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INVESTIGATION OF AUTOMATED TASK SCHEDULING AND DECOMPOSITION

by

David L. Livingston 1

Gtirsel Serpen 2

Chandrashekar L. Masti 3

Introduction and Organization

1.1 Introduction

This document reports on the details and results of research conducted in the application

of neural networks to task planning and decomposition. Task planning and decomposition are

operations that humans perform in a reasonably efficient manner. Without the use of good

heuristics and usually much human interaction, automatic planners and decomposers generally

do not perform well due to the intractable nature of the problems under consideration. The

human-like performance of neural networks has shown promise for generating acceptable

solutions to intractable problems such as planning and decomposition. This was the primary

reasoning behind attempting the study reported herein.
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University, Norfolk, VA 23529.

2 Graduate Research Assistant, Department of Electrical and Computer Engineering, Old
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3 Graduate Research Assistant, Department of Electrical and Computer Engineering, Old

Dominion University, Norfolk, VA 23529.
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Thebasisfor thework is theuseof statemachinesto modeltasks.Statemachinemodels

providea usefulmeansfor examiningthe structureof taskssincemanyformal techniqueshave

beendevelopedfor their analysisandsynthesis.It hasbeenour approachto integratethestrong

algebraicfoundationsof statemachineswith the heretoforetrial-and-errorapproachto neural

networksynthesis.

1.2 Organization

The research we have performed can be broken down into three broad categories. The

first category reported in section 2 examines the use of a type of neural networks, called

constraint satisfaction networks, to plan a task by finding the transfer sequence of a state machine

representing the task. The necessary background, theory and an example are presented in this

section.

The second category, section 3, deals with using constraint satisfaction networks to find

structures called s.p. partitions which are essential in the state machine decomposition process.

As in section 2, background, theory and an example are included.

The final category, section 4, deals with a technique that was developed to overcome

some of the shortcomings of constraint satisfaction networks used in the search for solutions of

the problems studied in the previous two sections. We call this new technique an adaptive

constraint satisfaction network and report on some of the primary results achieved at this point.
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2.1 Introduction

The main action of task planners is the searching of a very large state space in the

presence of constraints. Conducting this search in a serial fashion may not meet the time

restrictions of some real-time tasks indicating a need for parallel methods. Neural networks are

examples of implementations of algorithms that can perform the constrained state space search;

i.e., solve constraint satisfaction problems in a parallel and distributed manner [1].

Two well-known examples of neural networks which perform constraint satisfaction

searches are the Hopfield network [2], [3], [4], [5] which is a deterministic method

and the Boltzmann machine [6], [7] which performs searches using stochastic techniques.

Both paradigms effectively search for a local minimum of a performance function which is

realized in the network by the interconnection topology.

In the case of a Hopfield network, once the constraints and the associated parameters have

been defined, the local minimum the network settles into is solely determined by its initial

conditions and the order the neurons are updated. Hopfield networks require an asynchronous

update rule to prevent the network from getting trapped in limit cycles. In practice, asynchronous

update is achieved by choosing the neurons for update in random order.

In the case of the Boltzmann machine, each local minimum can be visited with a certain

probability irrespective of network initial conditions given that a sufficiently long annealing

schedule is employed. The tradeoff for the insensitivity of the Boltzmann machine to it's initial

conditions is thus the sequential character of the algorithm introduced by the annealing schedule.
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Thetypesof taskplanningproblemsthatareconsideredin thisstudyarepurelyconstraint

satisfactionproblems;that is, thereareno costsinvolved. In thesetypesof problems,referred

to as syntactic constraintsatisfactionproblems, local minima of the performancefunction

generallydo not correspondto solutionsas in the caseof optimizationproblems. Henceit is

necessaryto find theglobalminimumof theperformancefunctionto find a solutionwhich does

not violate any of the constraints. Since the Boltzmannmachineconvergenceprocessis

independentof network initial conditions,it hasa better chanceof ending up in the global

minimumascomparedto theHopfieldnetwork. ThereforetheBoltzmannmachineis preferable

over the Hopfield networkfor syntacticconstraintsatisfactionproblemsif thetime degradation

introducedby the annealingschedulecanbe tolerated.

2.2 Problem Definition

Our purposefor the researchreportedherein is to demonstratethe useof constraint

satisfactionnetworksto performthe searchfor the shortest,viablepathbetweendefined initial

andfinal statesin a statespace.Theresultingpathrepresentsa planfor executingthetaskover

which the statespaceis defined. In our analogy,we aresearchingfor the transfersequenceof

a statemachinefor a giveninitial andfinal statepair.

A directedgraph(digraph)is a functionaldefinitionfor a statemachine[8] andis used

asanabstractmodel for the transfersequencesearchproblem. Verticesof thegraphrepresent

statesand directededgesstandfor transitionsbetweenassociatedstates. By using a proper

representation,a constraintsatisfactionnetworkcanbe constructedsuchthat thefinal statethe

networksettlesinto representsthe shortestpath throughthe digraph.
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The shortestpathbetweentwo verticesof a given directedgraphcanbe definedas a

subgraphwhich meetsthe following constraints:

1) the subgraphrepresentinga path is both irreflexiveandasymmetric,

2) eachvertexexceptthesourceandtargetverticesmusthavein-degreesandout-degrees

of exactly1,

3) the sourcevertexhas in-degreeof 0 andout-degreeof 1,

4) the targetvertexhasin-degreeof 1 andout-degreeof 0, and

5) the lengthof thepathisequalto thatpowerof theadjacencymatrixwhich hasthefirst

nonzeroentry in therow andcolumnlocationsdefinedby thesourceandtargetvertices

respectively.

2.3 The Boltzmann Machine Implementation

From a topological viewpoint a Boltzmann machine can be visualized as a symmetric and

irreflexive directed graph where graph nodes and weighted edges represent the computation nodes

(neurons) and the interconnections respectively. Each neuron output is binary valued. The

activation function is defined as

Pi(si-l) -
1

where Pi is the probability that %, the activation of neuron i, is equal to 1, T is a time-varying

computational parameter analogous to temperature and neti is the input sum to unit i. The term

net_ for a typical second-order machine is defined by
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neti " E Wij Sj + b i,
J

where wij is the connection weight between neurons %, and %, and bi is a bias for s i,

Neurons in a Boltzmann machine are updated asynchronously. As previously stated, the

parameter T is analogous to temperature. A Boltzmann machine is able to escape local minima

through the use of "thermally" induced noise. The temperature parameter is assigned a large

initial value and is decreased at discrete time steps until it reaches a predetermined minimum

value. This process effectively starts the machine in a very noisy mode and gradually reduces

the noise in a manner analogous to annealing. A sufficient condition for converging to a global

minimum with probability approaching one is to use an annealing schedule of the form

%
T(k) -

log(l + k) '

where T Ois a sufficiently high initial temperature and the discrete time-step k approaches infinity

[9]. Since a practical application requires a finite convergence time, an upper bound for the

probability of converging to the global minimum is established by the time-limitations of the

problem under consideration. This upper bound is necessarily less than one.

The probability of being in the state Sn, where a state is defined to be the vector of the

activation values of all neurons in the network, is given by

P (S_) =

E(S n)

e T

E(S i)

i
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where E(S_) is the energy of the network associated with the state Sn and index i implies a sum

over 2 N states of an N-neuron network [6]. Thus the network will tend to settle into a state

corresponding to a low value of the energy function with high probability. If the energy function

is defined such that the minimum energy values correspond to the states which meet the

constraints of the problem, then the Boltzmann machine will seek out and settle into those states

with high probability.

