o @

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
COLLEGE OF ENGINEERING AND TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

INVESTIGATION OF AUTOMATED TASK
LEARNING, DECOMPOSITION AND SCHEDULING

By
Principal Investigator: David L. Livingston
and

Graduate Research Assistants: Gursel Serpen
chandrashekar L. Masti

Final Report
For the period ended February 28, 1990

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-1-962

Donald Soloway, Technical Monitor
IsD-Automation Technology Branch

Submitted by the

0ld Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

July 1990

Table of Contents

Introduction and OTGARIZAHON .« .« .o vovvesee s e e s T n T 1
11 IOEEOQUCHON « « o o vv e e one s s s s et 1
1.2 OFGANIZAHON . « .« o« ovvevneemem s s s s m e T 2
Graph SEATCh « « o« o vvne e s e T 3
2 1 IALOAUCHON « « « v e v wv s seemme s e s s st T 3
22 Problem Definition« ovvoee e T 4
2.3 The Boltzmann Machine [mplementationc..oceee et 5
2.4 Energy FURCHON . . .« v vvvovneeesrs s s nnnmnm s 7
2.5 Example Applicationo T T 11
26 CONCIUSIONS « « « « v v o vvven s s e s n s 14
Finding Partitions« oooooeee s s T 18
31 INEOQUCHON .« v e e vve e eee s m st 18
3.2 Constraint Satisfaction Neural NEtWOTKS . o oo vvvmmensmm s 19
3.3 Partitions and DecompOSIION . .« oo vt T 20
3.4 Theoretical DevelOpMent« ovvv e n T 21
3.5 Derivation of the Energy FUNCHON .« o oo v vv e mem e smms s sm s 21
3.6 Algebraic Basis of the DEriVALION « v v v eev v memm e 23
37 The Transitivity CORStraintcwvvveevemeem s n 0 23

ii

3.8 The Substitution Property Constraintcoheennen. 30

3.9 Ground State Characteristic of the Energy Function 33
3.10 Interconnection Strengths and the Activation Rule 34
3.11 Boltzmann Machine with Simulated Annealing 34
3.12 CONCIUSIONS &« & o v v it vttt ee et et ia e e 42
3.13 Future Research ot i 43
Adaptive Constraint Satisfaction 45
4.1 INTOAUCHON &+ « o v o vttt i e it e e e 45
4.2 Hopfield Networks and the Adaptation Algorithm 48
4.3 An Adaptive Constraint Satisfaction Network e 53
4.4 Simﬁlation RESUIS & o et vt it e it e 53
4.5 CONCIUSIONS &+« & v v ettt e et e et e et e e 79
4.6 Future Researchottt i i e 81
RETETEICES .« « « v e e e e e e et e te e et et et e 83

iil

1
INVESTIGATION OF AUTOMATED TASK SCHEDULING AND DECOMPOSITION

by
David L. Livingston'
Giirsel Serpen®

Chandrashekar L. Masti®

Introduction and Organization

1.1 Introduction

This document reports on the details and results of research conducted in the application
of neural networks to task planning and decomposition. Task planning and decomposition are
operations that humans perform in a reasonably efficient manner. Without the use of good
heuristics and usually much human interaction, automatic planners and decomposers generally
do not perform well due to the intractable nature of the problems under consideration. The
human-like performance of neural networks has shown promise for generating acceptable
solutions to intractable problems such as planning and decomposition. This was the primary

reasoning behind attempting the study reported herein.

1 Assistant Professor, Department of Electrical and Computer Engineering, Old Dominion
University, Norfolk, VA 23529.

2 Graduate Research Assistant, Department of Electrical and Computer Engineering, Old
Dominion University, Norfolk, VA 23529.

3 Graduate Research Assistant, Department of Electrical and Computer Engineering, Old
Dominion University, Norfolk, VA 23529,

2

The basis for the work is the use of state machines to model tasks. State machine models
provide a useful means for examining the structure of tasks since many formal techniques have
been developed for their analysis and synthesis. It has been our approach to integrate the strong
algebraic foundations of state machines with the heretofore trial-and-error approach to neural

network synthesis.

1.2 Organization

The research we have performed can be broken down into three broad categories. The
first category reported in section 2 examines the use of a type of neural networks, called
constraint satisfaction networks, to plan a task by finding the transfer sequence of a state machine
representing the task. The necessary background, theory and an example are presented in this
section.

The second category, section 3, deals with using constraint satisfaction networks to find
structures called s.p. partitions which are essential in the state machine decomposition process.
As in section 2, background, theory and an example are included.

The final category, section 4, deals with a technique that was developed to overcome
some of the shortcomings of constraint satisfaction networks used in the search for solutions of
the problems studied in the previous two sections. We call this new technique an adaptive

constraint satisfaction network and report on some of the primary results achieved at this point.

Graph Search

2.1 Introduction

The main action of task planners is the searching of a very large state space in the
presence of constraints. Conducting this search in a serial fashion may not meet the time
restrictions of some real-time tasks indicating a need for parallel methods. Neural networks are
examples of implementations of algorithms that can perform the constrained state space search;
i.c., solve constraint satisfaction problems in a parallel and distributed manner [1].

Two well-known examples of neural networks which perform constraint satisfaction
searches are the Hopfield network [2], [3], [4], [S] which is a deterministic method
and the Boltzmann machine [6], [7] which performs searches using stochastic techniques.
Both paradigms effectively search for a local minimum of a performance function which is
realized in the network by the interconnection topology.

In the case of a Hopfield network, once the constraints and the associated parameters have
been defined, the local minimum the network settles into is solely determined by its initial
conditions and the order the neurons are updated. Hopfield networks require an asynchronous
update rule to prevent the network from getting trapped in limit cycles. In practice, asynchronous
update is achieved by choosing the neurons for update in random order.

In the case of the Boltzmann machine, each local minimum can be visited with a certain
probability irrespective of network initial conditions given that a sufficiently long annealing
schedule is employed. The tradeoff for the insensitivity of the Boltzmann machine to it’s initial

conditions is thus the sequential character of the algorithm introduced by the annealing schedule.

4

The types of task planning problems that are considered in this study are purely constraint
satisfaction problems; that is, there are no costs involved. In these types of problems, referred
to as syntactic constraint satisfaction problems, local minima of the performance function
generally do not correspond to solutions as in the case of optimization problems. Hence it is
necessary to find the global minimum of the performance function to find a solution which does
not violate any of the constraints. Since the Boltzmann machine convergence process is
independent of network initial conditions, it has a better chance of ending up in the global
minimum as compared to the Hopfield network. Therefore the Boltzmann machine is preferable
over the Hopfield network for syntactic constraint satisfaction problems if the time degradation

introduced by the annealing schedule can be tolerated.

2.2 Problem Definition

Our purpose for the research reported herein is to demonstrate the use of constraint
satisfaction networks to perform the search for the shortest, viable path between defined initial
and final states in a state space. The resulting path represents a plan for executing the task over
which the state space is defined. In our analogy, we are searching for the transfer sequence of
a state machine for a given initial and final state pair.

A directed graph (digraph) is a functional definition for a state machine [8] and is used
as an abstract model for the transfer sequence search problem. Vertices of the graph represent
states and directed edges stand for transitions between associated states. By using a proper
representation, a constraint satisfaction network can be constructed such that the final state the

network settles into represents the shortest path through the digraph.

5

The shortest path between two vertices of a given directed graph can be defined as a
subgraph which meets the following constraints:

1) the subgraph representing a path is both irreflexive and asymmetric,

2) each vertex except the source and target vertices must have in-degrees and out-degrees

of exactly 1,

3) the source vertex has in-degree of 0 and out-degree of 1,

4) the target vertex has in-degree of 1 and out-degree of 0, and

5) the length of the path is equal to that power of the adjacency matrix which has the first

nonzero entry in the row and column locations defined by the source and target vertices

respectively.

2.3 The Boltzmann Machine Implementation

From a topological viewpoint a Boltzmann machine can be visualized as a symmetric and
irreflexive directed graph where graph nodes and weighted edges represent the computation nodes
(neurons) and the interconnections respectively. Each neuron output is binary valued. The

activation function is defined as

pi(si'l) - —————l———:

Heti
1+e T

where p; is the probability that s;, the activation of neuron i, is equal to 1, T is a time-varying
computational parameter analogous to temperature and net, is the input sum to unit i. The term

net, for a typical second-order machine is defined by

Heti - E Wij SJ + bil
J

where w;; is the connection weight between neurons s;, and s;, and b; is a bias for s;.

Neurons in a Boltzmann machine are updated asynchronously. As previously stated, the
parameter T is analogous to temperature. A Boltzmann machine is able to escape local minima
through the use of "thermally” induced noise. The temperature parameter is assigned a large
initial value and is decreased at discrete time steps until it reaches a predetermined minimum
value. This process effectively starts the machine in a very noisy mode and gradually reduces
the noise in a manner analogous to annealing. A sufficient condition for converging to a global

minimum with probability approaching one is to use an annealing schedule of the form

T(k) = To
log(1l + k) '

where T, is a sufficiently high initial temperature and the discrete time-step k approaches infinity
[9]. Since a practical application requires a finite convergence time, an upper bound for the
probability of converging to the global minimum is established by the time-limitations of the
problem under consideration. This upper bound is necessarily less than one.

