934NA room-temperature cure adhesive was used for bonding.

A teflon insert was used to prevent bonding over a circular region, resulting in a

simulated delamination.

Another type of specimen with an embedded delamination consisted of a thin

AS4/PEEK laminate with a delamination. The stacking sequence was either

(0/90/90/0)s or (90/0/0/90)s. Fig. 6.1.4 shows a photograph of a typical laminate.
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Fig. 6.1.2 Experimental set-up for transversely loaded plate.
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As shown in the figure, the laminates were badly warped. The PEEK laminate was

bonded to an aluminum sheet to increaae resistance to global buckling. Fig. 6.1.5

shows a schematic of the specimen. A double layer of thin Kapton film (thickness

of each layer= .013ram) was used to provide an initial delamination of 30, 40 or

6Omm diameter between the fourth and fifth plies. The double layer of Kapton

was used because Kapton might bond with the PEEK, but it should not bond to

another piece of Kapton. Apparently the high temperature and pressure used in

processing the PEEK laminates caused a small amount of bonding. Even a small

amount of bonding was sufficient to prevent local buckling of the delamination

region prior to global collapse. Hence, a small block of aluminum was bonded to

the sublaminate using a low strength bond, as illustratedin Fig. 6.1.6,and small

forces were applied by hand to loosen the Kapton bond. Because of thin poorly

quantified _preconditioning_ and the bad warpage problem, the specimens were

only used for qualitativemeasurements of delamination growth.

Twenty-four ply composite specimens with embedded delaminations were

fabricated from IM7/8551-7 prepreg. The stacking sequences were (0/90/90/0)e

and (90/0/0/90)6. A double layer of Kapton film was used to provide an initial

delaznination between the fourth and fifthplies.Delamination sizeswere 30, 40,

or 60ram. Unlike the PEEK laminates, the Kapton film did not exhibit spurious

sticking in these specimens.

Several of the PEEK specimens described above were slicedlongitudinallyto

obtain laminates with semi-circularedge delaminations.

The specimens with embedded or edge delaminations were tested in compres-

sion. Steel guide plates were used to prevent global buckling. Most of the tests

were conducted using a solidguide plate on one side of the specimen and a plate

with a 82ram window on the other side. A few testswere performed using plates

with windows on both sides.The guide platesare shown in Fig. 6.1.7.The guide

plates were 19ram thick. For specimens with an embedded dela_nination, the

window was centered over the delazninated region. For specimens with an edge
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delamination, the guide plates were offset to one side to provide extra support.

6.2 Measurement of Damage

Several techniques were used for detecting damage in the compression spec-

imens. Because delamination growth resulted in a larger buckled region, visual

inspection during the loading proved to be fairly accurate for detecting when de-

lamination growth initiated. A more refined technique was measurement of the

deformed shape of the buckled region. The delamination boundary corresponded

to the location where transverse displacements were negligible. The measurements

were obtained using the fixture illustrated in Fig. 6.2.1. This fixture is very similar

to that described in ref. 45. Basically, the fixture consists of a machinist's vise

with three DCDT*s. One of the DCDT's measures the transverse deflection of the

buckled region and the other two indicate where the transverse deflection is being

measured. In some cases, two DCDT's were used to monitor transverse displace-

ments; one DCDT monitored back face displacement and the other monitored front

face (i.e. where the buckling occurred) displacement. By subtracting the outputs

of the two transducers, a change in thickness could be measured. Essentially all

change in thickness would be due to postbuckling displacements. This technique

using two DCDT's was less sensitive to artifacts due to slight misalignment of the

specimen and the machinist's vise.

Another technique for measuring damage was applying an X-ray opaque

dye penetrant and then taking an X-ray. The dye highlighted ply cracks and

delaminations. However, if little or no surface damage occurred, the dye penetrant

was not able to reach the internal damage area. In those cases, after all testing

of those specimens were completed, a small hole was drilled in the center of the

specimen. Then, the dye could be applied internally.
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Some specimens were sectioned using a diamond saw and polished. The cross

sections were examined using light microscopy. This technique was particularly

useful for determining the distribution of cr_king through the thickness and

details of the types of damage.
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CHAPTER 7

COMPARISON of ANALYTICAL and EXPERIMENTAL RESULTS

The primary purposeof this chapter is to describe the results of a combined

experimental and analytical study of instability-related delamination growth.

