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ABSTRACT

Statistical methods for classification of data from multiple data sources
(e.g., Landsat MSS data, radar data and topographic data) are investigated
and compared to neural network models. A problem with using conventional
multivariate statistical approaches for classification of data of multiple types is
in general that a multivariate distribution cannot be assumned for the elasses in
the data sources. Another common problem with statistical classification
methods is that the data sources are not equally reliable. This means that the
data sources need to be weighted according to their reliability but most
statistical classification methods do not have a mechanisin for this. This
research focuses on statistical methods which can overcome these problems: a
method of statistical multisource analysis and consensus theory. Reliability
measures for weighting the data sources in these methods are suggested and
investigated. Secondly, this rescarch focuses on neural network models. The
neural networks are distribution-free since no prior knowledge of the
statistical distribution of the data is needed. This is an obvious advantage
over most statistical classification methods.  The neural networks also
automatically take care of the problem involving how much weight cach data
source should have. On the other hand, their training process is iterative and
can take a very long time. Methods to speed up the training procedure are

introduced and investigated. Lxperimental results of classification using both



xviil

neural network models and statistical methods are given, and the approaches

are compared based on these results.



CHAPTER 1

INTRODUCTION

1.1 The Research Problem

Computerized information extraction from remotely sensed imagery has
been applied successfully over the last two decades.  The data used in the
processing have mostly becn mullispectral  data and the  statistical
pattern recognition  (multivariate classification) methods are now widely
known. Within the last decade advances in space and computer
technologies have made it possible to amass large amounts of data about the
Farth and its environment. The data are now more and more typically not
only spectral data but include, for example, forest maps, ground cover maps,
radar data and topographic information such as elevation and slope data. lor
this reason there may be available many kinds of data from different sources

regarding the same scene. These are colleetively ealled multisource data.

It is desirable to use all these data to extract more information and get
higher accuracy in classilication. However, the conventional multivariate
classification methods cannot be used satisfactorily in processing multisource
data. This is due to several reasons. One is that the multisource data cannot
be modeled by a convenient multivariate statistical model since the data are

multitype. They can for example be spectral data, clevation ranges and even



non-numerical data such as ground cover classes or soil types. The data are
also not necessarily in common units and therefore scaling problems may arise.
Another problem with statistical elassification methods is that the data sources
may not be cqually reliable. This means that the data sources need to be
weighted according to their reliability, but most statistical classification
methods do not have such a mechanism. This all implies that methods other
than the conventional multivariate classification have to be used to classify

multisource data.

1.2 Two Different Classification Approaches

Various heuristic and problem-specific methods have been proposed to
classify multisource data. However, this report concentrates on developing
more general methods  which can be applied to classify any type of data. In
this respect two approaches will be considered: a statistical approach and a

neural network approach.

In the statistical case, general methods will be investigated: consensus
theory and statistical multisource analysis. In particular, attention is focused
on statistical multisource analysis by means of a method based on Bayesian
classification theory which was proposed by Swain, Richards and Lee [1,2].
This method will be extended to take into account the relative reliabilities of
the sources of data involved in the classification. This requires a way to
characterize and quantify the reliability of a data source, which becoines
important when the combination of information is being looked at. Methods
to determine the reliabilities and to translate them into weights to be used in

the classification process will be investigated.



Another important problem that needs to be worked on in statistical
multisource analysis is how to model effectively non-Gaussian data. In general,
the classes in the data sources cannot be assumed to be Gaussianly
distributed. In this research, methods to model non-Gaussian data will be

considered.

Neural network methods to classify multisource data will also be
investigated. Neural network models have as an advantage over the statistical
methods that they are distribution-free and thus no prior knowledge is needed
about the statistical distributions of the eclasses in the data sources in order to
apply these methods for classification. The neural network methods also take
care of determining how much weight cach data source should have in the
classification. A set of weights describe the neural network, and these weights
are computed in an iterative training procedure. On the other hand, neural
network models can be very complex computationally, need a lot of training
samples to be applied successfully, and their iterative training procedures
usually are slow to converge. The time consumption of the training process
can be a major problem in application of neural networks in classification of
multisource remote sensing data. In this report methods to speed up the

training in conventional neural networks will be discussed.

Neural network models have more difficulty than do statistical methods
in classifying patterns which are not identical to one or iore of the training
patterns. The performance of the ncural network models in classification is
therefore more dependent on having representative training samples whereas
the statistical approaches need to have an appropriate model of cach elass. In

this report experimental results of classilication using both mneural network



models and statistical mcthods will be given, and the approaches will be

compared based on these results.

1.3 Report Organization

Statistical methods for multisource classification are addressed in Chapter
2. The two statistical methods focused on in this report can be cast in two
different groups of pooling methods: the linear opinion pool and the
logarithmic opinion pool. Both pooling methods are discussed in detail and
several methods are suggested to weight the different data sources for these
methods. Since non-Gaussian modeling is a very important part of designing
a statistical multisource classifier, non-Gaussian modeling methods are also

addressed in Chapter 2.

The neural network approach for multisource classification is discussed in
Chapter 3. Both two-layer (input and output layers) and multi-layer (input,
hidden and output layers) are considered. Methods to speed up the training of

the neural networks are also discussed in Chapter 3.

Experimental results are given in Chapter 4. Three data sets were used
in experiments. Two of them consisted of multisource remote sensing and
geographic data; the third data set was very-high-dimensional multispectral
data. Both the linear opinion pool and the statistical multisource classifier
were used in experiments in conjunction with several npn-Gaussian modeling
methods. The minimum Euclidean distance and the maximum likelihood
method for Gaussian data were also used when appropriate. Both two-layer
and three-layer ncural network models were used in experiments to classify

the different data sets. The results of the different approaches in Chapter 4



are compared in terms of different sample sizes and dimensionalitics of input
data. The statistical and neural network approaches showed some striking
differences. Conclusions based on the experimental results are drawn in

Chapter 5 where directions for future research are also suggested.






CHAPTER 2
STATISTICAL METHODS

In this chapter statistical methods for classification of multisource data
will be discussed. The chapter begins with a survey of previous approaches to
the classification of multisource remote sensing and geographic data. Most of
these approaches are problem-specific. General multisource classification
methods are discussed in detail. These general methods are consensus theory
and statistical multisource analysis. Most consensus theory and statistieal
multisource analysis methods need source-specific weights (reliability factors)
to control the influence of the of the data sources. Methods to seleet the
weights arc introduced and discussed. Finally, approaches to model non-

Gaussian data sources are addressed.

2.1 A Survey of Previous Work

Several statistical methods have been used in the past to classify
multisource data. For instance, topographic data have been combined with
remotely sensed data in land cover analysis. One such approach is to
subdivide the data into subsets of the data sources and then analyze each
subdivision as reported in Strahler et al. [3]. In this method the data are

subdivided in such a way that variation within each subdivision is minimized



or eliminated based on some of the subdividing variables. Other examples of

similar methods can be found in Franklin et al. [4] and Jones et al. [5]

A second method is "ambiguity reduction,” where the data are classified
based on one or more of the data sources, the results from the classification
are assessed, and other sources are then used in order to resolve the remaining
ambiguities. The ambiguity reduction can be achieved by logical sorting
methods. Hutchinson has used this method successfully [6]. A method related
to ambiguity reduction is the layered classifier (tree classifier) applied by
Hoffer et al. [7] This particular approach has the advantage that it treats the
data sources separately but has the shortcoming that it is very dependent on
the analyst’s knowledge of the data. Also, as in ambiguity reduction, different

groupings or orderings of the sources produce different results 8].

Still another method is supervised relaxation labeling derived by Richards
et al. [9] in order to merge data from multiple sources. This method, like
other relaxation methods, tries to develop consistency among a collection of
observations by means of an iterative numerical "diffusion” process. So far
this method has not been fully investigated on multiple sources, but its

iterative nature makes it computationally very expensive.

None of the methods described above is a general approach to
multisource classification and all of them depend heavily on the user. They all
deal with the various sources of data independently. In contrast a fourth
method is a general approach which does not deal with the data sources
independently. This method is the stacked-vector approach, i.e., formation of
an extended vector with components from all of the data sources and handling

the compound vector in the same manner as data from a single source. This



method is the most straightforward and conceptually the simplest of the
methods. It works very well if the data sources are similar and the relations
between the variables are easily modcled [10]. However, the method is not
applicable when the various sources cannot be described by a common model,
e.g., the multivariate Gaussian model. Another drawback is that when the
multivariate Gaussian model is used, the computational cost grows as the
square of the total number of variables, which becomes prohibitive if the total

number of variables is large.

All of the methods discussed up to this point have significant limitations
as general approaches for multisource classification. Our goal is to develop a
general method which can be used to classifly complex data sets containing
multispectral, topographic and other forms of geographic data. In this chapter
consensus theoretic approaches are discussed, where the goal of consensus
theory is to get a conscnsus among experts. In multisource classification the
group of "experts” is the collection of data sources used in the classification.
Related to consensus theory is a method of statistical multisource analysis, a
probabilistic method based on Bayesian decision theory which was developed
by Swain, Richards and Lee [1,2]. The method of statistical multisource
analysis will be augmented to include mechanisms to weight the influence of
the data sources in the classification. Two other important additions to the
method will also be addressed: 1) how to sclect the weights for the data

sources and 2) classification of non-Gaussian data.



2.2 Consensus Theoretic Approaches

Here we consider the formulation of the problem of combining expert
opinions in which each expert (data source) estimates the probability of
certain events in a particular o-field [11]. The goal is to produce a single
probability distribution which summarizes the various estimates with the
assumption that the experts are Bayesian. The study of such combination

procedures is called consensus theory.

French [12] has stated the following three reasons why a summarized
opinion is needed:

i)  The ezpert problem: The group of experts has been asked for advice by a
decision maker. The decision maker is outside the group.

ii) The group decision problem: The group itself may be jointly responsible
for a decision.

iii) The text-book problem: The members of the group may simply be
required to give their opinions for others to use at some time in the future
in as yet undefined circumstances. There is no predefined decision
problem.

In the following discussion we will concentrate on the ezpert problem since we

are interested in getting the information from the experts (data sources) and

acting as the decision maker outside the group.
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2.2.1 Linear Opinion Pools

Here the combination of probability density functions is discussed
without any assumptions concerning their form. The combination formula is
called a consensus rule. In his work McConway [13] shows that if the
consensus rules are required to have too many pre-specified properties then

flexibility in the combination is lost, as discussed below.

Consider the case where there is a possibly infinite set {1 with a number
of elements at least greater than or equal to 3 and a collection of consensus
rules for n data sources that depend only on the m-algebra [11] of events
considered, i.e., for each o-algebra S of {1 there is a function Cg (a consensus
rule):

Cs:[P(1,8)]" — P({},S) (2.1)
where P({1,S) is the space of all probability measures with o-algebra S. This
implies that if the data sources have probability measures py,...,p, then
Cs(pyy-+,Pn) is a new probability measure on the same o-algebra of events.
Now if T is any sub-c-algebra of S then the py,...,p, can be restricted to T,
namely

P I TX) =p(X) XeT (2.2)

One property McConway lists as desirable for a consensus rule is the property

of marginalization (MP), which is stated as follows:

Cs{(pys--rPn) | T) = Cp({p | T), o (pu "l‘)) (2.3)

This says that for events in T, the rules Cg and Cp coineide.
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Another reasonable property for a consensus rule is the null set property
(NSP), i.e., if an event is considered impossible by all the sources then its

assigned probability is zero:

P (X) == pn(X) =0 — CS(pl’""pn)(X) =0 (2'4)

Two other propertics (constraints) that could be considered are the following.
One property is that the consensus depends just on the event and the values

of the assessment of the sources (weak setwise function property (WSFP)):

CS(ply'"’Pn)(X) = F(X,pl(X),...,pn(X)) (2‘5)

where F: Q — [0,1] (Q = {(2" - {¢,(}}) x [0,1]*} U {(4,0,...,0),({},1,...,1)}),
F(#,...)=0, and F({},...)=1. A stronger restriction is that the consensus
depends only on the values of the assessment of the sources (strong setwise
function property (SSI'P)):

Cs(p1y-»Pa)(X) = G(p1(X), -, Pu (X)) (2.6)

where G: [0,1]" — [0,1], G(0,0,...,0)=0 and G(1,1,..,1)=1. (SSFP is also
called "strong label neutrality” by Wagner [14] and "context-free assumption”

by Bordley and Wolff [15].)

McConway [13,16] investigated the relationship between the properties

above and proved the results in Theorem 2.1 [17]:
Theorem 2.1: Suppose there is a family of consensus rules {Cg} in {2. Then
(a) MP is equivalent to WSFP

(b) (MP and NSP) is equivalent to SSFP

(¢) SSFP is achieved if and only if there exist nonnegative numbers (weights)
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Qpy .« v .y Oy M = 1 such that for all o-algebras S, with X € 5, and all

i

p€ P(£},S) then

—
o
~1

~—

Cs(pryrpa)(X) = Y ipi(X)
=1

The sum on the right side of equation (2.7) is called a linear opinion pool.
The linear opinion pool is probably the most commonly used consensus rule.
Its origins date back at least to Laplace [12]. Stone [18] seems to be have been

the first to discuss this rule in some detail and he named it the opinion pool.

Part (c) of Theorem 2.1 shows the consequence of imposing too many
conditions on the consensus rules. That is, if the SSKFP property is imposed
then the linear opinion pool becomes the combination function. A very
important point here is that the MP and the NSP are not only imposed but
also that the consensus rules are defined for all a-algebras which imiplies a

probability measure is achieved [17 .

The linear opinion pool has a number of appealing properties: It is
simple, it yields a probability distribution (or a probability density if densities
are used), it has the MP and the NSP, and its weights ¢ reflect in some way
the relative expertise of the ith expert. Also, if the data sources have
absolutely continuous probability distributions, the linear cpinion pool gives
an absolutely continuous distripution. However, it also has several
shortcomings. First of all the line: r opinion pool is not externally Bayesian,
i.e., the decision maker will not he Bayesian. The reason for this lack of
external Bayesianity is that the linear opinion pool is not derived from the

ioint probabilities using Bayes' rule. Second, Dalkey [19] with the
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impossibiitty theorem has shown that by imposing not only the SSFP but also
requiring the consensus rule to hold for conditional probabilities ((C(w; |X) =
C(w;,X)/C(X) where w; and X are events), then a "dictatorship” results, which
implies that only one of the experts (sources) counts. A simple example shows
the dictatorship for a two expert problem [20]. If both the SSFP and the

conditional probability rule hold, then

C(OJJ ,X)

Cluw; | X) = - oX) (2.8)

Also, by applying equation (2.7), the equation for the conditional linear

opinion pool becomes:
Clwy | X) = apy(wy | X) + (1 ~ ®)pe(w; | X) (2.9)

By using elementary arguments on equations (2.8) and (2.9) the following

equation is derived:

0 = a1 = )lpy(w; | X) -~ pa(wy | X)][pa(X) — p1(X)]
where it is clear that the only acceptable alternatives for & are @ = 0 or @ —
L if the domain for C is not limited. To avoid this dictatorship and be able
nevertheless to apply some Bayesian updating, it is necessary to limit the

rossible probability density functions and the consensus rules considered.

2.2.2 Choice of Weights for Linear Opinion Pools

If a lincar opinion pool is used as the consensus rule, the problem is how
to seleet the weights assigned to each data source. There is no clear cut
method of doing this. A few approaches considered in consensus theory are

discussed below.
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Winkler [21] suggested four ways of assessing weights:

Equal weights. & = 1/n, i = 1,2,..,n. In this case the decision maker
has no knowledge to allow him to believe that one source is more reliable
than another. Therefore, the decision maker is willing to assign equal
weights, which implies taking the average of the probability density

functions.

Weights proportional to a ranking. Rank the sources from 1 to n

» 1 " . . . .
according to "goodness,” where a higher rank indicates a source 15 a

n

" " . . . .

better” assessor. Then assign weight r/ N\ r to the source with rank r (r
r- 1

— 1,2,...,n). This rule presumes that the decision maker fcels that the
sources can be meaningfully ranked. 1t is used below in statistical

multisource analysis.

Weights proportional to a self-rating. Have cach source rate itself on a
scale from 1 to ¢, where ¢ is the highest rating and 1 the lowest. Then
assign each source a weight proportional to its self-rating 121,22]. The
rationale behind this rule is that a source may act as an cxpert in a
certain area, but its expertise may vary from one area to another and one

ground-cover to another.

Weights based on some comparison of previously assessed distributions
with actual outcomes. "Scoring rules” [13,21,23] can be used to make the
comparisons to apply this method successfully. A scoring rule is a
function on the real line. Scoring rules involve the computations of a
score according to a scoring rule which is designed to lead the assessor to

reveal his true beliefs. The scoring rules can be thought of in the sense
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that each assessor should attempt to maximize his expected score. The
idea on which the theory of scoring rules is based is that, if an assessor
(data source) indicates that his distribution for X € {X;,Xa,..., XN} is
G( ), and it is then observed that X = Xy, the assessor gets a score
S(Xyi;G( ))- A special case of scoring rules, called strictly proper scoring
rules, promotes "honest" probability assessment in the sense that if the
assessor wants to maximize his expected score, and his true distribution is
G( ), he will actually state that his distribution is G( ) [13]. Three proper

scoring rules are the following:

i) Quadratic score [13,23]:
N

S(Xy, G( ) = 2G(Xy) — 12 [G(X))]?
-1

ii) Spherical score [13]:

(X, G( )) = o)

4

| (GX))?

i
—

iii) Logarithmie score [13]:
S(Xk,G( )) = logG(Xk)

It is intuitive that the scoring rules above measure the "goodness” of the
probability assessments. Winkler [24] shows that they measure normative!

and substantive? goodness simultaneously. McConway [13] proves that they
1. An assessor is normatively good if he obeys closely the subjectivist postulates of
coherence and produces assessment which corresponds closely to his "best judgements.”

2. An assessor is substantively good if he knows a lot about the background and details of

the problem in which he is inaking an assessment.
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measure predictive goodness also. The predictive goodness indicates that the
assessors which give high probability to later observed data will get high
scores. An example of weight revision using scoring rules is given later in this
section.

Still another possible method of choosing weights is Bayesian weight
revision which is based on previously assessed distributions and described in
detail in [13]. Whatever the initial weights « are in a linear opinion pool, the

consensus for the event wj is
n
Clwy) = M oipiey) (2.10)
1==1

The weights can be revised through what McConway calls Bayesian weight

reviston if all the sources find out that an event X is true, assuming that C

satisfies
Clw; | X) = E%{?—) (2.11)
If the event X has occurred then:
ClX) = Momi(X) (2.12)
P
and
€y X) = NV opils 10R(X) (2.13)

i1

Thus the consensus probability of w; given that X has occurred is

X)o7 N

i} (f({g-’X) n ”ipx( o I\’)p(x)
(/‘(\.uj l)ﬁ) = ( ! = \ ' “J 01



) @ p;(X)
=\l 2 d(wi | X 2.14
Pl
k=1

(provided that there exists i with p;(X) > 0). That is, C(w;|X) is a weighted

average of the p;(w | X)’s with weights Oy, . ..,/ (the revised weights) given

a;pi(X
PR i =1,...n (2.15)

\n_, % p;(X)

j=1
and the new weights /3, are proportional to «;p;(X). If there is a sequence of
updatings, it is possible to proceed in this manner or use a scoring rule as
mentioned above if that reflects the goodness of the fit of the source.
Nevertheless the final weights are dependent on the initial weights. The initial
score could be chosen by giving all the sources the same weight (or by some of
the other weight selection schemes suggested by Winkler [20]) and then having
a "trial run" and updating them by the rules discussed above. McConway [13]
also extends this rule to the cases were only some of the sources agree that a

certain event has occurred. He calls that revision method a generalized

Bayestan revision.

The Bayesian revision approach can be used in processing multisource
remote sensing data since equation (2.14) can be applied as a global
membership function with the preassessed density functions pi(wj IX) for each
source i. The weights «; can then be updated by making a run through the
training data because each training sample is a true event (wj ,X) where W is

the information class and X is the observation vector, using the language
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above. The main problem this approach has is dictatorship. Bayesian weight
revision can lead to dictatorship for one source according to the impossibility
theorem [19] because this weight revision scheme extends the consensus rule to
obey Bayes' rule. The dictatorship for such an extension was evident in the
short example in equation (2.9). Different consensus rules might be needed to
compute C(w;,X) and C(X) in order to avoid dictatorship in Bayesian weight
revision.

McConway [13] also describes a method of using scoring rules for weight,
revision: Let us assume that we have n data sources and before any data are
observed their distributions are combined using a linear opinion pool with
initial weights <y, g,..., 0. The data are then observed from X € {Xj,...,Xx |-
Fach source gives a distribution G; for X. Now if X = Xy is observed, a
revised set of weights is computed using a strictly proper scoring rule 5. The
range for S is non-negative and it gives the score S(Xy,Gi( ) to each source.

The revised weight of the i-th data source, (y’i, is then proportional to

n [}
*S(Xi, G;( ) where 3 =L
i=1

The relationship between scoring rule weight revision and Bayesian
weight revision is the following: Bayesian weight revision can be formalized as

scoring rule weight revision with:
S(Xk, Gi( ) = &i(Xi) (2.16)

where g;(X) is the density corresponding to the distribution Gi( ). Therefore,
Bayesian weight revision is a special case of scoring rule weight revision. The
scoring rule weight revision has an advantage over Bayesian weight revision in

the case when a natural order exists on X. Then an account of closeness of the
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assessors’ distribution to the true event can be taken using a scoring rule
which is sensitive to distance. A scoring rule is said to be sensitive to distance
if S(Xx,G( )) > S(X; G'()) whenever X = X is the true event and G'( ) is in
some sense more distant from the true event than G( ). However, the scoring
rule weight revision also has a disadvantage, namely Bayes’ rule does not
apply in general. Anyhow, this approach can readily be applied for
determining weights in multisource classification. Its success depends on the
scoring rule used. Which scoring rule gives the best performance has to be

determined empirically.

The final weight selection method mentioned in this section has been
proposed by Bordley and Wolff [15]. They suggest selecting weights which

minimize the variance of the consensus rule C(w; | X):
n
Cloy [X) = Sas(wy)pi(w; 1 X) (2.17)
1=1

By their method, if the data sources are independent, the weights o (w;)
should be inversely proportional to the variance of the event (wj,X). This
approach works for a single event but it has its shortcomings for multiple
events, especially in decision problems where it is undesirable to let the
weights depend on the events. That is undesirable in such problems because
the weights could have too much influence in discrimination whereas
probability modeling of the events should be most important in

discrimination.
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2.2.3 Linear Opinion Pools for Multisource Classification

In the consensus theoretic literature, the linear opinion pool rule is vsed
to combine probability distributions. It is assumed that all the experts
observe the event X. Therefore, equation (2.7) is simply a weighted average of
the probability distributions (or densities) from all the experts and the result
is a combined probability distribution. However, in this research the linear
opinion pool is considered for decision theoretic purposes rather than simply
probability modeling. In this application the event X — [xl,xg,....xn} is a
compound vector consisting of observations from all the data sources. Since x;
is the observation from the i-th data source, we can write p;(X) = p(x;) when
the notation from equation {2.7) is used. Thus, in the decision theoretic case

equation (2.7) is extended to:
n
Cs(p1,P2s--Pu)(X) = M up(xi) (2.18)
-1

and more specifically in a decision problemn:

n
Cj(’,d“l IX) = }j ()Tip(".dj |Xi) (2]9)
i=1
where j = 1,...,M are the indices for the information classes.

The condition of the weight-sum being 1 is not neeessary in eguation
(2.19). Equation (2.19) does not need to yield a probability distribution but
only give a maximum value to the desired class. By including the
modifications above for the linear opinion pool, the theory discussed in Section
991 can be used in the multisource classification problem. Other consensus
theoretic rules, discussed later in this chapter, can be extended towards

decision theory in a similar way to cquation (2.7), i.c., by using (X)) = plx)-



21

The linear opinion pool, which is a very simple pooling method, has been
discussed up to this point. The linear opinion pool has several weaknesses;
e.g., it shows dictatorship when Bayes theorem is applied and it is not
externally Bayesian. Another consensus rule, the logarithmic pool, has been
proposed to overcome some of the problems with the linear opinion pool. The

logarithmic opinion pool is discussed below.

2.2.4 The Logarithmic Opinion Pool

Some authors have discussed the logarithmic opinion pool:

e
* i=1
C (pli"')pn) = n (220)
- ai
J1Ipi"du
i1
where «y, . L.y are weights such that the integral in the denominator of

n
equation (2.20) is finite [25]. Often it is assumed that ) o = 1. Bacharach
i=1

[26] attributes the logarithmic opinion pool to Peter Hammond. Winkler [21]
has given the logarithmic opinion pool a natural-conjugate interpretation.
Winkler [21] also showed that the logarithmic opinion pool differs from the

linear opinion pool in that it is unimodal and less dispersed.

Genest et al. [27] have extended equation (2.20) by relaxing the SSFP
condition to allow the combination function in equation (2.6) to change with
the event X. They call the result the generalized logarithmic opinion pool:

0 (k-
glipi '

. i=1

C (ply"'!pn) = 11%‘ (2.21)
[g 11pi“du
i=1



where g is some essentially bounded funclion (11] on the sample space {!
(25,27]. Genest et al. [25] suggest regarding g as a likelihood (the probability
of observing the data conditionally). The weights are non-negative except

when the underlying o-field on {1is finite.

The logarithmic opinion pool treats the data sources independently (data
independence property). It has the NSP in a very dramatic way. Zeros in the
logarithmic opinion pool are vetoes; i.e., if any expert assigns pl(cuj) - 0, then
C*(pl, ...,pa) = 0. This dramatic version of NSP is a drawback if the
density functions are not carcfully estimated. The logarithmic opinion pool is
externally Bayesian. The external Bayesianity makes it a desirable choice in

multisource classification along with the data independence property.

The main problem with the logarithmic opinion pool is also evident for
the linear opinion pool, i.e., how to select the weights. Only heuristic and ad
hoe ethods exist in the literature on how to determine the weights. The
weights should reflect in some way the relative cxpertise of the sources. Some
of the weight selection methods deseribed above for the linear opinion pool
could be used, but the weight selection for the logarithmic opinion pool is less
intuitive because of the product form of the pool. Even though the
logarithmic opinion pool overcomes some of the problems associated with its
linear counterpart (dictatorship and no external Bayesianity), it has the slight

drawback that it is mathematically more complieated.

Bordley [28] has derived a version of the logarithmic pool from the

conditional probabilities. The derivation is as follows for the event «y and X
(X1, Xg )t

p(X | wi)p(ey)
LU' X O S - o
s E R RN R e
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where w;©

i~ is the compliment set of wj. Also, from Bayes’ rule:

p(w; | x)p(x;)

p(x; | wj) = o(3)

for each i. If the experts are independent then:

[J:l p(wj IXi)p(Xi)Jp(wj)

p(w;)

p(w; | X) =

[f’ll p(w; | x)p(x;) ]p(wj) N

Bordley gives some interesting properties for equation (2.22):

Lo I puy [x) > p(w;) for all i, then p(w; | X) will always be greater than

max p(w, Ixi) (unless some p(w | %;) == 1), i.e., if all the source-specific
1

posterior probabilities for a class are greater than the prior probability
for that class, then the posterior probability of the combined sources will
be greater than the posterior probability for every source.

2. If p(y |x) < p(wj) for all i, then p(w; | X) will always be less than

min p(w; [ %) (unless some p(w; | xi) = 0), i.e., if all the source-specific
1

posterior probabilities for a class are less than the prior probability for
that class, then the posterior probability of the combined sources will be

less than the posterior probability for every source.
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If expert i is ignorant, i.e., if p(w; [x;) = p(w;) his assessment does not say

anything about whether w; will occur. This implies:

p(e I x1,0x,) = p(e | %1, Xi X g X,)

Equation (2.22) has the NSP.
One expert can nullify the impact of another expert.
The formula is associative.

Bordley’s version of the logarithmic opinion pool is externally Bayesian.
Since each expert is externally Bayesian the decision maker will be

Bayesian.

The group probability, p(wj IX), is always "better” in terms of minimized
mean squared error loss than for any individual. To show this is the case,

an indicator function, I, , can be defined:
J

1 if vy occurs

I \ =

Wy

0 if Wy does not occur

2

It is needed to minimize (r - I,w,j) which is minimized by the r that

minimizes

\J([‘ - [u) | X)2 ])(X)
X

The r which minimizes the equation above is v pl | X) which shows
that the group probability is "better” in teris of miean squared error loss

than the probability for any individual source.
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Another method which has similar characteristics to the Bordley
approach was developed by Swain, Richards and Lee [1,2]. This method is

discussed in the next section.

2.3 Statistical Multisource Analysis

The method proposed in [1,2] is a general method which extends well-
known concepts used for classification of multispectral images involving a
single data source. This method is similar to Bordley’s version of the
logarithmic opinion pool: the various data sources are handled independently
and each data source can be characterized by any appropriate model.
However, these methods were developed independently. Also, the Swain,
Richards and Lee method was specificly developed for combination of
multisource remote sensing and geographic data. The main concepts in the

method of Swain, Richards and Lee are addressed below.

Assume there are n distinct data sources, each providing a
measurement X; (i = 1,...,n) for each of the pixels of interest. If any of the
sources is multidimensional, the corresponding x; will be a measurement
vector.  Let there be M user-specified information classes in the scene (not
necessarily a property of the data) denoted wj (j = 1,...,M). The pixels are to

be classified into these classes.

‘ach data source is at first considered separately. For a given source,
an appropriate training procedure can be used to segment or classify the data
into a set of classes that will characterize that source. For example clustering
could be used for this purpose. The data types are assumed to be very

general, e.g., both topographic and multispectral data. The source-specific
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classes or clusters are therefore referred to as data classes, since they arc
defined from relationships in a particular data space. The data classes
are for instance spectral classes in the case of spectral data and
topographic classes in the case of topographic data. In general there may
not be a simple one-to-one relation between the user-desired information
classes and the set of data classes available. It is one of the
requirements of a multisource analytical procedure to devise a method by
which inferences about information classes can be drawn from the collection

of data classes.

The k-th data class from the i-th source is denoted by dj (k - 1,2,
m;), where m; is the number of data classes for source i. The measurement
vectors are associated with data classes according to a set of data-specifie
membership functions, f(d-,k|x-l). This means that for a given measurement
from the i-th source, f{d;y |x;) gives the strength of association of x; with data

class d;; defined for that source.

The information classes w; are related to the data classes from a single
source by means of a set of source-specific membership functions f(u) Pl (3D,
for all i, j, k, where [(w ldiy(x;)) is the strength of association of data class
dj, with information class «j, possibly influenced by the value of x;.  This
expression is different from previous approaches for single source
classification, where it is often assumed in the analysis that there is a unique
correspondence  between  spectral and  information  classes, once prior

probabilities have been determined.

A set of global membership functions is defined, that collect together

the inferences concerning a  single information class from all of the data
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sources (as represented by their data classes). The membership function F ;

for class wj is of the general form:

FJ = FJ [f((A)J Idik(xi)),wi] (k:1,2,...,mi i:1,2,...,11) (2.23)

where «; is the quality or reliability factor of the i-th source and is defined to
weight the various sources, reflecting the perceived or measured reliabilities
of the various sources of data. This is very important because it may be
known that all the sources are not equally reliable and therefore the analyst is
allowed to take into account his confidence in the recommendation of each of

the individual sources of data available.

Finally a pixel X == [xq,...,xy]" is classified according to the usual

. . . . - . . . * -
maximum seclection rule, i.e., it is decided that X is in class w for which

F= max F; (2.24)
j

Now the membership functions are defined specifically. The reliability
factor o will be disregarded for now but it will be included in Section 2.3.1.
From experience with Bayesian classification theory a natural choice for the

global membership function is the joint-source posterior probabilities.

F(X) = p(w [X) = p(wj Ix1,%2,-,%5) (2.25)
If the assumption is made that class conditional independence exists between

the data sources, the global membership function may be written [1,2]:

() = [p(e))' " [Tp(e ) (2.26)
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It may be argued that class-conditional independence between two unrelated
sources is unlikely and the independence assumption may therefore introduce
errors. On the other hand there are mainly two reasons why use of the
independence assumption is desirable in this case. [First, it is clear that
interactions between two data sources can be very complex and consequently
hard to model. However, to make use of dependence between sources these
interactions have to be modeled. Also, analysts are in most cases unable to
model the dependence because of the complexity of the interactions.
Secondly, there is a trade-oll between taking dependence into account and the
computational complexity of the classification procedure, i.e., taking
dependence into account may impose an unrealistic burden on the computer
resources available. Using this reasoning, the independence assumption is

justified in the global membership function.

Now consider the individual source-specific membership functions which
appear here explicitly as source-specific  posterior probabilitics. These can
be expressed as:

my
p(w %) = Y pw |di,xi)p(dix [x1) (2.27)
k-1
where the source-specific membership functions appear explicitly s
plw |diy,x;) and the data-specific membership functions as p(di Ix,).
Another way to write equation (2.27) is:

m;
peslx) = 3 plxi [, duddp(din [ o) /p(x) (2.28)
k-1

Implementation of the classification technique involves using cither equation

(2.27) or equation (2.28) to determine the posterior probabilities in equation
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(2.26). Then equation (2.24) is used for the decision. Equations (2.27) and
(2.28) just look at one source at a time. There the relation between the data
vectors and the data classes and the information classes is seen explicitly,
demonstrating the role of data classes as intermediaries. Equation (2.26) then
aggregates the information from all the sources of data for each specific

information class.

As seen above, statistical multisource analysis is an extension of single-
source Bayesian classification. However, this method as presented by Swain,
Richards and Lee [1,2] does not provide a mechanism to account for varying
degrees of reliability. It is reasonable to assume that this problem can be
overcome if reliability factors are associated with each source involved in the
classification in a similar way to weights in the linear and logarithmic pools.
For this reason a modified version of this method will be investigated by
means of which reliability analysis is added to the classification process. The
following discussion also applies for Bordley’s version of the logarithmic pool,

which does not have any weights associated with it.

2.3.1 Controlling the Influence of the Data Sources

We want to associate reliability factors with the sources in the global
membership function discussed above, ie., to express quantitatively our
confidence in cach source, and use the reliability factor for classification
purposes. This is very important because it is desirable to increase the
influence of the "more reliable” sources, i.e., the sources we have more
confidence in, on the global membership function and consequently decrease

the influence of the "less reliable" sources in order to improve the classification
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accuracy. The need for reliability factors becomes apparent by looking at
equation (2.26) where the global membership function is a product of
probabilities related to each source. Iiach probability has value in the
interval from 0 to 1. If any onc of them is near zero it will carry the value of
the membership function close to zero and therefore downgrade
drastically the contribution of information from other sources, even though

the particular source involved may have little or no reliability.

From above it is clear that it is necessary to put weights (reliability
factors) on the sources which will influence their contributions to
classification. Since the global membership function is a product of
probabilities this weight has to be involved in such a way that when the
reliability of a source is low it must discount the influence of that source and
when the reliability of a source is high 1t must give the source relatively
high influence. One possible choice for this kind of analysis is to put
reliability factors as exponents on the contribution from each source in the
global membership function, i.e., to weight the sources as in the logarithmie
pool in equation (2.20).

Let us now determine the contribution from a single source in the global
membership function. The global membership function for n sources is shown
in equation (2.24). If one source is added, the global membership funection for

n -1 sources could be written in the following form:
) nn-% 1
Fi(X) = [p(w))] " 11 ey x0) (2.29)
-1

If equation (2.29) is divided by equation (2.26) we get the contribution from

source number n t1 which is p(w |x411)/ple;). This motivates us to rewrite
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equation (2.26) in the following form:
n
Fi(X) = p(w) TI{p(w; Ixi) /p(w;)} (2-30)
i=1

Now to control the influence of each source, reliability factors o are assigned
as exponents on the contribution from each source. Therefore equation (2.30)

with reliability factors is written as:
n .
Fi(X) = p(wp) | [{p(w; %) /p(w))} (2.31a)
1=1

where the o;’s (i = 1,...,n) are selected in the interval [0,1] because of the
following reasons. If source i is totally unreliable (2=0) it will not have any

influence on equation (2.312a) because

{p(wxi) /p(w)}® =1
regardless of the value of p(wj lxi). And if source i has the highest reliability

@;=1) then it will give a full contribution to equation (2.31a) because
'

{p(w; Ixi)/P(Wj)}l = ply Ixi)/P(W;‘)
It is also worthwhile to note that this method of putting exponents on the
probabilities does not change the decision for a single-source classification
because the exponential function p" is a monotonic function of p. Also,
equation (2.31a) looks similar to a logarithmic opinion pool, especially
Bordley’s version [28]. The difference is that equation (2.31a) has variable
weights where Bordley’s method has equal weights. A schematic diagram of

the classification process associated with equation (2.31a) is shown in Figure

2.1.
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Equation (2.31a) can also be written in a logarithmic form as:
n
log F;(X) = log p(s) + 33cxlog {p(e [xs)/p(c)} (2.31b)
i=1

where the reliability factors are expressed as the coefficients in the sum. These
coefficients control the influence of each source on the global membership
function. If a coefficient is large compared to the other coefficients, the source
it represents will have greater influence on the global membership function. If
on the other hand a coefficient is low compared to other coefficients, it will
decrease the influence of its source. Another way to see this is to look at
the sensitivity of the global membership function to changes in one of the
probability ratios. This can be expressed as:

F(X) (e [xi)/p(w)

Fi(X) B ]p(wjlxi)/p(wj) (2.32)

which implies that the value of o; will control the influence of source number i
on the global membership function; a percentage change in the posterior
probability leads to the same percentage change in the global membership
function, multiplied by ;.

The problem is to determine and quantify the reliability of the sources
and to define the reliability factors, {¢;}, based on the reliability of the
sources. We think of a source as being reliable if its contribution to the
combination of information from various sources is "good,” i.e., if the
classification accuracy is increased substantially or more information is

extracted by using this particular source.
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The process of determining the reliability factors is a two stage process.
First the reliabilities of the sources have to be measured by some appropriate
"reliability measure'” and then the values of the reliability measures must be

associated with the reliability factors in the global membership funetion.

2.3.2 Reliability Measures

Using the above understanding of a reliable source, three measures are
proposed to determine the reliability of a source: weighted  average
separability, overall classification accuracy and equivocation. All of these
measures are related to the classification accuracy of the source and can be
considered to possess both normative and substantive goodness as defined for
scoring rules. Also, the reliability measures are in some ways similar to
scoring rules since they try to quantify the goodness of a data source.
However, the reliability measures estimate how good the source is for
classification in contrast to the scoring rules which only estimate the goodness
of a specific probability distribution in a particular data source. To measure
the goodness of the sources using the scoring rules, a weighted average of the
coodness of class-specific probability distributions can be computed. Weighted

average of the scoring rules can thus be used as a reliability measure.

a) Separability of Information Classes

We consider a source reliable if the separability of the information classes
is high for the source. 1f on the other hand the separability of the information
classes is low, the source is less reliable. Therefore one possibility for reliability

evaluation is to use the average separability of the information classes in cach
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source, e.g., average Bhattacharyya distance [29], average Jeffries-Matusita
(JM) distance, average transformed divergence or any other separability
function [30,31,32]. What kind of average is used depends on what we are
after in the multisource classification. For instance if it is desired to improve
the overall classification accuracy, the arithmetic average is used. If, however,
we are concentrating just on specific classes, a weighted average separability of
those information classes may be used. Calculation of separability involves
computing volume integrals when the measurement space is multidimensional
[30]. However, when the classes are assumed to have Gaussian probability
density functions, the JM distance, the Bhattacharyya distance and the
transformed divergence can be written as expressions involving the means and
covariance matrices but no integrals. On the other hand, no similar
expressions are available for non-Gaussian data. In multisource classification
not all of the data sources can be modeled by the Gaussian model. To avoid
computing volume integrals, the separability measure will only be used in our

experiments when all the sources are Gaussian.

b) Classification Accuracy of a Data Source

Another way to measure reliability of a data source is to use the
classification accuracy of the source. In this case a source is considered
reliable if the classification accuracy for the source is high, but if the accuracy
is low the source is considered unreliable. This approach is related to the
method of using separability measures in that increased separability is

consistent with higher accuracy. On the other hand there is no need estimate



covariance matrices to compute the classification accuracy, so this approach is

always applicable.

c) Equivocation

Still another way to characterize reliability of a source is to examine how
strongly the data classes indicate information classes, i.e., by looking at the
conditional probabilitics that a specific information class is observed given a
data class. All these conditional probabilities can be computed by comparing
the reference map to a map of classification results produced from a data
source.