The probability of being in the state S,, where a state is defined to be the vector of the

activation values of all neurons in the network, is given by

_E(Sy)
e T
_E(Sy)

e 7

1

P(S,) -

’

7

where E(S,) is the energy of the network associated with the state S, and index i implies a sum
over 2N states of an N-neuron network [6]. Thus the network will tend to settle into a state
corresponding to a low value of the energy function with high probability. If the energy function
is defined such that the minimum energy values correspond to the states which meet the
constraints of the problem, then the Boltzmann machine will seek out and settle into those states
with high probability.

The network topology employed to search for the shortest path in a digraph is an NxN
array of neurons representing the adjacency matrix of a given directed graph. Each neuron in
the network stands for an entry of the adjacency matrix and thus for an edge of the directed

graph.

2.4 Energy Function

The general form of the quadratic performance function a Boltzmann machine minimizes

is

E(S) = -2 1% Wiy s:5; + 3 b sis
i J i

where w;; is the weight between neurons s; and s; and b, is a bias. The weight can be defined by

Wiz = Y Ko dnij
n

8

where K, € R* if the hypotheses both nodes represent for constraint n are mutually supporting
and K, € R’ if they are mutually conflicting. The term d,; is equal to 1 if the two hypotheses
represented by s; and s; are related under constraint n and is O otherwise.

Given the graph-theoretic constraints a path specification has to satisfy, the next step is
to define the corresponding topological constraints of the path search problem for an adjacency
matrix topology of the neural network.

An irreflexive graph has all diagonal entries of its adjacency matrix equal to zero, which
equivalently translates into clamping all neuron outputs along the main diagonal of the Boltzmann
machine to 0.

Graph asymmetry (constraint #1) requires that only one of the two entries located at
symmetric positions with respect to the main diagonal of the adjacency matrix be equal to 1.
Hence d,; = 1 and K; € R if and only if the row index of node s; equals the column index of
node s; and the column index of node s, equals the row index of node s;; otherwise &;; = 0.
Figure 2.1 illustrates the implementation of this constraint.

A digraph node with an in-degree of 1 implies the existence of a single 1 in the associated
column of the adjacency matrix (constraint #2). The term ;= land K, ERif and only if the
column index of node s, equals the column index of node s;; otherwise d,; = 0.

Similarly, a digraph node with an out-degree of 1 requires only a single 1 to exist in the
associated row of the adjacency matrix (constraint #3). The term d;; = 1and K; € R7if and only
if the row index of node s, equals the row index of node s;; otherwise d;; = 0. Constaints #2 and

#3 are illustrated in figure 2.2.

Figure 2.1. Constraint #1.

Figure 2.2. Constraints #2 and #3.

10

11

A path specification imposes the condition that any node that is not a source or target and
is included in the path must have an in-degree and out-degree of 1 (constraint #4). In terms of
the adjacency matrix, if there exists a 1 in a particular row/column, then there must exist a 1 in
the column/row that has the same node label as the corresponding row/column. The term 3y =
1 and K, € R* if and only if the row index of node s, equals the column index of node s; or the
column index of node s, equals the row index of node s;; otherwise d,; = 0. This constraint

results in an excitatory connection as shown in figure 2.3.

2.5 Example Application

In order to test the proposed network, a digraph with a specially defined adjacency matrix
was employed. It was assumed that the adjacency matrix of the digraph had all its lower
triangular entries and the entries above the main diagonal equal to 1; e.g., let ay, the entry in the
i-th row and j-th column of a matrix, belong to A, the adjacency matrix of the digraph, then a;
= 1 if and only if i = j + 1. The adjacency matrix for an example digraph with 10 vertices is
shown in Table 2.1. Note that the entries which are equal to O are equivalently clamped to 0
in the Boltzmann machine network.

The digraph specification yields a path of length N-1 between vertices Vg and V. Thus
this is the largest possible path for an N-vertex digraph. Another feature of this digraph is that
there are circuits of all possible lengths implying a difficult state space to search since all those
circuits will be mapped to local minima of the quadratic performance function.

Since it is known that a path is irreflexive, we can clamp the neurons which are located

along the main diagonal to 0 given that they represent the hypothesis; the path has a self-loop

Figure 2.3. Constraint #4.

12

V, V, Vy V3 V, Vs VgV, Vg Vg

v, 1
v,1 1

v,1 1

vl 1

Vo1 1

Table 2.1. The adjacency matrix of
a specially defined digraph.

1

1

0

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

100000000

0

0

1

11111

13

14

for vertex V. In order to map the in-degree of 0 for a source vertex, the neurons belonging to
the column labelled by that vertex are clamped to 0 and similarly, the neurons of the row labelled
by the target vertex are clamped to O to realize the requirement that the out-degree of the target
vertex is equal to 0.

Assume that we are looking for a path starting with vertex V and ending with vertex V,.
Clearly, there exists only one path which includes the adjacency matrix entries above the main
diagonal as depicted by table 2.2. This path represents the solution to the planning problem.

The neuron outputs which take part in computations were randomly initialized. The initial
starting temperature was selected such that at least 80% of the neuron output probabilities
belonged to the interval of reals given by [0.4, 0.6]. The set of parameters listed in table 2.3
were determined by trial and error and resulted in convergence to the state vector which

represented the solution illustrated in table 2.2 in over 90% of all trial runs.

2.6 Conclusions

We have demonstrated the use of a second-order Boltzmann machine for the shortest path
search in a directed graph. One important difficulty of employing neural networks to solve
constraint satisfaction problems is the lack of a proper methodology to map a given problem into
the network domain. It seems that discrete mathematics may provide a rich source for abstract
tools to help with the mapping problem.

Another issue is the need for a heuristic approach combined with a trial and error search
for the determination of the correct set of values for the gain parameters of the energy function.

Chapter 4 details the incorporation of an adaptive component to the constraint satisfaction search

15

algorithm so that the neural network can learn while searching. This eliminates the need for the

trial and error search that is required to determine the values of the gain parameters.

VoV, V, V, V, V, V, V, V, V,

Vv, 0
Vv, 0
Vv, 0
V, 0
V, 0
Vv, 0
V, 0
v, 0

V, 0

1 000 0 00O

0

0

0

0

V,0 0 0

Table 2.2. The path between V, and V.

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0 00O

16

Parameter Gain

K, -1
K, 2
K, 2
K, 1
I 1

Table 2.3. Parameter values.

17

18

Finding Partitions

3.1 Introduction

A significant portion of the effort in generating a decomposition of a task consists of the
combinatorialy explosive problem of finding the elements of the general structure from which
the decompositions are obtained. The problem of decomposition has been approached from an
algebraic perspective that essentially relies on partition algebra. Hartmanis and Stearns [10]
pioneered the use of partition algebra for analyzing the structure of sequential machines.
Partitions generated over state machines determine the possibility of decompositions and provide
an understanding of their structure. Currently existing techniques for obtaining machine
decompositions are based on performing an exhaustive sequential search into the machine’s
transition characteristics governed by a given input environment. This process is known to
become intractable with growth in problem size and consequentially imposes intemperate
demands on computation resources.

The recent resurgence of artificial neural nets has drawn keen interest from groups of
researchers who have observed that these models demonstrate capabilities in addressing
computationaly "hard" problems including the travelling salesman problem [2], the graph
partitioning problem [11] and the N-queens problem [12]. This new development offers
a clear motivation for furthering a serious exploration into the potential of a neural approach to

addressing the NP-hard machine decomposition problem.

19

3.2 Constraint Satisfaction Neural Networks

Artificial neural net models are also known as parallel distributed processing (PDP) or
connectionist models [1]. The fundamental assumption for these models is that the information
processing takes place through interactions between a large number of simple processing elements
called units or neurons, where each can send either excitatory or inhibitory signals to other units
in the system. In the application of neural nets to constraint satisfaction, the individual neurons
are themselves used to represent hypotheses. The activations of the neurons are analogous to the
validity associated with the different possible hypotheses. The constraints known to exist
between the different hypotheses are represented by weighted interconnections between the
neurons. When neural net models are used in this fashion they demonstrate the capability for
performing optimization.

The computation of solutions to constraint satisfaction problems by connectionist networks
is performed by an iterative relaxation search which starts with a randomly chosen initial state.
This state can be interpreted as a proposed solution which the network progressively improves
by reducing a well defined "objective” or "energy" function. The eventual low-energy (minimal)
states to which the network converges represent the required "good" or valid solutions. The
energy function defined for the network measures the extent to which the current interpretation
violates the stipulated constraints. Each possible state of activity of the network has an
associated energy. The activation rule used for updating activity levels of the neurons is so

chosen that this global network energy shows a general decline with every iteration.