The network topology employed to search for the shortest path in a digraph is an N×N

array of neurons representing the adjacency matrix of a given directed graph. Each neuron in

the network stands for an entry of the adjacency matrix and thus for an edge of the directed

graph.

2.4 Energy Function

The general form of the quadratic performance function a Boltzmann machine minimizes

is

E(S) - --_ . . wij sis _ + . b_ s i,

where w_ is the weight between neurons si and sj and bi is a bias. The weight can be defined by

n
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where I_ _ R ÷ if the hypotheses both nodes represent for constraint n are mutually supporting

and I_ E R" if they are mutually conflicting. The term 8_j is equal to 1 if the two hypotheses

represented by si and sj are related under constraint n and is 0 otherwise.

Given the graph-theoretic constraints a path specification has to satisfy, the next step is

to define the corresponding topological constraints of the path search problem for an adjacency

matrix topology of the neural network.

An irreflexive graph has all diagonal entries of its adjacency matrix equal to zero, which

equivalently translates into clamping all neuron outputs along the main diagonal of the Boltzmann

machine to 0.

Graph asymmetry (constraint #1) requires that only one of the two entries located at

symmetric positions with respect to the main diagonal of the adjacency matrix be equal to 1.

Hence btij = 1 and K 1 _ R- if and only if the row index of node si equals the column index of

node sj and the column index of node s_ equals the row index of node sj; otherwise 6Hi ---0.

Figure 2.1 illustrates the implementation of this constraint.

A digraph node with an in-degree of 1 implies the existence of a single I in the associated

column of the adjacency matrix (constraint #2). The term 82_j --- 1 and K 2 E R if and only if the

column index of node si equals the column index of node sj; otherwise 8z_j = 0.

Similarly, a digraph node with an out-degree of 1 requires only a single 1 to exist in the

associated row of the adjacency matrix (constraint #3). The term b3_j -- 1 and K 3 E R if and only

if the row index of node si equals the row index of node sj, otherwise 53_j= 0. Constaints #2 and

#3 are illustrated in figure 2.2.
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Figure2.1. Constraint#1.
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Figure 2.2. Constraints #2 and #3.
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A pathspecificationimposestheconditionthatanynodethatis nota sourceor targetand

is includedin the pathmusthavean in-degreeandout-degreeof 1 (constraint#4). In termsof

the adjacencymatrix, if thereexistsa 1 in a particularrow/column,then theremustexista 1 in

the column/rowthat hasthesamenodelabelasthecorrespondingrow/column. The term 64_j=

1 andK4_ R÷ if and only if the row index of node s_ equals the column index of node sj or the

column index of node si equals the row index of node s_; otherwise 64_j -- 0. This constraint

resuks in an excitatory connection as shown in figure 2.3.

2.5 Example Application

In order to test the proposed network, a digraph with a specially defined adjacency matrix

was employed. It was assumed that the adjacency matrix of the digraph had all its lower

triangular entries and the entries above the main diagonal equal to 1; e.g., let a_j, the entry in the

i-th row and j-th column of a matrix, belong to A, the adjacency matrix of the digraph, then a_j

-- 1 if and only if i ,: j + 1. The adjacency matrix for an example digraph with 10 vertices is

shown in Table 2.1. Note that the entries which are equal to 0 are equivalently clamped to 0

in the Boltzmann machine network.

The digraph specification yields a path of length N-1 between vertices V 0 and Vs.1. ThUS

this is the largest possible path for an N-vertex digraph. Another feature of this digraph is that

there are circuits of all possible lengths implying a difficult state space to search since all those

circuits will be mapped to local minima of the quadratic performance function.

Since it is known that a path is irreflexive, we can clamp the neurons which are located

along the main diagonal to 0 given that they represent the hypothesis; the path has a self-loop
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Figure 2.3. Constraint #4.
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Vo VI V2 V3 V4 V5 V6 V7 Vs V9

V01 1 0 0 0 0 0 0 0 0

VI1 1 1 0 0 0 0 0 0 0

V21 1 1 1 0 0 0 0 0 0

V31 1 1 1 1 0 0 0 0 0

V41 1 1 1 1 1 0 0 0 0

V51 1 1 1 1 1 1 0 0 0

V61 1 1 1 1 1 1 1 0 0

V71 1 1 1 1 1 1 1 1 0

V s 1 1 1 1 1 1 1 1 1 1

V 91 1 1 1 1 1 1 1 1 1

Table 2.1. The adjacency matrix of

a specially defined digraph.
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for vertexVi. In orderto mapthe in-degreeof 0 for a sourcevertex,the neuronsbelongingto

thecolumnlabelledby thatvertexareclampedto 0 andsimilarly, theneuronsof therow labelled

by thetargetvertexareclampedto 0 to realizethe requirementthattheout-degreeof thetarget

vertex is equalto 0.

Assumethatwe arelookingfor apathstartingwith vertexV0andendingwith vertexV9.

Clearly,thereexistsonly one pathwhich includesthe adjacencymatrix entriesabovethe main

diagonalasdepictedby table 2.2. This pathrepresentsthe solutionto the planningproblem.

The neuronoutputswhichtakepartin computationswererandomlyinitialized. Theinitial

starting temperaturewas selectedsuch that at least80% of the neuronoutput probabilities

belongedto the intervalof realsgiven by [0.4,0.6]. The setof parameterslisted in table 2.3

were determinedby trial and error and resulted in convergenceto the state vector which

representedthe solutionillustratedin table2.2 in over 90%of all trial runs.

2.6 Conclusions

We have demonstrated the use of a second-order Boltzmann machine for the shortest path

search in a directed graph. One important difficulty of employing neural networks to solve

constraint satisfaction problems is the lack of a proper methodology to map a given problem into

the network domain. It seems that discrete mathematics may provide a rich source for abstract

tools to help with the mapping problem.

Another issue is the need for a heuristic approach combined with a trial and error search

for the determination of the correct set of values for the gain parameters of the energy function.

Chapter 4 details the incorporation of an adaptive component to the constraint satisfaction search
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algorithmsothat theneuralnetworkcanlearnwhile searching.This eliminatestheneedfor the

trial and errorsearchthat is requiredto determinethevaluesof the gain parameters.
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g 0 V 1 V 2 V 3 V4 V 5 V 6 V 7 V 8 g 9

VoO 1 0 0 0 0 0 0 0 0

VIO 0 1 0 0 0 0 0 0 0

V20 0 0 1 0 0 0 0 0 0

V30 0 0 0 1 0 0 0 0 0

V40 0 0 0 0 1 0 0 0 0

Vs0 0 0 0 0 0 1 0 0 0

V60 0 0 0 0 0 0 1 0 0

VTO 0 0 0 0 0 0 0 1 0

V80 0 0 0 0 0 0 0 0 1

Vg0 0 0 0 0 0 0 0 0 0

Table 2.2. The path between V o and V 9.
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Parameter
KI
K2
K3
K,
I

Table 2.3.

Gain

-1

-2

-2

1

1

Parameter values.
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3.1 Introduction

A significant portion of the effort in generating a decomposition of a task consists of the

combinatorialy explosive problem of finding the elements of the general structure from which

the decompositions are obtained. The problem of decomposition has been approached from an

algebraic perspective that essentially relies on partition algebra. Hartmanis and Steams [10]

pioneered the use of partition algebra for analyzing the structure of sequential machines.

Partitions generated over state machines determine the possibility of decompositions and provide

an understanding of their structure. Currently existing techniques for obtaining machine

decompositions are based on performing an exhaustive sequential search into the machine's

transition characteristics governed by a given input environment. This process is known to

become intractable with growth in problem size and consequentially imposes intemperate

demands on computation resources.