Assuming there are M information classes {w,...,ung} and m data classes
{dl,...,dm}, all the conditional probabilities can be used to form the m x M

correspondence matrix R, where R is:

p(wy ldl) plivy |d1) pm Idx)
p(wi |d2) p(wso Idz) ... plem |d2)

R = ' ' C : (2.33)
Lp(wl Idm) p("'”‘il |dm) L p(i“’M Idm )~

Reliability can now be defined in the following way: I{ a source were optimal
in reliability there would be a unique information class corresponding to each
data class. Therefore ideally one conditional probability in each row of R
would be 1 and all the others would be zero. If a source were very unreliable,
there would be no correspondence between the data classes and the
information classes; in the worst case all the probabilities in the matrix would

be equal.
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Now it is necessary to associate a number with the matrix R to
characterize the reliability. Using information theoretic measures [33] the
information classes can be thought of as transmitted signals and the data
classes as received signals which must be used to estimate the transmitted
signals. Using this approach it can be stated that there is an uncertainty of
log[1/p(w; Idj)J about the information class w; when data class d; is observed

in a data source.

The average loss of information can be calculated when the data class d;

is observed, which is given by [33,34]:
1
H(wl|d;) = ¥ p(w |d; log—l— 2.34

Now we want to average the information loss over all observed data classes d;.

This is the equivocation of w with respect to d and is denoted by H(wld):

H(wld) = ¥p(d;)H(w]d;)

= 33300, dlog ) (2.35)

H(wld) represents the average uncertainty about an information class over all
the data classes. Evidently, H(wld) is the average loss of information per data
class and therefore would seem to be a reasonable term to associate with the
reliability of a source. Since H(ould) measures uncertainty, the lower the value
it has the more reliable a source is. Therefore, the equivocation is called an

uncertainty measure rather than a reliability measure. To be able to
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transform this uncertainty measure into a reliability factor, it first has to be

mapped into a reliability measure and then associated with a reliability factor.

2.3.3 Association

The values of the reliability (uncertainty) measures must be associatcd
with the reliability factors in order to improve the classification accuracy. It is
worthwhile to note that we only want to include a source in the global
membership function if the presence of that source improves the classification
accuracy, i.e., we want the classification accuracy to be an increasing function
of the number of sources. This is similar to feature selection but the difference
here is that the sources (features) are not only selected but also the

contribution of each source to the global membership function is quantified.

Using any of the measures discussed in Section 2.3.2 gives a specifie value
for each source. This value should be mapped into a reliability factor on the
basis of our belief in the contribution of the source to the classification
accuracy. The reliability (or uncertainty) measures take values in some
particular interval and it is necessary to know the (functional) mapping
between the values of the mieasures and the values of the reliability factors. In
fact it is desirable to assign reliability factors to the sources in such a way as
to improve the classification accuracy the most. It is very diflicult to find an
explicit association function between the values of the reliability and
uncertainty measures on one hand and the reliability factors on the other. The
measures can casily be used to rank the sources from "best'" to "worst” but it is
very diflicult to determine the oplimal value of the reliability Tactors.

Ranking measures have previously been used in consensus theory for linear
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opinion pools as discussed in Section 2.2.2, whereas in contrast the global
membership function in equation (2.31a) can be considered a logarithmic
opinion pool problem. A possibility is to use optimization techniques to

determine the reliability factors. That approach is discussed next.

2.3.4 Linear Programming Approach

The weight selection approaches described in Sections 2.3.2 and 2.3.3 are
all relatively simple but somewhat ad hoc. In this section we describe an
automatic method to determine the reliability factors of the sources. To
accomplish this we apply linear programming to optimize the values of the
global membership function using the training samples. From equation

(2.31b) the global membership function in logarithmic form is:

log F;(X) = log p(w;) + i) o log{%;(i—)} (2.38)

This equation must be optimized with respect to classification accuracy. Since
training data are available, it is known for which classes the global
membership function should be maximum for specific ground-cover elements.
Therefore, optimizing equation (2.38) can be cast as a linear programming
problem for each training sample selected. If there are M information classes,

there will be M equations of the form (2.25) for cach training sample.

The linear programming problem has the following form if a training

p(w | x;)

sample from the class w' is selected and q; = log {———}
. p(w)

maximize:

Q1qx + Xaqrg + 0+ apqe, + log p(w*) =h



40

subject to the constraints:

Q1+ 0pqe + 10+ aqpqy +log p(w) <h

apamr + Oaame + 0+ epamn T+ log plen) < h
231 ZO’ 8] ZO) y o -ty ZO

Above, one equation out of the M equations of the form (2.38) is maximized,
i.e., the equation corresponding to the class of the training sample. That
leaves M-1 equations to be less or equal to the value (h) of that equation. The

M x n matrix Q is known, where Q is

dnn ° " 7 Yo
Q=|. =" : (2.39)

Lcm'u;jqun

To solve the linear programming problem it is necessary to get rid of the h
variable on the right side of the inequalities in the constraints. That can be
done simply by subtracting the objective function from each side in the

inequalities. This gives the following linear programming problem:
maximize:

g + ogar + 0+ ogae, + log p(w) =h
subject to the constraints:

Qi —a) + ogae—arey + -+ ou(agae) Hlog {ple) /o)) <0
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(a1 —a+1) + ce(ame~q2) + *° + Ap(Qyn—qra) + log {p(em)/p(w')} <0

ap 20, g >0, ,...,0p >0

where everything is known except the reliability factors ap, 09, ...,y If b
training samples are selected from cach information class wj, there will be Mb
linear programming problems to solve like the one above. Solving all these
linear programming problems gives us an interval estimate for each reliability

factor:

li <C¥i <lli

Using this interval estimate lower and upper bounds for each o; gj;i in equation

(2.38) can be computed and then:
g € [ligj, ujq] (2.40)
This leads to an interval estimate for log F;(X):

log Fj(X),, logF;(X),] =

n n
llog p(w;) + Y lig;, log p(w;) + Y uiq;) (2.41)
1=1 i=1

There will be M interval estimates of this kind for each pixel X. These
interval estimates can be used for classification by applying the same decision

methods as discussed in [2,35] in conjunction with Dempster-Shafer theory.

Using the optimization technique for the weights, the multisource

classification algorithm takes the following form:
1)  Train the classifier by using the sources independently.

2)  Establish priors and posteriors.
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3) Select training samples for computing reliability factors. Apply linear

programming and determine intervals for each reliability factor.

4) Classify data using interval methods.

2.3.5 Non-Linear Programming Approach

The problem with the linear programming approach above is that it can
give significantly different values of re]iability factors for different information
classes. Another idea to determine the weights in the global membership
function is the following algorithm which uses gradient descent optimization

as described below:

1. Select the initial values of the reliability factors by a reliability measure
(classification accuracy, separability or equivocation). Select the gain

factor 7 (a low value, e.g., 0.00001).

2. Use gradient descent in the following manner: Defince the cost function

N

Cost(X)= X ot () Faee () (2.42)
i

where d(j) is the desired class for pixel X, next(j) is the class that has the

highest value of the global membership function apart from d(j), and N is

the number of training samples used. 1t is desired to maximize Cost(X)

with respect to the weights (or minimize -Cost(X)). We take the gradient

of equation (2.42) and the gradient descent equation for the (k+4-1)th pass

follows:
o (k41) = oy (k)+1V, Cost(X) (2.43)

where
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va Cost(X)=log(p(u}d I xi)/p(wd ))—‘log(p(wnext l Xj )/p(wnext))
is the i-th element of the gradient vector.

3. Continue to update the weights by equation (2.43) until minimum error is

reached.

By using equation (2.43) the condition that the weights should be in the
interval from 0 to 1 is relaxed. The optimum weight values can be larger than
I and some weights can become negative. The cost function in equation (2.42)
is obviously linear and has no minimum value. A squared cost function is
used in most applications of gradient descent optimization but such a function
cannot be used here. A squared cost function would continue to decrease until
the optimum values of 0 were given to all the weights. The approach in
equation (2.42) is somewhat similar to the linear programming approach
described in Section 2.3.4. However, equation (2.42) gives reliability factors

to sources based on all the classes instead of individual elasses.

2.3.6 Bordley’s Log Odds Approach

Bordley [11,36] has derived a similar approach to the logarithmic opinion

pool for log odds. In his log odds approach the i-th expert’s odds on the event

X are:
(X
0;(X) = _—P,( )
1 — p;(X)
Let us now consider o — (0,04, ... ,0,) and let the odds after combination
be:
op = —PX)

1 —p(X)
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Then Bordley derives a log odds consensus rule of the form:

0 n o;
log(—D—) = Yy log( :
O =1

) (2.44)

O,

where «; is the weight of the i-th expert and o, is a constant which c¢an be
determined from fitting an add'tive conjoint structure [37] to a decision
maker’s subjective judgement [11]. By interpreting o, as prior odds it can be
seen that equation (2.44) is a log-odds version of the logarithmic opinion pool.
Using that interpretation, equation (2.44) has both the same properties and

shortcomings as the logarithmic opinion pool in equation (2.20).

2.3.7 Morris’ Axiomatic Approach

Morris  [38] has proposed an  axiomatic approach to combine the
probability judgements of experts. lle begins by looking at a single expert
which has a distribution p;(X) and assumes the decision maker has a prior

p(w;). Morris then produces a consensus probability distribution C:

C(X) = o1 (X),p(e) (2.45)
¢ is called a processing rule which operates on two functions. Morris defines
axioms which characterize desirable properties for the processing rule:

Axiom A:
The outcome should not depend on who observes a given piece of data if
there is agreement on the likelihood funection.

Axtom B:

A uniform prior of a calibrated expert is noninformative. (A ealibrated

expert is an expert which is good at encoding his beliefs as probabilities.)
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Axiom C:

If the decision maker has a noninformative prior, he should adopt a

calibrated expert’s prior as his own.

Axiom A places a condition on the processing rule but does not determine
it. By applying axiom A in conjunction with axiom B, the form of the
processing rule can be completely determined. Axiom C is equivalent in effect
to both axioms A and B together. The decision maker must also calibrate the
experts’ opinions. Sequential application of the axioms results in a

multiplicative rule for multiple experts:
C(X) =k cal(X) py(X) - - - pa(X)p(w)) (2.46)

where k is a normalization constant and cal(X) is a calibration function which
is defined empirically. If the experts are all calibrated and independent, then
cal(X) = 1.

Lindley [39] has argued that axiom A is unsatisfactory in the extreme case
when the decision maker decides to ignore the opinion of an expert (the
decision maker makes the outcome be equal to his own prior regardless of
what the expert states). Schervish [41)] has showed that the axioms are self-
contradictory due to the concept of the processing rule (2.45). The issue of
calibration is also very important in tiis approach. The decision maker must
calibrate the experts’ opinions. This demonstrates that the method is not
truly Bayesian in spirit. But it is also worth noting that when the density
functions can casily be estimated aid the data sources are independent,
Morris’ axiomatic approach becomes a logarithmic opinion pool with equal
weights.  In the case of classification of multisource remote sensing and

geographic data it can be assumed that the data sources are independent but
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not equally reliable. Therefore, the logarithmic opinion pool with wvariable

weights is a more desirable choice for classification of such data.

2.4 Group Interaction Methods

All the consensus theoretic approaches described so far do not allow the
experts to interact. DeGroot [41] has suggested a different approach for
choosing weights in consensus theory which consists of giving the weights
using the sources’ own opinions of each other (group interaction). Although
DeGroot’s method can be effective in simple expert problems it is hard to
implement the method for multisource remote sensing and geographic data,
sinee it is difficult to let each data source evaluate the performance of the
other sources in classification. However, the method has some parallels with
the neural network methods discussed in Chapter 3. The neural networks use
feedback to self-stabilize but are distribution-free. The DeGroot method will

thus not be discussed further here.

2.5 The Super Bayesian Approach

Many Bayesians question all the consensus approaches discussed above
and deseribe them as ad hoe. They also point out that expert weights do
allow for some diserimination but in vague, somewhal ill-defined ways. They
prefer a careful probabilistic modeling  of the situation, combined  with
probabilistic processing. This means obtaining the joint distributions of all
unknown parameters of interest. The approach, called the super (supra)
Bavesian approach, is natural and is based on the assumption that all the

expert opinions are data for the decision maker. Therefore, Bayes’ rule should
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be used to update the belief of the decision maker [11,19,20,42,43,44]. The
problem with this approach is that its implementation is very difficult because

dependence between all the experts has to be modeled.

French [11,44] is one of the advocates of the super Bayesian approach.

He has proposed the following log-odds approach for the event of interest W

Let ); be the log-odds for the i-th expert when X is observed:
X = log(

Further let X = (A\(,...,2\;)T. French assumes that X\ has a jointly normal
distribution in the view of the super Bayesian. This density is conditional on
wj and the super Bayesian’s prior, p(wj). The log-odds of the super Bayesian’s

posterior, p(wj |\ ), can be shown to be [19,44]:

p(wj | )

T

(1., = ma YT X7 (8 = 05{m, + ) + log(—

where m,, = Ep (A le), 2 is the covariance matrix for X\ given the event Wj
and w;® is the compliment of w;. By writing o;, as the antilogarithm of the
i-th component of 0.5(mwj +mch) together with a little manipulation, the

equation above can be written as:

wi | A W n 0;
gl Pl 1Y PG )3 rog( o) (2.47)

- p(w, W) ~ losl (T =ply)" 7 %io

This equation is very similar (but not identical) to Bordley’s log-odds
approach. But it should be noted that this approach is completely equipped

with weights as interpretable coefficients where J; is a function of m,, m, ¢
i J
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and Y. However, there is very little empirical evidence available to determine
the super Bayesian’s choice of the jointly normal distribution of X\. The
dependence between the data sources has to be modeled and that problem is
very difficult especially in classification of multisource remote sensing and
geographic data. As noted earlier, we are usually cither unable or unwilling to
model this dependence. Therefore, the super Bayesian approach is in most

cases not applicable to the research problem discussed here.

2.6 Overview of the Consensus Theoretic Approaches

The consensus theoretic approaches discussed above have different
characteristics. The linear opinion pool is very simple and has several
shortcomings, e.g., it is not externally Bayesian and the impossibility theorem
limits its application because of source-specific dictatorship when Bayes’ rule is
used. The logarithmic opinion pool overcomes these shorteomings and will
give unimodal consensus densitics whereas the linear opinion pool gives
multimodal consensus densitics. In the experiments in Chapter 4, the linear
opinion pool and the version of statistical multisource classifier introduced 1n
Section 2.3.1 will be used. The reliability measures introduced in Section 2.3.2

will be used for selection of reliability factors in the experiments.

The statistical multisource classifier is a version of the logarithmic
opinion pool. Both of the approaches proposed by Bordley are related to the
statistical multisource classifier as diseussed above. Neither the super Bayesian
nor the group interaction methods will be used in experiments because of the

implementation difficulty for these methods.
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In order to apply the consensus theoretic approaches all the data sources
have to be modeled by probability densities. Some data sources can be
assumed to have Gaussian data classes, All of the other sources will be non-
Gaussian and these sources need to be modeled by density estimation

methods. Such methods are discussed in the next section.

2.7 Classification of Non-Gaussian Data

A very important part of designing a statistical multisource classifier is to
handle the problem of modeling and classifying non-Gaussian data efficiently.
Modeling of non-Gaussian data is a well established research field. In the
following three sections the main approaches of modeling will be addressed.
First a histogram approach is discussed. The histogram approach is the
simplest way to model non-Gaussian data. Two more advanced methods are
addressed: Parzen density estimation and the maximum penalized likelihood
estimator. Several other approaches have been reviewed in the literature [45],
€.8., nearest neighbor density estimation, density estimation using weight
functions and orthogonal series estimators. For the research problem

addressed here, the three methods discussed below should be sufficient.

2.7.1 Histogram Approach

The simplest way to model non-Gaussian data is to use the histograms of
the traiping data. Here a fixed cells histogram approach [29,45} is described.
In this method the data space is partitioned into mutually disjoint cells
Iy, oo Iy, whose volumes are equal. The density function is estimated

by the proportion of samples which falls into each cell. When the data have
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been modeled by the histogram approach, they can be classified by, c.g., the

maximum likelihood algorithm [45].

The histogram approach is distribution-free and, if regular meshes are
used for the Is, the selection of cells is straightforward. However, one major
disadvantage of this method is that it requires too much storage; for example,
NX cells for k variables with N scctions for cach variables. Therefore, most
modifications which have been proposed are designed to reduce the number of

cells. The variable cells method [29] is one such variant.

Although the histogram approach usually does a good job of modeling
univariate data, it can be significantly improved upon in terms of accuracy by
more advanced methods. It is also desirable to use more general methods
which do a good job of modeling multivariate data. Parzen density estimation
is one commonly used such method. Another method which improves upon
the histogram approach for univariate data is the method of maximum

penalized likelihood estimators.

2.7.2 Parzen Density Estimation
The Parzen density estimator with kernel K is defined by (29,45,46:

LS g XN (2.48)
C Nt a .

B(X)
where d is the dimensionality of the data and o is the window width, also
¢alled the smoothing parameter. N is the number of training samples, Xj.

The kernel K can be of any shape (rectangular, triangular, Gaussian, ete.)

with the condition:
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[ KX)dX =1 (2.49)
Rd

If the kernel K is both everywhere non-negative and satisfies (2.49), then K is
a density function. It follows from this that p(X) will be a probability density
function and p(X) will also inherit all the continuity and differentiability

properties of the kernel K.

The Parzen density estimator has been widely studied and applied.
However, it suffers from a slight drawback when applied to data from long-
tailed distributions [45]. The window width is fixed across the entire sample
and Lhis often leads to noise appearing in the tails of the estimates. Also, if
thé estimate is smoothed to avoid this problem, essential detail in the main
lobe of the distribution can be lost. Apart from this drawback, the Parzen

density estimator is a very desirable choice for modeling non-Gaussian data.

2.7.3 Maximum Penalized Likelihood Estimators

The maximum penalized likelihood estimator [45,47] computes a
piecewise linear estimate of a one-dimensional density function for a given
random sample of observations. This particular method tries to maximize the
likelihood for a particular curve f. As pointed out in [45] it is not possible to
use maximum likelihood estimation directly for density estimation without
placing restrictions on the class of densities over which the likelihood is to be
maximized. However, methods relating to the maximum likelihood can be
used, e.g., by applying with the likelihood a term which quantifies the
roughness of the curve f. The roughness term can be described by a

functional R(f).



The penalized log-likelihood is now defined by:
1,(f) = Ylog f(X;) — /R(f) (2.50)

where 7y is a positive smoothing parameter and N is the number of samples.
The probability density function p is found by maximizing 1 (f) M5[. This
approach is attractive since it relates curve estimation to density estimation.

Also, the approach controls the balance between smoothness and goodness-of-

fit. The roughness penalty predefines undesirable effects.

2.7.4 Discussion of Density Estimation Methods

Of the density estimation methods discussed here, the histogram
approach is the most straight-forward. However, this method can be
improved upon in terms of classification accuracy of test data. The histogram
approach has in common with the maximum penalized likelihood method that
these methods are most effective for univariate data. The maximum penalized
likelihood estimation is attractive since it combines density estimation with
curve fitting. Because of its smoothing properties this method should be more
accurate in classification of test data than the histogram approach. The
Parzen density method is a very well established density estimation method
which can be used for multivariate density estimation. Also, Parzen density
estimation should generalize betier than the histogram method. However, the
Parzen method has the drawback that it is very slow and this is a problem if
the size of data to be classified is large. To explore the differences of these

methods all three will be used in the experiments in Chapter 4.






CHAPTER 3
NEURAL NETWORK APPROACHES

Neural networks for classification of multisource data are addressed in
this chapter. The chapter begins with a general discussion of neural networks
used for pattern recognition, followed by a discussion of well-known neural
network models and previous work on classification of remote sensing data
using neural networks. Next "fast'" neural network models are addressed in
conjunction with classification of multisource remote sensing and geographic
data. Finally, methods to implement statistics in neural networks are

discussed.

3.1 Neural Network Methods for Pattern Recognition

A neural network is an interconnection of ncurons, where a neuron can be
described in the following way. A neuron has many (cont,inuous—va]ued) input
signals x;, J = 1,2,...,N, which represent the activity at the input or the
momentary frequency of neural impulses delivered by another necuron to this
input [48]. In the simplest formal model of a neuron, the output value or the

frequency of the neuron, o, is often approximated by a function

N
o =K ¢\

1

—
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where K is a constant and ¢ is a nonlinear function which takes the value 1
for positive arguments and 0 (or -1) for negative arguments. The wj are called

synaptic efficacies (48] or weights, and 6 is a threshold.

In the neural network approach to pattern recognition the neural
network operates as a black box which receives a set of input vectors x
(observed signals) and produces responses o; from its output neurons i (i
=1,...,LL where L depends on the number of information classes). A general
idea followed in neural network theory is that the outputs are either o, = 1, if
neuron i is active for the current input vector x, or o, = 0 (or -1) if it is
inactive. This means the signal values are coded as binary vectors, and for a
specific input vector x the outputs give a binary representation of its class
number. The process is then to learn the weights through an adaptive
(iterative) training procedure in which a set of training samples is presented to
the input with some particular representation (see Figure 3.1). The network
will give an outpﬁt response to each sample. The actual output response is
compared to the desired response for the input. The error between the desired
output and the actual output is used to modify the weights in the neural
network. The training procedure is ended when the network has stabilized,
l.e., when the weights do not change from one iteration to the next iteration
or change less than a threshold amount. Then the data are fed into the
network Lo perform the classification, and the network provides at the output
the class representation of a number for each pixel. A schematic diagram of a

three-layer neural network classifier is shown in Figure 3.2.

Data representation is very important in application of neural network

models. A straightforward coding approach used by most researchers is to
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code the input and output by a binary coding scheme (0 == 00, 1 = 01, 2 =
10, etc.). However, in some respects for our application, it is more appropriate
to use the Gray-code representation [49]| of the input data. The Gray-code
representation can be derived from the binary code representation in the
following manner: If b; by ... b, is a code word in an n - digit binary code,

the corresponding Gray-code word g; gy ... g, is obtained by the rule:

g1 = by
gk = bx@®by_; k>2

where @ is modulo-two addition [49]. The reason that the Gray-code
representation is more appropriate than the binary code in our application is
that adjacent integers in the Gray-code differ only by one digit. It can be
assumed that adjacent data values in the code space are likely to belong to the
same information class. When they belong to the same class, the use of the
Gray-code leads to a smaller number of weight changes, since for values from
a given class, most of the input digits are identical.

Representation at the output of the ncural network is also important. If

binary coding is used at the output, the number of output neurons can be

reduced to [IOgQM] where M is the number of information classes. lowever,

it is better to use more output neurons than the minimum [IOEQM} in order to

make the neural network more accurate in classification. Even though adding
more output neurons makes the network larger and therefore computationally
more complex, it can also lead to fewer learning cycles, since the Hamming
distance of the output representations of different classes can be larger. One

. - - i - "o . . .
such coding mechanism is “temperature coding,” in which the representation
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for n has 1 in its first n digits and 0 in the rest (e.g., 4 = 1111000).

However, the most commonly used output representation is the following.
The number of output neurons is selected the same as the number of classes
and only one output neuron is active (has the value 1) for each class. As an
example let us look at a four class problem where this approach is used. Then
class #1 would be represented by 1000 and class #3 by 0010. This particular
representation has the advantage in classification that only one neuron should
be active (1) and all of the others should be inactive (0). Therefore, the
"winner take all" principle can be used. In testing the neural network
classifier the representation is better for the reason that an input sample can
be classified to the class which has the largest output response. If other coding
schemes were used for output representation, some samples might need to be
rejected in testing since their output would not be close to any of the desired
output representations. No such problem is evident with this representation.
Therefore, this "winner take all” representation will be used in the
experiments in Chapter 4. The Gray-code will used there for input

representation.

3.2 Previous Work

Several neural network models have been proposed. Rosenblatt [50]
introduced the perceptron in 1952. The perceptron is a two-layer (input and
output layers) neural network which has ability to learn and recognize simple
patterns. Rosenblatt proved that if the input data were linearly separable, the
training procedure of the perceptron would converge and the perceptron could

separate the data. However, when distributions overlap and the input data
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are not separable, the decision boundaries may oscillate continuously when the
perceptron algorithm is applied [51]. A modification of the perceptron
algorithm is the two-layer delta rule which is discussed in Section 3.2.1. The
two-layer neural networks can form decision regions which are convex. The
delta rule has been extended to include three or more layers. The extension is
called backpropagation. By applying neural nctworks with three or more
layers, arbitrarily shaped decision regions can be formed. Backpropagation is

discussed in Section 3.2.2.

The perceptron, the delta rule and the backpropagation are probably the
best known neural network models. However, several more are widely used:
the Hopfield net [52| introduced by John Hopficld has been used both as an
associative memory and to solve optimization problems. The Hopfield
network is a relatively simple neural network which ean be used as a classifier
but is more appropriate for other applications. When it is used as a classifier
it has to have exemplar patterns. 1f an output pattern matches an exemplar
pattern then the output is assigned the elass of the exemplar pattern.

Otherwise a 'nmo match' result occurs.

Grossberg et al. [53,54] have proposed adaptive resonance theory (ART)
which includes learned top-down feedback and a matching mechanism.
Their network implements a clustering algorithm which is very similar to the
leader clustering algorithm 151,55]. This clustering algorithm does not use a
fixed number of classes. It sclects the first input as the exemplar for the first
cluster. The next input is compared to the first cluster exemplar. It "follows
the leader” and is clustered with the first if the distance to the first is less than

4 threshold. Otherwise it is the exemplar for a new cluster. The process is
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repeated for all the training data. The number of clusters grows with time
and depends on the threshold. Since this algorithm, like the Hopfield
network, uses exemplars it cannot be very successful in classification of data as

complex as remote sensing data.

Kohonen has proposed a neural network called self-organizing feature
maps [56] (similar to those that occur in the brain). The self-organizing
feature maps is an unsupervised training method which resembles k-means
clustering [55] and the algorithm works in the following fashion. After enough
input vectors have been presented, weights will specify cluster or vector
centers, that sample the input space such that the point density function tends
to approximate the probability density function of the input vectors [51,56].
Kohonen has also proposed another neural network, learning vector
quantization (LVQ), which is a special case of the self-organizing feature maps.
The LVQ network is a a variant of statistical pattern recognition methods but
is also in principle related to the perceptron [50,57]. It is different from the
self-organizing feature maps in that the LVQ algorithm is supervised and is
for that reason more attractive for our application than the self-organizing
feature maps. The LVQ uses the nearest neighbor principle and could be
successful in classification of complex data sets. Kohonen has recommended
the number of training data to be 500 to 5000 times the number of processing
elements. Although these numbers are high, the convergence can be achieved
in a reasonable time since the LVQ algorithm is computationally extremely
simple. It is, though, almost impossible to collect such a large number of

training samples in the remote sensing application discussed here. One



61

possibility is to use a smaller training set, recycling through it preferably with

a random reordering for each cycle.

Recently, some researchers have applied neural network classifiers to
remote sensing data. McClelland et al. [68] used a three-layer
backpropagation algorithm to classify Landsat TM (Thematic Mapper) data.
Decatur [59,60] used three-layer backpropagation to classify SAR (Synthetic
Aperture Radar) data and compared his results to the results of Bayesian
classification. Ersoy et al. [61] have developed a hierarchical neural network
(HNN) which they have applied to classification of aircraft multispectral
scanner data. Heermann et al. [62] used three-layer backpropagation to
classify multitemporal data. Maslanik et al. [63] used three-layer neural
networks to classify SMMR (Sca;ming Multichannel Microwave Radiometer)
passive microwave data. All these researchers report promising performance
by neural networks. However, both the classification problem and motivation
are different here. The main reason that neural network methods are applied
in this research to the classification of multisource remote sensing data is that
these methods are distribution-free. Since multisource data are in general of
multiple types, the data in each source can have different statistical
distributions. By using neural network approaches we do not have the
requirement of explicitly modeling the data in cach source. Also, the neural
network approaches avoid the problem in statistical multisource analysis of
specifying how much influence each data source should have on the

classification.

Two neural network approaches on which the results are based are

discussed below: the delta rule and the backpropagation algorithm.
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3.2.1 The Delta Rule

The delta rule, developed by Widrow and Hoff [64] in the early 1960's, is
a supervised training approach where error correction is done with a least
mean squares algorithm (LMS) [65]. The delta rule is so named because it
changes weights in proportion to the difference between actual and desired
output responses. The neural network has two layers: input and output
layers. The delta rule for updating weights on the kth presentation (learn ng

cycle = k) of an input pattern can be written as:
Wi(k) = W(k—1) 4 n[t(k) — W(k—1)x(k)]xT (k) (¢.2)

where x(k) is the input pattern vector, t(k) is the desired output vector, W (k)
is the state of the weight matrix describing the network after k presentations,
and 7 is a learning rate. Since the magnitudes of the weights change in
proportion to 7, the optimum learning rate is the one which has the largest
value that does not lead to oscillation. A possible choice is n = C/k, wherc C
is a constant. That particular choice of n forces the weight matrix W(k) to
stabilize after several iterations. The delta rule, which is identical to 'he
mathematical method of stochastic approximation for regression probleras,
cannot be used to discriminate data that are not linearly separable and fals,

for instance, in the learning of a XOR function.

Since this rule cannot discriminate data that are not linearly separable it
is not expected to perform well in very difficult classification problers.
However, the delta rule has been generalized to include one or more layers of
hidden neurons. The generalization, which is described below, can be used to

discriminate data which are not linearly separable.
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3.2.2 The Backpropagation Algorithm

The generalized delta rule or the principle of backpropagation of errors
was initially proposed by Werbos in 1974 (66) and later independently
developed by Parker in 1986 [67], Le Cun in 1986 [68] and Rumelhart, Hinton
and Williams in 1986 [69,70]. The application of the backpropagation
algorithm involves two phases. During the first phase the input data are
presented and propagated forward through the network to compute the
output value oy in presentation of input pattern number p for each neuron j,

i.e.,

[0} = fj(netpj) (3.3)

pJ

s . . . .
where netp; =) Wj;0p, Wji 18 the weight of the connection from neuron i to

1

neuron j and {j is the semilinear activation function at neuron j which is
differentiable and nondecreasing. A widely used choice for a semilinear
activation function is the sigmoid function, which is used in the experiments

in Chapter 4:
flnety) = 1/(1 + e @70 (3.4)

where 0 is the bias of neuron j (similar to a threshold). It is worth noting
that the sigmoid function reaches one when nety; goes to infinity and zero
when netp; goes to minus infinity. To avoid extremely large values of net,
the target values of the sigmoid function are usually selected as 0.1 and 0.9 (or

-0.9 and 0.9).

The second phase involves a backward pass through the network

(analogous to the the initial forward pass) during which the error signal & is
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passed to each neuron in the network and the appropriate weight changes are

made according to:
Bpwij = népjop (3.5)

This second, backward pass allows the recursive computation of 5pj [69]. The
first step is to compute 5pj for each output neuron. This is simply the
difference between the actual and desired output values times the derivative of

the semilinear activation function, given by

8o = (bpj — op;)f (metyy;) (3.6)

where tp; is the desired output at output neuron j. Equation (3.8) becomes

8pj = (tp; — op Jop;(1 — op)) (3.7)
if the sigmoid function is used as the semilinear activation function. The
weight changes can then be computed according to equation (3.5) for all
connections that feed into the final layer. After this is done, the bpj's are

computed for all neurons in the penultimate layer using [69,70]:

6pj = f) (netpj)z(spkwkj (38)
k

which takes the form

i = 0p (1 — 04 )3 20 Wy, (3.9)
k

when the sigmoid function is used as f; (semilinear activation function). This
procedure propagates the errors back one layer, and the same process can be
repeated for every layer. The backward pass has the same computational
complexity as the the forward pass. prij also gives the negative value of

the gradient of the error at the outputs of the neurons multiplied by n. The



65

norm of equation (3.5) is used as the convergence criterion for the training
process in Chapter 4. When the norm of this scaled gradient is small there
have been little or no weight changes by the neural network and the network

has stabilized.

The backpropagation algorithm described above is a gradient descent
method for finding weights in any feed-forward network with semilinear
neurons. It is interesting that not all weights need be variable. Any number
of weights in the network can be fixed. In this case, error is still propagated

as before; the fixed weights are simply not modified.

In contrast to the delta rule, the backpropagation algorithm can be used
to discriminate data that are not linearly separable. But a problem with the
backpropagation is that its training process is computationally very complex.
Neural network methods in general need a lot of training samples to be
successful in classification. A lot of training samples together with a
computationally complex algorithm produce a very long learning time. Also,
since the backpropagation is a gradient descent algorithm, it may get stuck in
local minima that are not globally optimal. This is mainly due to two reasons:
First, gradient descent algorithms use the negative of the gradient vector to
reach the minimum of the error surface but the negative gradient vector may
not point directly to the minimum of the error surface. Second, the
magnitude of a partial derivative of the error with respect to a weight may be
such that modifying the weight by a constant proportion to that derivative

can yield a minor reduction in the error measure [71].

Rumelhart et al. [69] add a momentum term to cquation (3.5) in order to

speed up the training. With momentum the weights are updated according to
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Awij (k+1) = n(6pjopi) -+ ﬁAWij (k) (3.10)

where k indexes the presentation number (iteration), 7 is the gain factor, and
B is a constant which determines the effect of past weight changes on the
current direction of movement in weight space. Adding a momentum term
has the advantage that it filters out high frequency variations in the weight
space. On the other hand momentum has the limitations that there is an
upper bound on how large an adjustment it can make to a weight and also
that the sign of the momentum term can cause a weight to be adjusted up the
slope of the error surface, instead of down the slope as desired. Jacobs [71]
introduced his delta-bar-delta learning rule as an attempt to overcome these
limitations. The training of the backpropagation method can also be speeded
up by using optimization methods other than the gradient descent. Such

methods are discussed in the next section.

3.3 "Fast" Neural Networks

Neural network classifiers have been demonstrated to be attractive
alternatives to conventional classifiers [72,73]. The two major reasons why

these classifiers have not gained wider acceptance are (74]:

1. They have a reputation for being highly wasteful of computational

resources during training.

2. Their training has conventionally been associated with the heuristic
choice of a number of parameters; if these parameters are chosen
incorrectly, poor performance results, yet no theoretical basis exists for

choosing them appropriately for a given problem.
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Most neural network methods are based on the minimization of a cost
function. The most commonly used optimization approach applied in the
minimization is the gradient descent method. Both the delta rule and the
backpropagation algorithm are commonly used neural network models derived

by minimizing the criterion function:

.1
=1
2,

I (B

= 2

M (tpy — o)) (3.11)
=1

where ty; is the desired output of the jth output neuron, oy is the actual
output of the neuron and m is the number of output neurons. Both the delta
rule and the backpropagation algorithm are derived from equation (3.11) using
gradient descent. However, both of these models have the two problems listed

above. The models can be modified to overcome the problems by using

different optimization methods.

Watrous [75] has studied the effectivness of learning in neural networks
and has shown that quasi-Newton methods are far superior to the gradient
descent approach in training of neural networks. Conjugate gradient
optimization 74,76} is another method which is only slightly more complicated
than gradient descent but does not need any parameter selections like gradient
descent (gain factor). Also, it converges faster. Fast convergence is especially
important in classification of very complex data such as multisource data and

very-high-dimensional data.

In this report conjugate gradient versions of the delta rule and the
backpropagation are applied. The conjugate gradient neural networks are
derived from equation (3.11) using conjugate gradient optimization. These

methods are called: the conjugate gradient linear classifier (CGLC) (2 layers:
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input and output layers) and the conjugate gradient backpropagation (CGBP)

(3 layers: input, hidden and output layers) [74].

3.4 Including Statistics in Neural Networks

It is desirable but very difficult to implement first and second order
statistics in neural networks by using an adaptive algorithm. White [77] has
argued that standard neural network learning procedures (like the delta rule
and backpropagation) are inherently statistical techniques. He also showed
that certain aspects of the conditional probability law play an important role
in what is learned by artificial neural networks using standard techniques.
However, White’s analysis does not help in including first and second order
statistical information in the neural networks. Although he argues that the
learning procedures for the neural networks are in essence statistical, it is
desirable in many cases to have a mechanism by which first and second order

statistics of the data can be explicitly incorporated in the neural network.

Kan and Aleksander [78] have proposed a probabilistic neural network for
associative learning. Their network uses a new type of a probabilistic logic
neuron (PLN) which has a random access memory (RAM). Training for the
PLN network does not involve error propagation but uses instead a faster
method of local adjustment based on Hamming distance amplification [78].
The probability portion of the network is not related to the probability
distribution of the input data, but instead to the probabilities of "undefined"
states in the network. Thus, the PLN network is not the kind of probabilistic

neural network of interest here.
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Specht has proposed two probabilistic neural network methods which are

discussed in the next sections.

3.4.1 The "Probabilistic Neural Network”

The "probabilistic neural network" (PNN) was proposed by Specht
[79,80]. The algorithm is as follows: Let us begin with a Parzen density

estimate of a density function pa (X) by using 2 Gaussian kernel function:

N X=X, )T (X—Xa;

a0 = ot sl X ), (3.12)
where
i — pattern number
X = input feature vector
X,; = vector of ith training pattern from category A
o = smoothing parameter
d = dimensionality of pattern vector
N = number of training vectors from class A

The purpose of the PNN algorithm is to use equation (3.12) to estimate
the density of the data. The input layer of the network consists of one neuron
for each data channel. The middle layer consists of as many neurons as there
are training samples, l.e., there is one neuron for each training sample. The
weights of the connectors from the input layer to the middle layer are the
values of the training samples in each data channel. (For instance if there are
five input channels, each neuron in the middle layer will have five input

connectors). The activation function at the middle-layer neurons is written:
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exp|(XW; — 1)/0?] (3.13)

where W; = X,; (the weight vector). The output layer has one neuron for
each information class. The middle layer nodes are connected only to the
output node corresponding to the class of the training point represented by a
neuron in the middle layer. The output nodes are summation nodes according

to equation (3.12) and give the probability of X belonging to class A.

The PNN has several flaws. First of all equation (3.13) is derived from
the exponent in equation (3.12). If the exponent in equation (3.12) is rewritten

the following result is obtained:

X'X + Xa¥Xa; — 2XPX,, |
20°

exp|[—

B [X |24 Xy |2 _‘2XtXAiJ
202

= exp|

XXa —0.5]X|% —0.5] X, |2]

= (3.14)

= exp|

In PNN the lengths of both X and Xai are assumed to be 1 (1X]% =1
and [Xy; |2 = 1) which is how equation (3.13) is derived from equation
(3.14). Assuming the lengths of the vectors to be 1 is clearly wrong. By
normalizing all the data, the length information is lost and feature vectors far
from the training patterns in the original data space become much closer in
the normalized data space. The effect on equation (3.12) is that the
probabilities for all the classes are almost equal at every pixel and the decision
from the net will be wrong in most cases. On the other hand, if the data were

not normalized, equation (3.13) would not be applicable because the XW; term
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is much larger than 1 for most input vectors and the exponent would

approach infinity.

Apart from the serious flaw pointed out above it is questionable whether
PNN should be called a neural network. It can be considered an attempt to
find a parallel implementation of Parzen density estimation. If the approach
were correctly derived this method might work well on a parallel computer.
However, everything is predetermined by the user rather than by iterative

training of the network.

