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Abstract

Ten permanent 15 m transects previously established in two oak/saw
palmetto scrub stands burned in December 1986, while two transects remained
unbumed. We sampled vegetation in the > 0.5 m and < 0.5 m layers on these
transects at 6, 12, 18, 24, and 36 months postburn and determined structural
features of the vegetation (height, % bare ground, total cover). We analyzed
vegetation data from each sampling by height layer using detrended
correspondence analysis ordination. Vegetation data for the > 0.5 m layer for
the entire time sequence were combined and analyzed using detrended
correspondence analysis ordination. Soils were sampled at 6, 12, 18, and 24

months postburn and analyzed for pH, conductivity, organic matter,
exchangeable cations (Ca, Mg, K, Na), NO3-N, NH4-N, Al, available metals (Cu,

Fe, Mn, Zn), and PO4-P.

Shrub species recovered at different rates postfire with saw palmetto
reestablishing cover >0.5 m within one year, but the scrub oaks had not
returned to preburn cover >0.5 m in 3 years after fire. These differences in
growth rates resulted in dominance shifts after fire with saw palmetto increasing
relative to the scrub oaks. Such shifts were not uniform across the scrub
gradient. Mixed oak/saw palmetto-dominated transects changed the most and
recovered more slowly than either oak or saw palmetto-dominated transects.
Distances between preburn and successive postburn locations in ordination
space appear to be a useful index of this recovery. In mature scrub, ordination
of the > 0.5 m layer reflected the environmental gradient from wet to dry.

Ordinations of the >0.5 m layer from 6 through 18 months after fire reflected the



rate of recovery as well as environmental differences, while ordinations of the <
0.5 m layer reflected the main environmental gradient. Most of the forbs and
grasses in scrub also resprouted after fire; several of these were more common
in the wetter transects. Overall changes in species richness were minor,
although changes occurred in species richness by height layers due to different
growth rates. Mean total cover > 0.5 m increased linearly after fire but did not
reach a maximum in 3 years. Mean total cover < 0.5 m was 50% at 6 months
postfire and remained that at 36 months postfire. Mean height was about 76 cm

at 3 years postfirs.

Soils of well drained and poorly drained sites differed markedly. Soil
responses to fire appeared minor. Soil pH increased at 6 and 12 months
postfira; calcium increased at 6 months postburn. Nitrate-nitrogen increased at
12 months postburn. Low values of conductivity, PO4-P, Mg, K, Na, and Fe at 12
months postburn may be related to heavy rainfall the preceeding month.

Seasonal variability in some soil parameters appeared to occur.

iii
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Introduction

Scrub vegetation dominated by shrub caks (Quercus chapmanii, Q.
geminata, Q. myrtifolia), ericaceous shrubs (e.g., Lyonia fruticosa, L. lucida) and
saw palmetto (Serenoa repens) is an important upland vegetation type on
Kennedy Space Center (KSC) (Provancha et al. 1986). It is a major habitat for
the threatened Florida scrub jay (Aphelocoma coerulescens coerulescens)
(Breininger 1981, 1989) and is used by the gobher tortoise (Gopherus

polyphemus) and other species of concern (Breininger et al. 1988).

Oak/saw palmetto scrub vegetation is fire adapted and recovers from fire
primarily by sprouting (Abrahamson 1984 a,b, Schmalzer and Hinkle 1987).
Previously, we examined four stands of scrub vegetation of differing ages on
similar sites in the Happy Creek area of KSC, established permanent transects,
and resampled those transects in the absence of fire (Schmalzer and Hinkle
1987). The youngest stand sampled had burned two years before the first

sampling.

In December 1986, a fire burned through two of the stands previously
sampled. Resampling after this fire was conducted to determine early postfire
responses not covered in the previous study. In addition, there are advantages
to examining changes on permanent sample plots or transects rather than
inferring temporal changes from sites of differing ages but similar in other
environmental conditions (Mueller-Dombois and Ellenberg 1974, Austin 1977).
Examples of permanent plot studies in Florida vegetation include Veno (1976),

Abrahamson (1984a,b), Givens et al. (1984), Myers (1985), and Menges (1990).



The study site is an inland area of Merritt Island. Merritt Island has a
warm, humid climate. Annual precipitation averages 131 cm, but year-to-year
variability is high. Precipitation varies seasonally with a wet season occurring
from May to October and the rest of the year being relatively dry (Mailander
1890). Thunderstorms are frequent in the summar months with lightning strikes
being common (Eastern Space and Missile Center 1989). Moisture deficits
typically occur between mid-March and mid-May and between mid-November
and mid-December (Mailander 1990). Mean daily maximum temperatures are
22.30C for January and 33.39C for July; mean daily mininum temperatures are

9.60C for January and 21.99C for August (Titusville records, Mailander 1990).

The scrub stands in this study occur primarily on Pomello sand (Arenic
Haplohumod), a moderately well drained soil, but the wetter end of the scrub
gradient is on the poorly drained Immokalee (Arenic Haplaquod) or Myakka
sand (Aeric Haplaquod) (Huckle et al. 1974). These soils are low in available
nutrients with much of the nutrient standing crops in living and dead vegetation

and litter rather than the mineral soil (Schmalzer and Hinkle 1987).

Methods
Vegetation Sampling and Analysis

Permanent vegetation transects were established and sampled in four
scrub stands in January 1883; in January 1985, they were resampled
(Schmalzer and Hinkle 1987). The December 1986 fire burned through scrub
Stands 1 and 2; Stands 3 and 4 did not burn. In Stand 1 four of six transects

(#2, 3, 4, 5) burned, and in Stand 2 all six transects (#7-12) burned. We



sampled vegetation of the burned transects at 6, 12, 18, 24, and 36 months
postfire using line-intercept techniques and sampling the 0-0.5 mand > 0.5 m
height layers (Muelller-Dombois and Ellenberg 1974). Unburned transects
(Stands 1, #1 and 6) were sampled 6, 24, and 36 months postfire. Sampling

methods used were the same as before the fire.