20

3.3 Partitions and Decomposition

A partition 7 on a set S is a division of S into disjoint subsets S, 3§, N §; = &, Vi = j

and S = US,. Each S, is called a block of x. It is usual to represent a partition by writing

overlines atop the disjoint subsets and separating them by semicolons so that the subsets appear

as blocks of set members. An example of a partition is:

n=1{0, 2, 4; 1, 3, 51}.

The theory of finite state machine structure is based on laws derived from partition
algebra. Mathematically defined, a finite state machine M is characterized by a three-tuple
M = <S, [; {8}>, where S is the state set of the machine M, [is its input set and {8} is a set
of state transition functions (or "next-state" mappings). State machines may be decomposed as
determined by certain special properties exhibited by the partitions generated over their state
spaces, the most significant among them being the substitution property. With respect to a state
machine characterized by a three-tuple as defined above, we present a formal definition of the
property of substitution as satisfied by a partition over the state set of a finite state machine.

A partition on a state set S of a state machine M is said to satisfy the substitution
property (s.p.) and is denoted by m if, V' s, 5; € S which are in the same block of x and any input
i, € I, the states 8(i,, s;) and 8(i,, s;) are also in a common block of .

For any n-state set S = {s,, s,, ..., S,} of a machine M, there always exist two trivial s.

p. partitions denoted by n(0) and n(J), where

n(0) = [5_1" 5,i Syi ...;_5;} and x (1) = {51' S,0 S3. .« Sn}'

21

Decomposition theory guarantees that if the product of any two s.p. partitions for a state
machine M equals the trivial s.p. partition (0), then M can be directly decomposed into two

independent machines M, and M, operating in parallel.

3.4 Theoretical Development

In developing a neural approach to any problem, the issue of a proper representation
merits primary attention. Partitions have a one-to-one correspondence with relations. We
therefore use relation matrices to serve as the representation for partitions proposed by the
network. The network is organized into a system of N x N neurons for a problem space of state
dimension N. This means that a neuron in the "on" state at row-i, column-j is suggesting an

equivalence between states i and j of the state machine subject to the incorporated constraints.

3.5 Derivation of the Energy Function

After addressing the issue of representation, the next step is to establish the
interconnections between the neurons of the network. This is done by deriving the network
energy function and then establishing a one-on-one correspondence of terms with those in the
classical expression for the energy function of appropriate order. The derivation of the network
energy function and a determination of its order are based on the identification of the constraint
terms involved for the problem.

Partitions satisfying the substitution property define uniquely corresponding congruence
relations. By definition, congruence relations are implicitly equivalence relations with the added

requirement that they imply image equivalence whenever states are established as equivalent.

22

Thus, s.p. partitions must possess the equivalence relation properties: reflexivity, symmetry and
transitivity as well as the (implication) properties of image equivalence.

The reflexive and symmetric relations can be implicitly encoded in the N x N
representation scheme, by employing the following method:

1. Diagonal neurons in the ¥ x N neuronal grid are clamped to remain in the "ON" state.

Since this is representative of the equivalence of a state with itself, the reflexive relation

is satisfied before the network starts the computation process.

2. Symmetry can be incorporated by ensuring that the states of off-diagonal neurons in

the in the upper triangular portion of the N x N grid maintain exact correspondence with

the neuron states in the lower triangular portion.
With the above method the search space for solution points in given problem domains becomes
noticeably reduced since the two constraint terms which would have been necessary to enforce
the reflexive and symmetry properties have been obviated.

The remaining properties are therefore transitivity and the substitution property. Thus,
the network energy function may be interpreted to consist of essentially two parts. The first part
encodes the transitivity constraint. The second part encodes the state-image congruence
constraint, i.e., the substitution property.

The second part of the network energy function must essentially map the complete state
transition behavior of the state machine under its stimulus (input) set to the network dynamics.
Thus, if we denote the energy function of the network by E, we may write

E = KE, + kiE,

where E| is the energy term due to the transitivity constraint and E, is the energy term due to the

23

state-image congruence (s.p. property of next state function) constraint. The parameters k, and
k, are known as gain terms for the respective constraints. They determine the relative importance

or weight that is assigned to each constraint.

3.6 Algebraic Basis of the Derivation

The neurons in the N x N network have only one of two possible states to which they can
eventually converge: the "ON" state or the "OFF" state. This means that the ultimately stable
solution states of the neural net are binary. We therefore use techniques from Boolean algebra
to derive the required functional dependencies of the constraint terms On the neuron activation
states, which we may regard as binary variables for our purposé of derivation. This is the basis

that provides for a systematic and algebraic method of derivation for the network energy function.

3.7 The Transitivity Constraint

A relation R is transitive iff a R b andbRc=2aRg ¥Yab,cE (state) set S over which
R is defined. In other words, this means that if state "a" = state "b" and state "b" = state "c",
then state "a" must also be = to state "C". Therefore, the third neuron responsible for
representing equivalence between the states "a" and "c" in the N x N topological representation
scheme for the network must be constrained to be "ON" whenever the pair of neurons
representing equivalence between states "ab" and "bc" are in their "ON" states. This is a
third-order functional dependence of the transitivity constraint term on the activation states of

neurons in the network.

24

The above discussion leads to the conclusion that the transitivity constraint cannot be
enforced into the network by a function that is of the more conventionally used quadratic order.
We thus state a theorem which mathematically establishes that the transitivity constraint must be
a third-order function of the neuron activation states.

Theorem

Third-order interconnections are required for an N x N topological neural net to verify the
relation of transitivity in proposed partitions.

Proof

Defining Boolean matrix multiplications over n-th order square matrices A and B by

c.. = Va, Abg . (1)

7 k=1

where the V and A represent bit-ORing and bit-ANDing operations respectively, we se¢ that the
matrix C = AB contains a "1" in the row-column position indexed ij whenever a "1" exists in
row-i, column-k in matrix A and row-k, column-j in matrix B Vk€([l n]. Fora relation that

is reflexive and symmetric, its relation matrix M, will encode transitivity in R [13] iff:

M: = MxM = Mg . (2)
The matrix M, is a Boolean matrix because its elements are only 1’s or 0’s. Thus, using

equation (1)

MxM (3)

€ M?

=

ij

25

can be written

¢]
My = k_/lmik/\mkj . (4)

Equation (2) essentially means that V k € [1, n] with m; € M,,

iy ; @m,; =0

(3)

|
o

Since the variables involved are binary, we have the following three results that can map Boolean
logic operations V x, y € {0, 1}, into the domain of integer arithmetic operations: The logical
complement of a Boolean (binary) variable is
x = (1 -Xx) . (1)
The expression
xNy = xxy = XYy (i1)

equates the logical "AND" operation to the operation of multiplication in the integer-number
domain. Finally, the equivalent expression for the logical "OR" operation is derived using the

above two results (i) and (ii) with the second theorem of De-Morgan:

(x'Ay")! = (xVy) ,

yielding

26

xVy = (x'Ay’)/
((L-x3A(1 - y))/
((1 - x)x(1 - y))/

(iii)
= (1-y-Xx+xxy)
= (1—l+x+y-xy)
= (x+y-xy)
Thus, equation (5) may be rewritten as
By (1 - m) V(1 - @ my, = o (6)
which when simplified using the results (1), (ii) and (iii) transforms to
(fyy = dzm) Vimg, - dimy) = 0 (7)
= myy + ;- 2mgai;; = 0.

Thus, based on all the above results developed, equation (4) may be written in the form

n
iy = Y mym, (8)
k-1

Upon substituting in equation (7), we finally obtain

Mmy; + imikmkj - Zi MMy = 0 .
k=1 k=1
This is an equation of third order in m € M. u
We now derive the transitivity constraint term using the result established by the above
theorem and the laws of Boolean algebra. Since the activation states of the neurons in the system
are binary variables, we enumerate all possible combinations of activation values considering

triplets of neurons (Vi Vi, V) in the form of a classical truth table. This is shown in table 3.1.

27

The transitivity constraint term (£,) assigns a penalty of (positive) unity to the network energy
function (E) in situations where the required neuron combinations violate the definition of
transitivity. Conformation to the definition of the relation of transitivity obviates the penalty.
To derive the functional dependency of the constraint term E; on the neuron triple (V;,
Vi Vi), we draw the Karnaugh-map as shown in figure 3.1.
Using the rules of Boolean algebra to obtain the classical sum-of-products form, for the

constraint E,, we may write V i j, k:

B, = (Vi AVLAVE) VY (Vi AVRAVL,) V (Vi AV A,

which upon using the results

xANy Xy .

(x +y - xy) ,

xVy

may be written in the form

El = Vi Vie+ VieVie * VigVie = 3 Vi3 Vi Vi -
Since the representation used is the N x N network topology, the indices j, j, k span only

the upper triangular portion of the square grid of N x N neurons in the system (reference index

starting at 0). Thus, the last equation may be compacted to the following overall form:

(n-3) (n-2) (n-1)

EE - Y Y Y E.

i=0 F=(i+1) k=(7+1)

Neuron Vy Neuron Transitivity Law: Constraint E,

Violated ? value (1 or 0)

Table 3.1. Transitivity functi

on truth table ¥V Vi, Vi, Vi € N x N neuron grid.