Specimens were designed based on the trends observed in the analytical study

discussed earlier. Based on the analytical study differences in the buckling strain,

the shape of the postbuckled region, the strain at which delamination growth would

occur, and the direction of growth were expected. The experimental program was

conducted to determine whether the expectations based on analysis were correct.

Also, it was hoped that a strain-energy release rate parameter would be identified

which could be used to quantitatively predict the onset of delamination growth.

Two composite material systems were considered: AS4-PEEK and IM7/8551-7.

Because of the processing difficulties described earlier in Chapter 6, only quali-

tative comparisons of analysis and experiments will be presented for the PEEK

specimens.

A secondary purpose of this chapter is to present results for two _check cases" :

the transversely loaded plate and the steel bonded to aluminum compression

specimen. These configurations were examined because they were expected to

behave in a fairly predictable fashion. Hence, they provided a good starting point

for comparison of analytical and experimental results. These check cases will be

presented first, gad then the primary study will be discussed.

7.1 Check Cases

Two types of experiments were conducted just to help verify the finite element

program NONLIN3D. One of the experiments involved central transverse loading

of a circular plate (see Fig. 6.1.2). The other test consisted of spring steel bonded to

aluminum and loaded in compression to cause local postbuckling of a delaminated

region (see Fig. 6.1.3). The results for these two check cases are described in this

section.
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Figure 7.1.1 shows experimentally measured load point deflection versus ap-

plied load for the transversely loaded plate. Results are shown for two specimens.

Each specimen was loaded and unloaded more than once, so there are multiple

data for each load level. Also shown are the results from NONLIN3D. The fig-

ure shows that NONLIN3D predicts the deflection quite well, even though the

response is highly nonlinear.

Figure 7.1.2 shows results from the steel/Al postbuckling tests. This figure

shows the deformation of the specimens and the finite element models along the

planes z = 0 and y -- 0. The finite element analysis was performed at a slightly

different strain level than was present in the test. Ideally, the same strain would

have been used for both the analysis and the experiments. However, the deflection

increases rapidly with applied strain and even small imperfections can shift the

load versus deflection curve. To expedite the comparison of the shape of the

buckled region with the prediction, the strain for the finite element analysis was

chosen so that the peak deflection would be about the same as was observed in

the experiment.

Figure 7.1.2 shows the deformation for a specimen with a 60ram diameter

delamination. The predicted and observed deformed shape agree quite well. Note

that the deformation is much different along the z = 0 and y = 0 planes. Along

the y = 0 plane the large deformation is restricted to a much narrower region than

along the x = 0 plane. This restricted deformation caused the delaminated region

to appear elliptical during the test, even though the delamination was known to

be circular.

7.2 Qualitative Study of AS4,/PEEK Laminates

As described earlier in the experimental procedures section, there were prob-

lems with the fabrication of the AS4/PEEK specimens.Consequently, only a qual-

itative study was performed on this material system. Observations were made of

the shape of the buckled region, the location of delamination growth, the direction
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of growth, and ply cracking. Fatigue loads were used to cause delamination growth

in most of the tests because of the high resistance of PEEK to static delamination

growth. A few specimens were tested statically. However, effects due to problems

with specimen fabrication prevented isolation of fatigue versus static behavior.

Laminates with either an embedded or an edge delamination were tested. Two

sublaminate stacking sequences for the sublaminate were considered: (0/90/90/0)

and (90/0/0/90). The embedded delamination will be discussed first, then the

edge delamination.

Fig. 7.2.1 shows sketches of two specimens (which had a 60ram diameter initial

delamination). The boundary of the initial delamination is indicated by dashed

lines. The region which actually buckled outward is indicated by solid lines. This

region was determined by visual inspection. Only part of the delaminated region

buckles outward for both sublaminates. Also, the buckled region is much narrower

for the (90/0/0/90) sublaminate than for the (0/90/90/0) sublaminate. The same

trends were observed for 40ram delaminations.

Finite element analysis was performed before the tests were conducted. In

fact, the stacking sequences for the experiments were selected because the analysis

predicted that the behaviors of the two laminates should be different. These pre-

liminary analyses were performed for a 30ram delamination. Since problems with

fabrication precluded quantitative comparisons, the analyses were not repeated for

the actual delamination sizes. Fig. 7.2.2 shows the y=0 plane for deformed finite
$,

element models for the two stacking sequences. These particular models were for

a 30mm delamination, but the trends are independent of delamination size. Note

that the analysis prediction agrees with the experiments, i.e. that the buckled

region should be narrower for the 90/0/0/90 sublaminate than for the 0/90/90/0

sublaminate.