The recent resurgence of artificial neural nets has drawn keen interest from groups of

researchers who have observed that these models demonstrate capabilities in addressing

computationaly "hard" problems including the travelling salesman problem [2], the graph

partitioning problem [11] and the N-queens problem [12]. This new development offers

a clear motivation for furthering a serious exploration into the potential of a neural approach to

addressing the N-P-hard machine decomposition problem.
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3.2 Constraint Satisfaction Neural Networks

Artificial neural net models are also known as parallel distributed processing (PDP) or

connectionist models [1]. The fundamental assumption for these models is that the information

processing takes place through interactions between a large number of simple processing elements

called units or neurons, where each can send either excitatory or inhibitory signals to other units

in the system. In the application of neural nets to constraint satisfaction, the individual neurons

are themselves used to represent hypotheses. The activations of the neurons are analogous to the

validity associated with the different possible hypotheses. The constraints known to exist

between the different hypotheses are represented by weighted interconnections between the

neurons. When neural net models are used in this fashion they demonstrate the capability for

performing optimization.

The computation of solutions to constraint satisfaction problems by connectionist networks

is performed by an iterative relaxation search which starts with a randomly chosen initial state.

This state can be interpreted as a proposed solution which the network progressively improves

by reducing a well defined "objective" or "energy" function. The eventual low-energy (minimal)

states to which the network converges represent the required "good" or valid solutions. The

energy function defined for the network measures the extent to which the current interpretation

violates the stipulated constraints. Each possible state of activity of the network has an

associated energy. The activation rule used for updating activity levels of the neurons is so

chosen that this global network energy shows a general decline with every iteration.
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3.3 Partitions and Decomposition

A partition n on a set S is a division of S into disjoint subsets Sk 9 Si f3 Sj = 0, V i ,, j

and S = USk. Each Sk is called a block of _. It is usual to represent a partition by writing

overlines atop the disjoint subsets and separating them by semicolons so that the subsets appear

as blocks of set members. An example of a partition is:

-{0, 2, 4; 1, 3, 5}

The theory of finite state machine structure is based on laws derived from partition

algebra. Mathematically defined, a finite state machine M is characterized by a three-tuple

M -- <S, I; {6}>, where S is the state set of the machine M, I is its input set and {/5} is a set

of state transition functions (or "next-state" mappings). State machines may be decomposed as

determined by certain special properties exhibited by the partitions generated over their state

spaces, the most significant among them being the substitution property. With respect to a state

machine characterized by a three-tuple as defined above, we present a formal definition of the

property of substitution as satisfied by a partition over the state set of a finite state machine.

A partition on a state set S of a state machine M is said to satisfy the substitution

property (s.p.) and is denoted by n if, V %, sj E S which are in the same block of _xand any input

ik _ I, the states 6(ik, %) and 6(i k, %) are also in a common block of n.

For any n-state set S = {%, _ .... %} of a machine M, there always exist two trivial s.

p. partitions denoted by n(O) and _x(/), where

(0) - { sI; sz; s3; ...; s-_} and _(1) = { sI, sz, s3..... s_}
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Decomposition theory guarantees that if the product of any two s.p. partitions for a state

machine M equals the trivial s.p. partition _x(0), then M can be directly decomposed into two

independent machines M1 and M 2 operating in parallel.

3.4 Theoretical Development

In developing a neural approach to any problem, the issue of a proper representation

merits primary attention. Partitions have a one-to-one correspondence with relations. We

therefore use relation matrices to serve as the representation for partitions proposed by the

network. The network is organized into a system of N x N neurons for a problem space of state

dimension N. This means that a neuron in the "on" state at row-i, column-j is suggesting an

equivalence between states i and j of the state machine subject to the incorporated constraints.

3.5 Derivation of the Energy Function

After addressing the issue of representation, the next step is to establish the

interconnections between the neurons of the network. This is done by deriving the network

energy function and then establishing a one-on-one correspondence of terms with those in the

classical expression for the energy function of appropriate order. The derivation of the network

energy function and a determination of its order are based on the identification of the constraint

terms involved for the problem.

Partitions satisfying the substitution property define uniquely corresponding congruence

relations. By definition, congruence relations are implicitly equivalence relations with the added

requirement that they imply image equivalence whenever states are established as equivalent.
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Thus,s.p.partitionsmustpossesstheequivalencerelationproperties: reflexivity, symmetryand

transitivity aswell asthe(implication)propertiesof imageequivalence.

The reflexive and symmetric relations can be implicitly encoded in the N x N

representation scheme, by employing the following method:

1. Diagonal neurons in the N x N neuronal grid are clamped to remain in the "ON" state.

Since this is representative of the equivalence of a state with itself, the reflexive relation

is satisfied before the network starts the computation process.

2. Symmetry can be incorporated by ensuring that the states of off-diagonal neurons in

the in the upper triangular portion of the N x N grid maintain exact correspondence with

the neuron states in the lower triangular portion.

With the above method the search space for solution points in given problem domains becomes

noticeably reduced since the two constraint terms which would have been necessary to enforce

the reflexive and symmetry properties have been obviated.

The remaining properties are therefore transitivity and the substitution property. Thus,

the network energy function may be interpreted to consist of essentially two parts. The first part

encodes the transitivity constraint. The second part encodes the state-image congruence

constraint, i.e., the substitution property.

The second part of the network energy function must essentially map the complete state

transition behavior of the state machine under its stimulus (input) set to the network dynamics.

Thus, if we denote the energy function of the network by E, we may write

E = ktE, 1 + k:,E2,

where E 1 is the energy term due to the transitivity constraint and E 2 is the energy term due to the
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state-imagecongruence(s.p.propertyor next statefunction)constraint. Theparametersk I and

k 2 are known as gain terms for the respective constraints. They determine the relative importance

or weight that is assigned to each constraint.

3.6 Algebraic Basis of the Derivation

The neurons in the N x N network have only one of two possible states to which they can

eventually converge: the "ON" state or the "OFF" state. This means that the ultimately stable

solution states of the neural net are binary. We therefore use techniques from Boolean algebra

to derive the required functional dependencies of the constraint terms on the neuron activation

states, which we may regard as binary variables for our purpose of derivation. This is the basis

that provides for a systematic and algebraic method of derivation for the network energy function.

3.7 The Transitivity Constraint

A relation R is transitive iff a R b and b R c _ a R c, V a, b, c _ (state) set S over which

R is defined. In other words, this means that if state "a" • state "b" and state "b" • state "c",

then state "a" must also be • to state "c". Therefore, the third neuron responsible for

representing equivalence between the states "a" and "c" in the N x N topological representation

scheme for the network must be constrained to be "ON" whenever the pair of neurons

representing equivalence between states "ab" and "bc" are in their "ON" states. This is a

third-order functional dependence of the transitivity constraint term on the activation states of

neurons in the network.
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The abovediscussionleadsto the conclusionthat the transitivity constraintcannotbe

enforcedinto thenetworkby afunctionthat is of themoreconventionallyusedquadraticorder.

We thusstatea theoremwhichmathematicallyestablishesthatthetransitivity constraintmustbe

a third-orderfunctionof the neuronactivationstates.

Theorem

Third-order interconnections are required for an N x N topological neural net to verify the

relation of transitivity in proposed partitions.