28

29

Vi Vi

1)

oo o1 11 10

Figure 3.1. Karnaugh map of transitivity truth values.

30

The equation for the transitivity constraint term E; is of third order as required. We note
that the equation sums only for indices spanning the upper triangular portion of the N x N
topology of neurons. This is useful for achieving a reduction in computation overheads. The
equation ensures that E, generates a +1 contribution to the network energy V triples of neurons

(Vi

» Vjo Vi) in the upper triangular portion of the N x N grid that violate transitivity. E,

evaluates to a value of zero energy for every triple that does not violate transitivity.

3.8 The Substitution Property Constraint

This constraint is responsible for motivating the network towards finding partitions
satisfying the substitution propery. To enforce this property into the generated partitions, the
family of next-state functions determining th;: state transition behavior of the state machine must
be incorporated into the constraint term. The state-transition function is defined for each present
state by a pre-specified set of inputs. As a result, the constraint mapping this information into
the neural net will need to scan the input set and determine the extent to which current solutions
proposed by the net violate the requirement of preserving state-image congruence.

We interpret the neuron activation states as binary variables again, and generate a truth
table enumerating all combinations for pairs of neurons (V; and its image neuron for a specific
input "k" denoted Vi.ys.0)- The subscript "8-k(i)" denotes the next-state determined by input

"k". for the current (present) state "i".

31

A truth table generated by considering pairs of neurons in general terms is shown in table
3.2. The s.p. constraint term (E,), assigns a penalty of negative unity to the network energy for
all cases where the required neuron combinations violate the definition of the substitution
property. Conformation to the property of substitution obviates the penalty.

The entries in the truth table for constraint term E, show that its functional dependency
on the states of the neurons V; and Vj,,.,; has the same form as the classical "0110"
combination corresponding to a two-variable logical "EXCLUSIVE-OR (XOR)" function. Thus,
the sum-of-products form for the E, term V i,j,k may be written from the truth values and the

previously employed results as
E, = Vi Vg-k(i)b—k(_ﬂ v i3 Vo k() 8-k
= Vi " Yok T 2V Vakwr scn

As in the case of the transitivity constraint, since the indices span only the upper
triangular half of the N x N neuron grid, the above equation may be compacted to the concise

form:

o]

-2 -1 evkkmnx(i)a—k"m(j)

E'Z-Z

=0 j=(i+1) B8-k(i)8-k(J)=8-k,(1)8-k,(7)

£,

.

The above equation is quadratic; it is computationaly efficient to the extent of offering
the benefit of scanning only a total of /N(N-1)/+2 neurons from the N x N grid.
Combining the two constraint terms E; and E, derived so far into one expression, the

overall equation for the network energy function may now be written as

Neuron | Next-state Neuron

Vb-k(l)b-k(i)

Violation of Substitution

Property ?

Value for

E,

Table 3.2. Substitution Property constraint term E, truth table.

32

33

The gain parameters k; and k, are set relatively equal to each other so that the constraint
enforcing transitivity shares equal importance with the one influencing the substitution property.
This is not only beneficial in eliminating "tuning" of the gains, but is also necessary due to the

characteristic of s.p. partitions.

3.9 Ground State Characteristic of the Energy Function

The energy function (E) for the network has degenerate ground states. In other words,
the solution points for the s.p. partition problem represent a value of zero to the network energy
function. Neural net solutions to constraint satisfaction/optimization problems of the class of the
TSP, graph partitioning problem and others, have always been compared for merit with solutions
generated by classical techniques before accepting their "optimality". The degenerate
ground-state characteristic of the network we have developed obviates the comparison exercise
due to the fact that solution states are now uniquely identified by their associated zero-energy
values. A further use of this characteristic is the easy detection of local minima since unlike
global minima, these states will not have zero energies associated with them. Thus, the energy

\

function more tangibly reflects the merit of suggested solutions by the network: If the partition
energy is zero, the proposed solution by the network in its current state of activity is the required

global solution, else the computation needs to be continued and the present interpretation of the

net needs to be improved.

34

3.10 Interconnection Strengths and the Activation Rule
The classical form of the energy function (E) for a third-order network [14] is written
as

7 1 (3) 1 (2) 1
E(V) = -3 Y X Y WP5nuViViVe -5 Y Y WP ViV -)L AR
i#jek jerkel kejrl i¢j j#i 1

i
where W, is the weight matrix storing the interconnection strengths between triples of neurons
(V\V,V), W?; contains the strengths between pairs of neurons (V;V;) and W', represents the bias
for each neuron.

Comparing this expression with the derived equation (E) for the network energy function
and equating the coefficients of like terms, we obtain the entries to the three weight matrices.

The rule for activation of neurons in the net is based on the classical Hopfield-like
constraint satisfaction neural net mechanism. Each neuron takes turns in evaluating the difference
in the global energy of the network when it is in the "ON" state and when it is in the "OFF"
state. The state of activity of the neuron that lowers the global energy of the network is then
assumed by the neuron. This decision is made locally by each neuron and iterated enough
number of times till further changes cease to affect the network globally. The network is
thereupon understood to have performed the intended gradient descent in a 2Y™172 dimension
landscape and effected an optimization of the energy function. The final, stable state of the
neurons in the network then reflect the solution computed by the net.
3.11 Boltzmann Machine with Simulated Annealing

A third-order Boltzmann machine network employing simulated annealing was developed

and simulated to solve for s.p. partitions. Amongst several algorithms that exist for incorporating

35

the technique of simulated annealing into parallel connectionist nets, the logarithmic rule derived
by Geman and Geman [9] mathematically guarantees asymptotic convergence to global minima.
Their rule is called classical simulated annealing (CSA). We used this technique in our
simulations for Boltzmann machines. An example problem is now illustrated.
Example

A state space of dimension 18 is addressed in this example. A state machine with 18
states and three inputs was presented to the network. The state table for this machine is given
in table 3.3. Figures 3.2 -3.5 provide an illustration of the network as it generated a valid

solution:

x = (0, 2, 4; 1, 9, 17; 3, 5; 6, 8, 10; 7, 15; 11; 12, 13, 14, 16 !

Figure 3.2 shows a snap-shot of the 18 x 18 net in a random initial starting state. Two
intermediate states of the net as it evolved ultimately to the final solution configuration are
illustrated by figures 3.3 and 3.4. The valid global (required) solution state to which the network
converged in four discrete time-steps is shown in figure 3.5. The performance of the net to
fifteen independent runs was observed and is tabulated in table 3.4. The success rate of the net
is impressive. A valid solution was always obtained - the fastest in as little as two time steps.
Figure 3.6 is the legend for the various s.p. partitions listed in table 3.4. Classical simulated
annealing was used to address the issue of local minima. Further relavant statistics are indicated

in the snap-shot figures.

Table 3.3. 18-state, 3-input state machine table.

36

37

DISPIAY LAYOUT

Activations in right window

Status in lower window

Third order network by

Ohanbrushekar 2. Masii |
NETWORK STATUS

Tenmperature:

Partition Energy: 110

Iterations to equilibriun:2
Tine_steps:1 Tmax:S Tmin:0.01
On_state Probabilitg:S.OBe—DS

Press Space bar to exit

NEURON ACTIVATIONS

@ :offr

Finding S.P.
for

Oon:

Partitions
an

18~-State- 3-input Machine

This is exanple

#: 3 in thesis.

Figure 3.2. A random starting

gtate of the 18 x 18 network.

38

DISPLAY LAYOUT

Activations in right window

Status in lower window

Third order network by

Chandrashekar 7. Maski
NETWORK STATUS

Temperature:

Partition Energy: 10
Iterations to equilibrium:2
Tmin:0.01

Timne_steps: 2 Trmax:3

On_state Probability: 3.81e-06

) ffNEUF&’ON ACTIVATIONS

Oon:

Press Space bar to exit

Finding §$.P. Partitions

for an
18-State- 3-input Machine
This is exanple #: 3 in thesis.

Figure 3.3.

State of the net at the second time-step.

39

DISPIAY LAYOUT

Activations in right window

Status in lower window

Third order network by

(!Ibanhmshtkar 7. Masti

NEURON ACTIVATION

Tine_steps: 3
On_state Probability: 1.28e-05

'NETWORK STATUS

Tenmperature: =)

Partition Energy: S
Iterations to equilibriun:2

Tnax:9

Tnin:0.01

l|

Press Space bar to exit

===

for an

S

on:

Finding S.P. Partitions

18-State- 3-input Machine
This is example #: 3 in thesis.

Figure 3.4.

Time lapse snap-shot of the net.