Parzen density estimation has the shortcoming that it requires a large
number of training samples for estimating the density when the
dimensionality is large. Silverman [45] has investigated Parzen density
estimation and reports the results (from [45]) shown in Table 3.1. As seen in
Table 3.1 the required sample size grows fast with increasing dimensionality.
Clearly this approach is impractical for applications involving very-high-

dimensional data.

3.4.2 The Polynomial Adaline

Specht [80] has also proposed the polynomial adaline (Padaline) which is
closely related to PNN. The polynomial adaline uses all higher orders and

cross products of the input data and has the form:
P(X)=Do._o+D1o...0X1 tDo10..0X2
+...+ Do a1 Xp + Dyo. 0X1”
4+ Dygg p X X2 X L (3.15)

Specht derived a relatively simple method to determine the coeflicients D for
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Table 3.1

Sample Size Required in Parzen Density Estimation when Estimating a
Standard Multivariate Normal Density Using a Normal Kernel (45]

Dimensionality | Required sample size
4

19

67

223
768
2790
10700
43700
187000
842000

S © 00 ~3 0 Uit 03 b b
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equation (3.15) based on training patterns. These coefficients are updated for
each observed training .sample. The algorithm makes it possible to use
hundreds or thousands of terms in the polynomial discriminant function
without overfitting the data even if the number of training samples is smaller

than the number of coefficients (good behavior because of smoothing).

The Padaline classifier is a one-pass network like the PNN and again it is
questionable whether the Padaline should be called a neural network. It is
necessary for the user to decide the number of terms being used. The major
disadvantage of this method is that it is computationally complex especially if
many terms are used. However, the computational and storage requirements

increase only linearly with the number of terms used.

3.4.3 Higher Order Neural Networks

The most straight-forward way to include statistical information in
neural networks is to use higher order correlations. The higher order
correlation method is desirable when the input data are of relatively low
dimensionality. When d-dimensional data are mapped with a second order
mapping, the resulting dimensionality will be d + d{d+1)/2. It is clear that
the dimensionality of the higher order mapping increases rapidly with d. High
dimensionality makes the neural network training procedures slower.

Therefore, higher order mapping is not desirable if d is large.

If second order correlations are used, a "two-layer neural network' can be
implemented with deterministic weights to compute the likelihood function of

a QGaussian maximum likelihood classifier. The reason for the ease of the
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implementation is that the log of the likelihood function is quadratic and can

therefore be written as:
X'AX + X'B+C (3.16)

where A is a matrix, B a vector and C a constant. A, B and C can be
estimated from the mean vectors and the covariance matrices of the training
data [81].

When a classification problem has M (M > 1) classes, the "neural
network" classifier must have 3 layers. The first 2 layers compute the
likelihood function, but an additional neural network is concatenated to the
outputs to find the class which has the highest likelihood. This additional
neural network is MAXNET [51], a neural network which is easily

implemented to find the maximum value from a particular set.

A problem with the Gaussian '"neural network” is that it is more =
parallel implementation of a Gaussian maximum likelihood classifier than an
adaptive neural network. Everything is fixed beforehand. An adaptive
approach which could use the pre-fixed values as initial values would be of

more interest,.

3.4.4 Overview of Statistics in Neural Network Models

From the above discussion it can be concluded that implementing
statistics in an adaptive neural network is a very difficult problem. Several
authors have suggested 'neural networks" which are actually parallel
realizations of well-known statistical methods. These methods are only

attractive alternatives to common statistical methods if they are implemented
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on parallel machines. However, the PNN has to be considered questionable
for almost any problem and the Gaussian network is not practical for very-

high-dimensional problems.

Although it would be desirable to include first and sccond order statistics
in the neural networks it will not be done here. One of the advantages of
using neural networks for classification of multitype data is that the neural
networks model the dependence between all the data whereas most of the
statistical methods discussed in Chapter 2 cannot do that when a convenient
multivariate statistical model does not exist or is unknown. If the neural
networks could be provided with some parametric statistical information, it
would have to be on a source-by-source basis, if second order statistics were

used. Evidently this statistical implementation problem needs a lot of work.

In the experiments in this report, conjugate gradient versions of the delta
rule and the backpropagation algorithm will be the only neural networks

applied.
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CHAPTER 4
EXPERIMENTAL RESULTS

The methods discussed in Chapters 2 and 3 were applied to classification
of multisource and very-high-dimensional data sets. Three data sets were used
in experiments. Two of the data sets were multisource remote sensing and
geographic data. The third data set consisted of very-high-dimensional
simulated High Resolution Imaging Spectrometer (HIRIS) data. The linear
opinion pool, statistical multisource classifier, the minimum Euclidean
distance algorithm and the maximum likelihood method for Gaussian data
were the statistical methods used in classification (when these methods were
appropriate). For the multisource remote sensing and geographic data sets, the
linear opinion pool and the statistical multisource classificr were used in
conjunction with three non-Gaussian modeling methods: the histogram
method, the maximum penalized likelithood method and Parzen density
estimation. The objective of using all these non-Gaussian methods was to see

how well they performed in statistical multisource classification.

The conjugate gradient linear classifier and the conjugate gradient
backpropagation were the neural network models used in the experiments.
The statistical methods and the neural network models were compared based

on classification accuracies for different sample sizes of training data,
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dimensionalities of input data and on classification time.

4.1 Source-Specific Probabilities

In order to apply the statistical multisource classifier and the linear
opinion pool, the source-specific probabilities can be written in the following
form:

pw ;) = [P(Xi)]_lkglp(xi |, )p(di, @) (4.1)

Here m; is the number of data classes for source i and p(x;) is computed by:
m;

p(x) = § ¥ p(xi |dy, w; )p(dy, w;) ' (4.2)
j=lk=1

where M is the number of information classes. For each source, the joint
probabilities p(dy,w;) can be tabulated in a joint occurrence matrix by
comparing single-source data-class classifications to information classes in a
reference map. To reduce considerably the computation and memory
requirements, the class-conditional probabilities can be computed

independently of information classes, i.e., by setting:
p(x; ldk,wj) = p(x; Idk) for all (4.3)

This approximation is useful if the distribution of a data class is the sane
regardless of information class and if the number of data classes is different .
from the number of information classes. However, if the number of data
classes and information classes are the same and the information and data
classes have a one-to-one correspondence, the source-specific probabilities can

be modeled by:
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p(wj %) = p(d; |x;) (4.4)

In the following experiments, the approximation in equation (4.3) was
used when the information classes did not directly correspond to the data
classes. As said previously, the approximation is useful if the distribution of a
data class is the same regardless of information class. However, the
approximation is unlikely to hold exactly in the case of unsupervised

classification.

All of the experiments in this chapter were run on a Gould NP1 mini
super computer. Although the NP1 machine is fast, the approximation in
equation (4.3) was essential to reduce the memory requirements in the
classifications of the statistical multisource classifier and the linear opinion

pool.

4.2 The Colorado Data Set
The statistical and neural network classification methods were used to
classify a data set consisting of the following 4 data sources:
1) Landsat MSS data (4 data channels)
2) Elevation data (in 10 m contour intervals, 1 data channel)
3) Slope data (0-90 degrees in 1 degree increments, 1 data channel)
4) Aspect data (1-180 degrees in 1 degree increments, 1 data channel)

Each channel comprises an image of 135 rows and 131 columns; all channels
are co-registered.

The area used for classification is a mountainous area in Colorado. This

area is a part of a larger region which has previously been analyzed by Holffer
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et al. [7,10]. The area has 10 ground cover classes which are listed in Table
4.1. One class is water; the others are forest type classes. It was very difficult
to distinguish between the forest types using the Landsat MSS data alone
since the forest classes showed very similar spectral responses. With the help

of elevation, slope and aspect data, they could be better distinguished.

Ground reference data were compiled for the area by comparing a
cartographic map to a color composite of the Landsat data and also to a line
printer output of each Landsat channel. By this method 2019 ground
reference points (11.4% of the area) were selected. Ground reference consisted
of two or more homogeneous fields in the imagery for each class. In the first
experiments on this data set, the largest field for each class was selected as a
training field and the other fields were used for testing the classifiers. Overall
1188 pixels were used for training and 831 pixels for testing the classifiers.
This was the same data used in [82] and some of the results in Section 4.2.1

were reported there.

4.2.1 Results: Statistical Approaches

Two statistical methods were used in the experiments reported here: 1)
minimum Euclidean distance (MD) [30], and 2) statistical multisource
classification (SMC) with the modifications discussed in Section 2.3.1. The MD
method is a "simple” stacked-vector approach which has been used with some
success in classification of remotely sensed data from single-sources. (Other
stacked vector approaches like the maximum likelihood method for Gaussian

data and the minimum Mahalanobis distance were not applicable, because the

C o
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Table 4.1

Training and Test Samples for Information Classes
in the First Experiment on the Colorado Data Set

Class # | Information Class Training Size | Testing Size
1 water 408 195
2 Colorado blue spruce 88 24
3 mountane/subélpine meadow 45 42
4 aspen 75 65
5 Ponderosa pine 105 139
6 Ponderosa pine/Douglas fir 126 188
7 Engelmann spruce 224 70
8 Douglas fir/white fir 32 44
9 Douglas fir/Ponderosa pine/aspen 25 25
10 Douglas fir/white fir/aspen 60 39

Total 1188 831
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data were not truly Gaussian and a few of the stacked vector covariance

matrices were singular.)

The results of the classification using the MD method are shown in Tables
4.2 (training) and 4.3 (test) where OA represents overall accuracy and AVE
means average (over the classes) accuracy. The results in Tables 4.2 and 4.3
are clearly unacceptable. The MD method gave only 43.27% overall accuracy

for training data and 22.26% overall accuracy for test data.

We next turn to the classification unsing the SMC method. To satisfy
the underlying assumptions of the SMC algorithm and the global membership
function in equations (2:31a) and (2.31b), it was necessary to show that the
data sources could be treated independently in the classification. This was
accomplished by looking at the class-specific correlations between all seven
data channels using the reference data. The correlations between the data
sources were in most cases low. For a few of the information classes there was
no variation in the topographic data sources and consequently the correlation
was undefined. Since the correlations between the sources were low in most
defined cases, the data sources could be treated as independent and the global
membership function in equations (2.31a) and (2.31b) was used as the

classifier.

*

Each source was used independently for training. The data classes in the
Landsat MSS source were modeled by the Gaussian distribution, where the
means and covariance matrices were estimated from the training fields. The
other data sources had non-Gaussian data classes. For these sources the
normalized histograms of the training fields were used to estimate the density

functions.
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Table 4.2

Classification Results for Training Samples when
Minimum Euclidean Distance Classifier is Applied.

Percent Agreement with Reference for Class
1 2 3 4 5 [} 7 8 9 10 0OA AVE
473 1000 311 9280 00 00 674 594 440 2R3 | 43.27 | 40.55
# of pixels 408 88 45 75 105 126 224 32 25 60 1188 | 1188 |

CPU time for training and classification: 2 sec.

Table 4.3

Classification Results for Test Samples when
Minimum Euclidean Distance Classifier is Applied.

Percent Agreement with Reference for Class i
1 2 3 4 5 8 78 3 10 OA_| AVE
389 1000 00 169 00 69 757 45 40 128 | 2226 1;;5:99
# of pixels | 195 24 42 B85 139 188 70 44 _ 25 39 831 | 831
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Statistical multisource classification was performed on the data with
varying weights (reliability factors) for the data sources. The results of
classification for the training fields are shown in Table 4.4 and for the the test
fields in Table 4.5. The reliability and uncertainty measures introduced in
Section 2.3.2 were used to rank the data sources. These results indicate that
the Landsat MSS data was the most reliable source, elevation second, aspect
third and the slope source the least reliable. This was the same ranking
produced by the equivocation measure as indicated in Table 4.6. (The
separability measures using the Gaussian assumption could not be applied
here since some of the data classes in the topographic sources were not truly
Gaussian and had singular covariance matrices as mentioned above.) In all the
experiments the Landsat MSS data were given the largest weight while the

weights of the other sources were varied.

The classification of the training samples (Table 4.4) showed that by
combining all the sources with equal weights the overall classification accuracy
(OA) improved to 74.2%, i.e., by more than 6% compared to the best
accuracy in the single-source classification (Landsat MSS: 67.9%). By lowering
the weights on the topographic sources, the overall accuracy could be
increased to 78.0%. Therefore, by changing the weights of the sources ihe
overall classification accuracy of the training samples improved by 3.8%. This
"best” result was achieved when the Landsat source was given full weight and
the other sources were given 40% weight. It was also very nearly achieved
when the Landsat MSS data had full weight, the elevation source had 50%
weight, the aspect source had 40% weight and the slope source had 30%

weight (77.9% overall accuracy). That weighting controlled the influence from
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Table 4.4

Statistical Multisource Classification of
Colorado Data: Training Samples.

Percent Agreement with Reference for Class
1 2 3 4 5 6 7 8 9 10| OA | AVE
Single Sources

MSS 99 48 0 80 9 69 92 0 0 0 67.9 39.7
elevation 100 0 0 23 17 13 98 0 16 20 58.4 28.7
slope 100 0 0 0 5 64 0 0 0 0 41.5 16.9
aspect 100 0 0 44 42 15 59 0 0 0 53.6 | 26.0
mes a Multiple Sources
1.1.1. 1. 100 98 0 35 35 80 100 0 0 0 74.2 | 44.8
1..5.5.5 100 99 0 65 34 76 94 0 0 62 77.6 53.0
1..4.4 .4 100 100 11 71 33 73 95 0 0 58 78.0 | 54.1
1..3.3.3 100 100 11 75 27 71 96 0 0 42 76.9 52.2
1..2.2.2 100 98 11 75 23 71 96 0 0 26 75.5 50.0
1..1.1.1 100 96 18 75 15 66 97 38 0 0 74.2 50.5
1.8.4.6 100 99 0 64 37 79 93 0 0 60 77.8 53.2
1..8.1.2 100 100 11 74 17 76 95 0 0 35 76.0 | 50.8
1.6 4.5 100 99 4 67 34 76 94 0 0 60 77.8 53.4
1..5.3 4 100 100 11 73 33 75 95 0 0 49 77.9 53.6
1..4.2.3 100 100 11 75 27 73 96 0 4 38 77.0 52.4
1.3.1.2 | 100 99 11 75 18 74 96 0 4 2 75.4 | 49.9
# of pixels | 408 88 45 75 105 126 224 32 25 60 | 1188 1188

The columns labeled m e s a indicate the weights applied to the Landsat MSS
(m), elevation (e), slope (s) and aspect (a) sources.

CPU time for training and classification: 14 sec.
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Table 4.5

Statistical Multisource Classification of
Colorado Data: Test Samples.

Percent Agreement with Reference for Class
1 2 3 4 5 6 7 8 9 10| OA | AVE
Single Sources

MSS 97 0 0 0 25 79 97 0 0 0 53.1 | 29.8
elevation 100 0 0 20 2 21 100 0 8§ 21 40.4 | 27.2
slope 86 0 0 0 0 5 33 0 0 0 24.3 | 124
aspect 95 0 0 15 1 6 19 0 0 0 28.7 13.6
mes a Multiple Sources
1.1.1. 1. 86 0 0 25 35 92 86 0 0 0 56.0 32.4
1..5.5.5 86 0 0 48 45 80 97 0 0 0 57.9 35.6
1..4.4 .4 86 0 0 52 49 76 97 0 0 0 57.9 36.0
1..3.3.3 86 0 0 54 51 63 97 0 0 44 57.4 39.5
1..2.2.2 97 0 0 0 54 80 97 0 0 31 59.5 35.9
1..1.1.1 93 0 0 0 54 76 97 0 0 26 57.3 34.6
1..8.4.6 100 0 0 51 38 84 97 0 0 0 60.8 37.0
1..8.1.2 91 0 0 60 48 72 97 0 0 0 58.6 | 36.8
1.6 .4.5 86 0 0 51 44 81 97 0 0 0 §8.0 | 35.9
1..5.3 .4 86 0 0 54 48 74 97 0 0 0 57.5 | 35.9
1..4.2.3 97 0 0 57 51 55 97 0 0 41 58.2 | 39.8
1..3.1.2 95 0 0 0 55 80 97 0 0 33 59.3 36.0
# of pixels 195 24 42 65 139 188 70 44 25 39 831 831

The columns labeled m e s a indicate the weights applied to the Landsat MSS
(m), elevation (e), slope (s) and aspect (a) sources.
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Table 4.6

Equivocation of the Data Sources

Source Equivocation | Rank
MSS 0.216955 1
Elevation 0.252676 2
Aspect 0.277244 3
Slope 0.289636 4
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the sources according to the ranking of both the reliability measures. Using
some other weight combinations that ranked the sources in the same order as
the reliability measures also gave very good results. In summary, the results in
Table 4.4 show that the overall classification accuracy could be improved by
reducing the weights of some of the data sources. In Table 4.4 it is also seen
that if the weights of the data sources were decreased too much, the overall

classification accuracy went down, as would be expected.

The results in Table 4.5 are very similar to the ones in Table 4.4. Table
4.5 shows the results of the classification of test fields and therefore the
classification accuracy is generally lower than in Table 4.4. If the sources all
had equal weights, then the overall accuracy was 56.0% which was 2.9%
greater than the overall classification accuracy of the best single-source
(Landsat MSS: 53.1%). This was not as much increase as in the case of
training data. By lowering the weights on the topographic data sources the
overall classification accuracy was improved to 60.8%, which was 4.8% more
than with the equal weights. This best result was achieved when the Landsat
source had full weight, the elevation source 80% weight, the aspect source
60% weight and the slope source 40% weight. This particular weighting

ranked the sources in the same order as the reliability measures.

4.2.2 Results: Neural Network Models

The two neural network approaches, the conjugate gradient linear
classifier (CGLC) and the conjugate gradient back propagation (CGBP), were
implemented in experiments to classify the data. (The neural network

programs were written by Etienne Barnard [74].) The neural networks were
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trained with Gray-coded input vectors rather than binary input vectors, as
discussed in Chapter 3. The author has previously shown empirically that the
Gray-code gives good results in classification of this data set [82]. Since five of
the seven data channels take values in the range from 0 to 255, each data
channel was represented by 8 bits and therefore 8 input neurons. The total
number of input neurons was 7*8 = 56. Since the number of information
classes was 10, the number of output neurons was selected as 10. The training
procedures of the neural networks were considered to have converged if the

norm of the gradient of the error at the outputs was less than 0.0001.

a) Experiments with the Conjugate Gradient Linear Classifier

The results using the two-layer CGLC are shown in Tables 4.7 (training)
and 4.8 (test). The training procedure for this neural network did not
converge but was stopped after 319 iterations because the error function could
not be decreased after that. The highest overall accuracy (94.879) and the
highest average accuracy (92.49%) for training data were achieved by 200
iterations. These accuracies were much higher than those achieved with the
SMC algorithm in Section 4.2.1. However, the best overall accuracy for test
data was reached after only 100 iterations (55.11%). This was significantly
lower than the highest overall accuracy achieved with the SMC algorithm.
But the neural network was better than the SMC in terms of average
classification accuracy. This result shows that the CGLC is better than the
SMC in capturing class-specific information but the SMC seeks to achieve the
minimum probability of error. A major problem with the CGLC and other

neural networks is deciding when to stop the training procedure. I a neural
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Table 4.7

Conjugate Gradient Linear Classifier Applied to

Colorado Data: Training Samples.

Number of | CPU Percent Agreement with Reference for Class

iterations time 1 2 3 4 5 6 7 8 9 10 QA AVE
50 100 1000 977 756 904.7 686 79.4 99.1 81.3 76.0 96.7 || 92.26 | 86.91
100 188 1000 98.9 822 98.7 69.5 B4.9 99.6 906 84.0 98.3 || 94.11 | 90.67
150 270 1000 989 84.4 98.7 695 857 1000 96.9 84.0 98.3 || 94.53 | 91.64
200 348 100.0 989 82.2 987 715 857 1000 969 920 100.0 || 94.87 | 92.59
250 435 1000 989 822 987 705 857 100.0 96.9 92.0 100.0 || 94.78 | 92.49
300 524 1000 989 822 987 705 857 100.0 969 920 100.0 || 94.78 | 92.49
319 557 1000 989 822 987 705 857 100.0 969 920 100.0 || 94.78 | 92.49

# of pixels 408 88 45 75 105 126 224 32 25 60 1188 1188

Table 4.8
Conjugate Gradient Linear Classifier Applied to
Colorado Data: Test Samples.

Number of Percent Agreement with Reference for Class

iterations 1 2 3 4 5 8 7 8 9 10 OA AVE
50 95.4 83.3 33.3 415 10.8 39.9 1000 2.3 120 87.2 53.55 50.57
100 96.4 83.3 40.5 41.5 11.5 43.6 100.0 2.3 12.0 87.2 55.11 51.83
150 95.9 83.3 38.1 41.5 10.8 41.5 100.0 4.5 12.0 84.6 54.27 51.22
200 94.9 83.3 33.3 354 11.5 43.6 100.0 2.3 12.0 79.5 53.55 49.58
250 94.9 83.3 33.3 36.9 11.5 44.7 100.0 2.3 16.0 79.5 54.03 50.24
300 94.9 83.3 33.3 38.5 11.5 44.1 100.0 2.3 16.0 79.5 54.03 50.34
319 94 9 83.3 333 38.5 11.5 44.1 100.0 2.3 16.0 79.5 54.03 50.34
# of pixels 195 24 42 65 139 188 70 44 25 39 831 831
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network is overtrained it will not give the best accuracies for test data. The
reason is that the network gets too specific to the training data and does not

generalize as well.

The CGLC took longer to train than the SMC. Three hundred iterations
took 524 CPU sec compared to 104 for the statistical method. Also, the

classification of the data took 10 sec for the CGLC but 7 sec for the SMC.

b) Experiments with Conjugate Gradient Back Propagation

The CGBP was implemented in experiments with three or more layers
(input, output and hidden layers). Having more than one hidden layer did not
improve the classification performance of this neural network, so only the
results with three layers are discussed here. Three-layer networks with 16, 32,
48 and 64 hidden neurons were tried but the performance of the CGBP in
terms of classification accuracy was not improved by using more than 32
hidden neurons. Therefore, 32 hidden neurons were used in the experiments

reported here.

The CGBP (Tables 4.9 (training) and 4.10 (test)) showcd the best
performance of all the methods in terms of overall and average classification
accuracies of training data. As with the CGLC, the training procedure of the
CGBP did not converge. At 676 iterations the error function could not be
decreased and the training procedure stopped. At 350 iterations the highest
overall accuracy of training data was reached (98.40%) and at 600 iterations
the highest average accuracy of training data (98.04%) was observed. These
accuracies did not improve with more than 600 iterations. For test data, the

CGBP gave very similar accuracies to the CGLC. At 200 iterations the
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Table 4.9

Conjugate Gradient Backpropagation Applied to
Colorado Data: Training Samples.

Number of | CPU Percent Agreement with Reference for Class

iterations time 1 2 3 4 5 6 7 8 9 10 OA AVE
50 384 | 1000 1000 556 90.7 66.7 77.8 99.6 37.% 40.0 91.7 || 88.97 | 75.96
100 737 | 1000 100.0 77.8 87.3 75.2 857 1000 81.3 80.0 96.7 || 94.19 | B9.40
150 1073 | 100.0 100.0 88.7 98.7 81.0 89.7 1000 100.0 96.0 100.0 || 96.55 | 95.21
200 1427 | 100.0 100.0 93.3 1000 857 92.1 100.0 100.0 100.0 100.0 || 97.64 | 97.11
250 1788 | 100.0 100.0 93.3 100.0 86.7 952 100.0 100.0 100.0 100.0 || 98.06 | 97.58
300 2102 | 100.0 1000 956 100.0 886 952 1000 160.0 1000 100.0 || 98.32 97.94
350 2517 | 1006 1000 956 1000 895 52 100.0 100.0 100.0 100.0 || 98.40 98.03
400 2820 { 100.0 1000 956 1000 895 952 100.0 100.0 100.0 100.0 | 98.40 98.03
800 4198 | 100.0 1000 956 1000 90.5 944 1000 1000 100.0 100.0 | 98.40 98.04
676 4730 | 100.0 100.0 956 1000 886 96.0 100.0 100.0 100.0 100.0 || 98.40 98.02
# of pixels 408 88 45 75 105 126 224 32 25 80 1188 1188

Table 4.10

Conjugate Gradient Backpropagation Applied to
Colorado Data: Test Samples.

Number of Percent Agreement with Reference for Class

| iterations 1 2 3 4 ) 8 7 8 9 10 0A AVE
50 97.9 833 19.0 477 10.8 46.8 1000 6.8 00 949 | 55.72 50.72
100 98.5 83.3 40.5 33.8 10.1 43.1 100.0 2.3 0.0 949 54.63 50.65
150 100.0 83.3 42.9 38.5 12.2 44.7 100.0 0.0 120 923 56.32 52.59
200 99.0 833 45.2 385 17.3 40.4 100.0 2.3 120 949 | 56.32 53.29
250 97.9 83.3 47.6 36.9 13.7 40.4 100.0 2.3 12.0 846 54.99 51.87
300 97.9 83.3 429 36.9 11.5 42.6 100.0 2.3 16.0 8486 54.99 51.80
350 97.9 79.2 42.9 36.9 12.2 41.5 100.0 2.3 120 1795 54.39 50.44
400 97.9 79.2 40.5 36.9 12.2 410 1000 23 12.0 84.8 || 54.39 | 50.66
600 97.9 79.2 38.1 41.5 15.8 42.0 100.0 2.3 12.0 82.1 55.35 51.09
676 979 79.2 38.1 415 15.1 42.0 100.0 23 16.0 82.1 55.35 51.42
# of pixels 195 24 42 85 139 188 70 44 25 39 831 831
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highest overall and average accuracies of test data were reached, 56.32% and
52.59% respectively. Therefore, the CGBP did not do as well as the SMC in
terms of overall classification accuracy of test data but it did better in terms
of average accuracy. In these experiments the CGBP had an overtraining
problem similar to the CGLC; it gave somewhat less than optimal results for
test data classified by the network giving the most accurate results for training

data.

The CGBP was much slower in training than the CGLC because of the
32 hidden neurons. Training the CGBP for 400 iterations took 2663 sec.
However, the classification of the data took only 21 sec which is about twice
the time consumed by the CGLC and three times the classification time of the

SMC (7 sec).

The best results of the first experiment on Colorado data are shown in
Figure 4.1. As seen in the figure, the SMC method outperformed the neural
networks in classification of test data although the neural networks performed
much better in classification of training data. The results in this experiment
illustrate how important it is to select representative training samples when
training a neural network. The CGBP network gave more than 90% overall
accuracy of training data bul only just more than 50% for test data. The
training data used here might not be representative since only one training
field was selected for cach information class. This limited each information
class to a single subclass. The classification results for the training fields
indicate that if representative training samples are available, the neural
networks can do well in classification of multisource data. Significantly,

arriving at a truly representative set of training samples can be very difficult
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in practical remote sensing applications. But to demonstrate how well the
classification methods would do with a more representative sample, a second

experiment on the Colorado data was conducted.

4.2.3 Second Experiment on Colorado Data

To achieve a more representative training sample, uniformly spaced
samples were selected from aj] fields available for each class. By this
approach, 1008 samples were obtained for training and 1011 samples for
testing (Table 4.11). By considering the JM distances between the different
training flields in the MSS data, it was determined that the Landsat MSS
source should be trained on 13 data classes. The selection of the data classes
was done in the following way. If a field from a specific class was more distant
than 1.2 in the sense of JM distance from a field within the same class, the
lields were considered to be from two diflerent data classes (JM distance has a
maximum of 1.41421). Using this criterion, class 3 (mountane/subalpine
meadow) was split into two daia classes, and class 7 (Engelmann spruce) was
divided into 3 data classes. All the other information classes had only one
data class. In the methods applied below, the classifiers were trained on the

13 data classes.

4.2.4 Results of Second Experiment: Statistical Methods

In these experiments three statistical approaches were used: 1) The MD
approach, 2) the SMC algorithm and 3) the linear opinion pool (LOP). The
results using the MD algorithm are shown in Tables 4.12 (training) and 4.13

(test). Since the training data are more representative than in Section 4.2.1,



Table 4.11

Training and Test Samples for Information Classes
in the Second Experiment on the Colorado Data Set

Class # | Information Class Training Size | Testing Size
1 water 301 302
2 Colorado blue spruce 56 56
3 mountane/subalpine meadow 43 44
4 aspen 70 70
5 Ponderosa pine 157 157
6 Ponderosa pine/Douglas fir 122 122
7 Engelmann spruce 147 147
8 Douglas fir/white fir 38 38
9 Douglas fir/Ponderosa pine/aspen 25 25
10 Douglas fir/white fir/aspen 49 50

Total 1008 1011




Table 4.12
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Classification Results for Training Samples when

Minimum Euclidean Distance Classifier is Applied.

1

2

3

Percent Agreement with Reference for Class

4

5

8

7

8 9 10 OA__| AVE
415 682 256 371 376 00 735 00 400 245 || 40.28 | 37.80
#ofpixels | 301 56 43 70 157 122 147 38 o5 49 | 1008 | 1008
CPU time for training and classification: 2 sec.
Table 4.13
Classification Results for Test Samples when
Minimum Euclidean Distance Classifier is Applied.

Percent Agreement with Reference for Class
1 2 3 4 5 8 7 8 9 10 OA__| AVE
40.1__1000 341 30.0 325 08 694 0.0 280 200 || 37.98 | 3549
| # of pixels | 302 58 44 70 157 122 147 38 95 50 | 1011 | 1011
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the test results are significantly better (Table 4.3). However, the results in
Tables 4.2, 4.3 and 4.12 and 4.13 show that the MD is not an acceptable

choice for classification of this data set.

By looking more closely at the four data sources it is casy to see why the
data were difficult to classify. In Table 4.14 the JM distances between the 10
information classes of the Landsat MSS data are shown. Although the average
separability of the MSS data (1.308) was relatively high, it is seen from Table
4.14 that only classes 1 (water) and 7 (Engelmann spriice) were very separable
from the other 8 classes. Also, water and Engelmann spruce were the largest
classes and therefore had the biggest impact on the average separability.
With the exception of Engelmann spruce, other forest classes (classes 2 to 6
and 8 to 10) were not very separable from cach other. Using the topographic
information would be expected to help distinguish the forest classes. Pigures
4.2, 4.3 and 4.4 show the class-specific histograms (information classes) of the
topographic training data. The magnitude of class 1 is actually 301 in each
figure. It was reduced in the figures to make the magnitudes of the other

classes more visible.

Looking at Figure 4.2 (elevation histograms), it is scen that class 1
dominates in the lower elevations, but several other classes, especially class 7,
can be distinguished from it for the higher elevations. In Figure 4.3 (slope
histograms), the data are not as distinguishable as in Figure 4.2. Class 1
dominates the zero slope, but class 7 has several peaks with higher slope
values. Classes 4 and 6 are also separable from the other classes but the slope
source is clearly not as informative overall as the clevation data. In Figure 4.4

the class-specific histograms of the aspect data are shown. The aspect data
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Table 4.14

the 10 Information Classes

Maximum Separability is 1.41421)

Class # 2 3 4 5 6 7 8 9 10

1 1.41274 | 1.37295 | 1.40880 | 1.40250 | 1.41421 | 1.41338 1.41331 | 1,40238 1.41419 |
2 1 - 1.16528 | 1.05169 | 0.99912 | 1.36284 1.40287 | 1.24416 | 1.07844 1.08332
3 - - 1.20855 | 1.28122 | 1.38693 | 1.38369 1.36175 | 1.30351 1.33886
4 - - - 0.95808 | 1.27051 | 1.40729 | 1.15989 0.49988 1.00649
5 - - - - 1.02387 | 1.39967 | 0.73897 | 1.02285 0.94368
6 - - - - - 1.40999 | 0.73667 | 1.26707 1.15118
7 - - - - - - 1.40714 | 1.40779 1.40772
8 - - - - - - - 1.16382 0.92488
9 : : : . : : : -~ | ronsr]
Average:  1.30809 _
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Figure 4.2 Class Histograms of Elevation Data in the Colorado Data Set
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are evidently more informative than the slope data. Several of the classes
have small peaks and class 1 has the biggest peak around 180 degrees. Since it
did not help in terms of source-specific overall accuracy to use the 13 data
classes for the topographic data, the topographic sources were trained only on
the 10 information classes when used in conjunction with the SMC and LOP

classifiers.

The experiments with the SMC and LOP methods were done using three
different density estimation methods for the topographic data sources in order
to sce how well different methods modcled the data. The density cstimation
methods were discussed in Chapter 2: 1) the histogram approach, 2) the
maximum penalized likelthood method and 3) Parzen density estimation.
Experiments with each modeling method are treated separately below. As
mentioned in Section 4.2.1, the data sources can be treated independently and

thus the SMC method can be applied in classification of this data set.

a) Topographic Data Modeled by Histograms

The results of the SMC classifications are shown in Tables 4.15 (training)
and 4.18 (test). The multisource classifications are shown with several values
of weights (reliability factors) in each table. The tables are organized as
follows: In the top portion of the tables the single-source classifications are
shown. In the boxes below, the multisource classifications are shown with
different values of weights. The first box with the multisource classifications
shows the result with equal weights and then the results with a uniform but
equal decrease in the weights of the topographic sources. The second box

shows the results when all the sources except the slope source have equal and
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Statistical Multisource Classification of Colorado Data when Topographic
Sources were Modeled by Histogram Approach: Training Samples.

Percent Agreement with Reference for Class
- i 2 3 4 5 __8 7 8 9 10 [ oa |AvE
Single Sources
MSS 99.3 64.3 20.9 ©68.6 16.6 85.2 89.8 5.3 28.0 67.3 69.05 514.33
Elevation 98.7 0.0 0.0 80.0 24.2 17.2 99.3 31.6 28.0 98.0 62.15 47.70
Slope 95.0 0.0 0.0 4.3 10.8 27.0 61.9 0.0 4.0 0.0 42.81 20.31
| Aspect 961 00 47 514 369 221 483 26 80 347 | 5015 | 30.49
mes a Multiple Sources
1.1.1. 1. 99.7 96.4 209 986 59.9 48 .4 100.0 34.2 60.0 100.0 80.26 71.80
1.9.9.9 99.7 94.6 20.9 986 56.1 60.7 100.0 23.7 60.0 100.0 80.65 71.42
1. 8.8.8 99.7 61.1 23.3 98.6 50.3 73.4 100.0 23.7 60.0 100.0 81.25 72.03
1.7.7.7 99.7 91.1 233 98.6 51.0 77.9 100.0 15.8 56.0 100.0 81.45 | T1.32
1. 6.6 .6 99.7 91.1 23.2 97.1 48 .4 82.8 100.0 5.3 52.0 100.0 81.05 ‘ 654945
1..5.56.5 99.7 87.5 23.3 957 45.9 85.2 100.0 0.0 36.0 100.0 80.06 ' 67.32
1.4 .4 .4 100.0 83.9 233 943 43.9 86.9 100.0 0.0 32.0 100.0 79.66 66.43
1..3.3.3 100.0 73.2 256 929 40.8 91.0 100.0 0.0 28.0 100.0 78.97 65.14 |
1..2.2.2 100.0 73.2 256 8B6 389 91.0 100.0 0.0 8.0 100.0 7788 1 62.52
1..1.1.1 100.0 66.1 256 B29 35.0 918 100.0 0.0 8.0 100.0 76.59 60.93
L 000 | 1000 571 163 657 198 902 898 00 0.0 673 || 68.65 50.62 |
1.1..91. 99.7 96.4 209 986 58.6 52.5 100.0 26.3 60.0 100.0 80.26 71.30
1.1. .81. 99.7 94 .6 20.9 98.6 57.3 54.1 100.0 28.9 60.0 100.0 80.26 71.42
1.1..71. 99.7 92.9 209 986 57.3 57.4 100.0 28.9 60.0 100.0 80.56 71.57
1.1. .6 1. 99.7 91.1 209 986 57.3 58.2 100.0 31.6 60.0 100.0 80.65 71.73
1.1..51. 99.7 91.1 20.9 98.6 55.4 64.8 100.0 31.6 60.0 100.0 81.15 72.20
1.1. .41 99.7 91.1 209 986 56.1 68.9 100.0 316 60.0 100.0 81.75 72.67
1.1..31. 99.7 91.1 209 986 52.9 72.1 100.0 31.6 60.0 100.0 81.65 72.68
1.1..21. 99.7 91.1 20.9 98.6 54.1 73.0 100.0 31.6 60.0 100.0 81.94 72.89
1.1..1 1. 99.7 89.2 208 97.1 54.1 74.6 100.0 31.6 60.0 100.0 81.94 72.73
1.1.01 997 875 209 971 535 __754 1000 316 60.0 1000 || 81.85 | 7257
1.1..8.9 99.7 94.6 23.3 986 57.3 60.7 100.0 28.9 60.0 100.0 81.15 72.31
1.9.8.9 99.7 92.9 209 986 56.7 60.7 100.0 23.7 60.0 100.0 80.65 71.31
1.9.7.8 99.7 91.1 23.3 986 51.6 T74.6 100.0 26.3 60.0 100.0 81.65 72.51
1.9.6.8 99.7 91.1 233 986 51.6 75.4 100.0 26.3 60.0 100.0 81.75 72.59
1..9.6.7 99.7 91.1 23.3 97.1 50.3 77.9 100.0 28.9 60.0 100.0 81 .85 7283
1..9.5.9 99.7 g1.1 23.3 97.1 49.7 78.7 100.0 28.9 60.0 100.0 81.85 72.85
1.9.5.6 99.7 91.1 23.3 97.1 49.0 81.1 100.0 18.4 56.0 100.0 81.55 71.58
1.8.5.8 99.7 91.1 233 971 48.4 820 100.0 13.2 52.0 100.0 81.25 70.67
1. 8.4.6 99.7 89.3 233 971 47.1 82.0 100.0 7.9 52.0 100.0 i 80.75 £9.83
1.8.4.5 99.7 87.5 23.3  95.7 471 84.4 100.0 5.3 52.0 100.0 ‘ 80.75 69.50
1,745 997 875 9233 957 465 _85.2 1000 _ 26 520 1000 | B0.65 | 6925
| # of pixels | 301 __ 56 43 70 157 122 147 38 25 19 H 1008 1008

The columns labeled m e s a indicate the weights applied to the sources (in the

same order as the single source classifications above).

CPU time for training and classification: 13 sec.
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Table 4.16

Statistical Multisource Classification of Colorado Data when Topographic
Sources were Modeled by Histogram Approach: Test Samples.