Vegetation data from each sampling period were analyzed by height
layer using detrended correspondence analysis ordination (Hill and Gauch
1980, Gauch 1982) in the PCORD package (McCune 1987). Vegetation data
from all sampling periods were combined and detrended correspondence
analysis ordination was used with this larger data set to examine the patterns of
compositional change. Ordination techniques have been used previously to
study vegetation dynamics (Austin 1977, Whittaker and Woodwell 1978,
Swaine and Greig-Smith 1980, Menges 1390), and recovery after fire (Hobbs
and Gimingham 1984, Westman and O'Leary 1985, Malanson and Trabaud
1987). The data from repeated sampling of the same scrub transects appeared

particularly suited to this approach.
Soil Sampling and Analysis

All transects in Stand 1 were on soils mapped as Pomello sand
(moderately weil drained); in Stand 2, 4 transects (#9-12) were on Pomello
sand and 2 transects (#7, 8) were on Myakka sand (poorly drained) (Huckle et
al. 1974).

We sampled soils from the 0 to 15 cm and 15 to 30 ¢m depths near each
burned transect immediately postfire and 6, 12, 18, and 24 months postfire.
Unburned transects were sampled 6, 12, and 24 months postfire. Each sample

was a composite of at least 5 soil cores. Soil samples were homogenized and



subsampled; subsamples were oven-dried at 50° C for 24 hours. Oven-dried
samples were analyzed for nitrate-nitrogen and ammonium-nitrogen. Other

analyses were conducted on air-dried samples.

Analyses of all parameters except organic matter were made in the
NASA/KSC Environmental Chemistry Laboratory. Soil pH was determined on a
1:1 soil to water slurry (McLean 1982) using an Orion pH meter. Conductivity
was measured on a 1:5 soil to water solution using a conductivity meter
(Rhoades 1982). Exchangeable cations, Ca, Mg, Na, and K, were extracted in
neutral 1N ammonium acetate (Knudsen et al. 1982, Lanyon and Heald 1982)
and analyzed by atomic absorption spectrophotometer (Perkin-Elmer
Corporation 1982). Available metals, copper (Cu), iron (Fe), manganese (Mn),
and zinc (Zn), were extracted in diethylenetriaminepentaacstic acid (DTPA)
(Olson and Ellis 1982, Gambrell and Patrick 1982, Baker and Amacher 1982)
and analyzed by atomic absorption spectrophotometer. Exchangeable
aluminum was extracted in 1N potassium chloride (Barnhisel and Bertsch 1982)

and analyzed by atomic absorption spectrophotometry (Perkin-Elmer
Corporation 1982). Exchangeable nitrate-nitrogen (NO3-N) and ammonium-

nitrogen (NH4-N) were extracted in 2N potassium chloride (Keeney and Nelson
1982) and then analyzed on a Technicon Autoanalyzer (Technicon Industrial
Systems 1973, 1983a). Available phosphorus was determined by extraction in
deionized water (Olsen and Sommers 1982) followed by analysis on a
Technicon Autoanalyzer (Technicon Industrial Systems 1983c¢). Organic matter
was determined by the combustion method (Nelson and Sommers 1982).
Organic matter determinations were made by Post, Buckley, Schuh, and

Jernigan, Inc., Orlando, Florida.



Results
Vegetation Composition

The response of all burned transects (Table 1, Table 2, Appendix |,
Tables |-1 to I-4) indicated regrowth of the shrub species of scrub at differing
rates postfire. In the > 0.5 m layer (Table 1), cover of saw palmetto returned to
preburn values in one year after fire, wax myrtle (Myrica cerifera) required 2
years to reestablish preburn cover, llex glabra, Befaria racemosa, and Lyonia
lucida required 3 years. The scrub oaks had not returned to preburn cover by 3
years after the fire. Myrtle oak (Quercus myrtifolia) had only about half its

preburn cover by 3 years postfire.

In the < 0.5 m layer (Table 2), there were increases after fire in the cover
of shrubs that before burning were in the > 0.5 m layer. These included Lyonia
lucida and L. fruticosa, llex glabra, Myrica cerifera and the scrub oaks. By 3
years after fire, cover of many of these shrubs < 0.5 m was beginning to decline
as they grew into the > 0.5 m layer. Some subshrubs (Vaccinium myrsinites,
Gaylussacia dumosa) that often do not reach 0.5 m height also increased after

the fire.

Response of herbaceous species varied. Perennial grasses such as
Anstida stricta and Andropogon spp. resprouted and reestablished cover. There
appeared to be modest increases in cover of Carphephorus spp., Panicum spp.,
and Eupatorium rotundifolium. Pteridium aquilinum and Galactia elliottii
appeared only in the 6 months and 18 months postburn samples. This was a

seasonal effect, since both species are deciduous. The fire occurred in
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December, thus only the 6 and 18 months postburn samples represented

summer conditions.

The two stands that burned were not identical preburn. Stand 1 was
older (11 vs. 7 years since fire) and on a drier site than Stand 2 (see Schmalzer
and Hinkle 1987). Therefore, we also considered their postfire response
separately. Stand 1 (Table 3, Table 4, see also Appendix 1) showed the same
general trends discussed above except that some shrubs such as llex glabra
did not occur on the drier sites, and there were fewer herbaceous species.
Conversely, Stand 2 (Table 5, Table 6, see also Appendix |) followed the same

general trends but had additional shrub and herbaceous species.