DISPLAY LAYOUT ° :O"NEURON ACTIVATIONSDH. o
Activations in right window
Status in lower window
00000000000006000
Third order network by
@indrashekar . Masti 0000000000000000
: 000000000000006060
NETWORK STATUS 0000000000000060
0000000000000000
00000000000000060
Partition Energy: O 00000000008000600
Iterations to equilibrium:2
Tine_steps: 4 Tmax:S Tmin:0.01
On_state Probability: 3.57e-06 ::::::::::::::::
000000000006008000
0000000000000000
00000000000600600
000000000600000090
. 0000000000000000
Press Space bar to exit
IL Finding S.P. Partitions

for an
18-State- 3~input Machine
This is exanple #: 3 in thesis.

Figure 3.5. Final solution state of the 18 x 18 net.

Trial number S. p. partition Time steps needed for solution

Table 3.4. Results of the network performance to 15 trial runs.

41

42

3.12 Conclusions

Present approaches to the machine decomposition problem have relied on a sequential and
exhaustive search technique for generating partitions satisfying the substitution property. This
is known to become intractable with growth in problem size and therefore imposes intemperate
demands on computation resources. In this research we have developed an intrisically parallel
approach to addressing the intractability involved in the partition search problem by the use of
an artificial neural network model that has potential for offering a viable alternative to existing
sequential search methods.

The problem of decompositions has been cast into the framework of constraint satisfaction
and a neural net model was developed to solve constraint satisfaction problems through
optimization of a mathematically derived objective function over the problem space. The
formulation strategies governing the derivation of objective functions for constraint satisfaction
neural nets have been based so far on heuristics. This research presents a formalization for the
method by exploiting useful theories from Boolean and relational algebras.

We have verified that the issue of decompositions belongs to a class of problems that are
beyond the scope of solvability for second-order networks. A theorem has been stated and
proved establishing that third-order correlations must be extracted by a neural net to generate
substitution property partitions. A third-order deterministic network such as a hopfield net has
been shown to fail in solving the s.p. partition search problem due to the lack of an adequate
technique for escaping from any local minima of its associated objective function. Impressive
results have been obtained by using a stochastic approach such as a third-order Boltzmann

machine net with simulated annealing.

43

A spectrum of problem sizes was addressed using a third-order Boltzmann machine
network. In many cases, solutions were obtained in under five discrete time-steps. Due to the
excellent convergence properties of the higher order scheme involved in connection with the
ground state chracteristic of the energy function derived, it has been possible to introduce
engineering ingenuities in identifying global solution states in arbitrary problem domains at
unconventionally fast rates. The network performance has shown favorable scaling with the state
dimension of the problem space. However, the network as simulated currently does show
degradation in performance with respect to the input dimension. Intrinsic limitations behind the
technique of a software simulation of an essentially parallel (neural) approach on a serial

computing machine have precluded any substantial immediate improvements.

3.13 Future Research

Real world problems in decomposition can be expected to have large-sized state as well
as input dimensions. Asa result, a possible strategy for addressing the issue of scaling network
performance in adequate proportion to the input dimension is to exploit the theory of intersection
of lattices of sub-groupoids. A suggested technique is to develop a separate network for each
dimension in the input set of the problem space being addressed and incorporate a parallel
communication link (a constraint) between the individual nets as they descend toward their
respective global minima [15]. The common intersection point of their individual global
minima with respect to their convergent state of activity reflecting a valid, globally acceptable
solution as determined overall by every input dimension would then represent the required

solution. A little insight suggests that such an approach has its potential in essentially a hardware

44

implementation, since larger the communication bandwidth simulated, greater the number of
iterative loops a single-CPU von Neumann-machine would be required to execute, rendering it
an icreasingly inadequate choice for the purpose. Our attempts at software simulations based on
such a "decomposed approach to the decomposition problem" has provided corroborative results
favoring our conviction toward emphasizing a future attempt on VLSI based harware.

The majority of optimization/constraint satisfaction problems have been addressed till date
using neural nets with the order of interconnections between the neurons in the network being
no higher than quadratic. The potential of higher order neural nets has been known for some
time, but hardware limitations so far have determined limitations t0 their use [16]. With the
advent of high-speed, multi-level VLSI devices specially designed for parallel computation
algorithms such as neural networks, we speculate that the foundations we have laid for a neural

approach to the decomposition problem will one day obviate sequential methods altogether.

45

Adaptive Constraint Satisfaction

4.1 Introduction

The original constraint satisfaction network proposed by Hopfield [2], [3], [4], [5] has
several drawbacks one of which is the network is guaranteed to converge only to local minima
of the associated Liapunov function [17], which are reachable from the given initial position
of the state vector. This property is useful if the Hopfield network is used as an associative
memory [18], but is not a desirable feature for the case where it is used as a constraint
satisfaction network simply because the local minima do not correspond to solutions in most

applications.

To examine the main reason why a Hopfield network does not perform well for constraint
satisfaction problems, we will analyze the process of solving a constraint satisfaction problem
with a Hopfield network. The initial task is to find a suitable representation with the hypothesis
each node represents and then define the weight matrix. Unfortunately, the definition of the
weight matrix is complete only up to determining the actual magnitudes of the gain parameters.
To observe this argument analytically, consider an element of the weight matrix, w;, the weight

between nodes s; and s;. The weight can be constructed as

Wij = E Kaﬁaij'
[+ 4

46
where K, € R* if the hypotheses both nodes represent for constraint a are mutually supporting
and K, € R if they are mutually conflicting. The term By 18 equal to 1 if the two hypotheses
represented by nodes s; and s; are related under constraint o and is 0 otherwise. As one can
easily see from the definition of the weight matrix entry wy, all variables but the actual
magnitude of the gain parameter K, can be determined.

Although there have been attempts in literature to determine the optimal set of gain
parameter magnitudes for a given problem [19], [20], there is no convincing evidence
that an acceptable formal method exists. The typical solution of this problem is to randomly
initialize the gain parameters, observe the state vector to which the network converges and
identify the constraints violated using that state vector. Once the unsatisfied constraints are
observed, the fnagnitudes of the gain parameters which are associated with the violated
constraints are increased. It is often the case that this process has to be repeated many times.
There is no guarantee that a good set of gain parameters can be found such that the network will
always converge to a global minimum of the performance function, regardless of the initial
conditions. Another issue t0 note is that the increase in the gain parameter magnitudes is
arbitrarily specified.

The goal of this research effort is to design a closed-loop system in which a classical
Hopfield network performs the searching action and another functional block observes and
evaluates the output of the network and then adapts the weights of the Hopfield network. The

main function of the adaptive block is to redefine the weight matrix based on the information

extracted from the state vector to which the Hopfield network converges. The redefinition of the

47

weight matrix should be performed in such a way that the search network is less likely to break
the constraints which it violated previously when the network relaxes to a new state.

It is necessary that the adaptation block has the means to detect the local minima which
are not solutions for the constraint satisfaction problem under discussion so that the adaptive
block can decide to initiate the adaptation process. The trial and error procedure performed to
search for a good set of gain parameters is eliminated by employing this closed loop system.

There are three important variables which determine the state vector to which a Hopfield
network converges: the gain parameters which finalize the exact shape of the energy function
in N-dimensional phase space, the initial state of the network node outputs and the random order
the node outputs are chosen to be updated [21]. If a classical Hopfield network is started
at a randomly chosen initial state, it will converge to one of the admissible set of local minima
which is solely determined by the Liapunov function and the random order the nodes are updated.

[f the converged state vector represents a local minimum of the performance function and
hence at least one constraint is violated, the associated gain parameter magnitude is increased an
arbitrary amount. Although this adjustment of the gain parameter follows the argument "if a
constraint is violated then the weight magnitude representing the relative importance level of that
constraint is not large enough, thus it needs to be increased,” there is still no guarantee that the
adjusted set of gain parameters will always cause the network to converge to a solution state
vector regardless of the initial conditions.

On the other hand, the proposed adaptive search system starts with randomly specified
initial state vector and set of gain parameters and then converges to the local minimum implied

by the random update order. If the local minimum is not a solution then the algorithm adapts

48

the gain parameter magnitudes based on the information provided by the state vector representing
the local minimum. The relaxation process of the network with the new set of gain parameters
is restarted and this goes on until a minimum that represents a solution is found, thus effectively
eliminating the dependency of classical Hopfield network on its initial conditions. It is also
conjectured at this point of discussion that the random order the node outputs updated might still
play a significant role for the number of iterations needed to find a solution.
4.2 Hopfield Networks and the Adaptation Algorithm

Given a vector of discrete neurons S, Hopfield (2] has derived an "energy" or Liapunov

function for the discrete case:

E(S) = —% ZXJ: Wi SiS; - ; b, s; 1*3,

where w; is the weight between neurons and s, and b; is a

bias to neuron S;. Assuming the following activation rule:

il

s, =1 if Y, wi; S5+ b; > 0
J

0 otherwise

Si
the neurons will change states such that energy will always decrease or remain the same.