Percent Agreement with Reference for Clas»s

1 2 3 4 5 8 7 8 9 10 || 0A | AVE
Single Sources
MSS 1000 536 205 543 134 795 891 53 40 540 || 65.08 | 47.36
Elevation | 100.0 00 00 771 229 148 980 263 240 90.0 || 60.83 | 4531
Slope 95.4 00 00 57 76 246 558 00 40 00 || 41.25 | 19.31
Aspect 98.0 00 23 357 344 156 456 00 00 180 || 46.59 | 2495
mes a Multiple Sources
1.1. 1. 1. 99.3 1000 182 857 529 492 993 263 440 940 || 77.25 | 66.89
1.99.9 99.3 982 182 857 484 648 993 105 400 940 || 77.65 | 6584
1.8.8.8 99.3 982 182 90.0 420 721 993 105 36.0 940 | 77.74 | 65.97
1L.7.7.7 11000 982 182 900 420 779 993 105 32.0 940 || 7854 | 6621
1.66.6 ]100.0 946 182 900 427 836 993 105 280 960 || 7913 | 6630
1.5.5.5 11000 946 182 900 401 877 993 53 240 96.0 || 78.93 | 6550
l.4.4.4 11000 893 205 871 389 877 993 26 120 940 || 77.84 | 6314
1.3.3.3 11000 804 227 857 357 902 993 00 40 94.0 || 76.85 | 61.20
1..2.2.2 11000 750 295 800 350 918 993 00 00 920 || 7635 | 6027
1.1.1.1 11000 696 273 729 344 893 993 00 00 900 || 74.98 | 5828
1.000 11000 625 182 557 261 852 912 00 00 520 || 6815 | 49.09
1.1..91. 993  98.2 182 857 503 541 993 237 440 94.0 || 77.25 | 6669
1.1. 81. 99.3  98.2 182 843 497 590 993 237 440 940 || 7765 | 6697
1.1..71. 99.3  98.2 182 857 497 631 993 21.1 440 940 || 78.14 | 67.26
1.1. 61, 9.7 98.2 182 857 484 639 993 184 440 940 | 78.04 | 6699
1.1. 51. 99.7 982 182 857 478 656 993 158 440 940 || 78.04 | 6682
1.1.41. 11000 982 182 857 452 689 993 132 440 960 || 7814 | 6682
1.1..31. 11000 964 182 857 465 68.9 993 132 440 960 | 7824 | 6682
I.1..21. 11000 946 182 857 446 730 993 158 440 96.0 || 78.44 | 6712
111111000 946 205 871 452 746 993 158 400 96.0 | 7883 | 6732
1.1..01.__ | 1000 946 205 857 459 746 993 158 400 96.0 || 78.83 | 67.24
1.1. 8.9 99.7 982 182 857 478 648 993 211 400 94.0 || 78.04 | 6687
1.98.9 99.3 982 182 871 471 648 993 132 40.0 940 || 77.65 | 66.12
1.9.7.8 11000 982 182 886 439 721 993 105 400 940 || 7824 | 6649
1.9.6.8 11000 982 182 886 433 746 993 105 360 96.0 || 7844 | 6647
1.9.6.7 | 1000 964 182 871 427 762 993 105 360 96.0 || 7834 | 6695
1.9.5.7 11000 964 182 871 427 77.0 993 105 360 960 || 78.44 | 6633
1..9.5.6 11000 946 182 886 414 803 993 132 360 96.0 || 7873 | 6675
1.8.56 | 1000 946 182 90.0 414 803 993 105 320 960 || 78.64 | 6624
1.8.4.6 | 1000 946 205 90.0 420 820 993 105 320 96.0 || 7903 | 6669
1..8.4.5 11000 946 205 90.0 414 844 993 105 320 96.0 | 79.23 | 6688
L..7.4.5 | 1000 929 205 900 408 85.2 993 105 320 96.0 || 79.13 | 6672
of pixels | 302 56 44 70 157 122 147 38 25 50 | 1011 | 1011
The columns labeled m e s a indicate the weights applied to the sources (in the

same order as the single source classifications above).
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full weights. The weight of the slope source 1s varied from 1 to 0 to sce the
effect of including this data source in the classification. The last box in the
tables shows the classification accuracies when reliability measures are used to

select the weights.

Looking at the single-source classifications in Table 4.15 and using the
overall classification accuracy as the reliability measure, it is seen that the
MSS source is the most reliable source, elevation ranks second, aspect third
and slope fourth. That is the same ranking given by the equivocation measure

shown in Tables 4.17 (Landsat MSS data) and 4.18 (topographic data).

When all the data sources were classified with equal weights the overall
accuracy for the training data improved to 80.26% which was over 119 better
than the best single-source classification (Landsat MSS: 69.059%). The average
classification accuracy also improved greatly (71.809%), more than 17% better
than the best average single-source classification (Landsat MSS: 54.33%).
Reducing the weights of the less reliable sources improved the classification
accuracy as long as the selected weights were not too low. The "best" overall
and average accuracies were achieved when the MSS, clevation and aspect
were given full weights (1.) and the slope weight was reduced to 0.2. The
overall accuracy with these weights was 81.949 which is 1.6575 higher than
the overall accuracy when all the sources had equal weights. These weights
gave average accuracy of 79.89%, which was an improvement of just over 19
compared to the classification with equal weights. Several other weights gave
good results as shown in Table 4.15. For the most part the results show that
when a source with a low class-specific accuracy is decreased in weight the

classification accuracy of the class goes up.
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Table 4.17

Equivocation of MSS Data Source.

Data Source Equivocation
Landsat MSS 0.800
Table 4.18

Equivocation of Topographic Data Sources with

Respect to Different Modeling Methods.

Data Histogram | Maximum Penalized Parzen
ource Estimation Likelihood Method Estimation
Elevation 1.058 1.054 1.056
Slope 1.687 1.687 1.687
Aspect 1.550 1,960 1.556
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As shown in Table 4.16 the classification accuracy of the test data was
improved from the single-source classification when the data were combined.
As for the training data, the Landsat MSS source had the highest overall and
average classification accuracy (65.08% and 47.36%, respectively). When all
the data sources were classified with equal weights, these accuracies increased
to 77.25% and 66.89% or by more than 12% for the overall accuracy and
nearly 20% for the average accuracy (as compared to the Landsat MSS
classifications). By changing the weights, both the overall and average
accuracies were improved. The highest overall accuracy for test data was
reached when the MSS source had full weight, the elevation source had a
weight of 0.8, slope the weight 0.4 and aspect the weight 0.5. This weighting
was suggested by the reliability measures and gave overall accuracy of 79.23%
and average accuracy of 66.88% With these weights the overall accuracy
increased by nearly 2% compared to the result with equal weights, but the
average accuracy stayed almost the same. The highest average accuracy for
the test data was achieved when the slope was given a weight of 0.1 and all
the other sources were given full weights. The average accuracy achieved by
this weighting was 67.32%, which is an increase of 0.439% from the equal

weights result.

The results using the LOP are shown in Tables 4.19 and 4.20. Thesc
results are clearly inferior to those obtained for the SMC. The LOP is
especially poor in accurate classification of classes with low prior probabilities.
It is also seen that equal weights are questionable for this classification
method. When the training data were combined with equal weights (Table

4.19), the results were an overall accuracy of 68.15%0 and an average accuracy
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Table 4.19

Linear Opinion Pool Applied to Colorado Data Set. Topographic
Sources were Modeled by Histogram Approach: Training Samples.

B Percent Agreement with Reference for Class
1 2 3 4 5 6 7 8 9 10 || OA__| AVE
Single Sources
MSS 99.3 643 209 686 166 85.2 89.8 53 280 67.3 69.05 54.33
Elevation 98.7 0.0 00 800 242 17.2 99.3 31.6 28.0 98.0 || 62.15 47.70
Slope 95.0 0.0 0.0 4.3 10.8 27.0 61.9 0.0 4.0 0.0 42.81 20.31
Aspect 96.1 0.0 47 514 36.9 22.1 48.3 2.6 8.0 34.7 50.15 | 30.49 |
mes a Multiple Sources
1.1.1. 1. 100.0 0.0 00 914 395 50.0 100.0 0.0 120 100.0 || 68.15 49.29
1.99.9 100.0 0.0 00 914 395 50.0 100.0 0.0 12.0 100.0 68.15 49.29
1..88.8 100.0 0.0 00 929 395 50.0 100.0 0.0 12.0 100.0 68.25 49.43
1.7.77 100.0 0.0 00 929 395 51.6 100.0 0.0 12.0 100.0 68.45 49.60
1. 6.6.6 100.0 0.0 00 943 38.9 53.3 100.0 0.0 8.0 100.0 || 68.55 49.44
1.5.5.5 100.0 0.0 16.3 943 36.3 53.3 100.0 0.0 0.0 100.0 || 68.65 50.01
1..4.4 .4 100.0 0.0 16.3 914 376 852 100.0 0.0 0.0 100.0 72.52 53.05
1.3.3.3 100.0 26.8 16.3 91.4 40.8 90.2 99.3 0.0 0.0 100.0 75.00 56.47
1..2.2.2 100.0 51.8 16.3 84.3 439 91.0 99.3 0.0 0.0 91.8 || 76.09 57.84
1.1.1.1 100.0 55.4 163 829 33.1 90.2 93.2 0.0 0.0 73.5 72.62 54.44
1.0.0.0 100.0 57.1 16.3__ 65.7 19.8 90.2 89.8 0.0 0.0 67.3 68.65 50.62 |
1.1. .91. 100.0 0.0 0.0 929 395 50.0 100.0 0.0 12.0 100.0 68.25 49.43
1.1. .81 100.0 0.0 00 943 389 50.8 100.0 00 16.0 100.0 || 68.45 50.00
1.1..71. 100.0 0.0 00 943 382 50.8 100.0 0.0 16.0 100.0 || 68.35 49.93
1.1..61. 100.0 0.0 0.0 943 382 50.8 100.0 0.0 16.0 100.0 || 68.35 49.93
1.1. .5 1. 100.0 0.0 00 943 378 50.8 100.0 0.0 18.0 100.0 68.25 49.87
1.1. 41 100.0 0.0 0.0 943 376 508 100.0 0.0 16.0 100.0 || 68.25 49.87
1.1. 31 100.0 0.0 00 943 376 50.8 100.0 0.0 200 100.0 || 68.35 50.27
1.1..21. 100.0 0.0 00 943 376 50.8 100.0 0.0 20.0 100.0 || 68.35 50.27
1.1..11. 100.0 0.0 00 943 376 508 100.0 0.0 20.0 100.0 68.35 50.27
1.1. .01 100.0 0.0 00 943 382 50.8 100.0 0.0 24.0 100.0 68.55 50.73 |
1.1. 8.9 100.0 0.0 00 943 382 50.0 100.0 0.0 16.0 100.0 68.25 49.85
1.9.8.9 100.0 0.0 00 929 395 50.0 100.0 0.0 120 100.0 68.25 49.43
1.9.78 100.0 0.0 00 943 382 50.0 100.0 0.0 12.0 100.0 68.15 49.45
1..9.6.8 100.0 0.0 00 943 38.2 50.8 100.0 0.0 16.0 100.0 68.35 49.93
1.96.7 100.0 0.0 00 943 38.2 51.8 100.0 0.0 18.0 100.0 68.45 50.01
1.9.5.7 100.0 0.0 00 943 376 51.6 100.0 6.0 200 100.0 | 6845 50.35
1.956 100.0 0.0 0.0 943 3786 51.6 100.0 0.0 200 100.0 || 68.45 50.35
1..85.6 100.0 0.0 00 943 382 51.7 1000 0.0 160 100.0 || 68.45 50.01
1. 8.4.6 100.0 0.0 0.0 943 376 516 100.0 0.0 16.0 100.0 68.35 49.95
1..8.4.5 100.0 0.0 0.0 929 36.3 52.5 100.0 0.0 8.0 100.0 |} 67.96 | 48.96
1.7.4.5 100.0 0.0 9.3 929 37.6 52.5 100.0 00 120 100.0 || 68.65 50.42
# of pixels | 301 56 43 70 L1870 122 147 38 25 49 || 1008 1008

The columns labeled m ¢ s a indicate the weights applied to the sources (in
same order as the single source classifications above).

CPU time for training and classification: 11 sec.

the
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Table 4.20

Linear Opinion Applied to Colorado Data Set. Topographic
Sources were Modeled by Histogram Approach: Test Samples.

The columns labeled m e s a indicate the weights applied to the sources (in the

same order as the single source classifications above).

Percent Agreement with Reference for Class
1 2 3 4 ___5 6 7. 8 9 10 || oA | AVE
Single Sources
MSS 100.0 53.6 20.5 54.3 13.4 79.5 89.1 5.3 4.0 54.0 65.08 47.36
Elevation 100.0 0.0 0.0 771 22.9 14.8 98.0 26.3 24.0 90.0 60.83 45 .31
Slope 95.4 0.0 0.0 5.7 7.6 24.6 55.8 0.0 4.0 0.0 41.25 19.31
Aspect 98.0 .0;0_,“,__2,-3,4__‘35,,-:7,,,45314,;1A_ 15.6 456 __ 00 __ 0.0 18.0 46.59 | 24.95
mes a Multiple Sources
1.1.1.1. 100.0 0.0 0.0 88.6 369 51.6 100.0 0.0 0.0 88.0 66 .86 46 52
1.999 100.0 0.0 0.0 85.6 36.3 54.1 100.0 0.0 0.0 90.0 67.16 46 .90
1..88.8 100.0 0.0 0.0 88.6 34.4 54.9 100.0 0.0 0.0 $0.0 66.96 46.79
1..7.7.9 100.0 0.0 0.0 87.2 33.8 55.7 100.0 0.0 0.0 90.0 66.86 46.66
1. 6.6.6 100.0 0.0 0.0 87.1 34.4 56.6 100.0 0.0 0.0 92.0 67.16 47.01
1..55.5 100.0 0.0 13.6 85.7 32.5 57.4 100.0 0.0 0.0 g2.0 67.46 48.12
1..4.4.4 100.0 0.0 15.9 85.7 33.1 84.4 100.0 0.0 0.0 92.0 70.92 51.11
1..3.3.3 100.0 30.4 18.2 82.9 37.6 86.9 100.0 0.0 0.0 90.0 73.39 54.59
1..2.2.2 100.0 50.0 18.2 74.3 43.9 R6.9 98.0 0.0 0.0 74.0 73.79 54.53
1..1.1.1 100.0 58.9 18.2 67.1 33.1 86.1 92.5 0.0 0.0 68.0 70.92 52 .40
1..0.0.0 100.0 62.5 18.2 557 26.1 85.2 91.2 0.0 0.0 52.0 68.15 49.09
1.1. . 91. 100.0 0.0 0.0 88.6 37.6 52.5 100.0 0.0 0.0 90.0 67.16 46.86
1.1. .81. 100.0 0.0 0.0 88.6 37.6 52.5 100.0 0.0 0.0 90.0 67.16 46.86
1.1..71. 100.0 0.0 0.0 88.6 36.9 52.5 100.0 0.0 0.0 90.0 67.06 46.78
1.1. .61. 100.0 0.0 0.0 90.0 36.3 52.5 100.0 0.0 0.0 90.0 67.06 16.88
1.1. .51. 100.0 0.0 0.0 90.0 36.3 52.5 100.0 0.0 0.0 90.0 67.06 46.88
1.1. .41 100.0 0.0 0.0 90.0 36.3 51.6 100.0 0.0 0.0 90.0 66.96 46.79
1.1..31. 100.0 0.0 0.0 88.6 35.7 51.6 100.0 00 4.0 92.0 66.96 47 .19
1.1..21. 100.0 0.0 0.0 88 .6 350 51.6 100.0 0.0 8.0 92.0 66.96 47.52
1.1..11. 100.0 0.0 0.0 88.6 357 51.6 100.0 0.0 80 92.0 67.06 47 .59
11.1..01. 100.0 0.9 00 886 338 516 1000 00 120 _92.0 i| 6686 | 47.80
1.1. 8.9 100.0 0.0 0.0 88.6 35.7 53.3 100.0 0.0 0.0 90.0 66.96 46.75
1..9.8.9 100.0 0.0 0.0 88.6 36.3 53.3 100.0 0.0 0.0 90.0 67.06 46 .82
1..9.7 .8 100.0 0.0 0.0 90.0 35.7 54.1 100.0 0.0 0.0 90.0 67.16 46 .98
1..9.6 .8 1060.0 0.0 0.0 87.1 35.0 54.9 100.0 0.0 0.0 92.0 67.06 46.91
1..9.6.7 100.0 0.0 0.0 88 .8 35.0 55.7 100.0 0.0 4.0 92.0 67.36 47 53
1..9.5.7 100.0 0.0 0.0 $50.0 34.4 54.9 100.0 0.0 4.0 92.0 67.26 47.53
1.95.6 100.0 0.0 0.0 88.6 33.1 54.9 100.0 0.0 8.0 92.0 67.06 47 .66
1. 8.5.6 100.0 0.0 0.0 90.0 33.1 54.1 100.0 0.0 4.0 92.0 66.96 47.32
1. 8.4.6 100.0 0.0 0.0 90.0 34.4 54.9 100.0 0.0 4.0 92.0 67.26 47.53
1. 8.4.5 100.0 00 . 0.0 R7.1 31.8 56.6 100.0 0.0 4.0 92.0 66.87 47 .15
1..7.4.5 1000 00 114 886 312 557 1000 00 00 920 | 67.16 | 47.89
[ # of pixels 302 58 4 70 157 122 147 _ 38 25 50 | .,,lQl,l__J,-,l,Ql]_,
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of 49.29%, both lower than the results achieved in the single-source
classification of the Landsat MSS data. However, the accuracies could be
improved by lowering the weights on the less reliable sources. The highest
overall and average accuracies in Table 4.19 were achieved when the Landsat
MSS source had full weight and all the other sources were given the weight
0.2. The overall accuracy with these weights was 76.09%, about 7% better
than the best single-source classification. The average accuracy was 57.84%,
about 3.5% better than the one for Landsat MSS. As noted above, these
results were worse than the ones achieved with the SMC. It is also more
difficult to see any similar behavior for the LOP as compared to the SMC
when a source was given a lower weight and had a low classification accuracy.
In contrast to the SMC, that type of weight selection did no£ mean that the

accuracy for multiple sources would improve.

The test results using the LOP (Table 4.20) were similar to the training
results in most cases, although the overall accuracy when equal weights were
used was better than the best single-source classification. The overall accuracy
improved by 1.78% but the average accuracy decreased by 0.84% as compared
to the Landsat MSS result. The highest overall accuracy was achieved when
the Landsat source had full weight and all the topographic sources were given
the weight 0.3. This highest overall accuracy was 73.79%9, an improvement of
6.93% as c.ornpared to the combination result with equal weights. This
particular weighting gave an average accuracy of 54.53% which was close to
the highest average accuracy in Table 4.20 (54.59%). The average accuracy
could thus be improved by over 8.0% as compared to the equal weights case.

As noted earlier, the results using the LOP were clearly worse than the ones
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using the SMC. However, it is also evident from the results in Tables 4.19 and
4.20 that the weighting of the sources is more important in the LOP than in

the SMC.

b) Topographic Data Modeled by the Maximum Penalized

Likelihood Method

The topographic data were modeled by the maximum penalized
likelihood method, with all the topographic sources given a smoothing
parameter () of 10. That value of 7y gave the best classification results. The
maximum penalized likelihood estimation was done using the IMSL subroutine
D3SPL. This subroutine uses f(f"(t))zdt as its roughness term R(f). The
results of SMC classifications are shown in Tables 4.21 and 4.22. The results
were similar to the histogram modeling for source specific classifications in
Tables 4.15 and 4.16. However, as seell in the tables the maximum penalized
likelihood method did a better job of modeling the aspect data than the
histogram approach. The rankings of the sources were the same as with the
histogram method: 1. Landsat MSS, 2. elevation, 3. aspect and 4. slope. This
was indicated both by the source-specific classifications in Table 4.21 and the

equivocations in Tables 4.17 and 4.18.

When the sources were combined with equal weights the result (Table
4.21) was the same as with the histogram approach in terms of overall
accuracy of training data (80.26%). The average accuracy was 71.54%, which
was slightly below the average accuracy of the histogram approach (71.80%).

Somewhat surprisingly the highest overall accuracy of training data was
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Table 4.21

Statistical Multisource Classification of Colorado Data
when Topographic Sources were Modeled by Maximum Penalized
Likelihood Method: Training Samples.

I Percent Agreement with Reference for Class
1 __ﬁ_zm__;i_____1_____§___h__s_és\__‘m__ﬂ__%_LAYF_J__
Single Sources
MSS 99.3 64.3 20.9 68.6 166 852 89.8 5.3 28.0 67.3 69.05 54.33
Elevation 100.0 0.0 00 743 242 17.2 98.6 34.2 38.0 100.0 (| 62.30 | 48.45
Slope 95.3 0.0 0.0 4.3 9.6 27.0 61.2 0.0 8.0 0.0 42.66 20.55
| Aspect 983 00 47 500 376 205 510 105 80 224 || 5050 | 303 |
mes a Multiple Sources
1.1.1.1. 100.0 96.4 23.3 97.1 61.1 48.4 100.0 21.1 68.0 100.0 80.26 71.54
1. 999 1000 96.4 23.5 97.1 61.8 533 100.0 21.1 64.0 100.0 || 80.85 | 71.69
1. 8838 100.0 946 23.3  97.1 59.9 623 1000 18.4 60.0 100.0 || 81.35 71.56
1.7.7.7 100.0 91.1 23.3 97.2 54.1 74.6 100.0 10.5 52.0 100.0 81.25 70.27
1..6.86.8 1000 91.1 23.3 95.7 522 81.1 100.0 2.6 520 100.0 || 81.35 69.80
1.55.5 100.0 893 256 957 49.0 86.1 100.0 00 320 100.0 || 80.85 67.77
1. .4 .4 4 100.0 83.9 25.6 92.9 446 86.9 100.0 0.0 32.0 100.0 79.76 66.58
1..3.3.3 160.0 76.8 25.6 92.9 43.3 90.2 100.0 0.0 16.0 100.0 79.17 64.47
1..2.2.2 100.0 73.2 25.6 88.6 41 .4 91.0 100.0 0.0 8.0 100.0 78.27 62.78
1..1.1.1 100.0 67.9 25.6 829 35.0 91.8 97.3 0.0 8.0 100.0 76.29 60.84
11..00.0 -_199;0____5_7.-1__*Lﬁ_é“__QS_J_&_lg-_g_ 902 898 00 __0.0_ _67.3 || 68.85 50.62
1.1. .91. 100.0 96.4 23.3 97.1 61. 48.4 100.0 21.1 68.0 100.0 80.26 71.54
1.1. 81, 100.0 96.4 23.3 97.1 61.8 492 100.0 21.1 68.0 100.0 80.46 71.68
1.1..71. 100.0 96.4 23.3 97.1 63.1 51.6 100.0 21.1 64.0 100.0 80.85 71.66
1.1. 61. 100.0 94.6 23.3 97.1 61.1 54.1 100.0 23.7 64.0 100.0 80.85 71.80
1.1..51. 100.0 929 233 97.1 60.5 56.6 100.0 23.7 64.0 100.0 80.95 71.80
1.1. .41. 100.0 91.1 23.3 97.1 59.2 59.8 100.0 237 84.0 100.0 81.05 71.82
1.1..31. 100.0 91.1 23.3 97.1 56.7 64.8 1000 28.3 684.0 100.0 81.35 72.32
1.1..21. 1000 91.1 233 957 554 705 100.0 28.3 64.0 100.0 | 81.75 72.63
1.1..11. 1000 91.1 23.3 943 535 73.0 100.0 283 84.0 100.0 || 81.65 72.54
1.1..01. | 100.0 91_-1_*_._lﬁ__ﬁﬁ_,_ﬁi_nﬁ;‘i___l_@i_%_-7. 600 1000 || 81385 72.35
1.1. 8.9 100.0 96.4 23.3 97.1 60.5 54.1 100.0 23.7 64.0 100.0 80.85 71.91
1.98.9 1000 964 23.3 97.1 60.5 56.6 1000 21.1 64.0 100.0 81.05 71.89
1.9.78 100.0 929 23.3 97.1 59.2 62.3 100.0 21.1 64.0 100.0 81.35 71.98
1..96.8 100.0 91.1 23.3 97.1 56.7 70.5 100.0 184 64.0 100.0 81.75 72.11
1..9.8.7 100.0 91.1 23.3 97.1 52.9 74.6 100.0 184 60.0 100.0 81.55 71.73
1.957 100.0 91.1 23.3 97.1 52.2 76.2 100.0 15.8 56.0 100.0 81.45 71.17
1. 958 100.0 91.1 25.6 97.1 50.3 80.3 100.0 7.9 56.0 100.0 81.45 70.83
1.85.8 100.0 91.1 256 957 497 80.3 100.0 5.3 52.0 100.0 || 81.05 69.96
1. 8 4.8 100.0 91.1 25.6 95.7 51.0 803 100.0 2.6 52.0 100.0 81.15 69.83
1. 8.45 1000 91.1 25.6 95.7 49.0 836 100.0 2.6 52.0 100.0 81.25 69.97
7 80.85 68.74

1.7 4.5 -100.0 893 256 957 --484  B44 1000 _ 00 44.0 __100.0_
O_f_RiX_eliA__QQL_.__éﬁn__iS,‘_AJ_Q“JI)LJLLL 25 49

The columns labeled m e s a indicate the weights applied to the sources (in the
same order as the single source classifications above).

CPU time for training and classification: 102 sec,
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Table 4.22

Statistical Multisource Classification of Colorado Data
when Topographic Sources were Modeled by Maximum Penalized
Likelihood Method: Test Samples.

Percent Agreement with Reference for Class

1 e 3 4 5 8 7 8 9. 10 | 0A |AVE]
Single Sources
MSS 100.0 53.6 20.5 54.3 13.4 79.5 89.1 53 4.0 54.0 65.08 47.36
Elevation 100.0 0.0 0.0 68.6 22.9 14.8 980 31.6 32.0 920 60.73 45.98
Slope 95.4 0.0 0.0 5.7 7.6 246 544 0.0 8.0 0.0 41.15 19.57
Aspect 98.0 00 23 357 344 148 490 79 00 __16.0 || 47.18 | 25.80 |
mes a Multiple Sources
1.1.1. 1. 100.0 100.0 18.2 88.6 58.0 48.4 993 10.5 440 94.0 || 77.74 66.09
1..99.9 100.0 100.0 18.2 90.0 554 56.6 99.3 10.5 40.0 96.0 || 78.44 66.60
1..8.8.8 100.0 100.0 18.2 886 51.0 705 99.3 10.5 280 96.0 || 79.03 66.20
1.779 100.0 98.2 20.5 90.0 45.2 76.2 99.3 10.5 28.0 96.0 78.93 66.40
1..6.6.6 100.0 96.4 20.5 90.0 456 836 993 53 240 96.0 79.53 66.09
1..5.5.5 100.0 94.6 22.7 90.0 414 885 993 5.3 16.0 96.0 79.23 65.39
1.4 .4 .4 100.0 91.1 22.7 857 40.1 885 99.3 0.0 4.0 96.0 78.04 62.75
1..3.3.3 100.0 82.1 29.5 84.3 40.1 g91.0 993 0.0 0.0 96.0 || 77.94 62.24
1.2.2.2 100.0 75.0 29.5 80.0 369 910 993 0.0 0.0 920 | 76.56 60.38
1..1.1.1 100.0 69.6 273 729 363 893 973 0.0 0.0 920 || 75.07 58.47
1..0.0..0 100.0 62.5 18.2 55.7 26.1 85.2 91.2 0.0 0.0 52.0 68.15 49.09 |
1.1..91. 100.G 100.0 18.2 88.6 586 49.2 99.3 10.5 40.0 96.0 77.94 66.04
1.1. 81 100.0 100.0 18.2 886 59.2 51.6 993 10.5 40.0  96.0 78.34 66.35
1.1..7 1. 100.0 100.0 18.2 886 55.4 55.7 99.3 10.5 40.0 96.0 || 77.24 66.38
1.1. 6 1. 100.0 100.0 182 8886 52.2 62.3 993 10.5 44.0 96.0 || 78.64 67.11
1.1. 51 100.0 98.2 18.2 87.1 51.6 68.0 993 10.5 440 96.0 || 79.03 67.30
1.1. 41 100.0 98.2 20.5 87.1 50.3 68.9 99.3 158 440 96.0 79.23 68.01
1.1. 31. 160.0 98.2 20.5 87.1 49.7 69.7 99.3 15.8 400 96.0 79.13 67.63
1.1. .2 1. 100.0 98.2 20.5 87.1 478 721 99.3 15.8 40.0 96.0 79.13 67.68
1.1..11. 100.0 96.4 20.5 87.1 46.5 746 993 15.8 400 96.0 || 79.13 67.62
1.1..01. 100.0 94.6 227 87.1 47.1 73.8 993 158 40.0 96,0 | 79.13_| 67.65
1.1. 8.9 100.0 100.0 18.2 B8.6 54.8 56.6 99.3 10.5 400 96.0 || 78.24 66.39
1. 9.8.9 100.0 100.0 18.2 88.6 52.2 61.5 99.3 10.5 40.0 96.0 78.44 66.63
1. 9.7 .8 100.0 98.2 20.5 88.6 48.4 69.7 99.3 105 36.0 96.0 78.73 66.71
1. 9.6.8 100.0 98.2 205 886 446 73.8 993 105 32.0 96.0 78.54 66.34
1..9.6.7 100.0 98.2 205 900 459 754 993 105 32.0 96.0 79.03 66.78
1..95.7 100.0 98.2 205 900 452 787 99.3 105 320 96.0 79.33 67.04
1. 95.6 100.0 96.4 22.7 886 452 B2.0 993 10.5 32.0 96.0 || 79.62 67.28
1. 85.6 100.0 96.4 227 886 45.2 82.8 99.3 10.5 28.0 96.0 77.62 66.96
1. 8.4.6 100.0 96.4 22.7 886 459 844 99.3 10.5 28.0 96.0 79.92 67.19
1..8.4.5 100.0 94.6 227 90.0 439 87.7 993 10.5 28.0 96.0 80.02 67.29
1 7.4.5 | 1000 946 227 900 427 87.7 993 5.3 280 96.0 || 79.62 | 66.63 |
# of pixels | 302 56 44 70 157 122 147 38 25 50 1011 | 1011 _

The columns labeled m e s a indicate the weights applied to the sources (in the

same order as the single source classifications above).
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reached when all the sources except the slope source were given full weights
and the slope source was given zero wcight. This highest overall accuracy was
81.85%, slightly below the highest overall accuracy of training data reached
by the histogram approach (81.94%). The histogram approach also gave a

better result in terms of average accuracy.

The test results using SMC are shown in Table 4.22. Looking at the
combination result, it is clear that the SMC with the maximum penalized
likelihood method outperformed the SMC with the histogram approach in
terms of overall classification accuracy of test data. When the sources were
combined with equal weights, the overall classification accuracy in Table 4.22
was 77.74% an increase of 12.66% s compared to the best single-source
classification. It was also 0.49% higher than the comparable SMC with
histogram result. However, the histogram approach (Table 4.16) gave a 0.80%
better result in terms of average accuracy. When the weights were varied,
the maximum penalized likelihood method gave a better result as compared to
the histogram combination both for overall accuracy and average accuracy.
The best overall accuracy result in Table 4.22 was reached with the same
"best” weights as in Table 4.16. Those weights were indicated by the
reliability measures (MSS:1.0, elevation:0.8, slope:0.4, aspect:0.5) and gave
overall accuracy of 80.02% and average accuracy of 67.29%. The overall
accuracy was increased by 2.28% and the average accuracy by 1.2% as
compared to the equal weights classification. Both these results were better
than the ones achieved with the histogram combination. The best average
accuracy achieved in Table 4.22 was 68.01% when all the sources except the

slope had full weights, and the slope was given the weight 0.4.
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The results for the LOP with the maximum penalized likelihood method
are shown in Tables 4.23 and 4.24. The training result (Table 4.23) was very
similar to the result with the histograms (Table 4.19). However, the LOP with
the maximum penalized likelihood method reached a higher overall accuracy
than its counterpart with the histogram method. When the Landsat MSS
source was given a full weight and all the other sources were given the weight
0.2, the overall accuracy reached 76.19% which was 0.109% over the "best”
result (same weights) with the histogram approach. For most of the weights
the histogram combination did better in terms of higher average accuracy of

training data as compared to the maximum penalized likelihood method.

Looking at the LOP test results in Table 4.24, it is seen that the 1.LOP
with the maximum penalized likelihood approach did a little better in terms of
overall accuracy as compared to the LOP with the histogram approach in
Table 4.20. When equal weights were used, the overall accuracy with the
maximum penalized likelihood method was 67.06% as compared to 66.86%
with the histogram approach. The average accuracy was the same (46.52%).
When the weights were changed, the overall accuracy improved to 73.79%,
the same result achieved with the same weights for the histogram method.
The average accuracy was almost the same, although a little higher in the
histogram result (0.06% difference). For the most part the results in Tables
4.24 and 4.20 were very similar. The maximum penalized likelihood modeling
could not improve the classification accuracy of test data as much as it did

with the SMC.



116

Table 4.23

Linear Opinion Pool Applied to Colorado Data Set
when Topographic Sources were Modeled by Maximum Penalized
Likelihood Method: Training Samples.

Percent Agreement with Reference for Class
1 2 3 4 5 6 7 8 9 10_|| OA | AVE
Single Sources
MSS 993 643 209 686 166 852 898 53 28.0  67.3 || 69.05 | 54.33
Elevation | 1000 00 00 743 242 172 986 342 360 1000 || 62.30 | 4845
Slope 9.3 00 00 43 96 270 812 00 8.0 0.0 || 42.66 | 20.55
Aspect 983 00 47 500 376 205 510 105 8.0 224 || 50.50 | 30.31
me s a Multiple Sources

1.1.1.1 1000 00 00 886 414 508 1000 o0 0.0 100.0 || 68.06 | 48.10
1.9.9.9 11000 00 00 900 414 518 1000 00 0.0 1000 || 68.25 | 4830
1.88.8 11000 00 00 9.0 420 508 1000 00 00 1000 || 68.25 | 4829
L.77.7 11000 00 00 900 414 3525 1000 00 0.0 1000 || 68.35 | 4839
1.666 [1000 00 00 9.0 414 525 1000 0.0 0.0 1000 || 68.35 | 48 39
1.5.55 11000 00 140 914 401 533 1000 00 00 1000 || 68.95 | 4988
l.4.44 11000 00 163 914 378 811 1000 0.0 0.0 1000 || 72.02 | 5264
1.3.3.3 11000 196 163 900 401 9o 993 00 00 980 | 74.31 | 5535
1..2.2.2 11000 518 163 843 465 goo 993 00 0.0 878 | 76.19 | 57.61
1L.1.1.1 11000 554 163 829 331 gpo 925 00 0.0 735 | 7252 | 5438
1..00.0 |1000 571 162 657 192 902 898 00 00 673 | 6865 | 50.62
1.1. 91 1000 00 00 9.0 414 508 1000 00 0.0 1000 68.15 | 4892
1.1..81 1000 00 00 9.0 414 508 1000 00 4.0 1000 || 68.25 | 4882
1171 1000 00 00 914 414 508 1000 00 40 1000 {| 68.35 | 48.76
1.1..61 1000 00 00 943 420 508 1000 00 80 1000 | 6875 | 49.51
1.1. 51 1000 00 00 943 420 508 1000 00 80 1000 || 68.75 | 4951
1.1. 41 100.0 0.0 00 943 420 508 1000 0.0 8.0 100.0 || 68.75 | 49.51
1.1..31 100.0 00 00 943 420 508 1000 00 8.0 100.0 || 68.75 | 49.51
11 .21 1000 00 00 943 420 508 1000 00 80 1000 | 68.75 | 4951
1.1..11 100.0 00 00 943 420 508 1000 o0 8.0 1000 || 68.75 | 49.51
11.1..01 1000 00 00 943 420 508 1000 o0 8.0 100.0 || 68.75 | 49.51
1.1.8.9 11000 00 00 914 414 s08 1000 00 00 1000 || 68.25 | 4835
1.98.9 11000 00 00 900 414 3516 1000 00 00 1000 || 68.25 | 4830
1.97.8 11000 00 00 929 414 508 1000 00 00 1000 || 6835 | 4851
1.968 11000 00 00 929 408 508 1000 00 00 1000 || 68.25 | 4844
1.9.6.7 11000 00 00 914 408 525 1000 0.0 00 1000 || 68.35 | 48 47
1.95.7 11000 00 00 914 408 525 1000 0.0 4.0 1000 || 68.45 | 4887
1.95.6 11000 00 00 914 408 525 1000 00 00 1000 || 68.35 | 48 47
1.85.6 11000 00 00 914 408 525 1000 00 0.0 1000 || 68.35 | 48 47
1.846 11000 00 00 929 408 525 1000 00 0.0 1000 || 68.45 | 4861
1.845 11000 00 00 914 408 533 1000 00 00 100.0 || 68.45 | 4855
B?Z_A 51000 00 70 914 401 533 10000 00 00 1000 || 68.65 | 49.18
of pixels | 301 56 43 70 157 122 147 38 25 49 1008 | 1008

The columns labeled m e s 2 indicate the weights applied to the sources (in the

same order as the single sour

ce classifications

above).

CPU time for training and classification: 100 sec.
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Table 4.24

Linear Opinion Pool Applied to Colorado Data Set
when Topographic Sources were Modeled by Maximum Penalized
Likelihood Method: Test Samples.

Percent Agreement with Reference for Class i
1 2 3 4 5 8 7 8 9 10 i oA | AVE
Single Sources
MSS 100.0 53.6 20.5 54.3 13.4 79.5 89.1 5.3 4.0 54.0 || 65.08 47.36
Elevation 100.0 0.0 0.0 686 229 14.8 98.0 31.6 320 920 | 60.73 45.98
Slope 95.4 0.0 0.0 5.7 7.6 246 54.4 0.0 8.0 0.0 || 41.15 19.57
Aspect 980 00 23 357 344 148 490 79 00 160 || 4718 25.80
me s a Multiple Sources
1.1.1. 1. 100.0 0.0 00 829 382 54.1 100.0 0.0 00 90.0 || 67.06 | 46.52
1.99.9 100.0 0.0 0.0 829 382 541 100.0 0.0 0.0 90.0 || 67.06 | 46.52
1..8.8.8 100.0 0.0 0.0 857 382 54.9 100.0 0.0 00 $0.0 687.36 | 46.88
1.7.7.7 100.0 0.0 00 843 376 557 1000 0.0 0.0 90.0 || 67.26 | 46.76
1. 6.6.6 100.0 0.0 0.0 843 363 56.6 100.0 0.0 0.0 920 | 67.26 46.91
1..55.5 100.0 00 136 857 350 574 1000 0.0 0.0 92.0 || 67.85 | 48.38
1.4 .44 100.0 00 159 857 344 836 100.0 0.0 0.0 92.0 | 71.02 51.16
1.333 1000 286 182 8l.4 40.1 869 100.0 0.0 0.0 90.0 || 73.59 54.52
1..2°.2.2 1000 500 182 729 439 87.7 98.0 0.0 0.0 74.0 | 73.79 | 54.47
1..1.1.1 1000 589 182 67.1 350 86.1 92.5 0.0 0.0 66.0 {| 71.12 | 52.39
1..0.0.0 100.0 62.5 18.2 55.7 26.1 85.2 91.2 0.0 0.0 52.0 || 68.15 49.09 |
1.1. .91 100.0 0.0 0.0 829 382 541 100.0 0.0 0.0 90.0 || 687.06 | 46.52
1.1. .81 100.0 0.0 0.0 843 382 541 100.0 0.0 00 90.0 | 67.16 | 46.66
1.1..71. 100.0 0.0 0.0 843 382 541 100.0 0.0 00 0.0 || 87.16 | 46.66
1.1. 6 1. 100.0 0.0 00 843 382 533 1000 0.0 0.0 90.0 || 67.06 | 46.58
1.1. .51 100.0 0.0 0.0 857 382 53.3 100.0 0.0 0.0 90.0 || 67.16 | 46.72
1.1. .41. 100.0 0.0 00 857 389 53.3 100.0 0.0 0.0 90.0 | 67.26 46.78
1.1, .31 100.0 0.0 00 857 37.6 51.6 100.0 0.0 0.0 92.0 | 66.96 | 46.69
1.1. .2 1. 100.0 0.0 00 8.7 369 51.6 100.0 0.0 0.0 92.0 || 66.86 | 46.63
1.1..11. 100.0 0.0 0.0 857 363 51.6 100.0 0.0 00 920 || 66.77 46.57
1101 |1000 00 00 87 369 525 1000 0.0 40 92,0 !l 67.06 | 47.11 ]
1.1. 8.9 100.0 0.0 00 857 38.9 54.1 100.0 0.0 0.0 90.0 || 67.36 | 46.87
1..9.8.9 100.0 0.0 00 843 389 54.1 100.0 0.0 0.0 900 | 67.26 46.72
1. 9.7.8 100.0 0.0 0.0 857 389 54.9 100.0 0.0 0.0 90.0 67.46 | 46.95
1.9.6.8 100.0 0.0 0.0 857 389 54.9 100.0 0.0 0.0 920 | 67.56 47.15
1..9.6.7 100.0 0.0 00 857 382 557 100.0 0.0 0.0 92.0 || 67.56 | 47.17
1..9.5.7 100.0 0.0 00 857 369 55.7 100.0 0.0 0.0 92.0 || 67.36 | 47.04
1. 9.5.6 100.0 0.0 0.0 829 344 55.7 100.0 0.0 00 920 66.77 46.50
1. 8.5.6 100.0 0.0 0.0 857 357 56.6 100.0 0.0 0.0 92.0 | 67.26 | 46.99
1..8.4.6 100.0 0.0 00 857 350 557 100.0 0.0 0.0 92.0 || 67.06 | 46.85
1..8.4.5 100.0 0.0 0.0 814 318 557 100.0 0.0 00 92.0 | 66.27 | 46.10
L 745 |1000 00 91 829 331 557 1000 00 00 920 | 66.96 | 47.28
of pixels 302 56 44 70 157 122 147 38 25 50 1011 1011

The columns labeled m e s a indicate the weights applied to the sources (in the
same order as the single source classifications above).