The two unburned transects in Stand 1 (Table 7) showed only minor
changes in composition and percent cover in the time since the December 1986

fire.
Ordination Analysis

Preburn ordination of the > 0.5 m layer (Appendix lll, Figure 1) gave a
pattern where Transects 7 and 8 defined the wet end of the gradient dominated
by saw palmetto with llex glabra and Persea borbonia, while the oaks
dominated the xeric end. The < 0.5 m layer gave a similar ordination pattern
(Appendix lll, Figure 2), reflecting the depth to water table gradient. Transect 7
was not represented in this ordination, since preburn it had no vegetation < 0.5

m.

At 6 months postburn, ordination of the > 0.5 m layer (Appendix Ill, Figure
3) had Transect 5 at one end and the other transects clustered near the other

end of the first axis. Immediately after fire, regrowth of saw palmetto exceeded
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that of the oaks and dominated the > 0.5 m layer. Transect 5 lacked saw
palmetto, and its regrowth was dominated by the oaks, as indicated in the
species ordination. In contrast, the < 0.5 m layer ordination (Appendix llI, Figure

4) reflected the environmental gradient previously shown in the > 0.5 m layer.

At 12 months postburn, Transect 5 still defined one end of the
ordination of the > 0.5 m layer (Appendix lll, Figure 5). More species had grown
into this layer, including some of those that characterize wetter sites. The < 0.5
m layer ordination (Appendix I, Figure 6) reflected the depth to water table

gradient with Transects 7 and 8 defining the wet end.

By 18 months postfire (Appendix I, Figure 7), Transect 5 still defined the
oak-dominated end of the first axis of the > 0.5 m layer ordination, Transects 7
and 8 emerged as saw palmetto-dominated transects on the other end, and a
group of transects with mixed dominance was intermediate. Ordination of the <
0.5 m layer (Appendix I, Figure 8) reflected the differences between Transects
7 and 8 and the others. In species composition, the wet end of the gradient was
partly determined by herbaceous species (e.g., Panicum spp., Eupatorium
rotundifolium) and small shrubs (e.g., Rhus copallina), since other shrubs had

grown into the > 0.5 m layer.

At 24 months postburn, the overall gradient was well defined in the > 0.5
m layer (Appendix Ill, Figure 9), but less so in the < 0.5 m layer (Appendix IlI,
Figure 10). The ordination patterns at 36 months postburmn were similar to those
24 months postburn (Appendix Ill, Figures 11, 12). Comparing the preburn
ordination of the > 0.5 m layer (Appendix IlI, Figure 1) to 36 months postburn
(Appendix lIl, Figure 11) indicated a general but incomplete recovery of the

community pattern by this time. Oak cover was still less than preburn in the > 0.5
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m layer; this was reflected in the intermediate location of many transects that
preburn had greater cak dominance as indicated by their closer location to

Transect 5 in the preburn ordination.

Further details of the recovery process are given by the detrended
corraspondence analysis ordination of the transects at all sampling times. The
overall pattern (Appendix Ill, Figure 13) had the oak-dominated transects (e.g.,
#5) to the right side of the ordination and saw palmetto-dominated transects
(#7.#8) to the left, as is also indicated by the species ordination (Appendix I,
Figure 14).

Trajectories of individual transects over time are seen more easily by
plotting fewer of the transects on one graph (Appendix I, Figures 15, 16, 17).
Three patterns of responses occurred. Transect 5 with high oak dominance and
little saw palmetto cover remained on the right side of the ordination (Appendix
Ill, Figure 15). At 6 months after fire, it was located higher on the second axis,
probably due to the cover of Galactia and Smilax in that sample. Over time, the
position of the transect in the ordination space tracked back toward its original

location but was not identical to preburn by 36 months postburn.

Saw palmetto-dominated transects (#7, Appendix I, Figure 16; #8,
Figure 15) remained on the left side of the ordination. At 6 months postburn,
both of these transects were lecated higher on the second axis than preburn,
probably reflecting the cover of Eupatorium and Pteridium postfire. Transect 7
tracked back toward its preburn location relatively smoothly. Transect 8 showed
a variation in that the 18 months postburn sample was closer to the 6 months

than the 12 months sample. This was a seasonal response, since the herbs
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Eupatorium and Pteridium were represented in the summer (6, 18 months)

samples but not the winter ones.

Most of the transects (# 2, 3, 4, 9, 10, 11, 12) were originally of mixed
oak/saw palmetto dominance or oak dominated but with saw palmetto
abundant. These all moved from the oak end of the ordination to the saw
palmetto end after fire and then gradually tracked back toward their original
location (Appendix I, Figure 15, #10, 11, 12; Figure 16, #2, 4; Figure 17, #3, 9).
Transect 2 showed a slight variation in this pattern in that the sample 12 months
postburn had greater saw palmetto dominance than at 6 months after the fire;

this seems to be due to slower initial growth on this transect.

We calculated two indices intended to reflect recovery based on the
ordination results. The first was simply the ditference between the first axis
ordination score of the sample taken before the fire and the first axis score for
each postfire sampling of that transect. The first axis was used since this is the
most important in an ordination. These differences declined with increasing time
since fire (Table 8). The group of transects of mixed dominance showed the
greatest change 6 months postfire and the largest remaining differences 36
months postfire compared to the saw palmetto-dominated transects or the the

single oak-dominated one (Table 8).

The second index was the euclidean distance between the preburn
location of a transect and its location at each postburn sampling based on the
first two ordination axes. This index takes into account information from the
second ordination axis. See Malanson and Trabaud (1987) for a similar

approach. These values declined with increasing time after the fire and
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Table 8. Dlfferences Between Preburn and Postburn Axis 1 Ordinatlon Scores From

Detrended Correspondence Analysis Ordination.