The main philosophy of the adaptation algorithm is to observe the state vector the
Hopfield network converges to as implied by the initial conditions, node update order, and
Liapunov function. An error signal is generated and is used to adapt the gain parameters thus
restructuring the N-dimensional energy space. The adaptive algorithm is very similar to

Widrow’s adaptive linear element (adaline) in structure and indeed is an modified version of the

the adaline [22]. The convergence theorem for the adaline does not apply in the case of
proposed adaptive algorithm because of the modification.

The functional definition of the adaptive algorithm is now presented. Let

X(k) = [x4(k), ..., x_4(k)] be a 1 x L input vector,

W(k) = [wy(k), ..., w (k)] be a 1 x L weight vector,

d(k) be the desired output which is set to 0,

e(k) be the error, and

y(k) be the output at time step k.

The error used to adapt the weights is computed as follows:

y(k) = W(k) T X(k)
and
e(k) = y(k) - d(k).

Given this error term, the next step is to define the adaptive

element weight vector update rule:

W(k +1) = W(k) + p e(k) X(k),

where p is the learning rate parameter defined by

1

0 < u< .
Y (X, (k)2

50

The elements of the input vector are the individual error terms

associated with each constraint. Thus

X, (k) = E (k) - E

a ref

for inhibitive interaction and

X, (k) = E_, - E, (k)

a
for excitatory interaction,
where E, (k) takes on different functional forms depending on the type of the implementation and
the constraint and E,; is the value of E (k) when constraint a is satisfied. Figure 4.1 depicts the
adaptation algorithm in block diagram form.

The gain parameter for each constraint is increased when the individual constraint is
violated by the state vector representing the local minimum. The increase in magnitude is
proportional to the magnitude of the total error generated multiplied with the learning rate. The
learning rate parameter is inversely proportional to the trace of the input correlation matrix which
is sum of the squares of the input vector entries. When the error is large, the learning rate
parameter is small implying slow adaptation. Conversely, when the error is small, the algorithm
adapts faster because the learning rate parameter is large.

If the type of the interaction for the constraint is inhibition which is implemented with
a second order term, then

E (k) = E, o if E (k) < E,_,
E (k) = 3% 8,,; s;5; otherwise.
1 J

EOret
E0(K) \L XO(k)
o0
Etret
a(k)
Exk) X1(k)
______) NG
- c
- =0
1 v
k
ENret [v
EN(k) XN{k)
GN

Figure 4.1. Adaptation algorithm block diagram.

51

For an excitation constraint the implementation associated with a second order term is

E,(k) = E s 1f E, (k) 2 E o¢s
E, (k) =YY} 8,;; s;5; otherwise.
i 7]
In the case of implementation of an excitation constraint with a first-order term

E, (k) = E, ¢ 1f E (k) 2 E ..
E (k) =Y s; otherwise.
i

An inhibition constraint implementation with a first-order term employs the following:

S
z
|

= E,of 1f E, (k) < E ¢,
Y s; otherwise.
i

i
5
I

52

The weight vector entries are the magnitudes of the gain parameters associated with each

constraint:

W(K) = [Gy(k) Go(k) ... Gu(k)]-

An argument which may serve to clarify the presentation of the adaptation algorithm follows.

Observation: The proposed adaptation algorithm as defined above increases the

magnitude of the gain parameter when the constraint under discussion is violated, thus making

it less likely for the network to violate the same constraint next time it converges.

Proof: Consider a state vector which violates constraint o, then x,(k) > 0. The update

rule for the gain parameter magnitude associated with constraint a is given by
Ga(k+1) = Go(k) + pe(k)xq (k).
We also have that g(k) > 0 and p > O thus

G,(k+1) = G,(k). Q.E.D.

53

4.3 An Adaptive Constraint Satisfaction Network

Once the constraint satisfaction network is initialized and is allowed to relax to a state
vector S at time instant k, two variables are passed to the adaptation block: state vector S(k)
and weight vector W(k). Given these variable instances, the adaptation block will compute the
error term. If the error is not zero the current state vector represents a local minimum assuming
the solution state vector is a global minimum of the performance function with the error equal
to zero. In this case, the adaptation block will update the gain parameters which are associated
with the constraints violated.

Using this new set of gain parameters a new weight matrix for the constraint satisfaction
network is computed and the current state vector is used as the network initial conditions. A new
relaxation period is initiated and the cycle is repeated until a solution state vector is found. A
block diagram description of the closed-loop system is shown in Figure 4.2. A flow-chart for

the high-level functional definition of the closed-loop adaptive system is presented in Figure 4.3.

4.4 Simulation Results

The goal of this application is to demonstrate the use of adaptive constraint satisfaction
networks to search for the shortest path in a state space and thus test the performance of the
proposed algorithm. A directed graph is used as an abstract model for the state space search

problem, where vertices of the graph represent the states and directed edges

Reference Energy Values

Y

Adaptation
Z Block
/]
S(k)
W(K) W(k+1)
Constraint »

Satisfaction Network

|

Initial Conditions

Figure 4.2. Closed loop system.

54

55

Initialize

Hopfield
Relaxes

No
dinimy

Yes

Adapt

Figure 4.3. Flow-chart of adaptation algorithm.

56

stand for the transitions between associated states [8]. This problem effectively generates five
constraints for the neural network search algorithm to satisfy and hence constitutes a considerable
challenge.

The shortest path between two vertices of a given directed graph can be defined as a sub-
graph which meets the following constraints:

a. the sub-graph representing a path is both irreflexive and asymmetric,

b. each vertex except the source and target vertices must have in-degrees and out-degrees

of exactly 1,

c. the source vertex has an in-degree of 0 and an out-degree of 1,

d. the target vertex has an in-degree of 1 and an out-degree of 0, and -

e. the length of the path is equal to that power of the adjacency matrix which has the first

non-zero entry in the row and column locations defined by the source and target vertices

respectively.

Given the graph-theoretic constraints a path specification has to satisfy, the next step is
to define the corresponding topological constraints of the path search problem for an adjacency
matrix topology of the neural network. Since it is known that a path is irreflexive, we can clamp
the neurons which are located along the main diagonal to O given that they represent the
hypothesis: the path has self-loop for vertex V. In order to map the in-degree of O for a source
vertex, the neurons belonging to the column labelled by that vertex are clamped to 0 and
similarly, the neurons of the row labelled by the target vertex are clamped to O for realizing the
constraint that the out-degree of the target vertex is equal to 0. Note that one also needs to

implement the out-degree of 1 for the source vertex and in-degree of 1 for the target vertex, but

57

a special instance of the digraph search problem will be used such that there is only one path in
the formulation of the problem which meets all other constraints, hence eliminating the
implementation of the constraint.

Asymmetry of a graph (constraint #1) requires that only one of the two entries located
at symmetric positions with respect to the main diagonal of the adjacency matrix be equal to 1.
Hence 8, = 1 if and only if the row index of node s; equals the column index of node s; and the
column index of node s; equals the row index of node s;; otherwise d,; = 0. Since only one of
two interacting nodes can be equal to 1, the type of interaction between the nodes is inhibition,
K, € R. The reference value of the energy term associated with this constraint is 0.

A digraph node with an in-degree of 1 implies the existence of a single 1 in the associated
column of the adjacency matrix (constraint #2). The term 3,; = 1 if and onlry if the column
index of node s; equals the column index of node s;; otherwise ,; = 0. This constraint simply
implements the "1 out of N nodes equal to 1" rule, thus the type of the interaction is inhibition
with K, € R". The reference value of the energy term for this constraint is 0.

Similarly, a digraph node with an out-degree of 1 requires only a single 1 to exist in the
associated row of the adjacency matrix (constraint #3). The term 8,; = 1 if and only if the row
index of node s; equals the row index of node s;; otherwise 8;; = 0. Again the type of the
interaction is inhibition, K; € R, for the fact that only one of the N interaction nodes can be ON

at a certain time. The reference value of the energy term for this constraint is 0.

58

A path specification imposes the condition that any node that is not a source or target and
is included in the path must have an in-degree and out-degree of 1 (constraint #4). In terms of
the adjacency matrix, if there exists a 1 in a particular row/column, then there must exist a 1in
the column/row that has the same node label as the corresponding row/column. The term §,; = 1
if and only if the row index of node s; equals the column index of node s; or the column index
of node s; equals the row index of node s;; otherwise d,; = 0. Whenever d,; = 1, the two nodes
involved are supporting hypotheses; hence the interaction is excitatory with K, € R*. The
reference value of the energy term for this constraint is twice the shortest path length between
source and target nodes minus 1.

In order to impose the constraint that any network solution must be the shortest path
between source and target nodes, a bias for each neuron is employed. The reference value for
the energy term is simply equal to the shortest path length computed from the powers of the
adjacency matrix.

In order to test the proposed network, a digraph with a specially defined adjacency matrix
was employed. It was assumed that the adjacency matrix of the digraph had all its lower
triangular entries and the entries immediately above the main diagonal equal to 1; e.g., let a; (the
entry in the i-th row and j-th column of a matrix) belong to A (the adjacency matrix of the
digraph), then a; = 1 if and only ifjsi+ 1.