Proof

Defining Boolean matrix multiplications over n-th order square matrices A and B by

/3

c_j _ Va_kAbkj , (i)
k-i

where the V and A represent bit-ORing and bit-ANDing operations respectively, we see that the

matrix C = AB contains a "1" in the row-column position indexed ij whenever a "1" exists in

row-i, column-k in matrix A and row-k, column-j in matrix B V k _ [1, n]. For a relation that

is reflexive and symmetric, its relation matrix M R will encode transitivity in R [13] iff:

M _ " MxM "- M a . (2)

The matrix MR is a Boolean matrix because its elements are only l's or O's.

equation (1)

Thus, using

mij 6 M z -- M×M (3)



can be written

25

_;j " _ikAmkj (4)
k-I

Equation (2) essentially means that V k E [1, n] with mij E M R,

1_ij _ mij = 0

~ / ~I

(mij A m_j ) V (mij A falj ) _- 0

(5)

Since the variables involved are binary, we have the following three results that can map Boolean

logic operations V x, y _ {0, 1}, into the domain of integer arithmetic operations: The logical

complement of a Boolean (binary) variable is

x I - (I - x) (i)

The expression

xAy - x×y - xy (iJ.)

equates the logical "AND" operation to the operation of multiplication in the integer-number

domain. Finally, the equivalent expression for the logical "OR" operation is derived using the

above two results (i) and (ii) with the second theorem of De-Morgan:

(xlAyl) I ,, (xVy) ,

yielding
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xVy . (xIAyl)1

-- ( (i - x)A(I - y) )I

- ((i - x)×(l - y))'

-- (i - y- x + x×y) I

"- (i - 1 ÷ x + y- xy)

"- (x + y- xy)

(iii)

Thus, equation (5) may be rewritten as

n71j (1 - mij) V (1 - t_ij) mij _- o

which when simplified using the results (i), (ii) and (iii) transforms to

(6)

(mij - mijmxj ) V (mij - mijmxj ) - 0

"_ mij + mij - 2mij_ij "- 0

Thus, based on all the above results developed, equation (4) may be written in the form

(7)

n

mij " E mzkmkJ (8)
k-i

Upon substituting in equation (7), we finally obtain

n n

k-I k-i

This is an equation of third order in m 6 M. •

We now derivethe transitivityconstraintterm using the resultestablishedby the above

theorem and the laws of Boolean algebra. Since the activation states of the neurons in the system

are binary variables, we enumerate all possible combinations of activation values considering

triplets of neurons (Vii, Vjk, V_ in the form of a classical truth table. This is shown in table 3.1.
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Thetransitivity constraintterm (El) assignsa penaltyof (positive)unity to the networkenergy

function (E) in situationswhere the requiredneuroncombinationsviolate the definition of

transitivity. Conformationto the definition of the relationof transitivity obviatesthe penalty.

To derivethe functionaldependencyof the constraintterm E1 on the neuron triple (V_j,

Vjk, V_, we draw the Kamaugh-map as shown in figure 3.1.

Using the rules of Boolean algebra to obtain the classical sum-of-products form, for the

constraint E 1, we may write V i, j, k:

E_ - ( vijA vjkA _)

which upon using the results

V (vi.iA_kAvik) V (_._AvjkAvik)

x / i (1 - x) ,

xAy "- xy,

xVy "- (x + y- xy)

may be written in the form

g_ - v;j vjk + vjk v_ + v_j v;k - 3 v;# vjk v_k •

Since the representation used is the N x N network topology, the indices i, j, k span only

the upper triangular portion of the square grid of N x N neurons in the system (reference index

starting at 0). Thus, the last equation may be compacted to the following overall form:

(n-3) (n-2) (n-l)

EIIE E Eel
i-O j- (i÷I) k- (j+l)
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Neuron Vq

0

0

0

1

Neuron

0

1

0

1

Neuron

Vtk

0

0

0

0

Transitivity Law:

Violated ?

No

No

No

Yes

No

Yes

Yes

No

Constraint E1

value (1 or O)

0

0

0

0

0

Table 3.1. Transitivity function truth table V Vii, Vjv V_, E N x N neuron grid.
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V_,_ 00 01

0

(!)

II I0

0
0

0

0

Figure 3.1. Kamaugh map of transitivity truth values.
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Theequationfor the transitivity constraint term El is of third order as required. We note

that the equation sums only for indices spanning the upper triangular portion of the N × N

topology of neurons. This is useful for achieving a reduction in computation overheads. The

equation ensures that E_ generates a +I contribution to the network energy V triples of neurons

(Vii, Vjv V_ in the upper triangular portion of the N x N grid that violate transitivity. Ez

evaluates to a value of zero energy for every triple that does not violate transitivity.

3.8 The Substitution Property Constraint

This constraint is responsible for motivating the network towards finding partitions

satisfying the substitution property. To enforce this property into the generated partitions, the

family of next-state functions determining the state transition behavior of the state machine must

be incorporated into the constraint term. The state-transition function is defined for each present

state by a pre-specified set of inputs. As a result, the constraint mapping this information into

the neural net will need to scan the input set and determine the extent to which current solutions

proposed by the net violate the requirement of preserving state-image congruence.

We interpret the neuron activation states as binary variables again, and generate a truth

table enumerating all combinations for pairs of neurons (V 0 and its image neuron for a specific

input "k" denoted V_._0_.k0_). The subscript "8-k(i)" denotes the next-state determined by input

"k", for the current (present) state "i".
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A truth tablegeneratedby consideringpairsof neuronsin generaltermsis shownin table

3.2. Thes.p.constraintterm (£'2), assignsa penaltyof negativeunity to the networkenergyfor

all caseswhere the required neuroncombinationsviolate the definition of the substitution

property. Conformationto thepropertyof substitutionobviatesthepenalty.

The entriesin thetruth tablefor constrainttermE 2 show that its functional dependency

on the states of the neurons Vii and V___06_,0) has the same form as the classical "0110"

combination corresponding to a two-variable logical "EXCLUSIVE-OR (XOR)" function. Thus,

the sum-of-products form for the E 2 term V i,j,k may be written from the truth values and the

previously employed results as

_-- Vij + Vs-k(i) b-k(j) - 2 Vij Vs_k(i) 8-k(j)

As in the case of the transitivity constraint, since the indices span only the upper

triangular half of the N x N neuron grid, the above equation may be compacted to the concise

form:

n-2 n-i 8-khrax (i)8-kk,_x(J)

%-E E E
i-O j-(i+l) 6-k(i)8-k(j)-8-k x (i)_-k l (j)

The above equation is quadratic; it is computationaly efficient to the extent of offering

the benefit of scanning only a total of [N(N-1)]-,-2 neurons from the N x N grid.

Combining the two constraint terms E 1 and E 2 derived so far into one expression, the

overall equation for the network energy function may now be written as

E = klE l+k2E, 2.
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Neuron

V U

0

0

1

0

0

1

Violation of Substitution

Property ?

No

Yes

Yes

No

Value for

E2

0

Table 3.2. Substitution Property constraint term F_,z truth table.
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The gain parameters k1 and k2 are set relatively equal to each other so that the constraint

enforcing transitivity shares equal importance with the one influencing the substitution property.

This is not only beneficial in eliminating "tuning" of the gains, but is also necessary due to the

characteristic of s.p. partitions.