Fig. 7.2.3 shows strain-energy release rate distributions for a 30ram delami-

nation for the two stacking sequences. Both G I and GII are maximum at S=0

and are much less elsewhere. These results suggest that delamination growth
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(a) (0//90//90/0)sublaminate
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(b) (90/0/0/90)sublaminate

Fig. 7.2.2 Deformation of the y = 0 plane for two AS4/PEEK laminates.

of delamination is 30ram.
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should initiatein a small area and should propagate transverse to the load di-

rection. Figure 7.2.4 shows X-rays for the two stacking sequences. The observed

initialdelamination growth isvery localizedand the growth is transverse to the

load direction. Of course, after a small amount of growth the analytical results

in Fig. 7.2.3 axe not applicable,since the configuration has changed considerably.

The X-rays show matrix cracking,which isapparently caused by the flexureduring

postbuckling. The delamination growth was usually very rapid. Sometimes there

was essentiallyinstantaneous propagation to the guide plates,but not always.

Stacking sequence effects were quite obvious for the edge delamination speci-

mens also. It was dimcult to obtain delamination growth for the 30ram diameter

delamination for the (0/90/90/0) sublaminate. Except for one case, global failure

occurred simultaneously with delamination growth. In the one case that growth

could be observed before global failure, only a small amount of growth occurred

and approximately the same amount of growth occurred in both the load direction

and transverse to the load direction. Fig. 7.2.5 shows an X-ray of a laminate with

a 20ram radius initial delamination and a (0/90/90/0) sublaminate. In this case,

the dominant delamination growth is definitely in the load direction. Also, when-

ever catastrophic growth occurred, there was significant delamination growth in

the load direction.

Only 30ram delaminations were examined for the (90/0/0/90) sublaminmate.

The X-ray in Fig. 7.2.6 shows that for this case the delamination growth is

definitely transverse to the load direction. Even when extensive delamination

growth occurred, it was transverse to the load direction. Matrix cracking was

more obvious for the 90/0/0/90 sublaminate (Fig. 7.2.6) than for the 0/90/90/0

sublaminate (Fig. 7.2.5).

Figures 7.2.7 and 7.2.8 show strain-energy release rate distributions for two

specimens with edge delaminations. The analytical results are for approximately

the same range of strains that were used in the tests. Results are shown for three

strain levels.
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Fig. 7.2.6Radiograph of PEEK laminate with an initialsemi-circularedge

delaminationof radius15ram. The sublaminate is(90/0/0/90).

151

ORIGINAL PAGE IS
OF POOR QUALITY



600

500

GI ' 400

J/m2 300

200

100

0
0

Curve Strain

a -.002
b -.003
c -.004

b

! I _1 I [ • I , |

.005.0lO.015.020.025.030.035
S, m

600

500

GU ' 400

J/m2 300

200

100

C

b

O0 .005.0tO.015.0_ .025.030.035

S, m

600

50o jGT, 400

J/m2 300

//

'
0 .005.0lO .Or5,020.025.030.035

S, m

40ram

Fig. 7.2.7 Strain-energy release rate distributions for (0/90/90/0) AS4/PEEK

sublaminate with a seml-circulax edge delamination.
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Fig. 7.2.8 Strain-energy release rLte distribution for a (90/0/0/90) AS4/PEEK

sublaminate with a semi-circular edge delamination.
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The strain-energy releaserate distributionsfor a 40ram edge delamination a_d

(0/90/90/0) sublaminate are shown in figure7.2.7.Based on GI one would expect

growth transverse to the load direction. But based on GI[ , one would expect

growth along the load direction. Without a mixed-mode delamination growth

criterion,itis not possible to predictthe direction of delamination growth. The

experiments usually exhibited dominant growth in the load direction. The figure

shows that the peak GII isabout twice the peak G I. Hence, itappears that the

large magnitude of G[I was sufncient to cause dominant growth to occur in the

load direction.

The strain-energy release rate distributions for a 3Omm delamination and a

(90/0/0/90) sublaminate are shown in Fig. 7.2.8. The peak GI! component is

much smaller than the peak GI, and would not be expected to play much of a role.