The adjacency matrix for an example digraph with 10 vertices is shown in Table 4.1.
Note that the entries which are equal to 0 are equivalently clamped to 0 in the network topology.
This digraph specification yields a path of length N-1 between vertices V, and V. Thus this

is the longest possible path for an N-vertex digraph. Another feature of this

1111

Table 4.1.

1

1

Adjacency matrix.

1

1

11111

1

1

1

1

1

59

60

digraph is that there are circuits of all possible lengths implying a difficult state space to search
since all those circuits may be mapped to local minima of the quadratic performance function.

Assume that we are looking for a path starting with vertex V, and ending with vertex V.
Clearly, there exists only one path which includes the adjacency matrix entries above the main
diagonal. A number of experiments were done to test the performance of the proposed network.
The measure of comparison is the number of iterations it takes the network to converge to the

solution state vector.

Experiment 1

The goal of this experiment was to evaluate the performance of the proposed algorithm.
A closed-loop version of the classical Hopfield network was developed to enable some form of
comparison for the proposed algorithm since there is currently no closed-loop constraint
satisfaction search algorithm available. A 10-node digraph was chosen as an instance of the
problem. Two different versions of the proposed algorithm were employed to observe the effects
of the random initialization of the state vector. The gain and state vectors for the classical
Hopfield network were randomly initialized each time after the network converged to a local
minimum and a new relaxation process was initiated with that set of parameters.

The frequency distribution of successful trials for the classical Hopfield network is shown
in figure 4.4. It is clearly observable that most of the trials converged in the interval of 1 to
1300 iterations. Approximately 10% of the trials required somewhere between 1300 to 3800
iterations for convergence while a countable few needed 3800 to 6000 iterations.

In the case of the adaptive Hopfield network without state vector re-initialization after

convergence to local minimum, almost all trials, 99%, converged in the interval 1 to 1100 with

61

significant percentage belonging to the 1 to 500 interval, 96%, figure 4.5.

The frequency distribution for the adaptive Hopfield network with state vector
re-initialization has a lower peak and is more spread than the adaptive Hopfield without state
vector re-initialization. Only 20% of all trials converged within 100 iterations for this algorithm.
The percentage of trials which converged within 500 iterations is approximately 67 which is
considerable lower than 96% realized by the adaptive Hopfield without state vector
re-initialization.

One noticeable difference between the two frequency distributions of the classical and
adaptive Hopfield algorithms is that the distribution is much more spread out for the classical
Hopfield network. The distribution associated with the adaptive Hopfield network without state
vector re-initialization clearly favors the intefval 1 to 500 iterations with nearly 45% of the trials
converging within 100 iterations.

There are only 4 trials which needed up to 1100 iterations to converge. This distribution
has the most desirable properties for the experiment because the distribution is the least spread
of three, located to the far left of others and skewed to the right. The fact that the distribution
is the narrowest of three implies that a better estimate of the average iterations for convergence
can be established.

The location of the distribution being to the left of the others is related to the claim that

the mean value of the process is smallest and hence the mean number of iterations for

Number of Trials

50

40

30

20

10

¢

100 §00 1000 2000 3000 4000 5000 6000

iterations to Caonvergence

Horizontal Step Size: 100 lterations
10-Node Digraph
100 Triais

Figure 4.4. Classical Hopfield,
gain and state vector reinitialized.

Number of Trials

50

40

30

20

10

|
i
1
IBEERREEREREALEENAANE RN AR AR ERREREEARREDEREE

100 500 1000 2000 3000 4000 5000 6000

0

Iterations to Convergence

Horizontal Step Size: 100 Iterations
10-Node Digraph, 100 Trials
Learning Rate Scaler: 0.1

Figure 4.5. Adaptive Hopfield,
state vector not reinitialized.

64

convergence is smallest. The right-skewed distribution is an indication of the fact that most trials
actually converge in fewer iterations than the median value.

The second best algorithm is the adaptive Hopfield with state vector re-initialization which
outperformed the classical Hopfield network. The difference in performance for the two adaptive
Hopfield networks points to the importance of the state vector re-initialization aspect of the
algorithms. Employing the current state vector as the initial condition for the next relaxation
period improves the performance of the adaptive algorithm.

Experiment 2

This experiment was conducted to observe the effects of the learning rate on the
frequency distribution of the successful trials. The learning rate parameter was varied from 0.1
to 0.9 in steps of 0.1 and 100 trial runs were attempted for each value of the learning rate
parameter for a 10-node digraph. The results are shown in figures 4.6-14.

One observation is that the curve is the least spread for learning rate value in the interval
of [0.4, 0.6] and spreads out as the value is varied toward both ends of the interval [0.1, 0.9].
Thus, the statistical mean estimate of the distributions is more accurate for learning rate values
of 0.5 = 0.1.

The frequency distributions for learning rate values in the interval [0.3, 0.6] have higher
peaks which are located to the left of the horizontal axis and hence more trials for those learning
rate values converged within a small number of iterations. Indeed, 78% of 100 trials converged
within 100 iterations for a learning rate of 0.5 and 99% of all trials converged within 275

iterations for the same learning rate.

Number of Trials

50

40

30 -

10

IS EEEEANRARESRRAERRARRIRRAREARRRRRA

100 6§00 1000 2000 3000 4000 5000 6000

0

iterationa to Convergence

Horizontal Step Size: 100 lterationa
10-Node Digraph, 100 Triais
Learning Rate Scaier: 0.1

Figure 4.6. Adaptive Hopfield,
state vector re-initialized.

65

Number of Triais

35

30

25

20 —+ B

156

10

Iilllllllllllll'”ll‘llIIYIIIIIIIH

26100 250 600 750 1000 1260 1600

iterations to Convergence

Horizontal Step Size: 25 Iterations
10-Node Digraph
100 Trials

Figure 4.7. ACSN performance,
learning rate scaler: 0.1.

66

Numbear ot Triais

35

20

16 4

10

llllll[llllllllilll(llIilllfll(lllIIIIIIII!I!I

26 250 500 750 1000 1250 1600

iterations to Convergence

Horizontal Step Size: 26 Iterations
10-Node Digraph
100 Trials

Figure 4.8. ACSN performance,
learning rate scaler: 0.2.

Number of Trials

35

30~

25

20

15

10

HlIYYII!I'I]IIII!IIIIII]TTIIIIIIIIIIIIIIIIIﬁI

26 260 5§00 750 1000 12560 1600

i{terationa to Convergence

Horizontal Step Size: 26 Iterations
10-Node Digraph
100 Triala

Figure 4.9. ACSN performance,
learning rate scaler: 0.3.

68

Number of Triala

35

30 1

25

20 -

15 1

10

SEERASEENSEESEEERERRERENAREARRRAARRARARARRAREN

26 260 600 760 1000 1260 1600

lterations to Convergence

Horizontal Step Size: 25 Iterations
10-Node Digraph
100 Trials

Figure 4.10. ACSN performance,
learning rate scaler: 0.4.

69

Number ot Triais

l|llllll$||lll¥IIllI‘llllIllllilllTl!ll

26 250 5§00 750 1000 1260 1600

jterationa to Convergence
Horizontal Step Size: 25 Iterations

10-Node Digraph
100 Trials

Figure 4.11. ACSN performance,
learning rate scaler: 0.5.

70

Number of Trials

35

30

IR RER AR RN R EEEEACEEERER!

26 260 500 750 1000 1250 1600
Iterations to Convergence
Horizontal Step Size: 26 iterations

10-Node Digraph
100 Trials

Figure 4.12. ACSN performance,
learning rate scaler: 0.6.

71

Number ot Trials

35 -
30 -
25 4
20 -
P Ty T Ty Ty v T T T T I T T T I 7T T T T T T T T
26 250 §00 760 1000 1260 1600

Iterations to Convergence

Horizontal Step Size: 25 lterations
10-Node Digraph
100 Triala

Figure 4.13. ACSN performance,
learning rate scaler: 0.7.

-

Number of Trials

35

30

25 . . ce . e - TP PO PRETPRY R

20

15

10

26 260 600 760 1000

Jterationa to Convergence

Horlzontal Step Size: 285 lterations
10-Node Digraph
100 Trisle

Figure 4.14. ACSN performance,
learning rate scaler: 0.8.

1260

1600

Number of Trials

35
30
25 _J e e e [O e

20

26 260 §00 760 1000 1250 1600

{terations to Convergence

Horizontal Step Size: 25 Iterations
10-Node Digraph
100 Trials

Figure 4.15. ACSN performance,
learning rate scaler: 0.9.

74

75

Note that for learning rate values of 0.2, 0.7, 0.8 and 0.9, the distributions have lower
peaks and spread out considerably compared to the distributions in the interval [0.4, 0.6].
Although the distribution for a learning rate value of 0.1 has a high peak, the width of the peak
is notably less than that of distributions associated with learning rates in the interval [0.4, 0.6].