3.9 Ground State Characteristic of the Energy Function

The energy function (E) for the network has degenerate ground states. In other words,

the solution points for the s.p. partition problem represent a value of zero to the network energy

function. Neural net solutions to constraint satisfaction/optimization problems of the class of the

TSP, graph partitioning problem and others, have always been compared for merit with solutions

generated by classical techniques before accepting their "optimality". The degenerate

ground-state characteristic of the network we have developed obviates the comparison exercise

due to the fact that solution states are now uniquely identified by their associated zero-energy

values. A further use of this characteristic is the easy detection of local minima since unlike

global minima, these states will not have zero energies associated with them. Thus, the energy
\

function more tangibly reflects the merit of suggested solutions by the network: If the partition

energy is zero, the proposed solution by the network in its current state of activity is the required

global solution, else the computation needs to be continued and the present interpretation of the

net needs to be improved.
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3.10 Interconnection Strengths and the Activation Rule

The classical form of the energy function (E) for a third-order network [14] is written

as

1 I i
E(e>- E E E w'3'. vivJvk EEw' )i,v;vJ ,

i'j_k j*k*i k_j_i i*j j_i i

where W_3),j, is the weight matrix storing the interconnection strengths between triples of neurons

(V_V_VO, I,V2)_contains the strengths between pairs of neurons (Vyj) and W(°, represents the bias

for each neuron.

Comparing this expression with the derived equation (E) for the network energy function

and equating the coefficients of like terms, we obtain the entries to the three weight matrices.

The rule for activation of neurons in the net is based on the classical Hopfield-like

constraint satisfaction neural net mechanism. Each neuron takes turns in evaluating the difference

in the global energy of the network when it is in the "ON" state and when it is in the "OFF"

state. The state of activity of the neuron that lowers the global energy of the network is then

assumed by the neuron. This decision is made locally by each neuron and iterated enough

number of times till further changes cease to affect the network globally. The network is

thereupon understood to have performed the intended gradient descent in a 2 N(N_ dimension

landscape and effected an optimization of the energy function. The final, stable state of the

neurons in the network then reflect the solution computed by the net.

3.11 Boltzmann Machine with Simulated Annealing

A third-order Boltzmann machine network employing simulated annealing was developed

and simulated to solve for s.p. partitions. Amongst several algorithms that exist for incorporating
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thetechniqueof simulated annealing into parallel connectionist nets, the logarithmic rule derived

by Geman and Geman [9] mathematically guarantees asymptotic convergence to global minima,

Their rule is called classical simulated annealing (CSA). We used this technique in our

simulations for Boltzmann machines. An example problem is now illustrated.

Example

A state space of dimension 18 is addressed in this example. A state machine with 18

states and three inputs was presented to the network. The state table for this machine is given

in table 3.3. Figures 3.2 - 3.5 provide an illustration of the network as it generated a valid

solution:

_x - (0, 2, 4; I, 9, 17; 3, 5; 6, 8, I0; 7, 15; I--T;12, 13, 14, 16 }

Figure 3.2 shows a snap-shot of the 18 × 18 net in a random initial starting state. Two

intermediate states of the net as it evolved ultimately to the final solution configuration are

illustrated by figures 3.3 and 3.4. The valid global (required) solution state to which the network

converged in four discrete time-steps is shown in figure 3.5. The performance of the net to

fifteen independent runs was observed and is tabulated in table 3.4. The success rate of the net

is impressive. A valid solution was always obtained - the fastest in as little as two time steps.

Figure 3.6 is the legend for the various s.p. partitions listed in table 3.4. Classical simulated

annealing was used to address the issue of local minima. Further relavant statistics are indicated

in the snap-shot figures.



Present state input It input I2 input [3

0 0 2 4

1 1 9 17

2 0 2 4

3 3 3 3

4 0 2 4

5 5 5 5

6 6 8 10

7 7 7 7

8 6 8 10

9 1 9 17

10 6 8 I0

11 11 II 11

12 12 14 16

13 13 13 13

14 12 14 16

15 15 15 15

16 12 14 16

17 i 17

Table 3.3. 18-state, 3-input state machine table.
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Trial number S. p. partition Time steps needed for solution

1 nl 2

2 r_ 2

3 _ 5

4 zc,, 2

5 z_5 5

6 n6 3

7 n7 3

8 n 8 2

9 r,.9 7

10 :t m 2

11 n1_ 3

12 ax_a 4

13 n13 2

14 _14 5

15 nls 3

Table 3.4. Results of the network performance to 15 trial runs.
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3.12 Conclusions

Presentapproachesto themachinedecompositionproblemhavereliedonasequentialand

exhaustivesearchtechniquefor generatingpartitionssatisfyingthe substitutionproperty. This

is known to becomeintractablewith growthin problemsizeandthereforeimposesintemperate

demandsoncomputationresources.In this researchwe havedevelopedan intrisically parallel

approachto addressingthe intractabilityinvolved in thepartition searchproblemby the useof

an artificial neuralnetworkmodel thathaspotentialfor offering a viablealternativeto existing

sequentialsearchmethods.

Theproblemof decompositionshasbeencastinto theframeworkof constraintsatisfaction

and a neural net model was developedto solve constraint satisfactionproblems through

optimization of a mathematicallyderived objective function over the problem space. The

formulationstrategiesgoverningthederivationof objectivefunctionsfor constraintsatisfaction

neuralnetshavebeenbasedsofar on heuristics.This researchpresentsa formalizationfor the

methodby exploitingusefultheoriesfrom Booleanandrelationalalgebras.

We haveverified thatthe issueof decompositionsbelongsto aclassof problemsthatare

beyond the scopeof solvability for second-ordernetworks. A theoremhasbeenstatedand

provedestablishingthat third-ordercorrelationsmustbe extractedby a neuralnet to generate

substitutionpropertypartitions. A third-orderdeterministicnetworksuchasa hopfield net has

beenshownto fail in solving the s.p.partition searchproblemdueto the lack of anadequate

techniquefor escapingfrom any local minimaof its associatedobjectivefunction. Impressive

resultshavebeenobtainedby using a stochasticapproachsuchas a third-orderBoltzmann

machinenetwith simulatedannealing.
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A spectrumof problemsizeswas addressedusing a third-order Boltzmann machine

network. In many cases, solutions were obtained in under five discrete time-steps. Due to the

excellent convergence properties of the higher order scheme involved in connection with the

ground state chracteristic of the energy function derived, it has been possible to introduce

engineering ingenuities in identifying global solution states in arbitrary problem domains at

unconventionally fast rates. The network performance has shown favorable scaling with the state

dimension of the problem space. However, the network as simulated currently does show

degradation in performance with respect to the input dimension. Intrinsic limitations behind the

technique of a software simulation of an essentially parallel (neural) approach on a serial

computing machine have precluded any substantial immediate improvements.

3.13 Future Research

Real world problems in decomposition can be expected to have large-sized state as well

as input dimensions. As a result, a possible strategy for addressing the issue of scaling network

performance in adequate proportion to the input dimension is to exploit the theory of intersection

of lattices of sub-groupoids. A suggested technique is to develop a separate network for each

dimension in the input set of the problem space being addressed and incorporate a parallel

communication link (a constraint) between the individual nets as they descend toward their

respective global minima [15]. The common intersection point of their individual global

minima with respect to their convergent state of activity reflecting a valid, globally acceptable

solution as determined overall by every input dimension would then represent the required

solution. A little insight suggests that such an approach has its potential in essentially a hardware
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implementation,since larger the communicationbandwidthsimulated,greater the number of

iterative loops a single-CPU yon Neumann-machine would be required to execute, rendering it

an icreasingly inadequate choice for the purpose. Our attempts at software simulations based on

such a "decomposed approach to the decomposition problem" has provided corroborative results

favoring our conviction toward emphasizing a future attempt on VLSI based harware.