6 Months 12 Months 18 Months 24 Months 36 Months

Transect Postburn Postburn Postburn Postburn Postburn
2 62 86 39 38 21
3 113 94 59 55 20
4 106 85 72 67 14
5 36 38 9 11 0
7 20 22 13 21 7
8 10 7 13 1 (-2)1
9 84 74 46 12 (-12)1
10 96 95 70 45 14
11 140 133 97 90 41
12 49 30 22 8 2
-2
Xal 71.6 66.4 44.0 34.8 13.3
2
SDy, 43.0 40.0 30.1 29.3 12.2
=3
Xsp 15.0 14.5 13.0 11.0 4.5

3
SD¢p 7.1 10.6 0 14.1 3.5
— 4
Xoisp 92.9 85.3 57.9 45.0 17.7
N

o/sp 31.0 30.6 24.7 29.2 12.0

1 Calculations based on absolute values of negative differences.
2 All transects (N=10).
3 Saw palmetto transects (#7, 8) (N=2).

4 Oak/saw palmetto transects (#2, 3, 4, 9, 10, 11, 12) (N=7).
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- alsosuggested that the mixed dominance transects changed to a greater

degree than the saw palmetto or cak-dominated ones (Table 9).
Vegetation Structure

Mean total cover > 0.5 m increased almost linearly from 6 to 36 months
postfire (Appendix lll, Figure 18). Mean total cover < 0.5 m (Appendix lIl, Figure
19) reached a value of about 50% at 6 months postfire and fluctuated within that
range through 36 months postfire. Percent bare ground (Appendix I, Figure 20)
was high immediately after fire but declined rapidly, approaching zero at 36
months postfire. Mean height (Appendix [ll, Figure 21) increased rapidly through
one year after fire and then at a slower rate. Mean maximum height (Appendix
[Il, Figure 22) increased rapidly to 6 months after fire and then changed slowly.
Species richness > 0.5 m (mean number of species per transect) (Appendix III,
Figure 23) increased to 18 months postfire. Species richness < 0.5 m (Appendix
lll, Figure 24) and species richness of all strata (Appendix Ill, Figure 25) reached
high values at 6 months postfire and changed little from then through 36 months

postfire.
Soil Chemistry

Previous work (Schmalzer and Hinkle 1987) and initial analysis of the
postburn soil data indicated that the more poorly drained scrub soils had higher
levels of organic matter and nutrients related to organic matter. In order to
reduce variation within the soil data set, well drained soils (8 burned transects)
were considered separately from the poorly drained ones (2 burned transects).
Some data from 2 unburned transects were also collected. The sample sizes of
the poorly drained and unburned soils were not sufficient for definite

conclusions. Soils of these transects were sampled previously in January 1983.
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Table 9. Euclidean Distances Between Preburn and Postburn Locations (Axis 1, Axis
2) of Transects in Ordination Space from Detrended Correspondence
Analysis Ordination.

6 Months 12 Months 18 Months 24 Months 36 Months

Transect Postburn Postburn Posthurn Postburn Postburn
2 70.7 102.6 46.3 41.2 22.1
3 130.4 113.7 63.3 56.5 20.6
4 114.0 101.8 83.4 75.6 '15.2
5 81.4 42.9 20.1 11.0 29.0
7 35.2 33.3 25.6 21.8 9.2
8 81.6 43.6 83.0 15.0 3.6
9 104.4 88.8 56.6 12.2 15.0
10 104.8 101.6 70.1 45.5 50.0
11 155.2 148.9 114.1 96.6 54.6
12 49.0 31.0 22.0 8.2 9.2
- 1
Xai 92.7 80.8 58.5 38.4 22.9

]
SD.u 36.5 40.4 30.8 30.4 17.2
=2
Xsp 58.4 38.5 54.3 18.4 6.4

2
SD, 32.8 7.3 40.6 4.8 4.0
=3
Xoisp 104.1 98.3 65.1 48.0 26.7
sp°

o/sp 35.5 35.3 29.0 31.9 18.1

1 All transects (N=10).
2 Saw palmetto transects (#7, 8) (N=2).
3 Oak/saw palmetto transects (#2, 3, 4, 9, 10, 11, 12) (N=7).
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These data are given in Appendix Il, Tables Il-1 to lI-3. Graphs are presented

only for the well drained, burned soils.

Hydrogen ion concentration (Appendix Ill, Figure 26) decreased at 6 and
12 months after the fire and then returned to preburn values by 18 months
postburn. Soil pH (Appendix [, Figure 27) increased with the hydrogen ion
decrease and then returned to preburn values. Poorly drained soils (Table 11-2)
showed decreased hydrogen ion concentration (increased pH) at 12 and 24 but
not 18 months postburn; unburned soils (Table 1I-3) showed a decrease in

hydrogen ion concentration at 12 months after the fire.

Conductivity declined at 12 months postburn (Appendix I, Figure 28).
This decline occurred in the burned, poorly drained scrub (Table 1I-2) but also in

the unburned scrub (Table 1I-3).

Organic matter (Appendix Ill, Figure 29) did not show a clear pattern of
change after the fire. At 12 months postburn, values were low in the surface
layer, but 18 and 24 month postburn values were not. Poorly drained soils
(Table II-2) and unburned soils (Table 1I-3) did not show this trend. As
previously shown, organic matter levels were much higher in poorly drained

than well drained soils.

Phosphorus (Appendix Ill, Figure 30) did not show a definite fire
response. Values at 12 months postburn were lower than those preceeding and

following. The same trend occurred in the poorly drained soils (Table 11-2).

Calcium appeared slightly elevated at 6 months postfire (Appendix I,
Figure 31) but by 12 months postburn returned more in range with preburn

values. Magnesium (Appendix Ill, Figure 32) did not show a definite fire
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response. As with several other parameters, it decreased at 12 months postfire
but increased later. Potassium (Appendix ill, Figure 33) decreased at 12 months
postburn, but values at 18 and 24 months postburn were higher than preburn.
The poorly drained soils (Table 1I-2) also displayed this pattern. Sodium
(Appendix lil, Figure 34) showed a slight decrease at 12 months postburn
followed by an increase at 18 and 24 months. Poorly drained soils (Table II-2)
were similar; unburned soils (Table 1I-3) also had higher values 24 months

postfire than before the fire.