118

c) Topographic Data Modeled by Parzen Density Estimation

The topographic data sources were then modeled by Parzen density
estimation using a Gaussian kernel function. Smoothing parameters (0) were
selected to give the highest source-specific overall accuracies. The smoothing
parameters chosen were: elevation data (0.25), slope data (0.50) and aspect
data (0.75). The results using the SMC are shown in Tables 4.25 and 4.26.
Compared to the source-specific histogram classifications (Tables 4.15 and
4.16), the Parzen density estimation did better in modeling the elevation data
both for classification accuracy of training and test data. In fact it also gave
higher classification accuracies for test data for all the topographic data
channels when compared to the histogram approach. Parzen density
estimation also gave higher accuracies for the elevation data when compared
to maximum penalized likelihood approach (Tables 4.21 and 4.22). The
Parzen density estimation and the maximum penalized likelihood method were
similar for the slope data in terms of training but the Parzen density
estimation gave higher accuracies for testing. The maximum penalized
likelihood approach showed better performance in modeling the elevation

data.

Again the rank of the sources was not changed by using different
modeling methods. For the Parzen density estimation and the source-specific
classification accuracies of training data, the sources were ranked as follows: 1.
MSS, 2. elevation, 3. aspect and 4. slope. This was the same ranking produced
by the equivocation measures in Table 4.12. Looking at the training results
using the SMC in Table 4.25, it is seen that the overall accuracy increased to

79.76% for the combination. However, this result was lower than both the
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Table 4.25

Statistical Multisource Classification of Colorado Data
when Topographic Sources were Modeled by Parzen
Density Estimation: Training Samples.

Percent Agreement with Reference for Class
1 2 3 4 5 6 7 8 9 10 |l_OA | AVE_
Single Sources

MSS 99.3 643 209 68.6 16.6 85.2 89.8 53 280 67.3 || 69.05 5433 |
Elevation 100.0 0.0 00 786 242 17.2 986 31.6 32.0 100.0 || 62.40 | 4822
Slope 95.3 0.0 0.0 4.3 9.6 131 72.1 0.0 8.0 2.0 || 42.66 | 20.45
Aspect 983 00 47 529 331 164 500 7.9 80 _ 40.8 ]| 50.00 | 31.11
mes a Multiple Sources
1.1.1. 1. 997 964 209 98.6 57.3 475 1000 316 640 100.0 & 79.76 | 71.60
1.99.9 997 946 209 986 54.1 57.4 100.0 23.7 600 100.0 {| 79.96 | 70.90
1..8.8.8 99.7 91.1 233 986 49.0 721 100.0 21.1 60.0 100.0 || BO.75 71.48
1..7.7.7 99.7 91.1 233 986 47.8 779 100.0 158 52.0 100.0 || B0.85 | 70.60
1..6.6.6 99.7 91.1 233 957 45.2 83.6 100.0 5.3 480 100.0 || 80.46 : 69.18
1..5.5.5 99.7 87.5 233 95.7 40.1 86.1 100.0 0.0 360 100.0 |} 79.27 t6.83
1. 4.4 4 100.0 839 23.3 943 40.8 869 100.0 0.0 320 100.0 || 79.17 | 66.11
1..3.3.3 100.0 732 256 914 382 91.0 100.0 0.0 28.0 100.0 || 78.47 64.74
1..2.2.2 106.0 73.2 256 886 369 910 100.0 0.0 8.0 100.0 || 77.58 | 62.33
1..1.1.1 100.0 66.1 25.6 829 344 918 100.0 0.0 8.0 100.0 || 76.49 60.87
1..0.0.0 1000  57.1 163 _ 657 19.8 90.2 89.8 0.0 3.0 67.3 1| 68.65 : 50.62_
1.1..91. 99.7 96.4 209 986 56.1 50.8 1000 289 640 100.0 || 79.86 | 71.54
1.1. .81 997 946 209 986 56.1 53.3 100.0 289 640 30.0 || 80.06 | 71.6]
1.1..71. 99.7 929 209 986 56.1 56.6 100.0 31.6 60.0 100.0 || 80.36 | 71.62
1.1. .61. 99.7 91.1 209 986 54.8 58.2 100.0 316 60.0 100.0 || 80.26 | 71.4R8
1.1..5 1. 99.7 911 209 98.6 52.9 66.4 1000 31.6 60.0 100.0 || 80.95 | 7211
1.1. 41. 99.7 91.1 209 986 51.0 705 1000 31.6 60.0 100.0 81.15 72.33
1.1. 3 1. 99.7 91.1 209 97.1 49.7 721 1000 31.6 600 100.0 || 81.05 7222
1.1..2 1. 99.7 91.1 209 97.1 51.0 7456 100.0 31.6 60.0 100.0 i 81.55 72.59
1.1..11. 997 893 209 971 529 7456 100.0 289 60.0 100.0 || 81.65 72.34
1.1 .01. 997 87.5 209 97.1 487 762 100.0 289  60.0 1000 | B1.25 | 72.01
1.1..8.9 997 G646 323 986 548 544 1000 316 640 100.0 ; 80.58 7239
1. 9.8.9 99.7 92.9 209 98.6 53.5 58.2 100.0 23.7 60.0 100.0 79 .86 7074
1.9.78 §99.7 91.1 23.3 98.6 49.0 72.1 100.0 23.7 60.0 100.0 80.85 T1.74
1..9.6.8 99.7 91.1 23.3 98.6 48.4 73.0 100.0 23.7 60.0 100.0 80.85 71.76
1.9.6.7 99.7 91.1 23.3 971 484 770 100.0 23.7 60.0 100.0 || 81.25 72.03
1.9.5.7 99.7 911 23.3 971 47.1 77.9 100.0 237 60.0 100.0 {| B1.15 | 71.98
1. 9.5.6 99.7 91.1 233 97.1 45.9 820 1000 158 640 100.0 || 81.25 71 88 .
1. 8.5 .6 99.7 91.1 233 97.1 45.2 828 100.0 13.2 52.0 100.0 | 80.85 | 70.43 ‘
1 846 99.7 89.3 233 957 452 836 100.0 7.9 52.0 100.0 || 80.56 | 6966
1. 8 4.5 99.7 875 233 957 40.8 852 100.0 7.9 52.0 1000 : 79.96 ' 6920 |
1..7.45 997 875 233 957 414 861 1000 26  48.0 1000 [ TORL | 0K 42
# of pixels | 301 56 43 70 157 122 147 38 __ 25 49 | 1008 @ 100¥

The columns labeled m e s a indicate the weights applied to the sources (in the
same order as the single source classifications above).

CPU time for training and classification: 101 sec.
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Table 4.26

Statistical Multisource Classification of Colorado Data

when Topographic Sources were Modeled by Parzen

Density Estimation: Test Samples.

Percent Agreement with Reference for Class
1 2 3 4 5 6 7 8 9 10 || oA | AVE
Single Sources

MSS 100.0 53.6 20.5 54.3 13.4 79.5 89.1 5.3 4.0 54.0 || 65.08 47.36
Elevation 100.0 0.0 0.0 757 22.9 148 980 263 280 100.0 || 61.33 46.57
Slope 95.4 0.0 0.0 5.7 7.6 13.9 68.0 0.0 8.0 0.0 || 41.84 19.87
| Aspect 980 00 23 414 31.8 139 490 2.6 0.0 _ 340 | 47.77 | 2731

mes a Multiple Sources
1.1.1. 1. 99.3 100.0 18.2 90.0 516 53.3 993 289 520 100.0 || 78.44 69.27
1.9.9.9 99.3 98.2 18.2 92.9 47.8 65.6 99.3 158 400 100.0 || 78.64 67.70
1..8.8.38 99.3 98.2 18.2 92.9 40.8 73.0 993 10.5 36.0 100.0 || 78.14 66.82
1.7.7.7 100.0 98.2 18.2 91.4 414 803 993 10.5 24.0 100.0 | 78.93 66.34
1. 6. 6.6 100.0 96.4 18.2 91.4 40.8 87.7 993 10.5 240 100.0 || 79.62 66.84
1..55.5 100.0 94.6 18.2 91.4 38.2 90.2 99.3 5.3 16.0 100.0 || 79.03 65.32
1..4.4 4 100.0 89.3 20.5 88.6 36.3 90.2 99.3 2.6 8.0 100.0 78.04 63.47
1..3.3.3 100.0 80.4 22.7 84.3 344 92.6 99.3 0.0 0.0 1000 || 77.05 61.37
1..2.2.2 100.0 75.0 295 80.0 35.0 926 99.3 0.0 0.0 98.0 || 76.76 | 60.95
1..1.1.1 100.0 69.6 27.3 729 331 91.0 993 0.0 0.0 98.0 | 75.37 59.12
1.0.0.0 100.0 62.5 18.2 55.7 26.1 85.2 91.2 00 0.0 52.0 ;| 68.15 49.09
1.1. 91. 99.3 98.2 18.2 88.6 49.7 557 993 237 44.0 1000 |} 77.84 87.67
1.1. .81. 99.3 98.2 18.2 88.6 48 4 61.5 99.3 23.7 44.0 100.0 78.34 68.12
1.1..71. 99.3 98.2 18.2 88.6 47.1 66.4 99.3 23.7 44.0 100.0 78.73 68.48
1.1. 61. 99.7 98.2 18.2 90.0 47.1 66.4 99.3 23.7 44.0 100.0 78.93 68.66
1.1..51 99.7 98.2 18.2 90.0 44 .6 70.5 99.3 237 440 100.0 || 79.03 68.81
1.1. .41. 100.0 98.2 18.2 90.0 44.6 69.7 99.3 23.7 40.0 100.0 || 78.93 68.37
1.1. 31 100.0 96.4 18.2 90.0 433 713 993 21.1 40.0 100.0 || 78.73 67.96
1.1..21. 100.0 96.4 18.2 90.0 446 713 99.3 184 400 100.0 || 78.83 | 67.82
1.1..11. 100.0 94.6 20.5 900 452 73.0 993 184 36.0 100.0 || 79.03 87.70
1.1..01. 1006 946 205 87.1 45.9 74.6 99.3 158 320 100.0 || 78.93 66.98
1.1. 8.9 99.3 98.2 18.2 91.4 465 66.4 993 21.1 44.0 100.0 || 78.73 68.44
1. 989 99.3 98.2 18.2 92.9 465 66.4 99.3 13.2 36.0 100.0 || 78.34 67.00
1.9.7 .8 100.0 98.2 18.2 92.9 420 713 99.3 105 400 100.0 || 78.44 67.24
1..9.6.8 100.0 98.2 18.2 91.4 41.4 746 99.3 13.2 400 100.0 || 78.73 67.63
1..9.6.7 100.0 98.2 18.2 91.4 420 770 993 10.5 36,0 100.0 || 78.93 67.28
1..95.7 100.0 96.4 18.2 91.4 427 779 993 10.5 36.0 100.0 || 79.03 67.24
1.9.5.6 100.0 96.4 18.2 900 40.0 820 993 13.2 400 100.0 || 79.23 67.92
1. 856 100.0 94.6 18.2 91.4 40.1 83.6 99.3 10.5 280 100.0 || 79.03 66.58
1. 8486 100.0 94.6 20.5 900 389 836 99.3 10.5 24.0 100.0 || 78.73 66.14
1. 845 100.0 94.6 20.5 90.0 39.5 86.9 99.3 10.5 28.0 100.0 79.33 68.93
'1..745 | 1000 929 205 _90.0 395 885 993 105 240 1000 || 79.33 | 6652
#ofpixels | 302 __ 56 44 __ 70 _ 157 122 147 38 25 50 1011 | 1011

The columns labeled m e s a indicate the weights applied to the sources (in the
same order as the single source classifications above).
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histogram combination and the maximum penalized likelihood combination.
By weighting the sources differently, the overall accuracy inereased to 81,6500
and the average accuracy became 72.34% (weighting was MSS 1.0, elevation

1.0, slope 0.1 and aspect 1.0). These results were again lower than achieved

with the histogram method and the maximum penalized likelihood method.

Looking at the SMC testing result with the Parzen density estimation
(Table 4.26), it is seen that the best combination result was achieved with full
weights. The Parzen density estimation combination gave an overall accuracy
of 78.44% and an average accuracy of 69.27%, an increase in overall accuracy
of 1.19% compared to the histogram counterpart and 0.7% over the maximum
penalized likelihood combination with full weights. The increase in average
accuracy was more dramatic: 92.389% above the histogram combination with
equal weights and 3.189% above the maximum penalized lik;zlih()()d
counterpart. When the weights were changed to (1,0,().8,0.4,0.5) the overall
accuracy increased to 79.33%, only 0.89% higher than the overall accuracy
achieved with equal weights. The average accuracy also decreased to 66.93%,
or 2.34% lower than the average accuracy with equal weights. The maximum
penalized likelihood method with the weights (1.0,0.8,0.4,0.5) gave 80.02%
overall accuracy and a 67.29% average. So the maximum penalized likelihood
estimate combination could be improved more in terms of overall accuracy in
the experiments although the Parzen density estimation combination gave
higher accuracy with equal weights. Apart from this the results using these
two density estimation methods for test data were similar and better in terms

of accuracies of test data than the histogram results.
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The results using the LOP with the Parzen density estimation are shown
in Tables 4.27 and 4.28. The training results in Table 4.27 were very similar
to the results with the maximum penalized likelihood method in Table 4.23.
The highest overall accuracy was 75.89% (with the weights 1.0,0.2,0.2,0.2)
which was 0.27% lower than the result with the maximum penalized
likelihood approach and the same weights. However, the average classification
results were slightly higher in Table 4.27 than in Table 4.23. Looking at the
test result with the Parzen density estimate in Table 4.28, it is seen that the
overall test accuracy with equal weights was 66.67%, which was 0.39% lower
than the counterpart with the maximum penalized likelihood method in Table
4.24. The average accuracy of 46.58% was slightly higher than the one in
Table 4.24 (46.52%). With the weighting (1.0,0.2,0.2,0.2) the overall accuracy
for the test data with the LOP and Parzen density estimation increased to
74.09%, higher than the one achieved by the maximum penalized likelihood
method with the same weights (73.79%) and also better than the histogram
counterpart (73.79%). The average accuracy with the Parzen density
estimation (54.93%) was also slightly higher than with the other density

estimation methods (Tables 4.20 and 4.24).

d) General Comments on the Statistical Methods

Looking at the results for this second experiment using statistical
methods, it is evident that the SMC did a much better job in terms of overall
and average accuracy than the linear opinion pool. The linear opinion pool
had the weakness that it was very poor in classifying the classes with the

lowest prior probabilities. The SMC performed much better. However, the
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Table 4.27

Linear Opinion Pool Applied to Colorado Data Set

when Topographic

Sources were Modeled by Parzen

Density Estimation: Trainin

g Samples.

Percent Agreement with Reference for Class
. 2 3 4 5 6 7 8 9 10 | _oa | AVE.
Single Sources
MSS 99.3 64.3 20.9 68.6 16.6 85.2 89.8 5.3 28.0 67.3 69.05 54.33
Elevation 100.0 0.0 0.0 78.6 24.2 17.2 98.6 31.6 32.0 100.0 62.40 48.22
Slope 95.3 0.0 0.0 4.3 9.6 131 72.1 0.0 8.0 2.0 42.66 20.45
| Aspect 98.3 00 47 529 331 164 500 79 80 _ 408 | 50.00 | 31.11 |
mes a Multiple Sources
1.1.1. 1. 100.0 0.0 0.0 91.4 38.9 50.0 100.0 0.0 12.0 100.0 68.06 49.23
1..9.9.9 100.0 0.0 0.0 91.4 38.9 50.0 100.0 0.0 12.0 100.0 68.06 49.23
1.8.8.8 100.0 0.0 0.0 914 38.9 50.0 100.0 0.0 12.0 100.0 68.06 49 .23
1..7.7.7 100.0 0.0 0.0 91.4 39.5 50.8 100.0 0.0 12.0 100.0 68.25 49.37
1. 6 .6.6 100.0 0.0 0.0 92.9 38.9 54.1 100.0 0.0 4.0 100.0 68.45 48.98
1.5.5.5 100.0 0.0 16.3 92.9 34.4 54.1 100.0 0.0 0.0 100.0 68.35 49.76
1. 4.4 4 100.0 0.0 16.3 91.4 35.7 86.1 100.0 0.0 0.0 100.0 72.32 52.94
1..3.33 100.0 25.0 16.3 91.4 36.3 90.2 99.3 0.0 0.0 100.0 74.21 55.84
1..2.2.2 100.0 51.8 16.3 84.3 42.7 91.0 99.3 0.0 0.0 91.8 75.89 57.72
1..1.1.1 100.0 55.4 16.3 82.9 32.5 89.3 93.2 0.0 0.0 73.5 72.42 54.30
1..0.0.0 | 1000 57.1 163 657 197 902 898 00 00 __67.3 | 6865 | 5062
1.1. .91. 100.0 0.0 0.0 91.4 38.9 50.0 100.0 0.0 12.0 100.0 68.06 49,23
1.1. .8 1. 100.0 0.0 0.0 92.9 38.9 50.0 100.0 0.0 12.0 100.0 68.15 49.37
1.1..71. 100.0 0.0 0.0 92.9 38.2 50.0 100.0 0.0 16.0 100.0 68.15 | 49.71
1.1..61. 100.0 0.0 0.0 92.9 37.6 50.0 100.0 0.0 16.0 100.0 68.06 ) 49.64
1.1..51. 100.0 0.0 0.0 92.9 37.6 50.0 100.0 0.0 16.0 100.0 68.06 49.64
1.1. 41 100.0 0.0 0.0 92.9 37.8 50.0 100.0 0.0 16.0 100.0 68.06 ‘ 49 .64
1.1..31. 100.0 0.0 0.0 92.9 37.6 50.0 100.0 0.0 16.0 100.0 68.06 ’ 49.64
1.1..2 1. 100.0 0.0 0.0 92.9 37.6 50.8 100.0 0.0 20.0 100.0 68.25 | 50.13
1.1..11. 100.0 0.0 0.0 92.9 37.6 50.8 100.0 0.0 20.0 100.0 68.25 50.13
1.1..01. | 1000 00 00 929 369 508 1000 __ 0.0 200 _100.0 I 6815 | 50.06 ]
1.1. .8.9 100.0 0.0 Q0.0 92.9 38.2 50.0 100.0 0.0 12.0 100.0 68.06 49.31
1..9.8.9 100.0 0.0 0.0 91.4 38.9 50.0 100.0 0.0 12.0 100.0 68.06 49.23
1..9.7.8 100.0 0.0 0.0 92.9 38.9 50.8 100.0 0.0 12.0 100.0 68.25 49.45
1. 9.6.8 100.0 0.0 0.0 g2.9 37.8 50.8 100.0 0.0 12.0 100.0 68.06 19.33
1..9.6.7 100.0 0.0 0.0 92.9 37.6 50.8 100.0 0.0 16.0 100.0 68.15 4973
1.95.7 100.0 0.0 0.0 92.9 37.6 50.8 100.0 0.0 16.0 100.0 68.15 49.73
1.9.5.6 100.0 0.0 0.0 92.9 36.9 51.6 100.0 0.0 12.0 100.0 68.06 49.34
1..8.5.8 100.0 0.0 0.0 92.9 36.9 52.5 100.0 0.0 12.0 100.0 68.15 49 .43
1. 8.4.6 100.0 0.0 0.0 92.9 38.9 52.5 100.0 0.0 16.0 100.0 68.25 49.83
1..8.4.5 100.0 0.0 0.0 92.9 344 525 100.0 0.0 8.0 100.0 67.66 48.77
E] 45 | 1000 00 93 929 338 533 1000 00 80 1000 4%:4633_.96” ;ngj
of pixels E(H___§§___4§_____'(_0_’_1_51_-_1_2.2__-JAZ___#_3§.¢__,Z5._#__'Lg.,v,J /1008 | 1008
The columns labeled m e s a indicate the weights applied to the sources (in the

same order as the single source classifications above).

CPU time for training and classification: 99 sec.
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Table 4.28

Linear Opinion Pool Applied to Colorado Data Set
when Topographic Sources were Modeled by Parzen

Density Estimation: Test Samples.

The columns labeled m e s a indicate the weights applied to the sources
same order as the single source classifications above).

N Percent Agreement with Reference for Class
1 2 3 4 s 6 7 8 g 10 || 0A | AVE
Single Sources
MSS 100.0 53.6 20.5 54.3 13.4 79.5 89.1 5.3 4.0 54.0 1| 65.08 | 47.36
Elevation 100.0 0.0 0.0 757 229 148 98.0 263 280 100.0 61.33 | 46.57
Slope 95.4 0.0 0.0 5.7 76 13.9 68.0 0.0 8.0 0.0 || 41.84 | 19.87
Aspect 98.0 0.0 2.3 41.4 31.8 13.9 49.0 2.6 0.0 34.0 || 47.77 27.31
mesa Multiple Sources
1.1.1. 1. 100.0 0.0 0.0 87.1 350 518 100.0 0.0 0.0 92.0 || 68.67 46.58
1.9.9.9 100.0 0.0 0.0 85.7 338 52.5 100.0 0.0 0.0 94.0 || 66.57 | 46.59
1..8.8.8 100.0 0.0 0.0 857 338 55.7 100.0 0.0 0.0 94.0 || 66.96 | 46.92
1..7.7.7 100.0 0.0 00 857 338 56.6 100.0 0.0 0.0 96.0 || 67.16 47.20
1..6.8.6 100.0 0.0 00 857 331 57.4 100.0 0.0 0.0 98.0 i 67.26 | 47.42
1.55.5 100.0 0.0 13.6 843 325 59.0 100.0 0.0 0.0 100.0 || 67.95 48.94
1. 4.4 .4 100.0 0.0 15.9 843 319 86.1 100.0 0.0 0.0 100.0 || 71.22 51.81
1.3.33 100.0 304 18.2 800 357 885 100.0 0.0 0.0 96.0 || 73.39 54.87
1..2.2.2 100.0 50.0 18.2 729 439 877 98.6 0.0 0.0 78.0 || 74.09 54.93
1.1.1.1 100.0 589 18.2 65.7 325 86.1 93.2 0.0 0.0 70.0 || 70.92 52.46
1. . 0.0.0 100.0 62.5 18.2 55.7 28.1 85.2 91.2 0.0 0.0 52.0 68.15 49.09
1.1. .91, 100.0 0.0 0.0 857 357 518 100.0 0.0 0.0 94.0 66.77 46.70
1.1. .81. 100.0 0.0 0.0 857 357 52.5 100.0 0.0 0.0 94.0 || 66.86 | 46.78
1.1. .71. 100.0 0.0 00 857 357 53.3 100.0 0.0 0.0 94.0 || 66.96 | 48.87
1.1. 81. 100.0 0.0 00 857 357 53.3 100.0 0.0 0.0 94.0 || 66.96 | 46.87
1.1. .51. 100.0 0.0 0.0 871 35.7 516 100.0 0.0 0.0 96.0 66.96 | 47.04
1.1. 41. 100.0 0.0 0.0 87.1 35.7 508 100.0 0.0 0.0 98.0 || 66.98 47.18
1.1..31. 100.0 0.0 0.0 87.1 36.3 500 100.0 0.0 40 1000 || 67.16 | 47.74
1.1..21. 100.0 0.0 0.0 87.1 35.0 49.2 100.0 0.0 8.0 100.0 || 66.96 47.94
1.1..11. 100.0 0.0 0.0 87.1 34.4 49.2 100.0 0.0 8.0 100.0 || 66.86 | 47.87
1.1. .01. 100.0 0.0 0.0 87.1 338 50.0 100.0 0.0 12.0 1000 || 66.96 | 48.29
1.1..8.9 100.0 0.0 0.0 871 35.0 53.3 100.0 0.0 0.0 94.0 66.96 | 46.95
1.9.8.9 100.0 0.0 00 857 344 53.3 100.0 0.0 0.0 94.0 || 66.77 46.74
1..9.7.8 100.0 0.0 00 857 344 55.7 100.0 0.0 0.0 96.0 || 67.16 | 47.18
1..9.6.8 100.0 0.0 0.0 857 344 55.7 100.0 0.0 0.0 96.0 67.16 | 47.18
1..9.6.7 100.0 0.0 0.0 843 338 557 100.0 0.0 4.0 96.0 || 67.08 | 47.38
1.95.7 100.0 0.0 0.0 843 331 55.7 100.0 0.0 4.0 98.0 || 67.06 | 47.51
1. 95.8 100.0 0.0 0.0 843 325 85.7 100.0 0.0 8.0 98.0 || 67.06 | 47.85
1. 8.5.8 100.0 0.0 0.0 82.9 325 56.6 100.0 0.0 4.0 98.0 || 66.96 | 47.39
1. 8.4.6 100.0 0.0 0.0 84.3 33.1 57.4 100.0 0.0 4.0 100.0 67.36 47.88
1. 8.4.5 100.0 0.0 0.0 843 31.2 58.2 100.0 0.0 4.0 100.0 || 67.16 | 47.77
B{. 7.4.5 100.0 0.0 11.4 843 318 58.2 100.0 0.0 0.0 100.0 || 67.68 | _48.60
of pixels 302 56 44 70 157 122 147 38 25 50 l(ilj__l_()_l_]j

(in the
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LOP was a little faster than the SMC. The maximum penalized likelihood
method gave the highest overall accuracy of lest data, but that method and
the Parzen density estimation showed a very similar performance in terms of
accuracy of test data. The histogram approach was best for training data and

it is clear that it is very hard to improve on it there.

The CPU times for the different methods are shown in Table 4.30. The
histogram estimation is clearly the fastest (1 sec); the Parzen density
estimation (30 sec) and the maximum penalized likelihood method (31 sec)
were very close in speed in this experiment. The training and test samples
were very small in this experiment. In Section 4.3 it will be seen how well

these methods perform in terms of speed with larger sample sizes.

4.2.5 Results of the Second Experiment: Neural Network Methods

The neural network methods were trained as in Section 4.2.2. There
were 56 input neurons and 13 output neurons to account for the 13 data
classes. The input data was Gray-coded and the convergence criterion for the

training procedures was the same as in Section 4.2.2.

~

a) Experiments with the Conjugate Gradient Linear Classifier

The classification results for the CGLC network are shown in Tables 4.31
(training) and 4.32 (test). The t.raining procedure did not converge but
stopped after 344 iteration when the error function did not decrease further.
The highest overall accuracy of training data was reached after 344 iterations
(82.24%). However, the highest average accuracy of training data was

achieved after 250 iterations (73.449). The highest overall accuracy of test
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Table 4.29

Source-Specific CPU Time (Training Plus
Classification): Landsat MSS Data Source.

Sensor MSS
# of channels 4
PU time 4
Table 4.30

Source-Specific CPU Times (Training Plus
Classification) for Topographic Data Sources
with Respect to Different Modeling Methods.

Method Histogram | Maximum Penalized Parzen
Estimation | Likelihood Method | Estimation
CPU time 1 31 30
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Table 4.31

Conjugate Gradient Linear Classifier Applied to
Colorado Data: Training Samples.

Number of | CPU Percent Agreement with Reference for Class

iterations time 1 2 3 4 5 6 7 8 9 10 0OA AVE

50 110 100.0 929 372 871 522 738 986 21.1 200 87.8 | 79.66 | 66.07

100 209 100.0 94.6 395 857 567 705 1000 289 520 89.8 ) 8145 71.77

150 295 100.0 857 581 857 59.2 721 1000 289 56.0 87.8 | 82.34 73.35

200 375 100.0 857 53.5 843 586 746 1000 237 560 918 82.24 | 72.82

250 483 100.0 857 558 829 59.2 746 1000 263 560 93.9 82.54 | 73.44

300 569 100.0 857 558 829 611 69.7 1000 263 56.0 91.8 82.14 | 72.93

343 644 | 1000 857 558 829 611 696 1000 263 560 93.9 | 82.24 | 7313

# of pixels 301 56 43 70 157 122 147 38 25 49 1008 1008 |

Table 4.32
Conjugate Gradient Linear Classifier Applied to
Colorado Data: Test Samples.

Number of Percent Agreement with Reference for Class
| iterations 1 2 3 4 5 6 7 8 9 10 OA AVE !
50 100.0 875 318 800 497 672 973 18.4 20.0 800 || 76.76 63.19
100 1000 964 386 714 548 746 986 184 480 80.0 |; 79.53 68.08
150 100.0 857 500 743 554 738 98.0 21.1 56.0 76.0 || 79.62 69.03
200 100.0 857 455 757 548 746 98.0 18.4 60.0 78.0 j| 79.62 69.07
250 100.0 857 477 729 548 74.6 98.0 18.4 60.0 78.0 || 79.53 69.01
300 100.0 85.7 477 714 554 73.0 980 18.4 600 78.0 || 79.33 68.76
343 100.0 857 477 729 554 730 980 184 600 __7B0 |1 79.43 | 6891
# of pixels | 302 56 4 70 157 122 147 38 25 __ 50 I} 1011 | 1011 ]
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data was reached after both 150 and 200 iterations (79.62%). The highest
average accuracy of test data was observed after 200 iterations. After 343
iterations the overall accuracy of test data was 79.43% and the average

accuracy was 68.91%.

b) Experiments with the Conjugate Gradient Backpropagation

The three layer CGBP was trained with 8, 16 and 32 hidden neurons.
Using more than three layers did not improve the accuracy of the network.
The classification results with 8 hidden neurons are shown in Tables 4.33
(training) and 4.34 (test). The training procedure stopped after 933 iterations
and the highest overall accuracy was reached after 900 iterations (87.80%)
together with the highest average accuracy (79.62%). Using the 8 hidden
neurons improved the overall accuracy of training data by over 5% and the
average accuracy by over 6% as compared to the CGLC. However, the CGBP
training procedure was more time consuming than the CGLC as seen in
Tables 4.31 and 4.33. Although the training results were better for the
CGBP with 8 hidden neurons as compared to the CGLC, the test results were
worse, both in terms of overall accuracies and average accuracies. The best
accuracy for test results in Table 4.34 were achieved after 150 iterations
(overall: 79.23%, average: 65.62%). The results after 933 iterations were

lower (overall: 77.65%, average: 65.05%).

The CGBP results with 16 hidden neurons are shown in Tables 4.35
(training) and 4.36 (test). After 979 iterations the error function did not
decrease and the highest values of overall accuracy (92.46%) and average

accuracy (90.03%) were reached. Although these accuracies were significantly
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Table 4.33

Conjugate Gradient Backpropagation with 8 Hidden
Neurons Applied to Colorado Data: Training Samples.

Number of | CPU Percent Agreement with Reference for Class
jterations | time 1 2 3 4 5 6 7 8 ¢ 10 || oA | AVE
50 112 | 100.0 964 47 857 395 672 993 53 00 87.8 | 7460 | 58.59
100 902 | 100.0 893 419 886 586 754 1000 184 B0 9018 || 80.95 | 67.20
150 292 | 100.0 §1.1 465 871 669 770 1000 342 80 918 8323 | 70.26
200 378 | 1000 821 628 914 643 852 1000 421 240 959 || 85.22 | 7478
250 473 | 1000 857 558 929 662 828 1000 474 28.0 959 | 8552 | 75.47
300 658 | 100.0 87.5 558 943 656 869 1000 500 28.0 959 || 86.21 | 76.40
350 641 | 100.0 87.6 581 943 624 885 1000 474 32.0 9B.0 i 86.11 | 76.82
400 873 | 100.0 875 605 929 650 869 1000 50.0 40.0 98.0 || 86.61 | 78.08
600 1102 | 1000 964 465 943 688 90.2 1000 525 400 980 | 87.70 | 78.68
900 1644 | 100.0 964 488 957 650 91.8 1000 60.5 40.0 98.0 || 87.80 | 79.62
933 1719 | 100.0 964 488 957 643 918 1000 605 400 98.0 | 87.70 | 795
# of pixels 301 56 43 70 157 122 147 38 25 49 [[ 1008 |
Table 4.34

Conjugate Gradient Backpropagation with 8 Hidden

Neurons Applied to Colorado Data: Test Samples.
Number of Percent Agreement with Reference for Class
iterations 1 2 3 4 5 6 1 &9 10 OA | AVE
50 1000 750 159 757 9280 836 980 26 00 80.0 || 7270 | 5588
100 1000 1000 182 786 573 730 986 184 80 840 | 7873 | 6361
150 1000 964 273 829 611 656 98.6 263 200 780 ) 79.23 | 6562
200 1000 750 477 771 573 856 97.3 211 40 80.0 ) 77.25 | 6251
250 1000 768 455 757 567 648 980 211 40 740 | 7876 | 61.66
300 1000 839 477 757 541 864 980 237 40 760 ) 77.25 | 62.95
350 100.0 825 432 743 53.5 656 97.3 316 120 760 | 77.15 | 63.60
400 1000 839 432 771 548 664 973 316 200 714 77.62 ) 6457
600 1000 875 364 77.1 548 631 973 342 132 700 || 77.15 | 6336
900 1000 875 386 771 561 631 986 368 200 720} 7755 ) 6478
933 1000 875 386 771 561 631 966 395 200 720 || 77.65 } 65.05
# of pixels [ 302 56 44 70 157 122 147 38 25 50 || 1011 | 1011 |
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Table 4.35

Conjugate Gradient Backpropagation with 16 Hidden
Neurons Applied to Colorado Data: Training Samples.

Number of | CPU Percent Agreement with Reference for Class
iterations time 1 2 3 4 5 6 7 3 9 10 0OA AVE
50 180 | 100.0 69.6 18.6 84.3 287 828 98.0 5.3 4.0 85.7 1) 713.61 | 57.70
100 353 } 1000 946 186 87.1 605 71.3 1000 15.8 24.0 95.9 (| 80.46 | 66.78
150 524 | 100.0 929 326 929 656 689 100.0 34.2 52.0 93.9 || 83.13 | 73.30
200 685 | 100.0 94.6 34.9 929 656 803 1000 52.6 68.0 95.9 J{ 85.91 | 78.48
250 847 | 100.0 929 395 98.6 675 820 1000 68.4 76.0 98.0 || 87.80 | 82.29
300 1015 | 100.0 91.6 488 98.6 71.3 85.2 100.0 76.3 84.0 98.0 || 89.58 | 85.38
350 1161 1000 929 465 1000 752 828 1000 76.3 92.0 $8.0 || 90.18 | 86.37
400 1341 | 100.0 91.1 46.5 1000 76.4 86.1 160.0 789 100.0 100.0 || 91.07 | 87.90
600 2006 | 100.0 929 51.2 1000 77.1 86.1 100.0 84.2 1000 100.0 | 91.67 | 89.15
%00 3005 | 100.0 91.1 634 1000 77.7 87.7 1000 86.8 100.0 100.0 || 92.06 | 89.67
979 3257 | 100.0  91.1 558 100.0 822 844 100.0  B6.8 100.0 100.0 || 92.46 90.03
# of pixels 301 56 43 70 157 122 147 38 25 49 1008 1008 |
Table 4.36
Conjugate Gradient Backpropagation with 16 Hidden
Neurons Applied to Colorado Data: Test Samples.
Number of Percent Agreement with Reference for Class
| iterations 1 2 3 4 5 6 7 8 9 10 QA AVE
50 100.0 75.0 15.9 75.7 281 83.6 98.0 2.6 0.0 80.0 72.70 55.88
100 100.0 100.0 18.2 78.6 57 . 73.0 98.6 18.4 8.0 84.0 78.73 63.61
150 100.0 96.4 27.3 82.9 61.1 65.6 98.6 26.3 20.0 78.0 79.23 65.62
200 100.0 92.9 31.8 771 53.5 70.5 988 31.6 28.0 74.0 78.44 65.80
250 100.0 83.9 29.5 68.6 53.5 68.0 98.6 36.8 32.0 74.0 77.25 64.49
300 100.0 83.9 45.5 64.3 56.1 63.1 98.0 31.8 38.0 72.0 77.15 65.05
350 100.0 83.9 40.9 61.4 63.1 60.7 98.0 28.9 36.0 68.0 77.25 64.09
400 100.0 82.1 47.7 65.7 59.2 61.5 96.6 26.3 36.0 74.0 77.35 64.91
600 100.0 80.4 47.7 60.0 56.1 63.1 96.6 28.9 38.0 70.0 76.36 63.88
300 100.0 80.4 47.7 586 554 623 973 289 38.0 58.0 | 75.77 62.46
979 100.0 786 477 586 59.2 58.2 97.3 289 36.0 580 | 75.57 62.25
of pixels 302 56 44 70 157 122 147 38 25 50 1011 1011
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improved from the results with 8 hidden neurons, the test results (Table 4.36)
were no better than the ones with 8 hidden neurons. Also, after 350 iterations
the test results with 16 hidden neurons were worse than those with 8 hidden
neurons. Similar results were observed with the CGBP when 32 hidden
neurons were used (Tables 4.37 (training) and 4.38 (test)). The highest overall
(93.45%) and average (91.74%) accuracies werc reached after 807 iterations
with 32 hidden neurons. The overall and average accuracies of test data
(Table 4.38) were still lower when 16, 8 or no hidden neurons (CGLC) were
used. As pointed out above, using hidden neurons makes the training
procedure more time consuming (see Tables 4.31 (no hidden neurons), 4.33,
4.35, 4.37). The classification time for training and test data was also longer

as seen below:

1) No hidden neurons: 11 sec.
2) 8 hidden neurons: 17 sec.
3) 16 hidden neurons: 20 sec.

4) 32 hidden neurons: 26 sec.

4.2.6 Summary

The best results from the sccond experiment on the Colorado data are
shown in Figure 4.5. The results of this experiment showed that the neural
network methods can do as well as the statistical methods when representative
training samples are used. The neural network methods always outperformed
the statistical methods in terms of classification of training data, but in terms
of overall classification accuracy of test data, the SMC method was slightly

better than the neural networks. This was in contrast to the results achieved
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Table 4.37

Conjugate Gradient Backpropagation with 32 Hidden
Neurons Applied to Colorado Data: Training Samples.

CPU

Percent Agreement with Reference for Class

iterations time { 1 2 3 4 5 6 7 8 9 10 OA AVEi_
50 349 11000 964 326 829 516 738 100.0 105 200 87.8 || 79.07 | 65.56
100 666 | 100.0 839 442  90.0 650 721 1000 342 440 939 || 83.04 | 7273
150 967 | 100.0 946 465 971 656 844 100.0 474  68.0 100.0 || 87.20 | 8036
200 1287 | 1000 929 628 1000 732 852 100.0 737 100.0 100.0 || 91.07 | 83.78
250 1609 | 1000 911 535 1000 77.1 91.0 100.0 816 100.0 100.0 || 92.16 | 89 43
300 1967 | 100.0 946 535 100.0 79.0 885 100.0 842 100.0 100.0 || 92.46 | 89 98
350 2260 | 100.0  87.5 628 100.0 841 861 100.0 89.5 100.0 100.0 || 93.15 | 91 00
400 2558 | 100.0  87.5 628 100.0 80.9 90.2 100.0 89.5 100.0 100.0 || 93.15 | 91.09
500 3812 | 100.0 89.3 628 100.0 834 7.7 1000 89.5 100.0 100.0 || 93.35 | 91 27
807 5045 | 100.0 929 651 100.0 822 877 1000 89.5  100.0 100.0 || 9345 | 9174
# of pixels 301 56 43 70 157 122 147 38 25 49 || 1008 | 1008 |
Table 4.38
Conjugate Gradient Backpropagation with 32 Hidden
Neurons Applied to Colorado Data: Test Samples.

f_Number of Percent Agreement with Reference for Class

iterations 1 2 3 4 5 6 7 8 9 10 0OA AVE
50 1000 946 318 80.0 510 746 986 132 80 820 | 78.04 | 6338
100 1000 82.1 455 757 554 656 98.6 21.1 280 76.0 | 77.74 | 64.80
150 1000 92.9 364 671 573 705 98.6 289 360 800 || 78.93 | 6677
200 1000~ 82.1 523 600 854 656 98.6 31.6 480 740 | 77.74 | 6976
250 100.0 821 432 600 567 623 986 316 560 78.0 || 77.55 | 8685
300 1000 839 455 614 611 623 98.6 31.6 480 80.0 || 78.44 | 67 24
350 99.7 76.8 409 571 573 582 986 342 520 78.0 || 76.46 | 6598
400 99.7 768 409 586 573 60.7 98.6 342 48.0 74.0 || 76.56 | 64.88
600 99.7 750 409 543 554 590 980 28.9 56.0 700 || 75.37 | 6372
807 99.7 804 409 557 548 574  98.0 263 580 680 | 7507 63.72
|# of pixels | 302 56 44 70 157 122 147 38 25 504 1011 | 1011
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in the first experiment on the Colorado data where the training data were not
as representative. In the first experiment the SMC method outperformed the

neural networks by more than 4% in overall test accuracy.