The majority of optimization/constraint satisfaction problems have been addressed till date

using neural nets with the order of interconnections between the neurons in the network being

no higher than quadratic. The potential of higher order neural nets has been known for some

time, but hardware limitations so far have determined limitations to their use [16]. With the

advent of high-speed, multi-level VLSI devices specially designed for parallel computation

algorithms such as neural networks, we speculate that the foundations we have laid for a neural

approach to the decomposition problem will one day obviate sequential methods altogether.
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4.1 Introduction

The original constraint satisfaction network proposed by Hopfield [2], [3], [4], [5] has

several drawbacks one of which is the network is guaranteed to converge only to local minima

of the associated Liapunov function [17], which are reachable from the given initial position

of the state vector. This property is useful if the Hopfield network is used as an associative

memory [18], but is not a desirable feature for the case where it is used as a constraint

satisfaction network simply because the local minima do not correspond to solutions in most

applications.

To examine the main reason why a Hopfield network does not perform well for constraint

satisfaction problems, we will analyze the process of solving a constraint satisfaction problem

with a Hopfield network. The initial task is to find a suitable representation with the hypothesis

each node represents and then define the weight matrix. Unfortunately, the definition of the

weight matrix is complete only up to determining the actual magnitudes of the gain parameters.

To observe this argument analytically, consider an element of the weight matrix, wij, the weight

between nodes si and s_. The weight can be constructed as

_t
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where K_ E R ÷ if the hypotheses both nodes represent for constraint et are mutually supporting

and K_ E R if they are mutually conflicting. The term 6aij is equal to 1 if the two hypotheses

represented by nodes si and sj are related under constraint ct and is 0 otherwise. As one can

easily see from the definition of the weight matrix entry wij, all variables but the actual

magnitude of the gain parameter K_ can be determined.

Although there have been attempts in literature to determine the optimal set of gain

parameter magnitudes for a given problem [19], [20], there is no convincing evidence

that an acceptable formal method exists. The typical solution of this problem is to randomly

initialize the gain parameters, observe the state vector to which the network converges and

identify the constraints violated using that state vector. Once the unsatisfied constraints are

observed, the magnitudes of the gain parameters which are associated with the violated

constraints are increased. It is often the case that this process has to be repeated many times.

There is no guarantee that a good set of gain parameters can be found such that the network will

always converge to a global minimum of the performance function, regardless of the initial

conditions. Another issue to note is that the increase in the gain parameter magnitudes is

arbitrarily specified.

The goal of this research effort is to design a closed-loop system in which a classical

Hopfield network performs the searching action and another functional block observes and

evaluates the output of the network and then adapts the weights of the Hopfield network. The

main function of the adaptive block is to redefine the weight matrix based on the information

extracted from the state vector to which the Hopfield network converges. The redefinition of the
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weightmatrix shouldbeperformedin suchaway that thesearchnetworkis lesslikely to break

theconstraintswhich it violatedpreviouslywhenthenetworkrelaxesto a new state.

It is necessary that the adaptation block has the means to detect the local minima which

are not solutions for the constraint satisfaction problem under discussion so that the adaptive

block can decide to initiate the adaptation process. The trial and error procedure performed to

search for a good set of gain parameters is eliminated by employing this closed loop system.

There are three important variables which determine the state vector to which a Hopfield

network converges: the gain parameters which finalize the exact shape of the energy function

in N-dimensional phase space, the initial state of the network node outputs and the random order

the node outputs are chosen to be updated [21]. If a classical Hopfield network is started

at a randomly chosen initial state, it will converge to one of the admissible set of local minima

which is solely determined by the Liapunov function and the random order the nodes are updated.

If the converged state vector represents a local minimum of the performance function and

hence at least one constraint is violated, the associated gain parameter magnitude is increased an

arbitrary amount. Although this adjustment of the gain parameter follows the argument "if a

constraint is violated then the weight magnitude representing the relative importance level of that

constraint is not large enough, thus it needs to be increased," there is still no guarantee that the

adjusted set of gain parameters will always cause the network to converge to a solution state

vector regardless of the initial conditions.

On the other hand, the proposed adaptive search system starts with randomly specified

initial state vector and set of gain parameters and then converges to the local minimum implied

by the random update order. If the local minimum is not a solution then the algorithm adapts
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the gain parameter magnitudes based on the information provided by the state vector representing

the local minimum. The relaxation process of the network with the new set of gain parameters

is restarted and this goes on until a minimum that represents a solution is found, thus effectively

eliminating the dependency of classical Hopfield network on its initial conditions. It is also

conjectured at this point of discussion that the random order the node outputs updated might still

play a significant role for the number of iterations needed to find a solution.

4.2 Hopfield Networks and the Adaptation Algorithm

Given a vector of discrete neurons S, Hopfield [2] has derived an "energy" or Liapunov

function for the discrete case:

where wij is the weight between neurons s_ and sj, and bi is a

bias to neuron %. Assuming the following activation rule:

s i = 1 if E Wij Sj + b i > O,
2

s i = 0 otherwise

the neurons willchange statessuch thatenergy willalways decreaseor remain the same.

The main philosophy of the adaptationalgorithm is to observe the statevector the

Hopfield network converges to as implied by the initial conditions, node update order, and

Liapunov function. An error signal is generated and is used to adapt the gain parameters thus

restructuring the N-dimensional energy space. The adaptive algorithm is very similar to

Widrow's adaptive linear element (adaline) in structure and indeed is an modified version of the



the adaline [22]. The convergence theorem for the adaline does not apply in the case of

proposed adaptive algorithm because of the modification.

The functional definition of the adaptive algorithm is now presented. Let

X(k) = [x0(k ), ..., XL.,(k)] be a 1 x L input vector,

W(k) - [w0(k ), ..., WLa(k)] be a 1 x L weight vector,

d(k) be the desired output which is set to 0,

e(k) be the error, and

y(k) be the output at time step k.

The error used to adapt the weights is computed as follows:

and

y(k) = W(k) T X(k)

e(k) = y(k) - d(k) .

Given this error term, the next step is to define the adaptive

element weight vector update rule:

W(k + i) = W(k) + _ e(k) X(k),

where _t is the learning rate parameter defined by

1
0<_<

[x, (k) ]2
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The elements of the input vector are the individual error terms

associated with each constraint. Thus

5O

x,,(k) = E a(k)

for inhibitive interaction and

- Ere [

Xc,(k) -- Ere _ - E_(k)

for excitatoryinteraction,

where Ea(k) takeson differentfunctionalforms depending on thetype of the implementation and

the constraintand Era isthe value of Ea(k) when constrainta issatisfied.Figure 4.] depictsthe

adaptationalgorithmin block diagram form.

The gain parameter for each constraintis increasedwhen the individualconstraintis

violatedby the statevector representingthe localminimum. The increasein magnitude is

proportionaltothe magnitude of the totalerrorgeneratedmultipliedwith thelearningrate.The

learning rate parameter is inversely proportional to the trace of the input correlation matrix which

is sum of the squares of the input vector entries. When the error is large, the learning rate

parameter is small implying slow adaptation. Conversely, when the error is small, the algorithm

adapts faster because the learning rate parameter is large.

If the type of the interaction for the constraint is inhibition which is implemented with

a second order term, then

-- Ere _ if E_(k) < Ere _

" EE 6_iJ SiSj otherwise.
i j
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Figure 4.1. Adaptation algorithm block diagram.



For anexcitationconstraintthe implementation associated with a second order term is

E_ (k) = Ere _ if Ea (k) > Ero s,

E a (k) - _ _ 6_i j sis j otherwise.
i j

In the case of implementation of an excitation constraint with a first-order term

52

E a (k) = Ere f i f E_ (k) > Ere f,

E. (k) " _ s i otherwise.
i

An inhibition constraint implementation with a first-order term employs the following:

Ea (k) = Ere f if Ea (k) < Ere f,

(k) m _ si otherwise.E.
i

The weight vector entries are the magnitudes of the gain parameters associated with each

constraint:

W(k) = [G,(k) G2(k)... GL(k)].