Nitrate-nitrogen (Appendix I, Figure 35) was low immediately and 6
months postburn, increased at 12 months postburn, and remained high at 18
and 24 months postburn. The poorly drained soils (Table [I-2) also displayed
this pattern. Unburned soils (Table 11-3) increased at 24 but not 12 months
postfire. Ammonium-nitrogen (Appendix IIl, Figure 36) declined between
immediately postburn and 12 months postburn, then increased sharply at 18
months, declining again at 24 months postburn. Poorly drained soils (Table 11-2)
followed the same pattern. Variability was evident even in the unburned soils

(Table II-3).

Aluminum (Appendix Ill, Figure 37) increased at 18 months postburn in
well drained soils and in poorly drained ones (Table II-2). Unburned soils also
increased in aluminum at 24 months postfire (Table 1I-3). Copper (Appendix I,
Figure 38) increased at 18 months postburn in well drained soils and in poorly
drained ones (Table 11-2), but unburned soils changed little (Table 11-3). Iron
(Appendix I, Figure 39), manganese (Appendix Ill, Figure 40), and zinc
(Appendix I, Figure 41) varied some through time but did not show clear

changes from fire.
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Discussion
Vegetation Composition and Structure

Regrowth of oak/saw palmetto scrub immediately after fire was primarily
by the resprouting of shrubs present before the fire, as indicated in our previous
work (Schmalzer and Hinkle 1987) and in studies of similar vegetation
(Abrahamson 1984a,b). Rates of regrowth differed between species. This is
seen most clearly immediately after fire; saw palmetto reestablished preburn
cover > 0.5 m in one year after fire, while scrub oaks did not reestablish preburn
cover > 0.5 min 3 years. Abrahamson (1984a,b) observed similar species

differences in postfire regrowth.

Mean total cover > 0.5 m three years postfire was similar to cover
recorded in our earlier study (Schmalzer and Hinkle 1987). At two years
postfire, cover was greater than in the two year old stand previously sampled:;
that stand had greater oak dominance and exhibited slower reestablishment of
cover in the > 0.5 m layer. Mean total cover < 0.5 m was also in the range
reported previously (Schmalzer and Hinkle 1987). The decline in cover < 0.5 m
that occurred in stands 4 years old (Schmalzer and Hinkle 1987) did not occur

by 3 years postfire here.

Differential growth rates of the major shrub species resulted in shifts in
dominance after fire. Ordination analyses indicated that these shifts were not
uniform but were most pronounced in transects of mixed dominance. While
earlier studies (Schmalzer and Hinkle 1987) indicated dominance changes,
these changes were most pronounced in the first two years after fire, as

reflected here.
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Herbaceous species such as Pteridium and Eupatorium increased after
fire, particulary in the saw palmetto-dominated transects, but this was of much
less magnitude than the shrub response. Much of the herbaceous response
was vegetative regrowth rather than seedling establishment. This was certainly
the case with grasses (Andropogon, Aristida) and perennial forbs such as
Pteridium and Galactia. Some species (e.g., Eupatorium) were encountered
primarily in summer sampling; since sampling before the fire (Schmalzer and
Hinkle 1987) was conducted in the winter, seedling establishment cannot be
ruled out. At most, however, this is a minor component of the vegetation

recovery in oak/saw palmetto scrub.

The subshrubs Vaccinium myrsinites and Gaylussacia dumosa
increased immediately after fire. Abrahamson (1984a,b) observed this in Lake
Wales Ridge vegetation but noted that these shrubs can persist for lengthy

periods without fire.

A consequence of the dominance of sprouting species in oak/saw
palmetto scrub vegetation and the rapid recovery of plant cover after fire is that
there is little change in overall species richness. There are changes in species
richness by strata due to differing rates of height growth. This confirms earlier
results (Schmalzer and Hinkle 1987). Abrahamson (1984a) noted that only a
small set of plant species were well-adapted to the set of envirionmental
conditions that characterize scrub; these conditions include winter drought,
acid, nutrient-poor, sandy soils, and repeated burning. In rosemary (Ceratiola
gricoides) scrub, openings persist longer after fire due to the slower recovery by
a seeder species, and there was a greater postfire response by herbaceous

species (Johnson and Abrahamson 1990). Fire is thought to maintain species
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diversity in many shrublands (Gill and Groves 1981, Kruger 1983, Christensen
1985).

Bare ground did not persist long after fire in the oak/saw paimetto scrub.
This is consistent with our previous study (Schmalzer and Hinkle 1987) and
with observations that there is little bare ground in undisturbed oak/saw
palmetto scrub not recently burned (Breininger et al. 1988, Breininger and
Schmalzer 1990). Oak/saw palmetto scrub differs from much sand pine scrub

(Mulvania 1931, Webber 1935) where openings are common and persist.

Rates of height growth were similar to those reported before (Schmalizer
and Hinkle 1987). Mean height was 76 cm, well below one meter, at 3 years

after fire.
Soil Chemistry

In general, values of most soil parameters were similar to previous
results (Schmalzer and Hinkle 1987). For all major nutrients, concentrations
were greater in the 0-15 cm layer than at 15-30 ¢m. Poorly drained scrub soils

were higher in organic matter and most nutrients than the well drained soils.

There are several complications to interpreting the responses to fire of
these soils. The preburn samples were taken 3 years before the fire, not
immediately preburn. There was not a matched sampling of soils from unburned
scrub; therefore, seasonal variation of soil parameters may influence the results.
Madsen (1980) conducted quarterly sampling of KSC soils including those from
scrub but concluded that the data were not sufficient to establish seasonal

trends.
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The decrease in hydrogen ion concentration (pH increase) at 6 and 12
months postfire is probably due to fire. Soil pH increases of differing
magnitudes are commonly observed after fire and are related to the release of
cations in ash (Raison 1979, Wells et al. 1979). The only cation to show an
increase coinciding with pH is Calcium which is the most abundant cation in
scrub biomass and litter (Schmalzer and Hinkle 1987). Abrahamson (1984a)

observed an increase in calcium after fire that lasted less than one year.