Based on G! one would clearly expect dominant delamination growth to occur

transverse to the load direction. This agrees with the experimental observations.

In summary, there are significant qualitative agreements between the observed

and predicted behaviors.

7.3 Quantitative Study of IM7/8551-7 Laminates

A variety of measurements and observations were made for IM7/8551-7 lami-

nates with an embedded delamination. As was the case for PEEK, two stacking

sequences were used: (0/90/90/0)6 and (90/0/0/90)6 . The initial delamination

was located between the fourth and fifth plies. No edge delamination tests were

performed. Because there were no major manufacturing induced artifacts (like

the Kapton sticking problem in the PEEK laminates), quantitative comparisons

were made between analysis and experiments for postbuckling deformations and

initiation of delamination growth. Also, the stability of delamination growth was

monitored. A combination of techniques were used to determine the extent and

types of damage. These techniques included measurement of deflections, X-ray,

ultrasonic C-scans, and sectioning followed by light microscopy.
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Figures 7.3.1-7.3.3show load versus deflectionfor the six laminate configura-

tions considered (2 stacking sequences and three delamination sizes).The deflec-

tion is that in the center of the delaminated region. For each delamination size

the agreement between the observed and predicted load versus deflectionisfairfor

the (0/90/90/0) stacking sequence. For the (90/0/0/90) stacking sequence, the

agreement isfairfor the 30ram delamination. For the 40 and 60ram delaminations,

there isa large discrepancy, except at the lower strain levels.This divergence at

the largerstrainsmay be due in part to the overlapping of the delamination faces,

which occurs in the analysis,but not in reality.The significanceof the overlap

tends to increase as the ratio of the applied strain to the bifurcation buckling

strain increases.This ratio increaseswith strain for a fixed delam|nation sizeand

with delamination sizefor a fixed strain.This may explain the better agreement

at lower strainsand for smaller delamination sizes.

Figures 7.3.4 and 7.3.5 show the deformed shape of the y-0 plane for the

two stacking sequences and a 60ram delamination as measured during tests and

as predicted from analysis. The strain for the tests was _.0026. The analytical

resultsare for a strain of-.003. This small differencein strain is not important

for the comparisons of deformed shape. There isconsiderable differencein the

deformation for the two laminates for the y-0 plane. The buckled area is

noticeably wider for the (0/90/90/0) laminate than it is for the (90/0/0/90)

laminate. The deformation for the x:0 plane isnot much differentfor the two

laminates. The analysispredicted interpenetrationof the delamination faces (since

contact constraints were not imposed). The measured and predicted deformed

shape agree reasonably well except, of course, where the analysis predicted

interpenetration.

Strain-energy release rate distributions were calculated for the six configu-

rations for a range of strains which bracketed the strain at which delamination

growth from the Kapton insertoccurred. In allcases the C/,II! component was

negligible.Figures 7.3.6-7.3.11show the resultsof the analysis.There isone figure
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Fig. 7.3.4 Deformation of the y=0 plane for a (0/90/90/0) sublaminate. Initial

delamination diameter was 60ram.
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delamination diameter was 60ram.
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for each configuration. Each figure shows the variation of GI, GII , and G T along

the delamination front. Also shown is the variation of the peak magnitude of G f,

GII, and GT with applied strain level. In all cases there is a large variation of the

strain-energy release rates along the delaznination front. The peak magnitudes oc-

curred at S = 0 and the magnitudes were small except close to S = 0. Obviously,

one would expect delamination growth to occur preferentially near S = O, which

corresponds to growth transverse to the load direction. During the tests, one could

visually determine that the delamination growth was localized near S = O. Fig-

ures 7.3.12-7.3.15 show X-rays of several specimens after appreciable delamination

growth had occurred. In these particular specimens there was sufficientthrough-

the-thickness damage to permit the dye penetraxtt to reach the interior. These

figuresshow that the analysis was correct in predicting preferentialgrowth near

S=0. The X-rays show that significantply cracking accompanied the growth. Ply

cracking occurred both in 0° and 90° piles. The large horizontal cracks in Figs.

7.3.12and 7.2.14could be seen on the specimen surface with the naked eye. These

cracks formed after delaznination growth had occurred. The tests were stopped

when the large horizontal cracks formed.