The maximum number of iterations a trial took to converge was for the learning rate value
of 0.9 and is approximately equal to 1500. Clearly, one can claim that the optimal value of
learning rate parameter for the path search problem of 5 constraints for a 10-node digraph
belongs to the interval [0.4, 0.6]. The optimality is defined based on the features of the
frequency distribution of the successful trials. We will consider a learning rate value optimal if
the associated distribution is located to the far left, right-skewed, not spread and as high as
possible with maximum peak width.

Experiment 3

The goal of this test was to observe the effects of the varying network size on the
frequency distribution of the successful trials. The learning rate was set to 0.5 for all network
sizes tested. A total of 100 trials were run for each network size.

Networks of 5, 10, 15 and 20 nodes were considered initially but the simulations for the
network of 20 nodes required more computational effort than currently available computing
resources can provide. Hence, only a small number of trials were attempted for this network
size. Full experiments was conducted on network sizes of 5, 10 and 15 with associated frequency
distributions shown in figures 4.16-18. Each step size in those figures corresponds to 100

iterations.

Number ot Trials

120

100

80

60

40

20

100 500 1000 1500 2000 2600 3000 3600 4000 4500 5000

lterations to Convergence

Horizontal Step Size: 100 Iterations
5-Node Digraph, 100 Trials
Lesrning Rate Scaler: 0.5

Figure 4.16. Adaptive Hopfield,
effect of network size 1.

76

77

Number of Trials

120

100 -

80__

60

40

20

0 Y!]lTII||II|TIIIIIYIIII\ITIIIIIX‘IIIII]I!Illl

100 500 1000 1500 2000 2500 3000 3500 4000 4500 6000

Iterations to Convergence

Horizonta! Step Size: 100 lterations
10-Node Digraph, 100 Trials
Learning Rate Scaler: 0.5

Figure 4.17. Adaptive Hopfield,
effect of network size 2.

Number of Triala

120
T

100

80

ol

40

1l |
0 I llllll]l]ll!lllllflIIIXITT

100 600 1000 1500 2000 2500 3000 3500 4000 4500 65000

lterations to Convergence
Horizontal Step Size: 100 iterations

16-Node Digraph, 100 Triais
Learning Rate Scaler: 0.5

Figure 4.18. Adaptive Hopfield,
effect of network size 3.

78

79

In the case of 5 nodes, all trials converged within 100 iterations. It took up to 300
iterations for more than 90% of the 10-node networks to converge. The maximum number of
iterations to convergence for a 10-node digraph was on the order of 500. Approximately, 80%
of the trials converged to solution state within 1000 iterations for a 15-node digraph. Only a
small percentage needed on the order of 2000 to 4000 iterations to converge.

An approximation to the function which shows variation of average number of iterations
with respect to network size is shown in Figure 4.19. Although there is not enough data to infer
the behavior of the function for network sizes above 15 nodes, if one follows the assumption that
function behaves in a predictable manner in the region past 15 nodes an extension of the function
in that region shows that average number of iterations for a 20-node digraph is more than
approximately 2000. A couple of trials with a 20-node digraph indicates that number of
iterations necessary for convergence is not less than that value, five trials resulted in 3806, 5711,

10001, 7156 and 5741 iterations with average equal to 6482.

4.5 Conclusions

The proposed adaptive constraint satisfaction network is the first closed-loop algorithm
of its type. An earlier algorithm developed by Ackley [23] has similar features to the
proposed algorithm but addresses a somewhat different type of constraint satisfaction/optimization
problem. Two main differences are that the function to be optimized in Ackley’s case is not
known by the adaptation block and the adaptation signal provided by the same block is a scalar

in the interval of [-1, +1].

Average lterations (Thousands)

10

T T T T

40 60 80 100
Digraph Size (Nodes)

Figure 4.19. Adaptive Hopfield,
network size vs. performance.

120

81

The results of experiment 1 show that the proposed network is very promising for
moderate size problems. The performance of the algorithm for larger sized networks remains to
be seen. The performance of the adaptive network compared to closed-loop classical Hopfield
network with gain parameters and state vectors randomly initialized after each iteration is visibly
superior as shown by the frequency distributions of the successful trials. The effects of the
learning rate parameter on the algorithm performance is also noted such that there exists an

optimal interval for learning rate values for which algorithm is most successful.

4.6 Future Research

A complete mathematical description of the adaptation algorithm and the closed-loop
syétem will be ‘attemptcd. This includes analysis of the effects of restructuring of the energy
function in N-dimensional space by adapting the weights, effects of the initial state vector on
convergence rate and the effects of random update order on the performance of the closed-loop
search algorithm.

The adaptation algorithm will be analyzed from a viewpoint of a reinforcement learning
algorithm, A reinforcement algorithm generally employs a one-bit piece of information compared
to the proposed algorithm which utilizes more detailed data during the adaptation cycle, thus one
would expect the proposed algorithm to converge much faster.

The closed-loop adaptive algorithm is located somewhere in the middle in the spectrum
of learning algorithms. At one extreme is reinforcement learning and at the other extreme is
backpropagation [1]. It is also of interest to identify some sort of quantity to use whose expected

value or the value itself might be optimized by the adaptation algorithm.

82

The testing of the proposed algorithm with a complete set of problems needs to be done
since the initial study only included the path search problem. The set of problems should be
selected such that the performance of the algorithm with respect to the number of constraints, the
size of the problem which implies the size of the network and the leaming rate parameter are

clearly observed.

(1]

[2]

(3]

[4]

(5]

6]

(7]

(8]

(%]

[10]

[11]

[12]

[13]

83

References

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing. Cambridge, MA:
The MIT Press, 1986.

J. J. Hopfield and D. W. Tank, "Neural Computations of Decisions in Optimization
Problems," Biological Cybernetics 52, pp. 141-152, 1985.

J. J. Hopfield and D. W. Tank, "Computing with Neural Networks: A Model," Science
233, pp. 625-632, 1986.

J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective
Computational Properties," Proc. Nat. Acad. Sci., USA 79, pp. 2554-2558, 1982.

J. J. Hopfield, "Neurons with Graded Response have Collective Computational Properties
like those of Two-State Neurons," Proc. Nat. Acad. Sci., USA, vol. 81, pp. 3088-3092,
1984.

P. K. Mazaika, "A Mathematical Model of the Boltzmann Machine," Proc. of ICNN, vol.
III, pp. 157-163, 1987.

D. H. Ackley, G. E. Hinton and T. J. Sejnowski, "A Learning Algorithm for Boltzmann
Machines," Cognitive Science, vol. 9, pp. 147-169, 1985.

J. P. Tremblay and R. Monahar, Discrete Mathematical Structures with Applications to
Computer Science. New York: McGraw-Hill Inc., 1975.

S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions and the Bayesian
Restoration of Images," IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp.
721-741, 1984.

Hartmanis, J. and Stearns, R. E., Algebraic Structure Theory of Sequential Machines.
Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1966.

J. Ramanujam and P. Sadayappan, "Optimization by Neural Networks," Proceedings of
IJCNN-88, vol. II, pp. 325-332, June 1988.

G. A. Tagliarini and E. W. Page, "Solving Constraint Satisfaction Problems with Neural
Networks," Proceedings of IEEE First International Conference on Neural Networks, vol.
I11, pp. 741-747, June, 1987.

A. Ginzburg, Algebraic Theory of Automata. New York: ACM Monograph series,
Academic Press, 1968.

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

84

T. J. Sejnowski, "Higher Order Boltzmann Machines," AIP Conference Proceedings 151,
Neural Networks for Computing, Snowbird, Utah, 1986.

C. L. Masti and D. L. Livingston, "Neural Networks for Addressing the Decomposition
Problem in Task Planning," Proceedings of the International Joint Conference on Neural
Networks, IICNN-90-WASH-DC, 1990.

Y. C. Lee, G. Doolen, H. H. Chen, G. Z. Sun, T. Maxwell, H. Y. Lee, and L. C. Giles,
"Machine Learning a Higher Order Correlation Network," Physica 22D, pp. 276-306,
North-Holland, Amsterdam, 1986.

M. W. Hirsch, "Convergence in Neural Nets," Proc. IICNN °88, vol. 1, pp. 115-125,
1988.

A. Krowitz, L. Rendell and B. Hohensee, "The State Space of Memory Clusters in the
Hopfield Network," Proc. IJCNN 89, vol. III, pp. 339-346, 1989.

S. U. Hegde, J. L. Sweet and W. B. Levy, "Determination of Parameters in a
Hopfield/Tank Computational Network," Proc. IJCNN 88, vol. I, pp. 291-298, 1988.

G. W. Davis and A. Ansari, "Sensitivity Analysis of Hopfield Neural Net," Proc. IJCNN
'89, vol. I1I, pp. 325-328, 1989.

J. Bruck and J. W. Goodman, "A Generalized Convergence Theorem for Neural Networks
and Its Applications in Combinatorial Optimization," Proc. IJCNN ’89, vol. I, pp.
649-656, 1989.

B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, N.J.:
Prentice-Hall Inc., 1985.

D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing. Boston: Kluwer
Academic Publishers, 1987.