Conductivity, phosphorus, magnesium, potassium, sodium, and iron all
decreased at 12 months postburn. By 18 and 24 months postburn all returned in
line with preceeding values or, in the case of sodium and potassium, exceeded
previous levels. Precipitation records (Appendix Ill, Figure 42) indicated that the
rainfall of November 1987 (9.44 in, 24.0 cm), the month preceeding the 12
months postburn sampling, was the greatest monthly precipitation during the
course of the study. It is possible that this resulted in leaching of mobile

elements from the upper layers of the soil.

Nitrate-nitrogen and ammonium-nitrogen exhibited delayed responses to

fire. Nitrate-nitrogen began increasing at 12 months extending to 18 and 24
months postburn. Similar delayed increases in nitrate-nitrogen occurred after
fire in coastal strand vegetation on Canaveral National Seashore (Hinkle et al.
1989) and various other systems including chaparral (Christensen and Muller
1975, DeBano et al. 1977), South African fynbos (Stock and Lewis 1986), and
pocosins (Wilbur and Christensen 1983). Delayed increases in nitrate-nitrogen
have been related to initial declines in nitrifying bacteria (Dunn and DeBano

1977) followed by their subsequent recovery and mineralization of nitrogen
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made available by fire (DeBano et al. 1979, Raison 1979). Total Kjeldahl

nitrogen data from these sites are not yet available.

Reasons for the increase of aluminum and copper at 18 and 24 months
postburn are unclear. Increases in pH decrease the availability of aluminum
and copper (Brady 1974, Marschner 1986), but the magnitude of the pH change
here appears insufficient to have much effect. Additionally, pH returned to its
preburn values at 18 months postburn, while aluminum and copper

considerably exceeded preburn values then.

Conclusions

1. The general pattern of recovery of oak/saw palmetto scrub after fire is
that of sprouting by the dominant shrub species with little overall change in
species composition or species richness. Sampling of permanent transects
repeatedly after fire reveals details of this process which were not as clear from
previous work. Recovery patterns differ over the scrub gradient. Dominance of
mixed oak/saw palmetto transects changes much more immediately after fire
than either cak-dominated or saw palmetto-dominated transects, and recovery

is not complete by 3 years after fire.

2. Many of the structural changes after fire are persistent. Percent bare
ground is reduced quickly by resprouting shrubs, but cover in the > 0.5 m layer
and shrub height recover more slowly. Yet unresolved are potential changes
from repeated, frequent fires that might reduce root carbohydrate reserves (e.g.,

Hough 1968, Harrington 1985, 1989).
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3. Scrub soils do not appear greatly changed by fire. There is a modest
increase in pH that last for about one year after fire and an increase in calcium.
There is a delayed increase in nitrate-nitrogen as seen in several other studies.
Low values of several parameters at 12 months after the fire may be related to
unusually high rainfall the preceeding month. Future work in effects of fire on
scrub scils needs to examine the broader question of fire effects on nutrient
cycling in scrub including losses of nutrients directly from fire (e.g., Raison et al.
1985a,b), possible importance of gaseous emissions of nitrogen oxides
(Anderson et al. 1988, Levine et al. 1988, 1990), and the potential for leaching
losses. Soil studies may require balanced sampling of unburned sites to

account for seasonal variability which appears greater than anticipated.
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Appendix I

Chemical Characteristics of Scrub Soils Before and After the December 1986

Fire
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Appendix 1li

Ordination, Community Structure, and Soil Chemistry Figures
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Figure 1. Detrended correspondence analysis ordination of the > 0.5 m layer of
scrub transects sampled in January 1985 that burned in December 1986.
Sample ordination shows individual transects. Species shown are ARISTR
(Aristida stricta), BEFRAC (Befaria racemosa), ILEGLA (/lex glabra), LYOFRU
(Lyonia fruticosa), LYOLUC (Lyonia lucida), MYRCER (Myrica cerifera),
PERBOR (Persea borbonia), QUECHA (Quercus chapmanii), QUEGEM
(Quercus geminata), QUEMYR (Quercus myrtifolia), and SERREP (Serenoca

repens).
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Figure 2. Detrended correspondence analysis ordination of the < 0.5 m layer of
scrub transects sampled in January 1985 that burned in December 1986.
Sample ordination shows individual transects. Species are as in Figure 1 with
the addition of HYPRED (Hypericum reductium), SMIAUR (Smilax auriculata),

and VACMYR (Vaccinium myrsinites).
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Figure 3. Detrended correspondence analysis ordination of the > 0.5 m layer of
scrub transects that burned in December 1986 six months postburn. Species
are as previously defined with the addition of EUPROT (Eupatorium
rotundifolium), GALELL (Galactia elliottii), and PTEAQU (Pteridium aquilinum).
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Figure 4. Detrended correspondence analysis ordination of the < 0.5 m layer of
scrub transects that burned in December 1986 six months postburn. Species
are as previously defined with the addition of BAREGR (Bare ground), CARSPP
(Carphephorus spp.), GAYDUM (Gaylussacia dumosa), LICMIC (Licania
michauxii), PANSPP (Panicum spp.), RHUCOP (Rhus copallina), and VACSTA

(Vaccinium stamineum).
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Figure 5. Detrended correspondence analysis ordination of the > 0.5 m layer of
scrub transects that burned in December 1986 12 months postburn. Species

are as previously defined.
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Figure 6. Detrended correspondence analysis ordination of the < 0.5 m layer of
scrub transects that burned in December 1986 12 months postburn. Species
are as previously defined with the addition of ANDSPP (Andropogon spp.) and
DROSPP (Drosera spp.).
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Figure 7. Detrended correspondence analysis ordination of the > 0.5 m layer of
scrub transects that burned in December 1986 18 months postburn. Species

are as previously defined.
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Figure 8. Detrended correspondence analysis ordination of the < 0.5 m layer of
scrub transects that burned in December 1986 18 months postburn. Species

are as previously defined with the addition of SEYPEC (Seymeria pectinata)

and UNKHER (Unknown herb).