Several specimens were sectioned and polished M'ter testing. Micrographs of

these specimens are presented in Figs. 7.3.16-7.3.18. Fig. 7.3.16 shows two

cross-sectionalviews of a 0/90/90/0 sublaminate which had an initialdiameter

of 40ram. During the test of this specimen, the delamination growth occurred
B

followed (aftera few minutes at constant load) by the formation of a horizontal

crease in the sublazninate. There was no visiblesurface damage. Fig. 7.3.16a

shows that the crease was a resultof fibermicrobuckling of the interiorsurface ply

of the sublaminate. Fig. 7.3.16b shows a micrograph taken near the delamination

front. Recall that the Kapton implant was located between the fourth and fifth

plies.The delamination in Fig.7.3.16b isbetween the third and fourth plies,the

delamination has switched interfacesby way of a matrix crack in the fourth ply.

This figurealsoshows angled matrix cracks in the 90° plies.The angled orientation

was typicalin allof the specimens examined.
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sublaminate

,I

(a) Vie_ii I -=-_:

Fig. 7.3.16 Cross-section of IM7/8551-7 laminate with a (0/90/90/0) sublaminate

and an initial delamination diameter of 4Dram.
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(b) View 2

Fig. 7.3.16, Concluded.
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(a) View 1

sublaminate

! 1

Fig. 7.3.17 Cross-section of IMT/SSSI-7 laminate with an (90/0/0/90) sublaminate

and an initial delamination diameter of 60ram.
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Fig. 7.3.17 Concluded.

175



i!

el

.i

m

0 0
"_

0

+,u

°_

176



N

-,..I

A

t_

I

_d

m

O

¢g
t_

_m

177



Fig. 7.3.17 shows two cross-sections of a 90/0/0/90 sublaminate which had an

initial diameter of 60ram. Fig. 7.3.17a shows that even after some growth, the

delamination is still at the original interface (i.e. between the fourth and fifth

plies). The view in 7.3.i7a is of an area near the y-axis. In Fig.7.3.17b the view is

of an area offset slightly from the y-axis. There are many ply cracks in this area,

but the delamination is still between the fourth and fifth plies.

Fig. 7.3.18shows a montage of four micrographs of a 90/0/0/90 subla_ninate

which had an initialdelaminatlon diameter of 40ram. In this case the delamina-

tion has grown along the interfacebetween the fourth and fifthplies.After some

growth, the stresseswere such that a crack formed at both ends of the delamina,-

tion. At one end the crack grew allthe way to the surface of the laminate.

The micrographs and the X-rays indicate that even when a configuration starts

out fairlysimple (in this case a singledelamination separating the laminate into

two balanced and symmetric laminates), the damage development tends to be

complicated. Matrix ply cracking was prevalent in all the tests. The density of

the cracks varied with location in the sublaminate. The delamination sometimes

switched interfaces,depending on the stacking sequence. In some cases fiber

microbuckling occurred.

The strain at which the delamination began to grow was recorded for each

configuration; Using these strainsand the analytical resultsin Figs. 7.3.6-7.3.11

one can estimate the peak strain-energy release associated with delamination

growth for each specimen. These results are summarized in Fig. 7.3.19. Both

GI and GI[ are shown. Deiamination growth appears to be dominated by GI.

The criticalmagnitude of GI based on Fig. 7.3.19 isnot much differentthan the

392-513 J/m 2 reported by the materials manufacturer (ref.46). When GII was

large,the criticalG I tends to be somewhat less.

For the 30ram delamination with a (0/90/90/0) stacking sequence, GI was

quite low. This was probably due to the high strain which would have been
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required to reach a value of G I of about 400J/m 2. Fig: 7.3.20 summarizes the

strains at which delamination growth began for each configuration. For each

delaznination size the strain was significantly larger for the (0/90/90/0) stacking

sequence. For the 30mm case the strain for growth was -.0055. This nominal strain

plus the flexure of the buckled region results in a very high compressive strain in

some areas. One might guess that this very high compressive strain could trigger

other damage mechanisms which would augment the effect of the postbuckling

induced interlaminar stresses. In fact, for both 30ram (0/90/90/0) specimens

tested, a horizontal crack formed shortly after delamination growth occurred

(see the X-ray in Fig. 7.3.12). This horizontal crack formed when microbuckling

occurred on the interior surface of the sublaminate.