An argument which may serve to clarify the presentation of the adaptation algorithm follows.

Observation: The proposed adaptation algorithm as defined above increases the

magnitude of the gain parameter when the constraint under discussion is violated, thus making

it less likely for the network to violate the same constraint next time it converges.

Proof: Consider a state vector which violates constraint a, then x,_(k) > 0. The update

rule for the gain parameter magnitude associated with constraint ct is given by

G (k,l) = G (k) ÷

We also have that e(k) > 0 and _t > 0 thus

G,_(k+l) a G,_(k). Q.E.D.
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4.3 An Adaptive Constraint Satisfaction Network

Once the constraint satisfaction network is initialized and is allowed to relax to a state

vector S at time instant k, two variables are passed to the adaptation block: state vector S(k)

and weight vector W(k). Given these variable instances, the adaptation block will compute the

error term. If the error is not zero the current state vector represents a local minimum assuming

the solution state vector is a global minimum of the performance function with the error equal

to zero. In this case, the adaptation block will update the gain parameters which are associated

with the constraints violated.

Using this new set of gain parameters a new weight matrix for the constraint satisfaction

network is computed and the current state vector is used as the network initial conditions. A new

relaxation period is initiated and the cycle is repeated until a solution state vector is found. A

block diagram description of the closed-loop system is shown in Figure 4.2. A flow-chart for

the high-level functional definition of the closed-loop adaptive system is presented in Figure 4.3.

4.4 Simulation Results

The goal of this application is to demonstrate the use of adaptive constraint satisfaction

networks to search for the shortest path in a state space and thus test the performance of the

proposed algorithm. A directed graph is used as an abstract model for the state space search

problem, where vertices of the graph represent the states and directed edges
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standfor the transitions between associated states [8]. This problem effectively generates five

constraints for the neural network search algorithm to satisfy and hence constitutes a considerable

challenge.

The shortest path between two vertices of a given directed graph can be defined as a sub-

graph which meets the following constraints:

a. the sub-graph representing a path is both irreflexive and asymmetric,

b. each vertex except the source and target vertices must have in-degrees and out-degrees

of exactly 1,

c. the source vertex has an in-degree of 0 and an out-degree of 1,

d. the target vertex has an in-degree of 1 and an out-degree of 0, and

e. the length of the path is equal to that power of the adjacency matrix which has the first

non-zero entry in the row and column locations defined by the source and target vertices

respectively.

Given the graph-theoretic constraints a path specification has to satisfy, the next step is

to define the corresponding topological constraints of the path search problem for an adjacency

matrix topology of the neural network. Since it is known that a path is irreflexive, we can clamp

the neurons which are located along the main diagonal to 0 given that they represent the

hypothesis: the path has self-loop for vertex V i. In order to map the in-degree of 0 for a source

vertex, the neurons belonging to the column labelled by that vertex are clamped to 0 and

similarly, the neurons of the row labelled by the target vertex are clamped to 0 for realizing the

constraint that the out-degree of the target vertex is equal to 0. Note that one also needs to

implement the out-degree of 1 for the source vertex and in-degree of 1 for the target vertex, but
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a specialinstance of the digraph search problem will be used such that there is only one path in

the formulation of the problem which meets all other constraints, hence eliminating the

implementation of the constraint.

Asymmetry of a graph (constraint #1) requires that only one of the two entries located

at symmetric positions with respect to the main diagonal of the adjacency matrix be equal to 1.

Hence 61_j= 1 if and only if the row index of node si equals the column index of node sj and the

column index of node si equals the row index of node sj; otherwise 61_j = 0. Since only one of

two interacting nodes can be equal to 1, the type of interaction between the nodes is inhibition,

K1 _E R. The reference value of the energy term associated with this constraint is 0.

A digraph node with an in-degree of 1 implies the existence of a single 1 in the associated

column of the adjacency matrix (constraint #2). The term 62_ = 1 if and only if the column

index of node s_ equals the column index of node s_, otherwise 62_j = 0. This constraint simply

implements the "1 out of N nodes equal to 1" rule, thus the type of the interaction is inhibition

with K 2 E R. The reference value of the energy term for this constraint is 0.

Similarly, a digraph node with an out-degree of 1 requires only a single 1 to exist in the

associated row of the adjacency matrix (constraint #3). The term 63_j = 1 if and only if the row

index of node s_ equals the row index of node sj; otherwise 63ii = 0. Again the type of the

interaction is inhibition, K 3 U R, for the fact that only one of the N interaction nodes can be ON

at a certain time. The reference value of the energy term for this constraint is 0.
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A pathspecificationimposestheconditionthatanynodethatis nota sourceor targetand

is includedin the pathmusthavean in-degreeandout-degreeof 1(constraint#4). In termsof

theadjacencymatrix,if thereexistsa 1 in a particularrow/column,thentheremustexista 1 in

thecolumn/rowthathasthesamenodelabelasthecorrespondingrow/column.Theterm64ij= 1

if andonly if the row indexof nodesiequalsthe columnindexof nodesj or thecolumnindex

of nodesiequalstherow index of node sj; otherwise _4ij - 0. Whenever 64_j --- 1, the two nodes

involved are supporting hypotheses; hence the interaction is excitatory with K4 E R ÷. The

reference value of the energy term for this constraint is twice the shortest path length between

source and target nodes minus 1.

In order to impose the constraint that any network solution must be the shortest path

between source and target nodes, a bias for each neuron is employed. The reference value for

the energy term is simply equal to the shortest path length computed from the powers of the

adjacency matrix.

In order to test the proposed network, a digraph with a specially defined adjacency matrix

was employed. It was assumed that the adjacency matrix of the digraph had all its lower

triangular entries and the entries immediately above the main diagonal equal to 1; e.g., let a_j (the

entry in the i-th row and j-th column of a matrix) belong to A (the adjacency matrix of the

digraph), then % = 1 if and only if j ,: i + 1.

The adjacency matrix for an example digraph with 10 vertices is shown in Table 4.1.

Note that the entries which are equal to 0 are equivalently clamped to 0 in the network topology.

This digraph specification yields a path of length N-1 between vertices Vo and Vs.l. Thus this

is the longest possible path for an N-vertex digraph. Another feature of this
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Vo V1 V2 V3 V4 V5 V_ V7 Vs V9

Vol 1 0 0 0 0 0 0 0 0

Vll 1 1 0 0 0 0 0 0 0

V21 1 1 1 0 0 0 0 0 0

V31 1 1 1 1 0 0 0 0 0

V41 1 1 1 1 10000

V 51 1 1 1 1 1 1 0 0 0

V 61 1 1 1 1 1 1 1 0 0

V 71 1 1 1 1 1 1 1 1 0

V 81 1 1 1 1 1 1 1 1 1

V91 1 1 1 1 1 1 1 1 1

Table 4.1. Adjacency matrix.
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digraphis that therearecircuitsof all possiblelengthsimplying a difficult statespaceto search

sinceall thosecircuitsmaybe mappedto local minimaof thequadraticperformancefunction.

Assumethatwe arelooking for apathstartingwith vertexV0andendingwith vertexVg.

Clearly, thereexistsonly onepathwhich includesthe adjacencymatrix entriesabovethe main

diagonal.A number of experiments were done to test the performance of the proposed network.

The measure of comparison is the number of iterations it takes the network to converge to the

solution state vector.

Experiment 1

The goal of this experiment was to evaluate the performance of the proposed algorithm.