80



AXIS 2

AXIS 2

200

150

100

50

350
300
250
200
150
100

50

=50
-100
-150

DCA ORDINATION
18 MONTHS POSTBURN
LESS THAN 0.5 m

aP-12
a P-10
P-8
g p-7 O
g P-5
0 O p-9
P-11 g pos O P-4
@ g P-2
[ i ! ] 1
0 50 100 150 200 250 300
AXIS 1
O SEYPEC
QUEGEM
N gQ
VACSTA
| O serreP
O CARSPP
B O LYOFRU os C Emspp
- a O ARISTR 0 Lvowc Hypaép ILEGLA ELéPROT
BAREGR O MYRCER E ’ RHUCOP
B TEAQ UNKHER
L. O vACMYR LCMIC O AnDsPP
O smuaur
= O QUEMYR O GALELL
i O QUECHA GAYDUM
1 | 1 L 9 \ ! | I i
-50 0 50 100 150 200 250 300 350 400
AXIS 1

81



Figure 9. Detrended correspondence analysis ordination of the > 0.5 m layer of
scrub transects that burned in December 1986 24 months postburn. Species

are as previously defined.
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Figure 10. Detrended correspondence analysis ordination of the < 0.5 m layer
of scrub transects that burned in December 1986 24 months postburn. Species

are as previously defined.
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Figure 11. Detrended correspondence analysis ordination of the > 0.5 m layer
of scrub transects that burned in December 1986 36 months postburn. Species

are as previously defined.
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Figure 12. Detrended correspondence analysis ordination of the < 0.5 m layer
of scrub transects that burned in December 1986 36 months postburn. Species

are as previously defined.
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Figure 13. Detrended correspondence analysis sample ordination of the > 0.5
m layer of all burned transects of scrub vegetation from preburn through 36

months postburn.
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Figure 14. Detrended correspondence analysis species ordination of the > 0.5
m layer of all burned transects of scrub vegetation from preburn through 36

months pestburn. Species are as previously defined.
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Figure 15. Detrended correspondence analysis sample ordination of the > 0.5
m layer showing changes of selected transects from preburn through 36 months

postburn. Shown are transects 5, 8, 10, 11, and 12.
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Figure 16. Detrended correspondence analysis sample ordination of the > 0.5
m layer showing changes of selected transects from preburn through 36 months

postburn. Shown are transects 2, 4, and 7.
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Figure 17. Detrended correspondence analysis sample ordination of the > 0.5
m layer showing changes of selected transects from preburn through 36 months

postburn. Shown are transects 3 and 9.

98



| SIXV

00c 081 091 O¥lL 0L 00l 08 09 014 0l
| I I I | I | T |
owge |
Yo owg
aud O owgg v ¥ i
eud
owyz O
owg|] © .
owgl V¥
owz| V¥
owg| ¢ ) ]
owg
¢-d ¢
6-d V¥
NdN81SO0d SHINOW 9¢ — NdNg3yd

NOILVL3IO3A 8NYOS NOILVNIQYO VIO(d

0¢

OV

09

08

00l

0cZ1

ovl

091

¢ SIXY



Figure 18. Mean total cover preburn and through 36 months postburn of the >
0.5 m layer of scrub transects that burned in December 1986. Shown are
means and 95% confidence intervals. Data are the sum of the cover of

individual species per transect.
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Figure 19. Mean total cover preburn and through 36 months postburn of the <
0.5 m layer of scrub transects that burned in December 1986. Shown are
means and 95% confidence intervals. Data are the sum of the cover of

individual species per transect.
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Figure 20. Percent bare ground preburn and through 36 months postburn of
scrub transects that burned in December 1986. Shown are means and 95%

confidence intervals.
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Figure 21. Mean height preburn and through 36 months postburn of scrub
transects that burned in December 1986. Shown are means and 95%
confidence intervals. Data are heights measured at four intervals (0, 5, 10, 15

m) along each transect.
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Figure 22. Mean maximum height preburn and through 36 months postburn of
scrub transects that burned in December 1986. Shown are means and 95%

confidence intervals. Data are the maximum height of any shrub along each

transect.
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Figure 23. Species richness (mean number of species per transect) preburn
and through 36 months postburn of the > 0.5 m layer of scrub transects that

burned in December 1986. Shown are means and 95% confidence intervals.
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Figure 24. Species richness (mean number of species per transect) preburn
and through 36 months postburn of the < 0.5 m layer of scrub transects that

burned in December 1986. Shown are means and 95% confidence intervals.
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Figure 25. Species richness (mean number of species per transect) preburn
and through 36 months postburn of both strata of scrub transects that burned in

December 1986. Shown are means and 95% confidence intervals.
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Figure 26. Hydrogen ion concentration of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 cm layer (A) and

the 15-30 cm layer (B).
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Figure 27. pH of well drained scrub soils preburn and through 24 months
postburn of scrub transects that burned in December 1986. Shown are means
and 95% confidence intervals for the 0-15 c¢m layer (A) and the 15-30 cm layer