The two stacking sequences differed considerably in terms of the stability of

delaminatlon growth. The (90/0/0/90) laminate always exhibited at least some

slow incremental delamination growth with increased load. The delamination

growth in the (0/90/90/0) laminate tended to be abrupt and often the initial

growth was quickly followed by formation of a large horizontal crack.
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Chapter 8

SUMMARY AND RECOMMENDATIONS

There are many mechanisms which contribute to compression failure of lam-

inated composites. This study has focused on delamination growth driven by

local buckling of a delaminated group of plies. This mechanism was referred to

as instability-related delamination growth (IRDG). A review of the literature in-

dicated that no detailed analysis had been performed for any three-dimensional

configuration which exhibits IRDG. Detailed stress analysis helps identify which

material and geometric parameters govern IRDG. Also, without detailed stress

analyses it is difficult to determine the accuracy of less expensive approximate

analyses.

The goal of this study was to enhance the understanding of IRDG in 3D

configurations through a combination of analyses and experiments. There were

three tasks in this study: development of a suitable stress analysis program,

performance of a parametric analytical study, and performance of a combined

experimental and analytical program.

A geometrically nonlinear 3D finite element analysis program, NONLIN3D, was

developed to perform the required stress analysis. This progr_ was tailored to

exploit the vector processing capability of the CDC VPS32 supercomputer. The

program uses a 20-node isopaxametric hexahedron element. The program was

designed to perform analysis by substructures. This resulted in a large reduction

in computational effort, since nonlinear analysis could be restricted easily to just

that part of a configuration which needed it. An approximate contact analysis

was also implemented. A variety of checks were performed to assure the accuracy

of the analysis.

The parametric analytical study was performed on a fictitious material which

had the same in-plane stiffnesses as a quasi-isotropic laminate, but had no stacking

sequence effects. This material was used so that the effects of strain level and
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geometric parameters could be studied without the additional complications due

to stacking sequence. Both embedded and edge de[aminations were considered.

These configurations were found to behave in a complex manner. Some of the

observations and accomplishments were:

1. The configurations were definitely mixed mode. In some cases G I was larger

than GII. For other cases the opposite waa true.

2. In general, there was a very large variation of the strain-energy release

rates along the delamination front. Usually, one would expect initial delamination

growth to occur only along a small portion of the front.

3. The locations of maximum G! and GII depended on the delamination shape

and the applied strain.

4. The mode III component was much smaller than GI and GII.

5. The analysis predicted that for some configurations the sublaminate

would overlap the base laminate unless contact constraints were added. Most

of the analyses were performed without imposing contact constraints, since the

addition of the constraints further complicates an already complicated problem.

To determine the errors caused by not including contact constraints, a few"

strain-energy release rate results were calculated both with and without contact

constraints. T_.ese results showed that for moderate postbuckling strains, the

errors were fairly small.

6. The distribution of total strain-energy release rate can be calculated fairly

accurately using plate analysis.

7. An intuitive interpretation of the deformation and load transfer for the

embedded delamination was presented. This interpretation explains much of the

observed variation of the strain-energy release rates.

The combined experimental and analytical program involved a variety of
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configurations. A few preliminary tests were conducted strictly for verifying

NONLIN3D. The primary goals of this phase of the study was to determine

whether the behaviors predicted by NONLIN3D would occur in actual specimens

and to determine if a strain-energy releaserate parameter could be usedto predict
the onset of IRDG.

IRDG was studied for two material systems: AS4/PEEK and IM7/8551- 7.

Two sublaminate types were considered: (0/90/90/0) and (90/0/0/90). Because

of problems in fabricating the PEEK specimens, only qualitative comparisons of

analysis and experiments were possible. Quantitative comparisons were made for

the IM7/8551-7 material system. Some of the major conclusions were:

1. The shape of the postbuckled sublaminate depended on the stacking

sequence. The predicted shapes agreed well with the experimentally measured

shapes.

2. The direction of delamination growth depended on stacking sequence for

the edge delamination. This behavior was predicted by the analysis.

3. Delamination growth occurred along only a small portion of the delamina-

tion front, as predicted by the analysis.

4. Initial delamination growth in the IM7/8551-7 laminates appeared to be

governed by the magnitude of G'I.

5. Matrix ply cracking generally accompanied delamination growth. In some

cases fiber microbuckling also occurred shortly after delamination growth occurred.