In the second experiment the SMC showed very good performance with
equal weights but could be improved by more than 2% with different weight
selections. The SMC outperformed the LOP by much in classification of these
data. The highest overall classification accuracy for test data was reached by
the SMC (80.02%) when the topographic data sources were modeled by the
maximum penalized likelihood method. The highest overall accuracy for test,
data with the neural network methods was reached with the CGLC (79.62%).
Adding hidden neurons did not improve the performance of the neural
networks in terms of classification accuracy for test data, although it did
improve the accuracy for training data. Using hidden neurons also slowed the
training procedure. In general the neural networks took longer to train than
the statistical methods. They were also more time consuming in classification
of training and test data. The SMC and LOP needed only 7 and 5 sec of CPU

time respectively.

In both experiments on the Colorado data the neural network methods
were better in terms of accuracy than the statistical methods in classification
of training data. The class prior probabilities in the statistical methods have
an overwhelming effect on those methods which favors certain classes.
Although a number of training samples for a class provides the neural network
with "prior" information, the effect is different than multiplying the priors as
in the statistical case. One of the major problems with the neural network

methods is determining how to prevent them from "overtraining." In order to
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achieve the highest accuracy for test data, the networks often need fewer

iterations than the training procedures go through.

4.3 Experiments with Anderson River Data

The Anderson River data set is a multisource data set made available by
the Canada Centre for Remote Sensing (CCRS) [83]. The imagery involves a
2.8 km by 2.8 km forestry site in the Anderson River area of British
Columbia, Canada, characterized by rugged topography, with terrain
elevations ranging from 330 to 1100 m above sea level. The forest cover is
primarily coniferous, with Douglas fir predominating up to approximately
1050 m elevation, and cedar, hemlock and spruce types predominating at

higher elevations. The Anderson River data set consists of six data sources:

1) Airborne Multispectral Scanner (ABMSS) with 11 data channels (10

channels from 380 to 1100 nm and 1 channel from 8 to 14 pum).

2) Steep Mode Synthetic Aperture Radar (SAR) with 4 data channels
(X—HH,X-HV,L-HH,L-HV)>.

3) Shallow Mode SAR with 4 data channels (X-HH, X-HV, L-HH, L-HV).

4) Elevation data, 1 data channel, with elevation in meters = 61.996 ¢

7.2266 * pixel value.
5) Slope data, 1 data channel, with slope in degrees —= pixel value.

6) Aspect data, 1 data channel, where aspect in degrees - 2 * pixel value.

3. X- and L-band synthetic aperature radar imagery (horizontal polarization transmit
(HH) and horizontal/vertical polarization receive (HV)).
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The ABMSS and SAR data were detected during the week of July 25 to
31, 1978. Each channel comprises an image of 256 lines and 256 columns. All

of the images are co-registered with pixel resolution of 12.5m.

There are 19 information classes in the ground reference map provided by
CCRS. In the experiments reported here only the 6 predominant classes were
used, as listed in Table 4.39. Three of these classes, Douglas fir (21-30m),
Douglas fir + lodgepole pine, and forest clearings (classes 2,4 and 6), each
covered two spatially distinct fields. Therefore, these classes were trained as
two different data classes, and the total number of data classes in the
experiments became 9. Training samples were selected on a uniform grid as

10% of the total the sample size of a class.

The separability of the information classes for each of the data sources
was examined. The ABMSS and SAR data sources were modeled as Gaussian
and their separability was estimated by computing the JM distances between
the information classes. On the other hand, the topographic data sources were
non-Gaussian with one feature each. A convenient way of examining the
discriminability of the classes in the topographic sources is to look at the class

histograms for the information classes.

In Tables 4.40 to 4.42 the JM distances (maximum of 1.41421) between
the information classes are shown for the ABMSS (Table 4.40) and SAR
(Tables 4.41 and 4.42) data sources. The ABMSS source had an average
separability of 1.199, the SAR sh (Shallow) source an average of 0.4631 and
the SAR st (Steep) source an average of 0.4311. The information classes in

the SAR sources are apparently hard to discriminate.
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Table 4.39

Information Classes, Training and Test Samples
Selected from the Anderson River Data Set.

Class # Size Information Class Training | Testing
1 9715 | Douglas Fir (31-40m) 971 8744

2 5511 | Douglas Fir (21-30m) 551 4960

3 5480 | Douglas Fir + Other Species (31-40m) 548 4932

4 5423 | Douglas Fir + Lodgepole Pine (21-30m) 542 4881

5 3173 | Hemlock + Cedar (31-40m) 317 2856

6 12600 | Forest Clearings 1260 11340
Total | 41902 | aisg | 3tmi3 |

Training samples are 10% of total. The training samples were selected
UNIFORMLY over the image.

Data Sources:

sl - ABMSS (11 spectral data channels)
s2 - SAR sh (4 radar data channels)

s3 - SAR st (4 radar data channels)

s4 - Elevation (1 elevation data channel)
s5 - Slope (1 slope data channel)

s6 - Aspect (1 aspect data channel)



Pairwise JM Distances: ABMSS Data
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Table 4.40

Class # 2 3 4 5 6

1 0.73312 | 1.18274 | 1.31614 | 1.34177 | 1.01742
2 - 1.06912 | 1.33300 | 1.39373 | 1.21309
3 - - 1.12051 | 1.38116 | 1.35036
4 - - - 1.24573 | 1.39253
5 - - - - 1.39599
Average:  1.19877

Table 4.41

Pairwise JM Distances: SAR Shallow Data.

Class # 2 3 4 5 8

1 0.57811 | 0.73556 | 0.83680 | 0.77470 | 0.54628
2 - 0.46706 | 0.40835 | 0.35228 | 0.20056
3 - - 0.32671 | 0.37080 | 0.35582
4 - - - 0.38421 | 0.33648
5 - - - - 0.34333
Average:  0.46305

Table 4.42

Pairwise JM Distances: SAR Steep Data.

Class # | 2 3 4 5 8

1 0.27652 | 0.41365 | 0.33141 | 0.51332 | 0.46221
2 - 0.39351 | 0.33445 | 0.39885 | 0.38786
3 - - 0.45034 | 0.44442 | 0.40551
4 - - - 0.33897 | 0.61177
5 - - - - 0.57957
Average:  0.43109
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The class-specific histograms of the topographic data sources are shown in
Figures 4.6, 4.7 and 4.8. Looking at these figures it is seen that the class-
specific histograms for all three data sources are highly overlapping. The
elevation data (Figure 4.6) has the most distinct peaks for specific classes, the
aspect data (Figure 4.8) has a few, but the slope data (Figure 4.7) can mostly
only distinguish Douglas fir (31-40 m) from forest clearings. It is seen from
the figures and Tables 4.40, 4.41 and 4.42 that the information classes in the

Anderson River data set are very difficult to discriminate.

4.3.1 Results: Statistical Methods.

Four statistical classification methods were applied in the experiments
performed here: 1) The minimum Euclidean distance (MD), 2) the maximum
likelihood method for Gaussian data (ML), 3) the statistical multisource
classifier (SMC) and 4) the linear opinion pool (LOP). The first two methods
are "stacked vector’ approaches but the other two are pooling methods which

treat the data sources independently as previously discussed.

The results using the two stacked vector approaches are shown in Tables
4.43 (training) and 4.44 (test). Although the MD method did much better in
classification of training and test data than for the Colorado data, it did
significantly worse than the multivariate Gaussian MIl. method. It is
questionable whether it is appropriate, from a theoretical standpoint, to use
multivariate Gaussianity between all the sources for two reasons: first,
because the topographic sources were not Gaussian; and second, because no
information was available for modeling the dependencies between all the data

sources. In view of this the ML, method showed surprisingly good performance
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Figure 4.6 Class Histograms of Elevation Data in
the Anderson River Data Set
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Table 4.43

Classification Results of Training Samples for the
Anderson River Data Set when the Minimum Euclidean
Distance Method and the Maximum Likelihood Method for

Gaussian Data are Applied.
time
:
ML

I —
Percent Agreement with Reference for Class
3 4 5 6 || OA

40.4 8.0 47.6 67.7 423 72.4
548 316 878 90.9 814 733 68.23

548 542 317 1260 | 4189

Table 4.44

Classification Results of Test Samples for the
Anderson River Data Set when the Minimum Euclidean
Distance Method and the Maximum Likelihood Method for
Gaussian Data are Applied.

Percent Agreement with Reference for Class
2 3 4 5 6 OA
8.9 48.4 702 46.0 71.7
50.8 277 845 819 73.8 720
4960 4932 4881 2856 11340
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in terms of training and test accuracy. Looking at Figures 4.6, 4.7 and 4.8 it
is doubtful that the topographic sources should be modeled as Gaussian.
However, the other three data sources (ABMSS, SAR sh, SAR st) can be
modeled as Gaussian. Those three sources comsist of 19 of the 22 data
channels used in the classification. The number of the Gaussian channels is

one of the reasons for the relatively good performance of the ML method.

correlation matrices were examined to make sure that the underlying
independence assumptions of the SMC were not violated. In fact for onpe
information class (Douglas fir + lodgepole pine (21-30m)), the elevation source
was relatively highly correlated to the ABMSS data (the magnitudes of some
correlations were as high as 0.71). Although this correlation was observed for
one information class, the elevation data were used in the SMC classifications.
However, the effect of removing the elevation data from the data set was
investigated in the experiments. All other data sources were virtually

uncorrelated.

All the data sources were trained on 9 data classes except the SAR data
sources which showed better performance with only 6 data classes. As in
Section 4.2.4 three density estimation methods (histogram, maximum
penalized likelihood estimation and Pargen density estimation) were applied to
model the (non-Gaussian) topographic data sources. The results for the

different methods are discussed below.
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Looking at the single source classifications in Table 4.45 (classifications of
training samples), the ABMSS source was the best source in classification of
training samples, both in terms of overall (49.84%) and average (50.53%)
accuracies. The elevation data was second with overall accuracy of 40.75%
and average accuracy of 40.47%. The aspect data came third (overall
accuracy: 38.94%, average accuracy: 27.37%). The SAR data showed very
poor performance (as seen in Tables 4.41 and 4.42, they were not separable).
The SAR sh source was a little better (36.81% overall accuracy and 24.19%)
than the SAR st source (overall accuracy: 36.57%, average accuracy: 23.50%).
The slope source was the worst source with overall accuracy of 33.44% and
average accuracy of 27.37%. The source-specific accuracy showed how
difficult the data set is in classification. Using these classification accuracies as
a reliability measure, the sources were ranked as: 1) ABMSS, 2) elevation, 3)
aspect, 4) SAR sh, 5) SAR st and 6) slope. The equivocation measure (shown
in Tables 4.47 and 4.48) ranked the sources somewhat differently. The
equivocation ranking was: 1) ABMSS, 2) elevation, 3) aspect, 4) slope, 5) SAR
sh, 6) SAR st. In the experiments weights were selected according to these
different rankings.

Classifying all the data sources in Table 4.45 (training) with equal
weights gave a significant improvement in both overall and average accuracies
as compared to best single source classification (ABMSS). The overall
accuracy was increased to 70.26% (or by 20.42%) and the average accuracy
was increased to 69.89% (or by 19.36%). By changing the weights, the
overall accuracy could only be improved to 70.40% and the average accuracy

was increased to 69.95%. This was achieved by a weighting suggested by the



146

Table 4.45

Statistical Multisource Classification of Anderson
River Data: Training Samples. Topographic Sources
were Modeled by Histogram Approach.

Percent Agreement with Reference for Class
1 2 3 4 5 6 || 0A | AVE
Single Sources

ABMSS 13.3 4.5 836 84.7 48.8 68.5 49.84 | 50.53
SAR sh 45.0 2.4 120 7.6 0.0 78.2 36.81 | 24.19
SAR st 35.5 1.3 4.0 129 1.3 86.0 36.57 | 23.50
Elevation 22.0 18.3 44.3 48.0 53.0 57.2 40.75 | 40.47
Slope 33.8 0.5 8.2 2.6 51.9 67.2 33.44 | 27.37
Aspect 42.6 25,0 52.2 17.7 17.4 51.0 38.94 | 34.32

mhtesa Multiple Sources
1.1.1.1.1.1. | 700 352 79.0 782 81.0 75.8 70.26 | 69.89
1.9.91.1.1. | 70.3 352 794 78.0 80.8 75.7 70.30 | 69.01
1..8.81.1.1. | 70.6 354 79.2 782 80.4 75.8 70.40 | 69.95
1..7.71.1.1. { 704 339 796 782 80.1 76.0 70.23 | 69.71
1..6.61.1.1. | 70.8 .- 334 792 78.2 80.8 76.1 70.28 | 69.74
1.5.51.1.1. [ 70.3 32.7 80.3 78.0 81.1 76.0 70.18 | 69.73
1..4.41.1.1. | 69.7 31.9 81.2 780 80.1 75.7 69.92 | 69.46
1..3.31.1.1. | 69.2 32.1 81.8 780 79.8 75.8 69.83 | 69.42
1..2.21.1.1. | 69.8 327 823 77.9 80.1 75.5 70.09 | 87.71
1..1.11.1.1. | 69.3 31.8 82.1 78.0 80.1 75.4 69.83 | 69.48
1..0.01.1.1. | 68.8 31.8 81.9 78.0 80.1 74.9 689.54 | 69.26
1.1.1..9.9.9 | 703 336 779 793 77.9 78.2 69.99 | 69.21
1.1.1..8.8.8 71.1 31.8 77.7 79.2 75.4 76.3 69.71 88.56
1.1.1..7.7.7 71.5 30.3 76.5 79.3 70.7 76.3 89.11 67.42
1.1.1. .6 .6 .6 71.6 28.1 75.9 78.8 84.0 76.3 68.20 | 65.78
1.1.1..5.5.5 | 723 243 746 7868 60.8 76.3 67.44 | 64.46
1.1.1..4.4.4 | 724 207 1730 79.0 57.7 76.4 66.63 | 63.20
1.1.1..3.3.3 | 73.4 16.5 704 78.8 52.7 76.6 65.62 | 61.40
1.1.1..2.2.2 | 73.4 10.0 66.4 78.8 48.9 76.6 63.95 | 59.02
1.1.1..1.1.1 | 71.9 5.1 61.9 78.2 45.1 76.4 81.95 | 56.43
1.1.1..0.0.0 | 70.2 3.6 55,5 777 42,0 76.5 60.25 | 54.25
1.1.1..01.1. 71.6 16.9 76.8 78.0 63.4 75.8 868.56 63.75
1.9.99.9.9 | 705 332 786 79.3 77.9 75.9 69.99 | 69.26
1.8.8.9.9.9 | 706 330 788 793 779 76.1 70.09 | 69.31
1.8.81..9.9 | 70.2 352 790 79.1 795 76.0 70.37 | 69.86
1.881..91 70.2 34.5 78.8 79.0 79.2 76.0 70.18 | 69.681
1..8.81..81. | 69.6 34.7 78.7 79.4 782 76.0 70.04 | 69.42
1..8.8.8.8.8 | 71.3 30.7 781 79.2 751 76.3 689.66 | 68.44
of pixels 971 551 548 542 317 1260 4189 4189

The columns labeled m h t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).

CPU time for training and classification: 402 sec.
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Table 4.46

Statistical Multisource Classification of Anderson
River Data: Test Samples. Topographic Sources
were Modeled by Histogram Approach.

Percent Agreement with Reference for Class
1 2 3 4 5 6 || OA | AVE
Single Sources

ABMSS 12.4 4.1 81.0 80.5 49.5 67.1 48.34 49.10
SAR sh 44.4 1.9 131 7.9 0.0 77.6 36.62 24.15
SAR st 34.2 0.9 3.8 13.4 0.7 85.5 36.02 23.07
Elevation 18.3 15.9 43.1 47.3 50.9 55.3 38.56 38.47
Slope 32.1 0.4 6.9 1.8 50.9 €4.9 32.03 26.17
Aspect 39.0 22.7 43.9 13.5 11.3 48.5 34.36 29.48
mhtesa Multiple Sources
1.1.1.1.1.1. | 68.2 31.6 75.0 77.4 787 74.7 68.19 | 67.59
1..9.91.1.1. { 68.1 31.2 750 77.5 786 74.8 68.19 | 67.53
1. 8.81.1.1. 67.7 311 74.9 77.6 78.7 74.9 68.13 67.50
1..7.71.1. 1. 67.9 30.6 75.2 77.6 78.6 74.8 68.10 67.46
1.6.61.1.1. 67.7 30.4 75.2 77.6 78.5 74.8 68.00 67.36
I~5.51.1. 1. 67.6 30.0 75.1 77.5 78.4 74.7 67.88 67.23
1. .4.41.1. 1. 67.5 29.7 75.1 77.5 78.3 747 67.79 67.13
1..3.31.1. 1. 67.3 29.0 74.9 77.5 78.2 74.6 67.61 66.93
1..2.21.1. 1. 67.1 28.6 74.7 77.5 78.2 74.5 67.43 66.75
1..1.11.1. 1. 66.8 28.1 74.4 77.4 78.2 74.3 67.20 66.53
1..0.01.1.1. 66.4 27.8 73.9 77.4 78.3 74.2 66.96 66.32
1.1.1..9.9.9 68.5 30.3 74.1 77.9 76.1 74.9 67.93 66.96
1.1.1. .8.8.8 68.7 28.6 72.9 78.4 72.6 75.3 67.49 66.06
1.1.1..7.7.7 69.2 26.7 71.8 78.4 68.9 75.5 67.01 65.08
1.1.1..6.6.6 69.5 23.9 70.4 78.5 64.0 75.7 66.25 63.68
1.1.1..5.5.5 70.2 20.8 68.9 78.4 59.8 75.9 65.54 62.35
1.1.1. .4 .4 .4 70.9 16.9 67.0 78.3 55.6 76.3 64.71 60.83
1.1..3.3.3.3 71.6 12.5 64.9 78.0 52.0 76.5 63.77 59.24
1.1.1..2.2.2 72.4 8.1 62.0 77.8 47.9 76.7 62.72 57.48
1.1.1..1.1 .1 72.5 4.0 58.1 77.4 44.5 76.8 61.41 55.55
1.1.1..0.0.0 | 708 1.9 529 77.1 416  76.8 ) 59.83 ! 53.52
1.1.1..01.1. | 70.4 134 717 757 598 754 | 64.45 | 61.06
1.9.9.9.9.9 68.3 301 74.1 78.0 76.2 75.1 67.93 66.96
1..8.8.9.9.9 68.3 29.6 74.3 78.0 76.2 75.1 67.90 66.93
1..8.81..9.9 68.0 31.3 74.2 77.9 77.9 75.0 68.13 67.39
1..8.81..91. 67.7 31.0 74.8 77.8 77.9 74.9 68.03 67.34
1..8.81..81. 67.7 30.8 74.7 78.0 77.3 74.9 68.00 67.23
1..8.8.8.8.8 68.9 28.0 73.2 78.5 72.6 75.4 67.55 66.10
# of pixels 8744 4960 4932 4881 2856 11340 || 37713 | 37713 |

The columns labeled m h t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).
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reliability measure, the sources were ranked as: 1) ABMSS, 2) elevation, 3)
aspect, 4) SAR sh, 5) SAR st and 6) slope. The equivocation measure (shown
in Tables 4.47 and 4.48) ranked the sources somewhat differently, The
equivocation ranking was: 1) ABMSS, 2) elevation, 3) aspect, 4) slope, 5) SAR
sh, 6) SAR st. In the experiments, weights were selected to reflect the rankings

implied by the reliability measures.

Classifying all the data sources in Table 4.45 (training) with equal
weights gave a significant improvement in both overall and average accuracies
as compared to best single-source classification (ABMSS). The overall
accuracy was increased to 70.26% (or by 20.42%) and the average accuracy
was increased to 69.89% (or by 19.36%). By changing the weights, the
overall accuracy could only be improved to 70.40% and the average accuracy
was increased to 69.95%. This was achieved by a weighting suggested by the
equivocation measure (weights: all sources 1, except the SAR sources were

weighted 0.8).

The results in Table 4.45 are interesting. Removing the SAR sources
(1.0,0.0,0.0,1.0,1.0,1.0) reduced the classification accuracy only slightly (OA:
69.54%, AVE: 69.26%); removing the elevation source (1.0,1.0,1.0,0.0,1.0,1.0)
had a much more significant effect on the results (OA: 66.56%, AVE: 63.75%).
Thus the results showed that it was helpful to use the elevation source in
classification even though that source had some class-specific dependence to

the ABMSS data.

Looking at the test results in Table 4.46 a similar performance was seen
as in single-source classifications of training data. For most of the data

sources the accuracies were predictably a little lower than in the training case.
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Table 4.47

The Equivocations of the Gaussian Data Sources.

Sensor ABMSS | SAR Shallow | SAR Ste
Equivocation 1.141 1.621 1.636
Table 4.48

The Equivocations of the Non-Gaussian Data Sources
with Regard to the Three Modeling Methods Used.

Data Histogram | Maximum Penalized Parzen
Source Estimation Likelihood Method Istimation
Elevation 1.430 1.430 1.429
Slope 1.620 1.620 1.626
Aspect 1,532 . 1.039 1.557
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The accuracies of the SAR sources were almost the same for training and test
data. Also, these sources had higher accuracies for test data than the aspect
source. The similarity of training and test results indicates that the training

sample was apparently representative.

When all the data sources in Table 4.46 were classified with equal
weights, the overall and average accuracies improved substantially in
comparison to the ABMSS classification (OA: 48.34%, AVE: 49.10%). The
overall accuracy increased to 68.19% or by 19.85%. The average accuracy
improved to 67.59% or by 18.49%. When the weights were changed, neither
higher overall nor average accuracies could be reached. Several of the weights
showed similar performance to the equal weights, but none was higher. The
result of discarding the elevation source (1.0,1.0,1.0,0.0,1.0,1.0) was again
significantly lower (OA: 64.45%, AVE: 61.06%) than when equal weights were
used. This result, along with the similar training result, showed that the
elevation source should be included in the multisource classification even
though it had significant correlation with the ABMSS data. The results in
Tables 4.45 and 4.46 showed that the SMC method outperforms the ML
method (Tables 4.43 and 4.44) both in terms of classification accuracy and
classification time. The SMC was significantly faster, needing only 402 CPU
sec (training and test) for the six-source composite, whereas the ML method
needed 1095 CPU sec.

The results using the LOP are shown in Tables 4.49 and 4.50. These
results were somewhat similar to the LOP results for the Colorado data.

When all the data sources were classified with equal weights (training), the

overall and average classification accuracies were lower as compared to the
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Table 4.49

sification of

Anderson River Data: Training Samples. Topographic
Sources were Modeled by Histogram Approach.
Percent Agreement with Reference for Class
, o 3 4 5 8 | oA |AVE]
Single Sources
ABMSS 13.3 4.5 83.6 84.7 48.6 68.5 49.84 50.53
SAR sh 45.0 2.4 12.0 7.6 0.0 78.2 36.81 24.19
SAR st 35.5 1.3 4.0 129 1.3 86.0 38.57 23.50
Elevation 22.0 18.3 443 480 53.0 57.2 40.75 | 40.47
Slope 33.8 0.5 8.2 2.6 51.9 67.2 33.44 | 27.37
Aspect 426 250 522 17.7 174 510 | 38.94 | 34.32
mhtesa Multiple Sources
1.1.1.1.1.1. | 55.0 0.0 0.0 49.6 0.0 95.3 ‘ 47.84 | 33.32
1..9.91.1.1. | 56.0 0.0 0.0 52.8 0.0 95.2 48.46 34.01
1..8.81.1.1. | 56.6 0.0 0.0 55.7 0.0 95.2 48.96 34.59
1..7.71.1.1. | 58.2 0.0 0.0 605 0.0 94.9 49.87 35.80
1..6.61.1.1. | 59.2 0.0 0.0 64.4 0.3 94.6 50.54 | 36.42
1..5.51.1.1. | 60.9 0.0 0.0 685 1.9 94.3 51.47 37.58
1..4.41.1.1. | 62.2 0.0 0.0 71.0 4.7 93.8 52.18 38.63
1..3.31.1.1. | 65.2 0.0 0.0 73.2 9.8 93.2 53.35 40.23
1..2.21.1.1. | 68.7 0.0 0.0 742 12.0 92.6 54.29 41.24
1..1.11.1.1. | 69.5 0.0 0.0 749 16.4 91.1 54.45 41.99
100111 708 02 00 762 199 904 54.98 | 42.90
1.1.1..9.9.9 | 55.9 0.0 0.0 53.5 0.0 95.1 48.48 34.08
1.1.1..8.8.8 | 57.5 0.0 0.0 58.5 0.0 94.7 49.37 | 35.11
1.1.1..7.7.7 | 587 0.0 0.0 62.0 0.0 94.4 50.01 35.84
1.1.1. .6 .6 .6 | 59.1 0.0 0.0 65.3 0.3 93.9 50.42 36.44
1.1.1..5.5.5 | 60.6 0.0 0.0 683 2.2 93.4 51.13 37.41
1.1.1. .4 .4 .4 | 626 0.0 0.0 703 7.9 92.9 52.16 38.96
1.1.1..3.3.3 | 64.3 0.0 0.0 714 148 92.9 53.19 40.56
1.1.1..2.2.2 | 66.0 0.0 0.0 72.7 18.6 91.9 53.76 | 41.54
1.1.1..1.1.1 67.5 0.0 0.0 738 211 90.5 53.97 42.11
1.1.1..00.0 | 682 00 __ 00 731 243 89.4 || 54.00 | 42.50
1.1.1..01.1. | 58.6 00 00 308 00 949 | 46.12 | 30.72
1..9.9.9.9.9 | 56.7 0.0 0.0 57.6 0.0 94.8 49.10 | 34.85
1..8.8.9.9.9 | 584 0.0 0.0 607 0.0 94.6 49.84 | 35.62
1..8.81..9.9 57.8 0.0 0.0 60.7 0.0 94.7 49.73 35.53
1..8.81..91. | 57.0 0.0 0.0 58.7 0.0 94.9 49.34 | 35.09
1..8.81..81. | 57.8 0.0 0.0 60.9 0.0 94.8 49.77 35.57
1..8.8.8.8.8 | 60.7 00 0.0 661 0.0 94.0 50.87 | 36.78
of pixels 971 551 548 542 317 1260 4189 | 4189

The columns labeled m htes a indicate the weights applied to the
sources (in the same order as the single source classifications above).

CPU time for training and classification: 376 sec.
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Table 4.50

Linear Opinion Pool Applied in Classification of
Anderson River Data: Test Samples. Topographie
Sources were Modeled by Histogram Approach.

[‘ Percent Agreement with Reference for Class
1 2 3 4 5 8 || OA | AVE
Single Sources
ABMSS 12.4 4.1 81.0 80.5 49.5 67.1 48.34 49.10
SAR sh 44.4 1.9 13.1 7.9 0.0 77.6 36.62 24.15
SAR st 34.2 0.9 3.8 13.4 0.7 85.5 36.02 23.07
Elevation 18.3 15.9 43.1 47.3 50.9 55.3 38.56 38.47
Slope 32.1 0.4 6.9 1.8 50.9 64.9 32.03 26.17
Aspect 39.0 22.7 43.9 13.5 11.3 48.5 34.36 29.48
m htesa Multiple Sources
1.1.1.1. 1. 1. 51.0 0.0 0.0 48.8 0.0 95.7 46.91 32.58
1..9.91.1.1. 51.7 0.0 0.0 50.8 0.0 95.5 47.29 33.01
1..8.81.1.1. 52.8 0.0 0.0 53.6 0.0 95.3 47.83 33.681
1..7.71.1. 1. 53.9 0.0 0.0 56.8 0.1 95.0 48.42 34.30
1..6.61.1.1. 55.1 0.0 0.0 60.0 0.3 94.7 49.05 35.03
1..5.51.1.1. 56.8 0.0 0.0 63.1 0.9 94.3 49.76 35.85
1..4.41.1.1. 59.0 0.0 0.0 86.7 2.2 93.5 50.59 36.90
1..3.31.1.1. 61.0 0.0 0.0 69.6 4.4 92.8 51.37 37.95
1..2.21.1.1. 63.4 0.0 0.0 71.5 7.9 91.7 52.13 39.09
1..1.11.1.1. 65.6 0.0 0.0 73.1 12.0 90.4 52.76 40.19
1..0.01.1.1. 87.7 0.0 0.0 74.4 16.1 88.9 53.30 41.20
1.1.1..9.9.9 52.7 0.0 0.0 51.2 0.0 95.68 47.58 33.25
1.1.1. 8.8 .8 54.4 0.0 0.0 55.1 0.0 95.2 48.39 34.13
1.1.1..7.7.7 56.3 0.0 0.0 58.9 0.0 94.9 49.20 35.02
1.1.1..6 .6 .8 57.5 0.0 0.0 62.3 0.4 94.4 49.80 35.76
1.1.1..5.5 5 59.68 0.0 0.0 65.2 2.1 93.8 50.63 36.79
1.1.1. 4 4 4 61.5 0.0 0.0 87.5 4.9 93.1 51.38 37.84
1.1.1..3.3.3 83.8 0.0 0.0 89.5 8.5 92.3 52.14 38.98
1.1.1. 2.2 .2 65.7 0.0 0.0 71.3 12.8 91.4 52.91 40.19
1.1.1..1.1 .1 87.3 0.0 0.0 72.6 16.7 90.3 53.44 41.16
1.1.1..0.0.0 68.9 0.0 0.0 73.1 20.8 89.3 53.89 42.03
1.1.1..01. 1. 56.8 0.0 0.0 26.1 0.0 95.1 45.14 29.66
1.9.9.9.9.9 53.8 0.0 0.0 54.5 0.0 95.3 48.18
1.8.8.9.9.9 54.9 0.0 0.0 57.5 0.1 94.9 48.71
1..881..9.9 54.3 0.0 0.0 56.9 0.1 95.1 48.53
1..8.81..91. 53.4 0.0 0.0 55.4 0.0 95.1 48.15
1..8.81..81. 54.3 0.0 0.0 57.3 0.1 94.9 48.56
1..8.8.8.8.8 57.2 0.0 0.0 61.4 0.4 94.5 49.65
of pixels 8744 4960 4932 4881 2856 11340 | 37713

The columns labeled m h ¢ e $ a indicate the weights applied to the
sources (in the same order as the single source classifications above),
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best single-source classification. The highest overall accuracies in Table 4.49
were achieved when the SAR sources were discarded altogether (weights:
1.0,0.0,0.0,1.0,1.0,1.0). This best result was an overall accuracy of 54.98% and
average accuracy of 42.90%, significantly worse than the results achieved by
the SMC and the ML methods. Another "good" result was achieved when the
topographic sources were discarded (weights: 1.0,1.0,1.0,0.0,0.0,0.0). By
discarding these three sources, the LOP gave overall accuracy of 54.00% and
average accuracy of 42.50%. These best two results showed that the LOP
tended to give the ABMSS source something close to dictatorship. The LOP
was especially poor in terms of average accuracy. It did not distinguish well
between information classes, and threc of them were most of the time not
classified correctly at all.

The test results for the LOP (Table 4.50) were similar to the training
results. The major difference was that the highest overall and average
accuracies were now achieved when the topographic sources were discardeded
(weights: 1.0,1.0,1.(),0.0,().(),0.0). The best overall accuracy was 53.899% and
the highest average accuracy was 42.03%. The results in Tables 4.49 and 4.50
show clearly that not much can be expected from the LOP in classification of

the Anderson River data.

b) Topographic Data Modeled by Maximum Penalized Likelihood
Method

The topographic data were now modeled by the maximum penalized
likelihood method using the IMSL program D3SPL. The smoothing parameter

() giving the highest classification accuracies for training and test data was
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chosen as the smoothing parameter to be used in the experiments reported
here. The smoothing parameter that gave the best results for all the sources
was y==1.0. By looking at Tables 4.51 (training) and 4.52 (test) the single-
source classification results using the maximum penalized likelihood method
are seen to be very similar to the histogram results in Tables 4.45 and 4.46.
The histogram approach showed a little better accuracy for training data, but
the maximum likelihood method was slightly better in overall classification
accuracy of test data. The reliability measure using overall classification
accuracy ranked the sources in the same way as for its counterpart with the
histogram estimation. The equivocation reliability measure (see Tables 4.47
and 4.48) also ranked the sources in the same way as the equivocation for the

histogram estimation.

Looking at the SMC classification of training data in Table 4.51, it is seen
that the highest overall and average classification accuracies were achieved
when all the sources were combined with equal weights. The overal] accuracy
(70.47%) and average accuracy (70.05%) were a little higher than were
achieved with the histogram approach in Table 4.45. Several good results
with the different weights are reported in Table 4.51 but none are better than
those achieved with equal weights. The test results are shown in Table 4.52.
The highest accuracies there, as in the previous table, were achieved when all
the sources had equal weights. The overall accuracy (68.20%) was just above
the accuracy with the histogram approach in Table 4.46, but the average
accuracy (67.18%) was slightly less than with the histogram approach. For
the Anderson River data, these results indicate that there is not much

difference in using the maximum penalized likelihood method rather than the
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Table 4.51

Statistical Multisource Classification of Anderson
River Data: Training Samples. Topographic Sources
were Modeled by Maximum Penalized Likelihood Method.

Percent Agreement with Reference for Class
1 2 3 4 5 6 || OA | AVE
Single Sources

ABMSS 13.3 4.5 83.6 847 48.6 68.5 49.84 50.53
SAR sh 45.0 2.4 12,0 7.8 0.0 78.2 36.81 24.19
SAR st 35.5 1.3 40 129 1.3 86.0 36.57 23.50
Elevation 18.6 16.3 47.3 48.2 4856 59.3 40.39 39.71
Slope 32.5 0.5 8.2 2.4 52.1 68.2 33.44 27.32
Aspect 0.0 200 515 188 174 548 | 38.96 | 33.94
mhtesa Maultiple Sources
1.1.1.1.1.1. | 70.8 358 786 79.0 804 75.7 70.47 70.05
1..9.91.1.1. | 71.0 345 79.0 78.6 79.8 75.8 70.33 69.78
1.8.81.1.1. | 70.8 33.6 786 78.8 79.5 76.0 70.14 69.50
1..7.71.1.1. | 71.0 336 788 7.0 79.2 76.0 70.26 69.59
1..6.61.1.1. 71.0 332 786 79.0 79.8 76.2 70.28 69.63
1.5.51.1.1. | 70.6 321 79.4 78.8 79.8 76.0 70.06 69.45
1..4.41.1.1. | 70.3 318 803 78.8 80.1 75.7 70.02 69.50
1..3.31.1. 1. 70.2 31.8 81.8 78.8 79.5 75.6 70.09 69.60
1..2.21.1.1. | 70.2 318 814 78.6  79.5 75.4 65.97 69.48
1..1.11.1.1. | 69.7 309 816 78.6 79.8 75.4 69.78 69.32
1 00l 11 | 69.4 309 8.0 786 789 749 | 69.42  68.95
1.1.1..9.9.9 | 71.1 325 177.¢ 793 778 75.9 69.92 69.10
1.1.1..8.8.8 | 71.7 310 770 79.3 744 76.2 69.59 68.28
1.1.1..7.7.7 | 72.0 294 76.1 79.5 69.7 76.2 68.99 | 67.15
1.1.1..6.6.6 | 72.2 269 759 78.8 64.0 76.3 68.18 65.68
1.1.1..5.5.5 | 72.7 240 745 78.6  60.3 76.4 67.46 64.40
1.1.1..4.4.4 | 729 20.1 72.6 788 574 76.3 66.56 63.04
1.1.1..3.3.3 | 73.8 160 703 78.8 52.4 76.5 65.58 61.29
1.1.1..2.2.2 | 734 96 66.1 788 48.6 76.5 63.81 58.83
1.1.1..1.1 1 72.0 4.7 61.7 782 45.1 76.5 1 61.92 56.37
11000 | 702 36 555 7.0 420 765 | 60.25 | 54.25
1.1.1..01.1. | 72.3 160 763 780 625 760 || 66.51 | 63.50
1..9.9.9.9.9 | 71.4 323 785 79.3 77.9 76.0 70.06 69.22
1.8.8.9.9.9 | 71.0 321 782 79.3 177.6 76.2 69.97 69.08
1.8.81..9.9 | 71.0 332 786 79.2  79.2 76.0 70.21 69.53
1..8.81..91. | 70.8 332 786 79.3 79.2 76.0 70.16 69.51
1.8.81..81. | 708 334 785 79.5 78.5 76.1 70.18 69.47
. 88.8.8.8 | 71.9 301 77.6 792 738 76.3 || 6956 | 68.15
4 ofpixels | 971 551 548 542 317 1260 4189 | 4189 |

The columns labeled m h t e s a indicate the weights applied to the

sources (

in the same order as the single source classifications above).

CPU time for training and classification: 926 sce.
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Table 4.52

Statistical Multisource Classification of Anderson
River Data: Test Samples. Topographic Sources
were Modeled by Maximum Penalized Likelihood Method.