(B).
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Figure 28. Conductivity of well drained scrub soils preburn and through 24
months postburn of scrub transects that burned in December 1986. Shown are
means and 95% confidence intervals for the 0-15 cm layer (A) and the 15-30 cm

layer (B).
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Figure 29. Organic matter of well drained scrub soils preburn and through 24
months postburn of scrub transects that burned in December 1986. Shown are
means and 95% confidence intervals for the 0-15 cm layer (A) and the 15-30 cm

layer (B).
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Figure 30. Available phosphorus of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 cm layer (A) and

the 15-30 cm layer (B).
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Figure 31. Exchangeable calcium of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 cm layer (A) and

the 15-30 cm layer (B).
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Figure 32. Exchangeable magnesium of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.
Shown are means and 95% confidence intervals for the 0-15 ¢cm layer (A) and

the 15-30 cm layer (B).
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Figure 33. Exchangeable potassium of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 c¢m layer (A) and

the 15-30 cm layer (B).
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Figure 34. Exchangeable sodium of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 cm layer (A) and

the 15-30 cm layer (B).
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Figure 35. Exchangeable nitrate-nitrogen of well drained scrub soils preburn
and through 24 months postburn of scrub transects that burned in December
1986. Shown are means and 95% confidence intervals for the 0-15 cm layer (A)

and the 15-30 cm layer (B).
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Figure 36. Exchangeable ammonium-nitrogen of well drained scrub soils
preburn and through 24 months postburn of scrub transects that burned in
December 1986. Shown are means and 95% confidence intervals for the 0-15

cm layer (A) and the 15-30 cm layer (B).
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Figure 37. Exchangeable aluminum of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 cm layer (A) and

the 15-30 cm layer (B).
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Figure 38. Available copper of well drained scrub soils preburn and through 24
months postburn of scrub transects that burned in December 1986. Shown are
means and 95% confidence intervals for the 0-15 ¢m layer (A) and the 15-30 cm

layer (B).
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Figure 39. Available iron of well drained scrub soils preburn and through 24
months postburn of scrub transects that burned in December 1986. Shown are
means and 95% confidence intervals for the 0-15 c¢cm layer (A) and the 15-30 c¢cm

layer (B).
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Figure 40. Available manganese of well drained scrub soils preburn and
through 24 months postburn of scrub transects that burned in December 1986.

Shown are means and 95% confidence intervals for the 0-15 cm layer (A) and

the 15-30 cm layer (B).
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Figure 41. Available zinc of well drained scrub soils preburn and through 24
months postburn of scrub transects that burned in December 1986. Shown are

means and 95% confidence intervals for the 0-15 cm layer (A) and the 15-30 cm

layer (B).
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Figure 42. Precipitation from December 1986 to December 1988 during the
course of the scrub soil study. Data are monthly precipitation values from a

National Atmospheric Deposition Program rain station ca. 9.3 km south of the

study area.

148



December 1988

C

@)

=

O

—

oa-l

O

O

o O
L.
O
0
-
€D
Q
4)
)

ANANNNARNRRNRNNY
AN NN NN NN NN NNNNNNN NN
AN NN NN NN NN NNNNNNANYN

/
41217
71714
|I2!E4

18 20 22 24

Burn

QE

14 16

AN NNNNNNONNNNONNNNNNNNNNT

/

\NNNNNNNNY

NN

AaaaIiEmIi HI T I T T T ENESSSSSsSSSS
AN NNNANNANNNNNNY

zE

8

AALLIIIRIRRRRRNRNNY
SSN\\Y
ANANNNY

IAAALALARRAARRAARRANRAARRNRRY

NNNNNRNY
AN
ANAANANNARNNRARNRRRRNRRNRRRNRRRY

10.0

2.0
1.0 -

i ! | |
o 9 o o
© w < M

7.0 |
0.0

1
©
o0

9.0 -

(un) ubg;o“dlo:—ud

14¢

12

10

6

Months Since






Report Documentation Page

Natonal Aeronautcs and
Space AoTnsirahon

1. Report No. 2. Government Accession No. 3. Recipient's Catalog Na.

™ 103817

4. Title and Subtitle o 5. Report Date !
Dynamics of Vegetation and Soils of Oak/Saw January 25, 1991
Palmetto Scrub After Fire: Observations From S Ferorming Draariaaion Cods
Permanent Transects BIO-2

7. Author(s) 8. Performing Organization Report No.

Paul A. Schmalzer, C. Ross Hinkle

10. Work Unit No.

9. Performing Organization Name and Address

The Bionetics Corporation

Mail Ccde BIO-2 NAS10-11624

Kennedy Space Center, Florida 32899 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

NASA/John F. Kennedy Space Center, FL 32899

11. Contract or Grant No.

14. Sponsoring Agency Code

MD

15. Supplementary Notes

16. Abstract

Ten permanent 15 m transects previously established in two oak/saw palmetto scrub stands
burmed in December 1986, while two transects remained unbumed. We sampled vegetation in
the > 0.5 m and < 0.5 m layers on these transects at 6, 12, 18, 24, and 36 months postburn
and determined structural featuraes of the vegetation (height, % bare ground, total cover). We
analyzed vegetation data from each sampling by height layer using detrended correspondence
analysis ordination. Vegetation data for the > 0.5 m layer for the entire time sequence wers
combined and analyzed using detrended correspondenca analysis ordination. Soils were
sampled at 6, 12, 18, and 24 months postbumn and analyzed for pH, conductivity, organic
matter, exchangeable cations (Ca, Mg, K, Na), NGO; -N, NH4-N, Al, available metals (Cu, Fe,
Mn, Zn), and PQ,4-P.

Shrub species recovered at different rates postfire with saw palmetto reestablishing cover
>0.5 m within one year, but the scrub oaks had not returned to preburn cover >0.5 min 3 years
after fire. These differences in growth rates resulted in dominance shifts after fire with saw

17. Key Words {Suggested by Author(s}) 18. Distribution Statement )
Fire, Florida, Scrub o
atation Sai li N
Vegetation, Soil Unlimited, NTIS
19. Security Classif, (of this report) 20. Security Classif. (of this page) 21. No. of pages 22, Price

NASA FORM 1628 OCT 96