Instability-related delamination growth was defined to be delamination growth

caused by buckling of a delaminated group of plies. The tests showed that other

damage mechanisms can also become operative when buckling occurs. Explaining

the interaction of these various mechanisms with IRDG is beyond the scope of

this study. In fact, there is so much that needs to be done to fully understand
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IRDG, that it is difficult to make just a few recommendations for future work.

The following non-comprehensivecomments are offered as general guidelines for

future work in the area of instability-related delamination growth.

1. Considerableeffort was expended in developing and using NONLIN3D. The

3D analysis is still quite expensive, in spite of the techniques used to reduce the

computational effort. These techniques served only to make it possible to make

the calculations presented herein. If the synergistic effects of various damage

mechanisms are to be studied with any rigor, new approaches must be developed.

Hopefully, the results presented will be used to provide direction and insight for

developing approximate analyses.

2. A more complete characterization of basic material properties is needed. A

full 3D set of material moduli is obviously needed for accurate 3D stress analysis.

Also needed is better interlaminar fracture toughness characterization, particularly

for mixed mode situations.

3. The effects of the following on IRDG need to be examined for 3D

configurations:

a. unsymmetric sublaminates

b. global bending

c. thermal stresses

d. initial imperfections

e. multiple delaminations

4. Synergistic effects due to the presence of multiple damage types need

considerable experimental investigation.
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APPENDIX

SHAPE FUNCTIONS FOR 8- AND 20-NODE ELEMENTS

This appendix gives the shape functions for the 8- and 20-node elements. The

node numbering sequence was given earlier in Fig. (2.2.1).

The shape functions for the 8-node element are :

s(1) = (1 + 61), (1 - _2) *(1 - _3)/s
s(2) : (1 + 61), (1 + 62)• (1 - 63)/s
5'(3) - (1 + 61), (1 + 62), (1 ÷ 63)/8
s(4) -- (1 + _1) * (1 - 62) , (1 ÷ 63)/8
S(5)= (I- 61)*(I- 62)*(1- 62)/8
scs)= (1- 61),(i+ 62)•(i- 63)/8
S(7) = (1 -- 61)* (1 + 62) *(1 + 63)/8
SiS)= (I- 61)*(I- ",)*(I+ 63)/8

The shape functions for the 20-node element are :

Corner nodes:

S(I) =.125,(I-61)*(I-62),(1-63),

S(3) = .125 * (I - 61)* (I + 62)* (1 - 63) *

S(5) = .125 * (1 - 61)* (1 + 62) * (1 + 63)*

S(7) = .125 * (1 - 61) * (1 - 62), (1 ÷ 63) *

S(13) = .125. (1 + 61)* (I - 62) * (I - 63)

S(15) = .125. (I + 61) * (1 + 62)* (1 - 63)

S(17) = .125 * (1 + 61)* (1 + 62)* (1 + 63)

S(19) -.125. (I + 61) * (i - 62)* (1 + 63)

(-61 - 62- 63- 2)
(-61 + 62- 63- 2)
(-61 + 62÷ 63- 2)
(-61 - 62+ 62- 2)
,(6_- 62-63-2)
* (61 ÷62 --63--2)

,(61+62+63-2)
,(61-62÷63-2)

Mid-side nodes on the plane 61 = 0 :

s(9) = .25, (1- 61,6_), (1 - 62)• (1 - 63)
S(lO) = .2s, (1- 61,6_), (1+ 62), (1 - 63)
S(ll)--.25.(1 - 61*61) * (1+ 62)*(1+ 6s)
S(12)= .25*(I- (_I* 61) * (I- 62)*(1+ 63)
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Mid-side nodeson the plane 52 = 0 :

s(2) = .25• (1 - _2*62), (1 - 61), (z - 63}
s(6) = .25, (1 - _ • _), (l - 6_) • (1 + 63)

s(z4) = .25, (1 - _2*62) • (z + 6_), (z - 63)
s(18) = .25, (1 - 62• _) • (1 + 61), (1 -e63)

Mid-side nodes on the plane 63 = 0 :

S(4) =.25.(1-63.63)*(1-61)*(1+62)
,5'(8)= .25 * (1 - 63*63) * (1 - 61) *(1 - 6"2)
sCZ6)= .25 *(1 - 63*63) * (1 + _) * (1 + _)
s(2o) = .2s • (1 - 63• 63) • (1 + 6_)• (1 - _)
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