N Percent Agrcement with Reference for Class
1 2 3 4 5 6 | oA | AvE
Single Sources
ABMSS 12.4 4.1 81.0 80.5 49.5 67.1 48.34 49.10
SAR sh 44.4 1.9 13.1 7.9 0.0 77.6 36.62 24.15
SAR st 34.2 0.9 3.8 13.4 0.7 85.5 36.02 23.07
Elevation 15.6 14.4 46.8 47.8 47.1 57.3 38.64 38.18
Slope 30.9 0.4 6.9 2.0 50.9 65.5 31.94 26.11
Aspect 35.9 19.9 43.1 15.2 11.7 50.2 34.54 29.34
m htesa Multiple Sources
1.1.1.1. 1. 1. | 88.8 31.3 74.3 77.6 78.2 74.7 68.20 67.48
1..9.91.1.1. 68.6 30.8 74.2 71.7 78.0 74.8 68.12 67.36
1..8.81.1.1. 68.6 30.3 74.1 77.8 77.9 74.9 68.07 67.27
1..7.71.1.1. | 68.5 29.9 74.2 77.8 77.9 74.9 67.99 67.18
1..6.61.1.1. 68.4 29.6 74.1 77.8 77.9 74.8 87.91 67.10
1..5.51.1.1. | 88.3 29.5 74.1 77.8 77.9 74.7 67.87 67.08
1..4.41.1.1, | 68.1 29.0 74.3 77.8 77.8 74.7 67.74 66.94
1..3.31.1.1. 68.1 28.5 74.1 77.9 77.8 74.7 67.65 66.84
1..2.21.1.1. | 67.9 27.9 73.7 77.8 77.7 74.5 67.41 86.60
1..1.11.1.1. | 67.8 27.4 73.2 77.7 77.8 74.3 67.19 66.36
1..0.01.1.1. ] 87.3 26.8 72.9 77.6 77.6 74.3 66.92 66.09
1.1.1..9.9.9 69.0 29.8 73.3 78.1 75.5 75.0 67.87 86.77
1.1.1. 8.8 .8 89.1 28.5 72.3 784 72.1 75.3 87.48 65.94
1.1.1..7.7.7 69.4 26.4 71.3 78.5 68.3 75.5 66.93 64.92
1.1.1. .6 .8 .8 70.0 23.5 69.8 78.5 63.6 75.8 66.22 63.53
1.1.1..5.5.5 | 70.7 20.2 68.6 78.4 59.8 76.0 65.54 62.25
1.1.1. 4 4 4 71.4 16.6 66.5 78.3 55.3 76.3 64.71 60.74
1.1.1..3.3.3 | 71.9 1211 64.5 78.0 51.8 76.6 63.73 59.15
1.1.1..2.2.2 | 72.7 7.7 81.7 77.8 47.8 76.7 82.69 57.40
1.1.1..1.1 1 72.8 3.9 57.8 774 44.5 76.7 61.37 55.50
1.1.1..0.0.0 | 70.8 1.9 52.9 77.1 41.6 76.9 59.83 53.53
1.1.1..01. 1. 71.1 12.8 71.1 75.8 59.3 75.4 64.41 60.88
1..9.9.9.9.9 | 68.8 29.4 73.2 78.2 75.7 75.2 67.84 66.74
1.88.9.9.9 69.1 29.0 73.3 78.1 75.8 75.2 67.87 66.75
1..881..9.9 68.6 30.6 73.4 78.0 77.3 75.0 68.04 67.15
1..8.81..91. | 68.3 30.2 74.0 77.9 77.8 74.9 67.97 87.15
1..8.81..81. | 68.4 30.2 73.9 78.3 76.6 74.9 67.95 67.05
1..8.8.8.8.8 89.5 27.3 72.2 78.8 71.7 75.4 67.42 65.78
| # of pixels 8744 4960 4932 4881 2858 11340 || 37713 | 37713

The columns labeled m h t e s a indjcate the
sources (in the same order as the single sourc

weights applied to the
e classifications above).
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histogram approach for modeling the topographic data.

The results using the LOP with the maximum penalized likelihood
method are shown in Tables 4.53 (training) and 4.54 (test). The results using
the maximum penalized likelihood method were for the most part slightly
better than the results with the histograms (Tables 4.49 and 4.50). The
weaknesses of the LOP were evident regardless of the density estimation
method used. The LOP did an extremely poor job in classilying classes 2, 3
and 5. The highest accuracies for training (Table 4.49) were reached with the
same weights as with the histograms (discard the SAR sources; weights:
1.0,0.0,0.0,1.0,1.0,1.0). The "best” overall and average accuracies for training
data with the maximum penalized likelihood method (OA: 55.10%, AVE:
42.98%) were higher than the ones with the histogram approach. The "best"
result for test data (Table 4.54) was the same as with the histogram approach.
This "best" test result was reached when the topographic sources were

discarded; varying the density estimation method had no eflect.

c) Topographic Data Modeled by Parzen Density Estimation

Finally, the topographic data sources were modeled by Parzen density
estimation using a Gaussian kernel function. The following smoothing

parameters gave the best results and were consequently used:
1) Elevation data: ¢ = 0.5
2) Slope data: 0 = 0.75

3) Aspect data: 0 = 1.0
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Table 4.53

Anderson River Data: Training Samples.
Sources were Modeled by Maximum Penalized

pinion Pool Applied in Classification of
Topographic

Likelihood Method.

F Percent Agreement with Reference for Class
1 2 3 4 5 86 || OA | AVE
Single Sources
ABMSS 13.3 4.5 83.6 84.7 488 68.5 49.84 | 50.53
SAR sh 45.0 24 120 7.6 0.0 78.2 36.81 | 24.19
SAR st 35.5 1.3 4.0 129 1.3 86.0 36.57 | 23.50
Elevation 18.6 16.3 47.3 48.2 48§ 59.3 40.39 | 39.71
Slope 32.5 0.5 8.2 2.4 521 88.2 33.44 | 27.32
Aspect 3.2  22.0 51.5 18.8 17.4 548 38.96 | 33.94
mhtesa Multiple Sources
1.1.1.1.1. 1. | 55.2 0.0 0.0 498 00 955 47.96 | 33.42
1..9.91.1.1. | 56.7 0.0 00 535 0.0 954 48.77 | 34.27
1..881.1.1. | 576 0.0 00 559 0.0 95.2 49.22 | 34.79
1.7.71.1.1. 58.4 0.0 0.0 60.3 0.0 94.8 49.87 | 35.59
1..6.861.1.1. 59.5 0.0 0.0 64.2 0.0 94.4 50.51 36.36
1..5§.51.1.1. 60.8 0.0 0.0 68.3 1.8 94.4 51.42 | 37.50
1.4 .41.1.1. 62.6 0.0 0.0 71.4 4.4 93.8 52,30 | 38.71
1..3.31.1.1. 65.8 0.0 0.0 731 9.5 93.4 53.52 | 40.29
1..2.21.1.1. 69.3 0.0 0.0 74.2 12.0 92.4 54,36 | 41.31
1..1.11.1.1. | 705 0.2 0.0 749 164 91.2 54.74 | 42.20
11..0.01.1.1. | 71.8 0.2 0.0 76.4 19.8 90.0 55.10 | 42.98
1.1.1..9.9.9 56.4 0.0 0.0 53.7 0.0 95.3 48.70 | 34.24
1.1.1..8.8.8 58.3 0.0 0.0 58.9 0.0 94.7 49.61 35.30
1.1.1..7.7.7 59.1 0.0 0.0 62.2 0.0 94.4 50.16 35.96
1.1.1..6.6.6 | 60.8 0.0 0.0 865.5 0.3 93.9 50.82 | 38.74
1.1.1..5.5.5 | 61.2 0.0 0.0 8685 2.2 935 51.32 | 37.55
1.1.1. 4.4 .4 | 62.8 0.0 0.0 703 7.9 92.9 52.21 | 38.99
1.1.1..3.3.3 | 64.4 0.0 0.0 714 148 928 53.19 | 40.58
1.1.1..2.2.2 | 68.1 0.0 0.0 72.7 188 92.0 53.81 | 41.57
1.1.1.1.1 .1 67.6 0.0 0.0 736 21.1 90.5 54.00 | 42.13
1.1.1..0.0.0 | 88.2 0.0 00 731 243 894 54.00 | 42,50
1.1.1. 01.1 59.1 0.0 0.0 30.1 0.0 94.8 46.12 30.87
1.9.9.9.9.9 57.7 0.0 0.0 57.7 0.0 94.8 49.37 35.04
1..8.8.9.9.9 | 588 0.0 0.0 61.4 0.0 94.5 50.01 | 35.79
1..8.81..9.9 | 58.1 0.0 0.0 860.9 0.0 947 49.82 | 35.61
1..8.81..91 58.0 0.0 0.0 58.9 0.0 95.1 49.65 | 35.32
1.8.81..81. | 584 0.0 0.0 61.1 0.0 94.8 49.96 | 35.72
1..8 -8.8.8.8 61.2 0.0 0.0 65.9 0.0 94.0 50.99 | 36.84
# of pixels 971 551 548 542 317 1260 || 4189 I 4189

The columns labeled m h t e s 2 indjc
sources (in the same order as the singl

CPU time for training and classification: 900 sec.

ate the weights applied to the
e source classifications above).
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Table 4.54

Linear Opinion Pool Applied in Classification of
Anderson River Data: Test Samples. Topographic
Sources were Modeled by Maximum Penalized Likelihood Method.

Percent Agreement with Reference for Class

1 2 3 4 5 6 || 0A | AVE
Single Sources

ABMSS 12.4 4.1 81.0 80.5 49.5 67.1 48.34 49.10
SAR sh 44.4 1.9 13.1 7.9 0.0 77.6 36.62 24.15
SAR st 34.2 0.9 3.8 13.4 0.7 85.5 36.02 23.07
Elevation 15.6 14.4 46.8 47.8 47.1 57.3 38.64 38.18
Slope 30.9 0.4 6.9 2.0 50.9 65.5 31.94 26.11
Aspect 35,9 19.9 43.1 15.2 11.7 50.2 34.54 | 29.34
mhtesa Multiple Sources
1.1.1.1. 1. 1, 51.3 0.0 0.0 48.9 0.0 95.7 47.00 32.65
1..9.91.1. 1. 52.0 0.0 0.0 50.8 0.0 95.5 47.36 33.06
1..8.81.1.1. 53.0 0.0 0.0 53.6 0.0 95.2 47 .86 33.64
1..7.71.1. 1. 54.3 0.0 0.0 56.8 0.1 94.9 48.49 34.35
1..6.61.1.1. 55.3 0.0 0.0 60.2 0.3 94.7 49.12 35.09
1..5.51.1. 1. 57.0 0.0 0.0 63.4 0.8 94.2 49.80 35.90
1..4.41.1. 1, 58.9 0.0 0.0 66.8 2.0 §93.5 50.56 36.86
1..3.31.1.1. 61.4 0.0 0.0 69.7 4.2 92.7 51.44 38.00
1..2.21.1. 1. 63.6 0.0 0.0 71.6 7.7 91.6 52.14 39.09
1..1.11.1. 1, 65.9 0.0 0.0 73.2 11.8 90.2 52.78 40.19
L 0.01.1.1. | 680 00 00 745 160 _ 88.6 | 53.26 | 41.18
1.1.1..9.9.9 53.0 0.0 0.0 51.2 0.0 95.6 47.67 33.31
1.1.1. 8.8.8 54.8 0.0 0.0 55.1 0.0 95.3 48.48 34.19
1.1.1..7.7.7 56.7 0.0 0.0 58.5 0.0 94.8 49.25 35.02
1.1.1..6 8.6 58.1 0.0 0.0 62.4 0.4 94.4 49.95 35.87
1.1.1..5.5.5 59.8 0.0 0.0 65.3 2.0 93.8 50.69 36.83
1.1.1. .4 .4 4 61.7 0.0 0.0 67.6 4.9 93.1 51.43 37.88
1.1.1..3.3.3 63.7 0.0 0.0 69.6 8.5 92.3 §2.18 39.01
1.1.1..2.2.2 65.8 0.0 0.0 71.3 12.7 91.4 52.92 40.19
1.1.1..1.1 1 67.4 0.0 0.0 72.6 16.6 90.3 53.44 41.15
1.1.1..0.0.0 | 689 00 00 731 208 893 | 53.89 | 42.03
1.1.10L1 | 570 00 00 2.1 00 951 || 4519 | 29.70 |
1...9.9.9.9 54.0 0.0 0.0 54.5 0.0 95.3 48.22 33.96
1..8.8.9.9.9 55.1 0.0 0.0 57.7 0.1 94.9 48.79 34.63
1.8.81..9.9 54.2 0.0 0.0 57.0 0.0 95.0 48.52 34.37
1..8.81..91. 53.8 0.0 0.0 55.4 0.0 95.1 48.23 34.04
1..8.81..81. 54.5 0.0 0.0 57.2 0.1 94.9 48.57 34.44
1..8.8.8.8.8 57.8 0.0 0.0 61.4 0.4 94.5 49.74 35.65
# of pixels 8744 4960 4932 4881 2856 11340 || 37713 | 37713 ]

The columns labeled m h t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).
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The results of the single-source Parzen density classifications are shown in
Tables 4.55 and 4.56. By looking at the training results (Table 4.55) and
comparing them to the results for the other density estimation methods
(Tables 4.45 and 4.51) it is seen that the Parzen density estim:ition does not
perform as well in classification accuracy of training data (similar to the
Colorado experiment). In contrast the test results (Table 4.56) using the
Parzen density method outperformed the histogram (Table 4.46) and the
maximum penalized likelihood estimates (Table 4.52). For example for the
aspect data the Parzen density estimation improved the overall accuracy of
test data by just under 2.0% as compared to the other methods. Two percent

increase in accuracy for these data is noteworthy

The reliability measure based on the overall classification accuracy
ranked the data sources in the same order as it had for the other density
estimation methods. However, looking at the equivocations in Tables 4.47 and
4.48 it can be seen that the equivocation ranked the sources in the following
manner: 1) ABMSS, 2) elevation, 3) aspect, 4) SAR sh, 5) slope and 6) SAR
st. The poor classification accuracy of training data with Parzen density
estimation moved the slope data down one spot in the ranking; the overall
classification accuracy measure still ranked the slope data as the worst data

source.

The results using SMC are also shown in Tables 4.55 (training) and 4.56
(test). The training results showed that when all the data sources were given
equal weights, overall accuracy of 69.32% and average accuracy of 68.62%;
were achieved. Both of these accuracies were lower than the ones reached

with the other density estimation methods. The overall accuracy was



161

Table 4.55

Statistical Multisource Classification of Anderson
River Data: Training Samples. Topographic Sources
were Modeled by Parzen Density Estimation.

Percent Agreement with Reference for Class
1 2 3 4 5 6 || OA | AVE
Single Sources

ABMSS 13.3 4.5 83.6 84.7 48.6 68.5 49.84 50.53
SAR sh 45.0 2.4 12.0 7.6 0.0 78.2 36.81 24.19
SAR st 35.5 1.3 4.0 12.9 1.3 86.0 36.57 23.50
Elevation 13.2 14.5 50.7 48.0 48.6 61.0 39.84 39.33
Slope 36.4 0.4 0.0 1.5 423 71.8 33.47 25.40
Aspect 39.8 238 464 196 6.0 540 || 37.65 | 31.60 |
mhtesa Multiple Sources
1.1.1.1. 1. 1. 68.7 34.3 77.4 79.5 76.3 75.5 69.32 68.62
1..9.91.1.1. 68.9 32.8 77.9 79.5 76.3 75.6 69.28 68.51
1..8.81.1.1. 68.9 33.2 78.5 79.5 75.7 75.8 69.42 68.60
1..7.71. 1. 1. 68.9 33.0 78.8 79.3 75.7 75.7 69.40 68.59
1..6.61.1.1. 68.6 31.9 78.8 79.2 75.4 75.6 69.09 68.24
1..5.51.1. 1. 68.9 31.8 78.8 79.3 75.4 75.6 69.16 68.28
1.4 .41.1. 1. 68.6 31.2 78.6 795 75.1 75.6 69.01 68.11
1..3.31.1. 1. 69.4 30.5 80.1 79.0 75.1 75.5 69.18 68.26
1..2.21. 1. 1. 69.0 29.2 79.4 79.0 74.8 75.1 68.68 67.73
1..1.11.1. 1. 69.2 28.7 79.4 78.8 74.4 74.8 68.54 67.56
1..0.01.1.1. 69.0 28.9 79.7 78.8 74.1 74.8 68.51 67.55
1.1.1..9.9.9 69.1 33.2 76.1 79.5 72.2 75.9 68.92 66.76
1.1.1. .8.8 .8 69.9 31.6 75.0 79.3 68.1 76.0 68.44 66.66
1.1.1..7.7.7 70.6 29.9 74.8 79.2 63.1 76.2 68.04 65.64
1.1.1. .6 .6 .6 71.4 26.3 74.6 78.8 59.6 76.1 67.37 64.47
1.1.1..5.5.5 72.2 22.3 73.9 78.8 56.5 76.7 66.75 63.32
1.1.1. .4 4 4 72.4 19.1 72.3 78.8 54.3 76.3 65.98 62.17
1.1.1..3.3 .3 73.0 14.2 68.1 79.2 51.1 76.3 64.74 60.29
1.1.1..2.2.2 72.3 9.1 65.0 79.0 479 76.4 63.28 58.28
1.1.1..1.1 .1 72.1 5.1 61.1 78.2 44.5 76.7 61.92 56.28
1.1.1..0.0.0 | 702 36 555 777 42.0 76.5 | 60.25 | 54.25 |
1.1.1.01.1. | 721 138 755 177.7 546 758 || 65.39 | 61.58
1..9.9.9.9.9 69.9 32.3 76.1 79.5 72.9 75.8 69.01 87.75
1..8.8.9.9.9 69.7 32.1 77.2 795 72.9 76.0 69.13 67.90
1..8.81..9.9 69.7 32.1 77.2 79.5 72.9 76.0 69.13 67.90
1..8.81..91. 68.8 33.2 78.3 79.9 75.4 75.8 69.40 68.56
1..8.81..81. 68.9 33.6 78.1 79.7 73.5 75.8 69.28 68.26
1..8.8.8.8.8 71.2 31.2 76.1 79.2 67.5 76.0 68.78 66.86
# of pixels 971 551 548 542 317 1260 4189 4189

The columns labeled m h t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).

CPU time for training and classification: 8479 sec.
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Statistical Multisource Classification of Anderson
River Data: Test Samples. Topographic Sources
were Modeled by Parzen Density Estimation.

Percent Agreement with Reference for Class
1 2 3 4 5 6 | OA | AVE
Single Sources

ABMSS 12.4 4.1 81.0 80.5 49.5 67.1 48.34 49.10
SAR sh 44 .4 1.9 13.1 7.9 0.0 77.6 36.62 24.15
SAR st 34.2 0.9 3.8 13.4 0.7 85.5 36.02 23.07
Elevation 12.0 13.3 51.1 47.3 47.1 59.6 38.82 38.40
Slope 35.5 0.3 0.0 0.9 42.7 70.3 32.76 24.95
Aspect 39.5 23.3 43.7 17.6 3.2 52.4 36.19 29.95
mhtesa Multiple Sources
1.1.1.1.1. 1, 68.9 32.4 75.5 78.5 75.6 74.9 68.51 67.63
1..9.91.1.1. 69.0 32.0 75.9 78.7 75.5 75.0 68.57 67.67
1. .8.81.1.1. 69.0 31.8 75.9 78.6 75.5 75.1 68.58 67.65
1..7.71.1. 1. 68.7 31.6 75.9 78.6 75.6 75.1 68.51 67.60
1..6.61.1.1. 68.7 31.2 76.1 78.5 75.9 75.1 68.47 67.59
1..5.51.1.1. 68.6 30.9 76.3 78.6 75.8 75.0 68.41 67.54
1..4.41.1.1. 68.6 30.2 76.2 78.5 75.4 74.9 68.24 67.31
1..3.31.1.1. 68.5 29.5 76.2 78.6 75.4 74.8 68.09 67.16
1..2.21.1.1. 68.1 28.7 76.0 78.7 75.3 74.6 87.84 66.91
1..1.11.1.1. 68.2 28.2 75.7 78.7 75.1 74.5 67.68 66.73
1..0.01.1.1. 67.8 27.5 75.1 78.6 75.1 74.3 67.36 66.40
1.1.1..9.9.9 69.3 30.7 74.3 78.8 72.3 75.1 68.10 66.76
1.1.1. .8.8.8 69.6 29.0 73.4 78.8 68.3 75.4 67.57 65.73
1.1.1..7.7.7 69.9 26.7 72.4 78.8 64.8 75.7 67.05 64.71
1.1.1. .6 .6 .6 70.3 24.2 70.7 78.6 60.8 75.9 66.32 63.41
1.1.1..5.5.5 70.8 21.2 67.1 78.5 57.1 76.3 65.62 62.13
1.1.1. 4 4 4 71.3 16.7 67.2 78.3 53.9 76.4 64.72 60.64
1.1.1..3.3.3 72.0 12.3 64.6 78.1 50.2 76.6 63.69 58.96
1.1.1..2 .2 .2 72.8 7.9 61.9 77.8 46.8 76.8 82.71 57.32
1.1.1..1.1.1 72.4 4.2 57.9 774 44.2 76.8 61.37 55.49
1.1.1..0.0.0 70.8 1.9 52.9 77.1 41.6 76.9 59.83 53.52
1.1.1..01.1. 72.0 11.5 72.2 76.8 54.6 75.5 64.42 60.42
1.9.9.99.9 69.4 30.4 74.6 78.9 72.2 75.3 68.18 66.80
1..8.8.9.9.9 69.4 30.0 75.1 79.0 72.0 75.3 68.18 668.77
1.8.81..9.9 69.1 31.5 75.1 78.9 74.1 75.3 68.42 67.31
1..8.81..91 68.8 31.6 75.6 78.8 74.2 75.1 68.41 67.37
1..8.81..81 68.7 31.6 75.5 79.0 72.7 75.1 68.27 67.09
1..8.8.8.8.8 70.0 27.9 73.5 78.8 68.1 75.8 87.58 65.64
# of pixels 8744 4960 4932 4881 2856 11340 37713 | 37713

The columns labeled m h t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).
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increased slightly in Table 4.55 by lowering the weights on the SAR sources to
0.8 and keeping the weights of the other sources at 1. The highest overall
accuracy (69.42%) was still lower than the "best" results for training data
achieved by the other density estimation methods. The reason for this low
accuracy was clearly that the Parzen estimation was poorer in classifying the
training data than the other methods. Looking at the test results in Table
4.56 it can be seen that the Parzen density estimation gave the highest overall
and average accuracies of test data. When the sources were combined with
equal weights, the overall accuracy was improved to 68.51% (histogram:
68.19%, maximum penalized likelihood method: 68.20%) and the average
accuracy was increased to 67.63% (histogram: 67.59%, maximum penalized
likelihood method: 67.48%). When the weights of the SAR data sources were
decreased to 0.8, without changing the weights of the other sources, the
overall and average accuracies both improved slightly (OA: 68.58%, AVI:
67.65%) as compared to the equal weights result. This overall accuracy was
the highest test result achieved in the all the SMC experiments for the
Anderson River data. Therefore, it can be concluded from these results that
the SMC generalizes well when Parzen density estimation is used to model the

non-Gaussian data sources.

The results using the LOP with Parzen density estimation are shown in
Tables 4.57 (training) and 4.58 (test). As a consequence of the poor training
performance by the Parzen density estimation, the training accuracies using
the LOP in Table 4.57 were worse than those obtained with the other density
estimation methods. In contrast the test accuracies using Parzen density

estimation were slightly better than the ones with the other methods.
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Table 4.57

Linear Opinion Pool Applied in Classification of
Anderson River Data; Training Samples. Topographic
Sources were Modeled by Parzen Density Estimation.

[ Percent Agreement with Reference for Class j
1 2 3 4 5 6 || OA | AVE
Single Sources
ABMSS 13.3 4.5 83.6 84.7 48.8 68.5 49.84 | 50.53
SAR sh 45.0 2.4 12.0 7.6 0.0 78.2 36.81 24.19
SAR st 35.5 1.3 4,0 12.9 1.3 86.0 36.57 | 23.50
Elevation 13.2 145 50.7 48.0 48.8 61.0 39.84 | 39.33
Slope 36.4 0.4 0.0 1.5 423 71.8 33.47 | 25.40
Aspect 39.8 238 46.4 19.6 6.0 54,0 37.65 | 31.60
mhtesa Multiple Sources
1.1.1.1.1.1. 53.1 0.0 0.0 49.8 0.0 95.9 47.60 33.14
1.9.91.1.1. 54.1 0.0 0.0 52.0 0.0 95.8 48.08 33.85
1..8.81.1.1. 54.9 0.0 0.0 57.4 0.0 95.6 48.89 34.64
1..7.71.1. 1. | 55.8 0.0 0.0 60.3 0.0 95.2 49.37 | 35.22
1..6.61.1.1. | 57.3 0.0 0.0 64.8 0.0 95.2 50.27 | 38.20
1..5.51.1.1. | 58.8 0.0 0.0 67.9 0.3 94.7 50.92 | 36.95
1..4.41.1.1. | 60.8 0.0 0.0 71.6 0.9 94.0 51.71 37.89
1..3.31.1.1. | 63.0 0.0 0.0 729 5.0 93.5 52.54 | 39.07
1..2.21.1.1, | 65.3 0.0 0.0 74.0 9.8 92.6 53.31 | 40.28
1..1.11.1.1. ] 67.8 0.2 0.0 751 13.9 91.6 54.00 | 41.38
1..0.01.1.1. | 68.7 0.2 0.0 78.6 17.7 89.9 54.24 | 42.17
1.1.1..9.9.9 | 542 0.0 0.0 54.2 0.0 95.2 48.22 | 33.94
1.1.1..8.8.8 | 56.0 0.0 0.0 60.0 0.0 94.8 49.25 | 35.12
1.1.1..7.7.7 | 578 0.0 0.0 629 0.0 94.3 49.89 | 35.83
1.1.1. .6 .6 .6 | 58.7 0.0 0.0 65.9 0.0 93.9 50.37 | 36.41
1.1.1..5.5.5 | 60.2 0.0 0.0 68.5 1.6 93.3 51.01 37.27
1.1.1. .4 .4 .4 | 82,9 0.0 0.0 70.1 7.9 92.8 52.18 38.95
1.1.1..3.3.3 | 64.8 0.0 0.0 71.0 13.9 92.5 53.06 | 40.36
1.1.1..2.2.2 | 66.0 0.0 0.0 729 18.6 91.7 53.74 | 41.54
1.1.1..1.1 .1 67.3 0.0 0.0 73.1 22.1 90.6 53.97 42.17
1.1.1..0.0.0 | 68.2 0.0 0.0 73.1 24.3 89.4 54.00 | 42.50
1.1.1..01.1. | 58.2 0.0 0.0 30.8 0.0 94,7 45.95 | 30.61
1..9.9.9.9.9 | 55.3 0.0 0.0 58.9 0.0 95.2 49.08 | 34.90
1..8.8.9.9.9 | 572 0.0 0.0 62.2 0.0 94.6 49.75 | 35.66
1..8.81..9.9 | 55.7 0.0 0.0 61.3 0.0 95.0 49.42 35.33
1..8.81..91. | 55.6 0.0 0.0 59.0 0.0 95.5 49.25 | 35.02
1..8.81..81. | 56.2 0.0 00 8614 0.0 95.0 49.56 | 35.44
1..8.8.8.8.8 | 58.2 0.0 0.0 66.1 0.0 94.0 50.30 368.37
# of pixels 971 551 548 542 317 1260 4189 4189

The columns labeled mh t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).

CPU time for training and classification: 8453 sec.
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Table 4.58

Linear Opinion Pool Applied in Classification of
Anderson River Data: Test Samples. Topographic

Sources were Modeled by Parzen Density Estimation.

Percent Agreement with Reference for Class
1 2 3 4 5 6 || OA | AVE
Single Sources

ABMSS 12.4 4.1 81.0 80.5 49.5 67.1 48.34 49.10
SAR sh 44.4 1.9 13.1 7.9 0.0 77.6 38.62 24.15
SAR st 34.2 0.9 3.8 13.4 0.7 85.5 36.02 23.07
Elevation 12.0 13.3 51.1 47.3 47.1 59.6 38.82 | 38.40
Slope 35.5 0.3 0.0 0.9 42.7 70.3 32.76 24.95
Aspect 39.5 23.3 43.7 17.8 3.2 52.4 36.19 29.95
mhtesa Multiple Scurces
1.1.1.1.1. 1. 52.4 0.0 0.0 49.6 0.0 95.9 47.39 32.98
1..9.91.1.1. 53.1 0.0 0.0 51.8 0.0 95.6 47.77 33.42
1..8.81.1.1. 54.0 0.0 0.0 54.3 0.0 95.4 48.25 33.96
1..7.71. 1. 1. 55.2 0.0 0.0 57.3 0.0 95.2 48.84 34.62
1..6.6 1. 1. 1. 56.5 0.0 0.0 60.7 0.0 95.0 49.50 35.36
1..5.51.1. 1. 57.8 0.0 0.0 64.5 0.2 94.4 50.18 36.18
1..4.41.1. 1. 59.7 0.0 0.0 67.7 1.0 94.0 50.95 37.07
1..3.31.1.1. 61.9 0.0 0.0 70.1 2.8 93.3 51.67 38.00
1..2.21.1. 1. 64.1 0.0 0.0 72.2 5.9 92.2 52.37 39.07
1..1.11. 1. 1. 66.3 0.1 0.0 73.9 9.8 90.7 52.96 40.13
1..0.01.1.1. 68.1 0.2 0.0 75.0 14.3 88.9 53.34 41.09
1.1.1..9.9.9 54.1 0.0 0.0 52.5 0.0 95.7 48.11 33.71
1.1.1..8.8.8 55.8 0.0 0.0 56.2 0.0 95.2 48.85 34.54
1.1.1..7.7 .7 57.4 0.0 0.0 60.0 0.0 94.8 49.57 35.37
1.1.1. .6 .6 .6 58.8 0.0 0.0 83.1 0.1 94.2 50.14 36.05
1.1.1..5.5.5 60.5 0.0 0.0 66.0 1.8 93.6 50.87 36.99
1.1.1. 4.4 4 62.6 0.0 0.0 68.0 4.7 93.0 51.60 38.03
1.1.1..3.3.3 64.6 0.0 0.0 69.5 8.5 92.1 52.33 39.14
1.1.1..2.2 .2 66.5 0.0 0.0 71.3 12.8 91.3 53.06 40.29
1.1.1..1.1.1 68.1 0.0 0.0 72.3 16.7 90.4 53.59 41.25
1.1.1..0.0.0 68.9 0.0 0.0 73.1 20.8 89.3 53.89 42.03
1.1.1..01.1 57.6 0.0 0.0 28.6 0.0 95.1 45.66 | 30.22
1..9.9.9.9.9 55.1 0.0 0.0 55.4 0.0 95.4 48.64 34.32
1..8.8.9.9.9 58.0 0.0 0.0 58.3 0.0 95.1 49.13 34.91
1..8.81..9.9 55.4 0.0 0.0 57.8 0.0 95.2 48.90 34.68
1..8.81..91 54.9 0.0 0.0 56.3 0.0 95.3 48.67 34.41
1..8.81..81. 55.8 0.0 0.0 58.1 0.0 95.1 49.01 34.80
1..8.8.8.8.8 58.2 0.0 0.0 62.8 0.1 94.7 50.08 | 35.95
# of pixels 744 4960 4932 4881 2856 11340 || 37713 | 37713

The columns labeled m h t e s a indicate the weights applied to the
sources (in the same order as the single source classifications above).
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However, the highest overall and average accuracies of test data were reached
when the topographic sources were discarded, exactly the same result as for

the other density estimation methods.

d) General Comments on the Statistical Methods

The SMC was clearly the best statistical method used. The LOP, on the
other hand, did not perform well at all. The three density estimation methods
showed different characteristics. The listogram was the best method in terms
of classification accuracy of training d:ta. The maximum penalized likelihood
method and the Parzen density estination showed better performance in
classification accuracy of test data. The Parzen density estimation gave the
best overall classification accuracy of test data for the combined sources.
However, the Parzen density estimation was computationally more intensive
than the other density estimation methods as seen in Table 4.60. It took
fifteen times longer to train and classify the data using this method as
compared to the maximum penalized likelihood method and 1347 times longer
as compared to the histogram method. The maximum penalized likelihood
method and the Parzen density estimation were equally fast for the Colorado
data, but for the Colorado data the test data size was smaller. Here the test
pixels were 37713 as compared to orly 1011 for the Colorado data. The
computational complexity of the Parzen estimator is a shortcoming to be

taken into account.

The SMC method was faster than the ML classifier when either the
histogram or the maximum penalized likelihood methods were used for density

estimation. The SMC also outperformed the ML in terms of classification
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Table 4.59

Source-Specific CPU Times (in Sec) for Training Plus
Classification of Gaussian Data Sources.

Sensor ABMSS | SAR Shallow_ SAR Stee
# of channels 11 4 4
CPU time 198 | 42 42

Table 4.60

Source-Specific CPU Times (in Sec) for Training
Plus Classification of Non-Gaussian Data Sources
with Regard to Different Modeling Methods.

Method Histogram | Maximum Penalized Parzen
Estimation Likelihood Method_ Estimation

CPU time 2 118 2694
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accuracy. However, the reliability factor mechanism did not help much in the
SMC classification of the Anderson River data except when the Parzen density
estimator was used. The reasons why the results could not be improved for
the other density estimators with different weighting are unclear. The
Anderson River data are very hard to classify accurately and the classifiers

might need all the information they can get.

The LOP method showed very poor performance both in terms of overall
and average accuracies. The LOP was seen to be of very questionable value as
a multisource classification tool. As stated in Chapter 2, the LOP has in
general more tendency to result in multimodal distribution than a logarithmic
opinion pool (SMC). Because of the multimodality of the LOP it needs
agreeable sources to perform well, i.e., sources which tend to make the same
source-specific decisions for most of the input data. The sources used in the
multisource classification *of both the Anderson River and the Colorado data

cannot be considered agreeable.

4.3.2 Results: Neural Network Methods

The CGLC and CGBP were trained with Gray-coded input data. The
Anderson River data has 22 data channels. Each channel was coded with 8
bits and therefore, 176 (or 8*22) input neurons were used for both networks.
The data were trained on the 9 data classes discussed in the beginning of
Section 4.3. Therefore, 9 output neurons were selected. The convergence
criterion for the training procedures was selected the same as in the Colorado
experiments (gradient of the error function has to be less than 0.0001 for the

procedure to converge).
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The results using the CGLC are shown in Tables 4.61 (training) and 4.62
(test). After 295 iterations, the training procedure was stopped since the error
function did not decrease further. The highest overall accuracy of training
data was achieved after 250 iterations (OA: 73.55%, Ave: 72.48%). These
results were significantly better than the ones reached by the statistical
methods. The best test result using the CGLC was achieved after 295
iterations. There the CGLC gave overall accuracy of 67.88% for test data and
66.48%% average accuracy. Lhe SMC with all density estimation techniques
achieved better results for test data (histogram method; OA: 68.13%, AVE:

67.39%).

The CGBP was tested extensively with three layers of neurons since
adding more layers did not improve the classification accuracy. The CGBP
was implemented with 25 hidden neurons. Adding more hidden neurons did
not increase the classiﬁcé.tion accuracy. The results of the CGBP experiment
are shown in Tables 4.63 (training) and 4.64 (test). The CGBP showed
excellent performance in classification of training data. When the training
procedure stopped (the error function did not decrease further) after 1417
iterations, the overall accuracy had reached 99.47% and the average accuracy
99.43%. Obviously the CGBP outperformed all the other methods in
classification of training data. However, the CCGBP did not do much better in
testing than the CGLC. The highest accuracies of test data were reached after
only 200 iterations (OA: 67.95%, AVE: 66.60%). These accuracies were lower
than the ones achieved by the SMC method with any of the three density
estimation approaches. After 200 iterations, the test performance of the

CGBP fell off significantly. The test accuracies continued to decrease until the
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Table 4.61

Conjugate Gradient Linear Classifier
Applied in Classification of the Anderson
River Data Set: Training Samples.

Number of | CPU Percent Agreement with Reference for Class
iterations time 1 2 3 4 5 6 OA | AVE
50 1447 | 656 456 71.0 70.7 78.9 82.6 70.45 | 69.07
100 2209 | 70.2 436 72.6 73.1 83.9 84.0 [ 72.57 | 71.23
150 2923 | 69.7 445 723 736 85.5 84.6 72.91 | 71.70
200 3787 | 69.4 43.4 72.1 744 88.0 85,5 73.22 | 72.13
250 4488 | 70.1 45.2 723 740 88.0 85.3 73.55 | 72.48
285 5129 | 69.4 45.2 723 74.5 877 85.6 73.50 | 72.45
# of pixels 971 551 548 542 317 1260 4189 4189
Table 4.62
Conjugate Gradient Linear Classifier
Applied in Classification of the Anderson
River Data Set: Test, Samples.

Number of Percent Agreement with Reference for Class

iterations 1 2 3 4 5 8 OA AVE

50 61.5 36.9 67.0 67.8 72.5 79.9 86.17 64.27

100 63.8 35.5 69.2 68.4 79.2 81.3 67.82 66.23

150 63.4 37.1 68.8 68.1 80.0 81.0 67.80 66.40

200 63.4 38.0 68.8 68.2 79.9 80.4 87.87 66.45

250 63.5 37.9 68.5 67.9 79.9 80.7 87.74 66.40

295 63.5 38.2 68.7 68.1 79.8 80.7 67.88 66.48

# of pixels | 8744 4960 4932 4881 2856 11340 || 37713 37713 |
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Table 4.63

Conjugate Gradient Backpropagation
Applied in Classification of the Anderson
River Data Set: Training Samples.

Number of | CPU Percent Agreement with Reference for Class
iterations time 1 2 3 4 5 ] OA | AVE |
50 3780 | 58.1 34.1 67.9 64.0 76.0 83.4 65.96 63.92
100 6173 68.0 45.6 714 70.7 83.3 83.9 71.76 70.48
150 8607 73.7 47.2 770 73.2 85.5 86.0 75.17 73.77
200 10941 76.2 57.4 79.9 73.4 89.3 88.8 78.63 77.50
250 13401 82.2 69.3 82.5 76.8 90.9 90.4 82.96 82.02
300 15554 85.4 76.2 86.3 80.8 93.4 91.9 86.27 85.67
350 19625 89.9 82.0 90.1 81.0 95.6 94.0 89.40 88.77
400 20435 93.4 84.6 93.4 82.7 95.9 94.8 91.45 90.80
600 29767 98.4 95.1 99.5 87.1 99.7 98.1 96.66 | 96.32
900 44296 99.7 99.3 99.8 90.6 99.7 99.5 98.42 9R8.10
1200 58623 99.7 99.6 100.0 97.4 100.0 99.7 99.45 99.40
1417 68951 | 99.7 99.6 100.0 97.6  100.0  99.7 || 99.47 | 99.43
# of pixels 971 551 548 542 317 1260 || 4189 | 4189
Table 4.64
Conjugate Gradient Backpropagation
Applied in Classification of the Anderson
River Data Set: Test Samples.

Number of Percent Agreement with Reference for Class

iterations 1 2 3 4 5 6 OA AVE

50 55.8 27.6 64.5 61.1 74.6 81.3 63.03 60.82

100 62.3 35.8 67.5 67.7 79.0 81.4 67.20 65.62

150 64.5 35.6 69.2 68.4 77.0 81.1 67.74 65.97

200 62.7 43.6 67.3 68.1 77.5 80.4 67.95 66.60

250 62.8 45.5 64.6 65.3 74.6 79.3 66.95 65.53

300 62.2 44.5 62.5 64.8 71.9 78.7 65.95 64.10

350 61.0 43.8 62.3 63.0 71.8 77.8 64.96 63.25

400 61.8 42.4 61.8 62.3 69.2 77.3 64.56 62.47

600 57.8 38.3 57.3 61.2 65.1 73.8 60.93 58.88

900 55.2 36.8 55.0 63.3 61.7 69.9 58.73 56.98

1200 53.5 35.8 54.1 63.7 62.2 69.4 58.00 56.45

1417 53.8 354 543 636 620 693 || 58.00 | 56.40

# of pixels | 8744 4960 4932 4881 2856 11340 || 37713 | 37713
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training procedure was stopped. After 1417 iterations the overall accuracy of
test data was only 58.00% and the average accuracy only 56.40%. Obviously
the training procedure of the CGBP had the problem of overtraining. When it
stopped it usually showed excellent performance for training data, but it did
not do well for test data. To do well for test data it has to be stopped earlier.
When to stop the training is a major problem. In this regard, the CGLC was a
better choice in the classification of Anderson River data. When the CGLC
training procedure of the CGLC stopped, it produced results close to its best

training and test results.

The training procedure for the CGBP was also more time consuming
than for the CGLC. The hidden neurons were the obvious reason for this.
After 200 iterations the CGBP had needed 10941 CPU sec and after 1417
iterations it had needed 68951 CPU sec. However, the CGLC needed 5129
CPU sec for 295 iterations. Also, the CGBP needed 1362 CPU sec in
classification of the data but the CGLC needed 622 sec. In comparison, the
SMC classified the data in only 107 CPU sec and was trained in 402
(histogram approach), 926 (maximum penalized likelihood method) or 8453

(Parzen density estimation) sec.

The best classification results in the experiment on Anderson River data
are shown in Figure 4.9. Looking at this figure it is seen that the SMC
achieved higher overall accuracy in classification of test data as compared to
the neural networks although the neural networks achieved higher training
accuracies. Thus,. the SMC classifier outperformed the neural networks in this
experiment both in terms of classification accuracy of test data and speed

(excluding Parzen density estimation).
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4.4 Experiments with Simulated HIRIS Data

This experiment investigated how well the statistical methods and the
neural network models perform as classifiers of very-high-dimensional data
(data that have many features, possibly hundreds of them). In these
experiments the very-high-dimensional data were simulated High Resolution
Imaging Spectrometer (HIRIS) data. The HIRIS instrument is planned to be a
part of a cluster of scientific instruments forming the Earth Observing System
(EOS). A simulation program called RSSIM [84] was used to simulate the

data.