A closed-loop version of the classical Hopfield network was developed to enable some form of

comparison for the proposed algorithm since there is currently no closed-loop constraint

satisfaction search algorithm available. A 10-node digraph was chosen as an instance of the

problem. Two different versions of the proposed algorithm were employed to observe the effects

of the random initialization of the state vector. The gain and state vectors for the classical

Hopfield network were randomly initialized each time after the network converged to a local

minimum and a new relaxation process was initiated with that set of parameters.

The frequency distribution of successful trials for the classical Hopfield network is shown

in figure 4.4. It is clearly observable that most of the trials converged in the interval of 1 to

1300 iterations. Approximately 10% of the trials required somewhere between 1300 to 3800

iterations for convergence while a countable few needed 3800 to 6000 iterations.

In the case of the adaptive Hopfield network without state vector re-initialization after

convergence to local minimum, almost all trials, 99%, converged in the interval 1 to 1100 with



significantpercentagebelongingto the 1 to 500 interval, 96%, figure 4.5.

The frequency distribution for the adaptive Hopfield network
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with state vector

re-initialization has a lower peak and is more spread than the adaptive Hopfield without state

vector re-initialization. Only 20% of all trials converged within 100 iterations for this algorithm.

The percentage of trials which converged within 500 iterations is approximately 67 which is

considerable lower than 96% realized by the adaptive Hopfield without state vector

re-initialization.

One noticeable difference between the two frequency distributions of the classical and

adaptive Hopfield algorithms is that the distribution is much more spread out for the classical

Hopfield network. The distribution associated with the adaptive Hopfield network without state

vector re-initialization clearly favors the interval 1 to 500 iterations with nearly 45% of the trials

converging within 100 iterations.

There are only 4 trials which needed up to 1100 iterations to converge. This distribution

has the most desirable properties for the experiment because the distribution is the least spread

of three, located to the far left of others and skewed to the right. The fact that the distribution

is the narrowest of three implies that a better estimate of the average iterations for convergence

can be established.

The location of the distribution being to the left of the others is related to the claim that

the mean value of the process is smallest and hence the mean number of iterations for
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convergenceis smallest.Theright-skeweddistributionis anindicationof thefact thatmosttrials

actuallyconvergein fewer iterationsthan themedianvalue.

The second best algorithm is the adaptive Hopfield with state vector re-initialization which

outperformed the classical Hopfield network. The difference in performance for the two adaptive

Hopfield networks points to the importance of the state vector re-initialization aspect of the

algorithms. Employing the current state vector as the initial condition for the next relaxation

period improves the performance of the adaptive algorithm.

Experiment 2

This experiment was conducted to observe the effects of the learning rate on the

frequency distribution of the successful trials. The learning rate parameter was varied from 0.1

to 0.9 in steps of 0.1 and 100 trial runs were attempted for each value of the learning rate

parameter for a 10-node digraph. The results are shown in figures 4.6-14.

One observation is that the curve is the least spread for learning rate value in the interval

of [0.4, 0.6] and spreads out as the value is varied toward both ends of the interval [0.1, 0.9].

Thus, the statistical mean estimate of the distributions is more accurate for learning rate values

of 0.5 ± 0.1.

The frequency distributions for learning rate values in the interval [0.3, 0.6] have higher

peaks which are located to the left of the horizontal axis and hence more trials for those learning

rate values converged within a small number of iterations. Indeed, 78% of 100 trials converged

within 100 iterations for a learning rate of 0.5 and 99% of all trials converged within 275

iterations for the same learning rate.
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Note that for learning rate values of 0.2, 0.7, 0.8 and 0.9, the distributions have lower

peaks and spread out considerably compared to the distributions in the interval [0.4, 0.6].

Although the distribution for a learning rate value of 0.1 has a high peak, the width of the peak

is notably less than that of distributions associated with learning rates in the interval [0.4, 0.6].

The maximum number of iterations a trial took to converge was for the learning rate value

of 0.9 and is approximately equal to 1500. Clearly, one can claim that the optimal value of

learning rate parameter for the path search problem of 5 constraints for a 10-node digraph

belongs to the interval [0.4, 0.6]. The optimality is defined based on the features of the

frequency distribution of the successful trials. We will consider a learning rate value optimal if

the associated distribution is located to the far left, right-skewed, not spread and as high as

possible with maximum peak width.

Experiment 3

The goal of this test was to observe the effects of the varying network size on the

frequency distribution of the successful trials. The learning rate was set to 0.5 for all network

sizes tested. A total of 100 trials were run for each network size.

Networks of 5, 10, 15 and 20 nodes were considered initially but the simulations for the

network of 20 nodes required more computational effort than currently available computing

resources can provide. Hence, only a small number of trials were attempted for this network

size. Full experiments was conducted on network sizes of 5, 10 and 15 with associated frequency

distributions shown in figures 4.16-18. Each step size in those figures corresponds to 100

iterations.
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In the caseof 5 nodes,all trials convergedwithin 100 iterations. It took up to 300

iterations for more than 90% of the 10-node networks to converge. The maximum number of

iterations to convergence for a 10-node digraph was on the order of 500. Approximately, 80%

of the trials converged to solution state within 1000 iterations for a 15-node digraph. Only a

small percentage needed on the order of 2000 to 4000 iterations to converge.

An approximation to the function which shows variation of average number of iterations

with respect to network size is shown in Figure 4.19. Although there is not enough data to infer

the behavior of the function for network sizes above 15 nodes, if one follows the assumption that

function behaves in a predictable manner in the region past 15 nodes an extension of the function

in that region shows that average number of iterations for a 20-node digraph is more than

approximately 2000. A couple of trials with a 20-node digraph indicates that number of

iterations necessary for convergence is not less than that value, five trials resulted in 3806, 5711,

10001, 7156 and 5741 iterations with average equal to 6482.

4.5 Conclusions

The proposed adaptive constraint satisfaction network is the first closed-loop algorithm

of its type. An earlier algorithm developed by Ackley [23] has similar features to the

proposed algorithm but addresses a somewhat different type of constraint satisfaction/optimization

problem. Two main differences are that the function to be optimized in Ackley's case is not

known by the adaptation block and the adaptation signal provided by the same block is a scalar

in the interval of [-1, +1].
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The results of experiment 1 show that the proposed network is very promising for

moderate size problems. The performance of the algorithm for larger sized networks remains to

be seen. The performance of the adaptive network compared to closed-loop classical Hopfield

network with gain parameters and state vectors randomly initialized after each iteration is visibly

superior as shown by the frequency distributions of the successful trials. The effects of the

learning rate parameter on the algorithm performance is also noted such that there exists an

optimal interval for learning rate values for which algorithm is most successful.

4.6 Future Research

A complete mathematical description of the adaptation algorithm and the closed-loop

system will be attempted. This includes analysis of the effects of restructuring of the energy

function in N-dimensional space by adapting the weights, effects of the initial state vector on

convergence rate and the effects of random update order on the performance of the closed-loop

search algorithm.

The adaptation algorithm will be analyzed from a viewpoint of a reinforcement learning

algorithm. A reinforcement algorithm generally employs a one-bit piece of information compared

to the proposed algorithm which utilizes more detailed data during the adaptation cycle, thus one

would expect the proposed algorithm to converge much faster.

The closed-loop adaptive algorithm is located somewhere in the middle in the spectrum

of learning algorithms. At one extreme is reinforcement learning and at the other extreme is

backpropagation [1]. It is also of interest to identify some sort of quantity to use whose expected

value or the value itself might be optimized by the adaptation algorithm.
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The testingof the proposed algorithm with a complete set of problems needs to be done

since the initial study only included the path search problem. The set of problems should be

selected such that the performance of the algorithm with respect to the number of constraints, the

size of the problem which implies the size of the network and the learning rate parameter are

clearly observed.
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