The simulated data used in the experiments were Gaussian distributed,
which is one of the reasons why multivariate statistical approaches are used
for the classification. However, a problem with using conventional
multivariate statistical approaches for classification of multidimensional data
is that these methods rely on having nonsingular (invertible) class-specific
covariance matrices. When n features are used, the training samples for each
class need to include at least n+1 different samples so that the matrices are
nonsingular. Therefore, the covariance matrices may be singular in high-

dimensional cases involving limited training samples.

The RSSIM simulation program generated 201 spectral bands of HIRIS
data. The HIRIS data were simulated based on statistics from Earth surface
reflectance measurements from a site in Finney County, Kansas, on May 3,
1977. A total of 1551 observations were combined from three information
classes: winter wheat, summer fallow, and an "unknown" class. Each class
consisted of 675 samples, The' information classes were assumed to be

Gaussian distributed.
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For these experiments, three feature sets (20-, 40- and 60-dimensional)
were extracted from the 201 data channels. Each feature set consisted of data
channels uniformly spaced over the HIRIS spectral range (0.4 pm to 2.4 pm)
excluding the water absorption bands. Also, the 20-dimensional data set was
selected as a subset of the 40-dimensional data set and the 40 dimensional
data set was selected as a subset of the 60-dimensional data set. Thus the

higher-dimensional data sets added features to the 20-dimensional data set.

Experiments were conducted using both the statistical algorithms (MD,
ML, SMC and LOP) and the neural network methods (CGBP and CGLC). To
see how sample size affected the performance of all the algorithms, the
experiments were conducted for 100, 200, 300, 400, 500 and 600 training
samples per class. The sample size was in each case the same for all the
classes. Therefore, for each classification the overall and average accuracies

were identical.

4.4.1 20-Dimensional Data

The JM distance separabilities (maximum of 1.41421) for the 20-
dimensional data are shown in Table 4.65. The data were relatively separable
according to the average JM distance separability. However, classes 2
(summer fallow) and 3 (unknown) were not as distinguishable from each other
as both of them were from class 1 (winter wheat).

The results of the experiments with the 90-dimensional data are shown in
Tables 4.66 (MD training), 4.67 (MD test), 4.68 (ML training), 4.69 (ML test),
4.70 (CGBP training), 4.71 (CGBP test), 4.72 (CGLC training) and 4.73

(CGLC test). The results are also summarized in Figures 4.10 (training) and



176

Table 4.65

Pairwise JM Distances for the 20-Dimensional
Simulated HIRIS Data.

Class # 2 3
1 1.40120 | 1.36444
2 - 1.07504

Average:  1.280277
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Table 4.66

Minimum Euclidean Distance Classifier Applied to
90-Dimensional Simulated HIRIS Data: Training Samples.

# of Training | CPU | Percent Agreement with Reference for Class

Samples Time 1 2 3 OA

100 2 85.0 48.0 54.0 62.33

200 2 84.5 48.5 54.0 62.33

300 2 85.7 50.0 58.7 64.78

400 2 84.8 54.0 59.5 66.08

500 2 86.0 51.2 61.8 66.33

600 2 | 85.2 49.5 588 | 64.50
Table 4.67

Minimum Euclidean Distance Classifier Applied to
90-Dimensional Simulated HIRIS Data: Test Samples.

# of Training | Percent Agreement with Reference for Class
Samples 1 2 3 OA

100 83.7 47.1 59.1 63.30

200 83.6 46.9 60.0 63.51

300 84.0 51.2 56.8 64.00

400 80.7 44.7 70.2 65.21

500 74.3 46.3 68.0 62.86

600 81.3 58.7 46.7 62.22 |
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Table 4.68

ssian Data Applied
ta: Training Samples.

Maximum Likelihood Method for Gau
to 20-Dimensional Simulated HIRIS

# of Training | CPU | Percent Agreement with Reference for Class
Samples Time 1 2 3 OA

100 15 100.0 98.0 90.0 96.00

200 15 100.0 95.0 88.0 94.33

300 186 99.7 88.3 86.0 91.33

400 18 99.0 91.3 87.8 92.87

500 18 99.6 90.2 86.0 91.93

600 18 99.6 89.2 84.8 91.22

Tabl= 4.69

ssian Data Applied

Data: Test Samples.

# of Training | Percent Agreement with Reference for Class
Samples 1 ‘o 3 OA

100 94.8 62.8 74.3 77.28

200 95.2 85.1 71.6 77.26

300 97.9 86.1 82.4 88.80

400 96.7 81.5 78.9 85.70

500 96.6 81.7 81.7 86.67

600 94.7 88.0 80.0 87.56
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Table 4.70

Conjugate Gradient Backpropagation Applied
to 20-Dimensional Simulated HIRIS Data: Training Samples.

Sample | Number of | CPU | Percent Agreement with Reference for Class

size iterations time 1 2 3 OA L
100 118 357 100.0 100.0 100.0 100.00

200 168 871 100.0 100.0 100.0 100.00

300 195 1396 100.0 100.0 100.0 100.00

400 258 2451 100.0 100.0 100.0 100.00

500 324 3890 100.0 100.0 100.0 100.00

600 350 4922 | 1000  100.0 100.0 || 100.00

Table 4.71

Conjugate Gradient Backpropagation Applied
to 20-Dimensional Simulated HIRIS Data: Test Samples.

Sample | Number of | Percent Agreement with Reference for Class
size iterations 1 2 3 OA

100 357 82.6 53.6 49.6 61.91

200 168 82.5 52.4 54.7 63.23

300 195 87.5 60.8 57.1 68.44

400 258 88.0 60.0 53.8 67.27

500 324 85.1 60.0 48.6 64.57

[ 600 350 8.7 587 493 | 64.89 |




180

Table 4.72

Conjugate Gradient Linear Classifier Applied
to 20-Dimensional Simulated HIRIS Data: Training Samples.

Sample | Number of | CPU | Percent Agreement with Reference for Class

size iterations time 1 2 3 OA

100 309 190 | 100.0 100.0 100.0 100.00

200 518 533 | 100.0 92.0 92.5 94.83

300 431 431 | 100.0 82.7 81.3 88.00

400 442 821 99.5 82.8 79.0 87.08

500 226 542 98.6 79.8 75.2 84.53

600 507 1364 98.8 78.0 73.5 83.44
Table 4.73

Conjugate Gradient Linear Classifier Applied
to 20-Dimensional Simulated HIRIS Data: Test Samples.

Sample | Number of | Percent Agreement with Reference for Class
size iterations 1 2 3 OA

100 309 80.3 55.5 46.1 60.84

200 516 86.7 57.3 53.3 65.75

300 431 87.7 62.7 57.6 69.33

400 442 88.0 62.5 53.1 67.88

500 226 88.0 56.6 52.8 65.71

600 507 89.3 64.0 52.0 68.44
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4.11 (test). The classification accuracy of the MD algorithm (Table 4.66
(training) and 4.67 (test)) was poor, and using a larger sample size did not
improve its accuracy. However, the MD algorithm was extremely fast in

classification.

The ML method (Table 4.68 (training) and 4.69 (test)) showed the best
performance overall of all the methods. Larger sample size did help with this
algorithm: the accuracy of the test data increased significantly when 300 or
more samples per class were used for training compared to when fewer

samples were used.

The 3-layer CGBP neural network (Tables 4.70 (training) and 4.71 (test))
was trained with Gray-coded binary input data (240 input neurons). Fifteen
hidden neurons were used since the classification performance of the network
did not improve with more hidden neurons. As in all the neural network
experiments in this section, three output neurons were used (the number of
classes). Also, all the neural networks were considered to have converged
when the gradient of the error function was less than 0.0001. The neural
networks converged in each case. The CGBP neural network was always
trained to perfection for the 20-dimensional data regardless of sample size.
However, for test data it did not do very well. Tts overall test accuracy varied,
but without a clear indication that the CGBP does hetter with a large training
sample than with a smaller training set. For this method, the training time
grew rapidly with sample size requiring 1.37 hours of CPU time for the largest
sample size (272 times longer than for the ML method). Compared to the
CGBP the ML method was very fast and its training time remained almost

constant regardless of the size of the sample.



182

?///////////////////////////A/////////////A////////////A

.rllllll
ZZZZZZZZZZZZZZZZZZ%Q&ZZZZZZZZZZ

---rII-I-----.---II--I
ZZZZZZZZZZZZZZZZ%Z%%%&ZZZZZZZZZZ

8 8 ] 8 °

(%) Aoeindoy lledanQ

200 300 400 500 600

Training Samples/Class

100

Figure 4.10 Classification of Training Data (20 Dimensions)



183

AR R R //A////r////////////é

l'llll
AR R R ///////////

ll"ll
RRTI T T T TSN

rllll|l
_///u/// ///A///ﬁ////////y////////// ﬁ//////

lll'll
ARNRNRRN ////lﬂ////// NARRRN .ﬁ///// //

lIl'Il
AR /// RRRRRNRNNE //ﬁ/

100

8

(%) Adeunoay [jeIdA0

60
0
20
0

475 375 275 175 75
Test Samples/Class

575

(20 Dimensions)

Figure 4.11 Classification of Test Data



184

The CGLC (Tables 4.72 (training) and 4.73 (test)) was in the same way
as the CGBP trained with Gray-coded binary input data (240 input neurons).
The CGLC did rather well in training. With 100 training samples per class it
was perfect but with increased sample size it always did worse. For the test
data, it showed performance similar to the CGBP. The CGLC is not as time
consuming during training as the CGBP (because of the hidden neurons in the
CGBP). The CGBP required from 1.5 to 7 times more time to train and
classify the data than the CGLC in this experiment. Thus the CGLC is a

better alternative for the 20-dimensional data in this experiment.

4.4.2 40-Dimensional Data

The 40-dimensional data are relatively separable, as shown in Table 4.74.
Predictably the average JM distance increased when 20 features were added to
the 20-dimensional data in Section 4.4.1. The results for classification of the
40-dimensional data are shown in Tables 4.75 (MD training), 4.76 (MD test),
4.77 (ML training), 4.78 (ML test), 4.79 (CGBP training), 4.80 (CGBP test),
4.81 (CGLC training) and 4.82 (CGLC test). The results are also summarized
in Figures 4.12 (training) and 4.13 (test). The performance of the MD
algorithm (Table 4.75 (training) and 4.76 (test)) was very similar to the
classification result using the 20-dimensional data. Classification time
increased about a factor of 2 when 20 dimensions were added, but the MD

algorithm was, as expected, much faster than all other methods.

The accuracy of the ML method (Tables 4.77 (training) and 4.78 (test))
increased when 40 dimensions were used instead of 20, but it took about 3.9

times longer in training and classification than for the 20-dimensional data.



185

Table 4.74

Pairwise JM Distances for the 40-Dimensional
Simulated HIRIS Data.

Class # 2 3
1 1.41189 1.40192
2 - 1.32275

Average:  1.378855
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Table 4.75

Minimum Euclidean Distance Classifier Applied to
40-Dimensional Simulated HIRIS Data: Training Samples.

# of Training | CPU | Percent Agreement with Reference for Class
Samples Time 1 2 3 OA

100 4 84.0 47.0 56.0 62.33

200 4 84.0 49.0 55.0 62.67

300 4 85.0 50.0 59.3 84.78

400 4 84.0 54.8 60.3 66.33

500 4 85.4 51.8 61.8 66.33

600 4 84.8 50.3 59.8 65.00

Table 4.76

Minimum Euclidean Distance Classifier Applied to
40-Dimensional Simulated HIRIS Data: Test Samples.

# of Training | Percent Agreement with Reference for Class
Samples 1 2 3 OA

100 83.1 48.9 58.8 63.59

200 82.9 48.2 59.6 63.58

300 83.5 51.2 58.1 64.27

400 80.4 44 .4 69.8 64.85

500 73.7 46.3 68.6 62.86

600 80.0 58.7 49.3 62.67
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Table 4.77

Maximum Likelihood Method for Gaussian Data Applied
to 40-Dimensional Simulated HIRIS Data: Training Samples.

# of Training | CPU | Percent Agreement with Reference for Class

Samples Time 1 2 3 OA

100 61 100.0 100.0 100.0 100.00

200 61 100.0 100.0 99.0 99.67

300 62 100.0 97.3 97.3 98.22

400 62 100.0 97.8 97.8 98.50

500 67 99.8 97.6 96.8 98.07

800 75 100.0 97.2 96.5 97.89
Table 4.78

Maximum Likelihood Method for Gaussian Data Applied
to 40-Dimensional Simulated HIRIS Data: Test Samples.

# of Training | Percent Agreement with Reference for Class
Samples 1 2 - 3 OA

100 90.8 50.3 77.0 72.70

200 92.68 55.8 73.5 73.98

300 98.1 92.5 93.1 94.58

400 97.8 91.6 92.7 94.06

500 97.7 92.0 92.6 94.10

600 94.7 93.3 93.3 93.78
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Table 4.79

Conjugate Gradient Backpropagation Applied
to 40-Dimensional Simulated HIRIS Data: Training Samples.

Conjugate Gradient Backpropagation Applied
to 40-Dimensional Simulated HIRIS Data: Test Samples.

Sample | Number of | CPU | Percent Agreement with Reference for Class
| size iterations time 1 2 3 OA
100 64 485 | 100.0 100.0 100.0 100.00
200 150 1548 | 100.0 100.0 100.0 100.00
300 374 4889 | 100.0 100.0 100.0 100.00
400 274 5225 | 100.0 100.0 100.0 100.00
500 264 6388 | 100.0 100.0 100.0 100.00
800 524 14899 | 100.0 100.0 100.0 100.00
Table 4.80

Sample | Number of | Percent Agreement with Reference for Class
size iterations 1 2 3 OA

100 64 87.1 57.8 54.6 66.43

200 150 83.8 56.4 48.2 62.81

300 374 85.6 61.6 60.5 69.24

400 274 86.2 57.1 95.8 67.52

500 264 83.4 54.9 57.7 65.33

600 524 85.3 68.0 60.0 71.11
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Table 4.81

Conjugate Gradient Linear Classificr Applied to
40-Dimensional Simulated HIRIS Data: Training Samples.

Sample | Number of | CPU | Percent Agreement with Reference for Class

size iterations time 1 2 3 OA

100 146 194 | 100.0 100.0 100.0 100.00

200 469 898 | 100.0 100.0 100.0 100.00

300 903 2461 99.7 99.3 99.7 99.56

400 650 2293 100.0 98.0 97.0 98.33

500 629 2657 | 100.0 89.2 89.4 92.87

600 492 2492 100.0 87.2 85.3 90.83
Table 4.82

Conjugate Gradient Linear Classifier Applied to
40-Dimensional Simulated HIRIS Data: Test Samples.

Sample | Number of | Percent Agreement with Reference for Class
size iterations 1 2 3 OA

100 146 85.7 58.1 48.7 64.17

200 469 82.5 50.7 48.2 60.49

300 903 81.1 61.9 53.3 65.42

400 650 86.9 63.6 56.7 69.09

500 629 88.6 60.6 54.9 68.00

| 600 492 90.7  64.0 50.7 || 68.44 |
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The classification accuracy of training data was nearly perfect for all sample
sizes.  As for the 20-dimensional data the accuracy of test data improved
significantly when 300 or more training samples per class were used. Thus,
overall the performance of the ML method was very good for the 40-

dimensional data set.

The CGBP neural network (Tables 4.79 (training) and 4.80 (test)) was
trained with 480 input neurons and 15 hidden neurons. It was again trained
to perfection for every sample size and again the training time grew with
increasing sample size. The training and classification of the 40-dimensional
data took up to 3 times longer than for the 20-dimensional data. For 600
samples per class the neural net converged in just over 4 hours of CPU time
(200 times longer than the ML method). However, the classification acc‘uracy
of the test samples was not improved greatly for the 40-dimensional data.

The most dramatic improvement was for 600 training samples per class.

The CGLC (480 input neurons) (Tables 4.81 (training) and 4.82 (test))
showed an improvement in terms of accuracy of training data when 40
dimensions were used instead of 20. As in the case of the 20-dimensional data
the accuracy of training data decreased with increased sample size. The
classification accuracy of test data was similar to the 20-dimensional case.
The CGLC took up to 5 times longer to converge for 40 dimensions as
compared to 20 dimensions. However, it was in most cases more than two

times faster than the CGBP and gave similar classification results.
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4.4.3 60-Dimensional Data

The results of classification of the 60-dimensional data are summmarized in
Figures 4.14 (training) and 4.15 (test). In classification of 60-dimensional data
the MD algorithm (Tables 4.83 (training) and 4.84 (test)) showed a very
similar performance to classification of the other high-dimensional data sets.

It was about 3 times slower than in classification of the 20-dimensional data.

The ML method could not be applied to the 60-dimensional data since
the covariance matrices were singular. The SMC and the LOP were used
instead. In order to use the SMC algorithm, the data had be split into two or
more independent data sources. The correlations between the spectral
channels can be visualized as shown in Figure 4.16; the brightness indicates
the correlation. The lighter the tone, the more correlated are the spectral
bands. (The black regions from 1.35 um to 1.47 pym and 1.81 pm and 1.97 pm
are the water absorption bands.) By looking at Figure 4.16, it was determined
that the spectral region from 0.7 um to 1.35 um was uncorrelated from the
other spectral bands. Twenty data channels were in the spectral region from
0.7 pm to 1.35 um, which was treated as data source #1. Source #2 consisted
of the other 40 data channels. The information classes were modeled by the
Gaussian distribution in both data sources. The JM distance separabilities of
the data sources are shown in Tables 4.85 (source #1) and 4.86 (source #2).
The information classes in data sources were relatively separable but the
classes in source #2 had a higher average JM distance than the classes in

source F#1.

The results of the SMC classifications with respect to different sample

sizes and various source-specific weights are shown in Tables 4.87 through
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Table 4.83

Minimum Euclidean Distance Classifier Applied to
60-Dimensional Simulated HIRIS Data: Training Samples.

# of Training | CPU | Percent Agreement with Reference for Cla;]
| Samples Time 1 2 3 OA
100 5 83.0 50.0 57.0 83.33
200 8 84.0 51.0 55.0 63.33
300 6 85.3 50.7 59.0 65.00
400 6 83.8 55.8 60.3 66.58
500 6 85.2 53.0 61.4 66.53
600 [i] 85.2 51.5 59.8 85.50
Table 4.84

Minimum Euclidean Distance Classifier Applied to
60-Dimensional Simulated HIRIS Data: Test Samples.

# of Training | Percent Agreement with Reference for Class
Samples 1 2 3 OA

100 83.5  50.1 59.0 | 64.17 T
200 83.6 49.5 59.8 64.28

300 84.0 53.9 58.4 65.42

400 81.1 45.8 70.5 65.82

500 74.3 48.0 69.1 63.81

600 80.0 64.0 48.0 84.00 J
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Table 4.85

Pairwise JM Distances for Data Source #1.

lass # 2 3
L1 1.31192 | 1.24447
- 0.96362
verage:  1,173336

Table 4.86
Pairwise JM Distances for Data Source #2.

Jlass # 2 3
1.40908 1.39607
- 1.33653
| Average:  1.380562
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4.92. Ranking of the sources according to the source-specific reliability
measures based on the classification accuracy of training data, the
equivocation measure (Table 4.93) and JM distance separability (Table 4.94)
agreed in all cases, regardless of sample size. The reliability measures always
estimated source #2 as more reliable than source #1. Using these reliability
measures to weight the data sources in combination gave the highest
accuracies of training data for sample sizes up to 300 training samples per
class (Tables 4.87, 4.88 and 4.89). However, the same weights did not achieve
the best accuracies for test data. The differences were significant for 100 and
200 samples per class, where the "best” results were reached when source #1
got the weight 1.0 and source #2 was weighted by either 0.1 or 0.2. These
unexpected results suggest that the data sources were undertrained with only
100 and 200 samples per class. When 300 samples per class were used (Table
4.89) the highest test accuracy was reached when source #1 was weighted by
1.0 and source #2 by 0.9. However, several other weights gave excellent
accuracies as shown in Table 4.89. The SMC gave the best test performance
when 400 or more training samples were used for each class (Tables 4.90, 4.91
and 4.92) and source # 2 was given more weight than source #1. Using 400
or more training samples for the high-dimensional data was sufficient. In most
cases several weight combinations could achieve the highest accuracies.

The results using the LOP (Tables 4.95 through 4.100) were very similar
to the SMC results. Both the SMC and LOP were excellent in the classification
of the 60-dimensional data set. 1'or both methods the classification accuracy
of test samples increased with the number of training samples used. Both of

these algorithms were very fast, with a slight edge to the LOP which uses
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Table 4.87

Statistical Multisource Classification of Simulated
HIRIS Data (100 Training and 575 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 | oa 1 2 3 | oA
Single Sources

Source #1 99.0 93.0 96.0 96.00 || 85.9 67.3 57.7 | 70.32
Source #2 1000 100.0 100.0 || 100.00 {| 83.3 47.8 82.1 || 71.07
8l 82 Multiple Sources

1. 1. 100.0 100.0 100.0 || 100.00 || 89.6 51.0 83.1 || 74.55
1. .9 100.0 100.0 100.0 || 100.00 |} 89.7 50.8 83.3 || 74.61
1. .8 100.0 100.0 100.0 | 100.00 | 96.6 513 83.3 || 75.07
1. .7 100.0 100.0 100.0 || 100.00 || 91.1 51.3 83.5 || 75.30
1. .8 100.0 100.0 100.0 || 100.00 || 90.8 52.3 83.7 || 75.53
1. .5 1000 1000 100.0 100.00 | 91.1 52.9 83.0 || 75.48
1. 4 100.0 100.0 100.0 100.00 || 91.1 54.6 83.1 76.29
1. .3 100.0 100.0 100.0 || 100.00 || 91.3 55.3 83.5 || 76.70
1. .2 100.0 100.0 100.0 || 100.00 || 90.1 64.2 77.86 || 77.28
1. .1 100.0 100.0 100.0 || 100.00 || 90.1 64.2 77.6 {| 77.28
1. .0 99.0 93.0 96.0 96.00 || 85.9 67.3 57.7 || 70.32
9 1. 100.0 100.0 100.0 || 100.00 || 89.6 50.4 82.8 || 74.26
.8 1. 100.0 100.0 100.0 100.00 || 89.6 50.3 82.6 | 74.14
7 1. 100.0 100.0 100.0 100.00 || 88.7 50.1 82.8 73.86
6 1. 100.0 100.0 100.0 || 100.00 || 88.3 49.9 83.0 || 73.74
5 1. 100.0 100.0 100.0 | 100.00 || 87.8 49.7 83.0 | 73.51
4 1. 100.0 100.0 100.0 100.00 || 87.3 49.4 82.8 73.16
3 1. 100.0 100.0 100.0 | 100.00 || 87.0 48.7 82.6 || 72.77
2 1. 100.0 100.0 100.0 100.00 || 86.1 48.3 81.9 [ 72.12
1 1. 100.0 100.0 100.0 100.00 || 84.5 48.0 82.1 71.54
0 1. 100.0 100.0 100.0 } 100.00 || 83.3 47.8 82.1 | 71.07
# of pixels 100 100 100 300 575 575 575 1725

The columns labeled s1 and s2 indicate the weights
applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 81 sec.
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Table 4.88

HIRIS Data (200 Training and 475 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 || oA 1 2 3 [oa

Single Sources ]
source #1 97.5 91.0 92.0 93.50 88.2 70.3 57.3 71.93
source #2 100.0 100.0 99.5 99.83 88.0 53.1 80.4 73.82
sl s2 Muitiple Sources
1. 1. 100.0 100.0 99.5 99.83 89.1 55.8 82.3 75.75
1. .9 100.0 100.0 99.5 99.83 89.1 56.0 82.3 75.79
1. .8 100.0 100.0 99.5 99.83 89.5 55.8 82.5 75.93
1.7 100.0 100.0 99.5 99.83 89.7 56.0 82.5 76.07
1. .6 100.0 100.0 99.5 99.83 89.9 58.1 82.5 76.84
1. .5 100.0 100.0 99.5 99.83 90.5 60.0 83.4 77.96
1. 4 100.0 99.5 99.0 99.50 90.3 62.3 84.0 78.88
1. .3 100.0 99.0 99.0 99.33 90.7 63.6 84.4 79.58
1..2 100.0 97.5 99.0 || 98.83 || 90.7 71.2 76.4 || 79.37
1..1 100.0 96.0 98.5 98.17 90.5 71.2 76.4 79.37
1. .0 97.5 91.0 92.0 93.50 88.2 70.3 57.3 71.93
91 100.0 100.0 99.5 99.83 89.5 55.4 82.3 75.72
81 100.0 100.0 99.5 || 99.83 || 89.3 55.4 825 || 75.72
a1 100.0 100.0 99.5 99.83 89.1 55.4 82.3 75.79
61 100.0 100.0 99.5 99.83 88.9 54.9 82.3 75.37
51 100.0 100.0 99.5 99.83 88.6 54.5 82.1 75.09
41 100.0 100.0 99.5 99.83 88.2 54.3 81.7 74.74
31 100.0 100.0 99.5 99.83 88.2 53.5 81.7 74.46
21 100.0 100.0 99.5 99.83 88.0 53.1 81.3 74.10
Jd1 100.0 100.0 99.5 99.83 87.8 52.8 80.8 73.82
01. 100.0 100.0 99.5 99.83 88.0 53.1 80.4 73.82 |
# of pixels 200 200 200 600 475 475 475 | 1425 |

The columns labeled s1 and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 85 sec.
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Table 4.89

HIRIS Data (300 Training and 375 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 | oa 1 2 3 ] oA
Single Sources
source #1 96.3 86.7 89.3 90.78 90.7 82.4 79.5 84.18
source #2 100.0 99.0 98.3 99.11 96.0 94.4 94.1 94.84
sl s2 Multiple Sources
1. 1. 100.0 99.0 98.7 99.22 [ 96.5 96.0 95.2 | 95.91
1.9 100.0 98.7 99.3 99.33 || 97.1 96.3 95.2 | 96.18
1. .8 100.0 98.0 99.3 99.11 96.0 96.3 95.2 95.82
1. .7 99.7 98.0 99.0 98.89 94.7 95.7 93.8 94.76
1. .8 98.7 95.7 97.7 97.33 || 94.1 93.3 91.7 || 93.07
1.5 98.3 95.0 96.7 96.67 93.3 923 89.1 91.56
1. 4 97.3 940 95.0 {| 95.44 || 92.8 90.1 87.7 || 90.22
1. .3 97.0 91.3 93.3 93.89 92.3 87.5 86.4 | 88.71
1..2 96.7 90.7 92.3 93.22 91.7 86.1 83.7 87.20
1..1 96.3 89.0 80.7 92.00 91.2 B4.3 81.9 85.78
1. .0 96.3 87.0 88.7 90.67 90.7 82.4 79.5 84.18
91 100.0 99.0 98.7 99.22 96.8 5.7 94.9 95.82
81 100.0 99.0 98.7 99.22 | 96.5 95.5 94.9 | 95.64
71 100.0 99.3 98.7 99.33 || 96.5 95.5 94,7 1 95.56
.61 100.0 99.3 98.7 99.33 || 96.5 95.5 94.4 || 95.47
B51 100.0 99.3 98.7 99.33 || 96.3 949 94.4 | 95.29
41 100.0 99.3 98.7 99.33 96.3 94.9 94.4 95.20
31 100.0 99.3 98.7 99.33 96.3 94.9 94.4 || 95.20
21 100.0 99.0 98.7 99.22 96.0 944 944 j 94.93
11 100.0 99.0 98.7 99.22 96.0 94.7 94.4 || 95.02
.01, 100.0 99.0 98.3 99.11 96.0 94.4 94.1 94.84
| # of pixels 300 300 300 900 375 375 375 1125

The columns labeled s1 and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 87 sec.
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Table 4.90

HIRIS Data (400 Training and 275 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 || oA 1 2 3 |oaA
Single Sources

source #1 96.8 87.3 87.3 90.42 83.6 82.2 71.3 79.03
source #2 100.0 99.0 98.0 99.00 || 94.2 94.2 96.7 95.03
s1 s2 Multiple Sources

1. 1. 99.8 99.3 98.8 99.25 94.2 945 96.4 95.03
1..9 99.8 99.0 99.0 || 99.25 || 93.8 945 95.8 | 94.67
1. .8 99.8 99.0 99.0 99.25 93.5 94.9 95.6 94.67
1. .7 99.8 99.0 99.0 99.25 92.7 94.5 95.6 94.30
1. .6 99.3 98.5 99.0 98.92 90.9 94.9 96.0 93.94
1. .5 99.0 98.3 99.0 98.75 90.2 93.8 96.0 93.33
1. 4 98.5 97.8 98.8 98.33 88.4 92.4 95.6 92.12
1.3 98.5 95.5 97.5 97.17 85.5 g91.8 89.8 89.70
1..2 98.5 93.0 95.5 95.67 85.5 88.7 88.4 87.52
1. .1 97.3 90.5 92.5 93.42 84.4 85.5 82.2 84.00
1. .0 96.8 87.5 87.3 90.42 83.6 82.2 71.3 79.03
91 99.8 99.3 98.8 99.25 94.5 94.9 96.4 95.27
81 99.8 99.3 99.0 99.33 94.5 95.3 96.4 95.39
71 99.8 99.3 99.0 99.33 94.5 94.9 96.4 95.27
61 100.0 99.3 99.0 99.42 94.5 94.5 96.0 95.03
Sl 100.0 99.3 98.8 99.33 94.5 94.5 96.0 95.03
41 100.0 99.3 98.8 99.33 94.5 94.5 96.0 95.03
g1 100.0 99.3 98.8 99.33 95.3 94.5 96.4 95.39
2 1. 100.0 99.3 98.5 99.25 94.9 94.5 97.1 95.27
11. 100.0 99.0 98.3 || 99.08 || 94.2 945 97.1 95.27
.01. 100.0 99.0 98.0 99.00 94.2 94.2 96.7 95.03
# of pixels 400 400 400 1200 275 275 275 825

The columns labeled sl and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 90 sec.
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Table 4.91

Statistical Multisource Classification of Simulated
HIRIS Data (500 Training and 175 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 | oa 1 2 3 | oa
Single Sources

source #1 95.8 88.0 84.8 || 89.53 {| 78.9 78.3 73.7 || 78.95
source #2 99.8 98.4 98.8 || 98.33 || 94.3 94.3 98.9 || 95.81
sl s2 Multiple Sources

1. 1. 99.6 98.8 98.2 98.87 92.6 95.4 97.7 95.23
1. .9 99.6 98.8 98.4 98.93 93.1 95.4 97.7 95.43
1. .8 99.6 98.6 98.2 98.80 93.1 94.9 97.7 || 95.24
1..7 99.2 98.8 98.4 98.80 || 93.1 96.0 97.7 95.62
1. .6 99.0 98.6 98.4 98.67 90.3 96.0 97.7 94.67
1.5 98.4 98.0 98.4 | 98.27 || 88.0 95.4 97.7 || 93.71
1. 4 98.0 96.8 97.8 97.53 87.4 93.7 97.1 92.76
1. .3 97.8 95.0 96.4 || 96.40 || 85.7 92.8 91.4 || 89.90
1. .2 97.86 924 94.0 || 94.67 || 84.6 88.8 89.7 || 87.62
1.1 96.6 90.6 90.4 || 92.53 || 82.9 83.4 83.4 || 83.24
1..0 96.2 88.0 84.8 | 89.53 || 78.9 78.3 73.7 || 76.95
91 99.6 98.8 98.0 | 98.80 || 92.6 95.4 97.7 95.23
.81 99.6 98.8 98.0 || 98.80 | 93.1 94.9 97.7 95.24
71 99.6 98.8 97.8 98.67 94.3 94.9 97.7 || 95.62
61 99.6 98.6 97.8 98.67 94.9 949 98.9 || 96.19
Sl 99.6 98.6 97.8 98.67 94.3 94.9 99.4 96.19
41 99.6 98.6 97.8 98.67 94.3 94.9 99.4 96.19
31 99.6 98.6 97.8 98.67 94.3 94.9 99.4 || 96.19
21, 99.6 98.6 97.4 | 98.53 || 93.7 94.3 99.4 || 95.81
11. 99.8 984 97.2 | 98.47 || 94.3 94.3 99.4 || 96.00
01, 998 984 96.8 || 98.33 || 94.3 94.3 98.9 || 95.81

of pixels 500 500 500 1500 175 175 175 5254

The columus labeled s1 and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 90 sec.
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Table 4.92

Statistical Multisource Classification of Simulated
HIRIS Data (600 Training and 75 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 Joa |1 2 3 JoAa
Single Sources B

source #1 ¢5.2 86.5 85.2 || 88.94 || 72.0 78.7 73.3 || 74.67
source #2 100.0 98.3 96.8 || 98.39 92.0 97.3 97.3 || 95.56
sl s2 Multiple Sources B
1.1. 995 98.5 98.3 || 98.78 || 92.0 100.0 98.7 || 96.89
1..9 995 983 985 | 98.78 | 92.0 100.0 98.7 || 96.89
1. .8 99.5 98.5 98.5 | 98.83 || 92.0 100.0  98.7 96.89
1. .7 99.3 98.7 ¢8.3 || 98.78 || 92.0 97.3  98.7 || 96.00
1. .6 99.3 98.5 98.2 | 98.39 | 89.3 97.3 98.7 || 95.11
1. .5 99.0 98.0 98.2 || 98.39 | 85.3 97.3 98.7 | 93.78
1. 4 g8.2 967 97.8 || 97.56 | 82.7 93.3 96.0 {| 90.67
1.3 975 953 96.2 || 96.33 | 80.0 92.0 93.3 || 88.44
1. .2 97.2 92.7 94.0 || 94.61 | 76.0 88.0 96.7 || 84.89
1..1 96.3 90.3 91.3 | 92.67 || 73.3 85.3 88.0 | 82.22
1. .0 952 86.5 85.2 | 88.94 | 72.0 80.0 78.7 || 74.67
9 1. 995 98.3 98.3 | 98.72 j 92.0 100.0 98.7 | 96.89
8 1. 97 98.3 98.3 || 98.78 || 92.0 100.0 98.7 || 96.89
71, 99.7 98.3 98.2 || 98.72 || 92.0 100.0 98.7 || 96.89
.6 1. 998 98.3 98.0 || 98.72 } 92.0 100.0  98.7 96.89
5 1. 99.8 98.3 98.0 || 98.72 || 92.0 100.0 98.7 96.89
41, 99.8 98.3 98.0 || 98.72 i 92.0 100.0 98.7 || 96.89
3 1. ¢g9.8 98.3 97.7 || 98.61 [ 90.7 100.0 98.7 | 96.44
2 1. 99.8 98.3 97.5 | 98.56 [} 90.7 g8.7 98.7 || 96.00
1 1. 100.0 98.3 97.0 || 98.44 92.0 98.7 97.3 i| 96.00
01. 1000 98.3 968 | 98.39 | 92.0  97.3 97.3 || 95.56
4 of pixels | 600 600 600 | 1800 || 75 75 75 1225 |

The columns labeled s1 and s2 indicate the weights
applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 90 sec.
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Table 4.93

Source-Specific Equvivocations for Simulated
HIRIS Data Versus Number of Training Samples.

Equivocation
Training Source #
amples 1 2
00 0.2581 | 0.0000
00 0.3325 | 0.0105
300 0.4057 | 0.0637
400 0.3958 | 0,0686
00 0.4154 | 0.0947
00 0.4356 | 0.0981
Table 4.94

Source-Specific JM Distances for Simulated HIRIS
Data Versus Number of Training Samples.

Distance
Training Source #
Samples 1 2
100 1.313423 1.413598
00 1.273153 | 1.410736
300 1.208442 | 1.392419
400 1.234641 | 1,389006
0 1.214116 | 1.386011
0 1.195292 | 1.383060
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Table 4.95

Linear Opinion Pool Applied in Classification of Simulated
HIRIS Data (100 Training and 575 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 | oA 1 2 3 | oA
) Single Sources
source #1 99.0 93.0 96.0 96.00 || 85.9 67.3 57.7 || 70.32
source #2 100.0 100.0 100.0 || 100.00 || 83.3 47.8 82.1 71.07
sl s2 Multiple Sources
1. 1. 100.0 100.0 100.0 100.00 || 89.6 50.6 823 | 74.14
1. .9 100.0 100.0 100.0 || 100.00 || 91.5 61.0 79.8 | 77.45
1. .8 100.0 100.0 99.0 99.67 90.8 65.9 73.0 || 76.58
1..7 100.0 98.0 99.0 99.00 90.4 67.5 71.0 || 76.29
1. .6 100.0 97.0 99.0 98.67 89.4 67.3 69.2 1 75.30
1.5 99.0 97.0 99.0 98.33 || 88.2 67.8 66.6 || 74.20
1. .4 99.0 97.0 99.0 98.33 || 88.2 67.8 66.6 | 74.20
1. .3 99.0 96.0 99.0 g8.00 || 87.5 67.1 62.2 || 72.29
1..2 99.0 95.0 97.0 97.00 || 87.0 67.0 603 | 71.42
1. .1 99.0 94.0 96.0 96.33 || 86.3 66.6 59.0 || 70.61
1. .0 99.0 93.0 96.0 96.00 || 85.9 67.3 57.7 70.32
91 100.0 100.0 100.0 | 100.00 || 85.7 50.3 82.1 || 72.70
81 100.0 100.0 100.0 {i 100.00 || 85.4 499 81.9 || 72.41
71 100.0 100.0 100.0 100.00 || 84.7 49.7 82.1 72.17
61 100.0 100.0 100.0 100.00 || 84.9 49.6 81.9 || 72.12
51 100.0 100.0 100.0 100.00 | 84.3 49.4 817 71.83
41 100.0 100.0 100.0 || 100.00 || 84.0 48.9 81.9 | 71.59
31 100.0  100.0 100.0 || 100.00 || 84.0 48.3 81.9 71.42
2 1. 100.0 100.0 100.0 100.00 83.8 48.0 81.9 71.25
A1, 100.0 100.0 100.0 100.00 || 83.8 47.8 82.1 71.25
|.01. 100.0 100.0 100.0 || 100.00 | 83.3 47.8 8§2.1 71.07
# of pixels 100 100 100 300 575 575 575 1725

The columns labeled s1 and s2 indicate the weights
applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 81 sec.
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Table 4.96

Linear Opinion Pool Applied in Classification of Simulated
HIRIS Data (200 Training and 475 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 || oA 1 2 3 [ oa
Single Sources

source #1 97.5 91.0 92.0 || 93.50 | 88.2 70.3 57.3 !| 71.93
source #2 100.0 100.0 99.5 99.83 88.0 53.1 80.4 73.82
sl s2 Multiple Sources
1.1. 100.0 100.0 99.5 || 99.83 89.3 54.5 81.9 75.09
1.9 100.0  100.0 99.5 | 99.83 || 92.0 55.2 80.6 | 75.93
1. .8 100.0 99.5 98.5 || 99.33 {| 90.7 720 72.4 I 78.67
1.7 100.0 98.5 98.5 || 99.00 || 90.7 72.0 72.4 i| 78.39
1. .6 100.0 98.5 98.0 Il 98.83 || 90.5 72.4 71.2 || 78.04
1. .5 100.0 97.0 97.0 | 98.00 || 90.1 71.8 67.6 || 76.49
1. 4 98.5 97.0 97.0 |{ 97.50 || 89.5 71.2 855 | 75.37
1. .3 98.0 96.0 96.0 || 96.67 || 89.3 71.4 63.2 74.60
1..2 98.0 94.5 950 | 95.83 || 888 71.6 60.4 || 73.75
1..1 97.5 92.5 92,5 || 94.17 || 88.8 70.3 59.2 || 73.19
1. .0 97.5 91.0 92.0 || 93.50 || 88.2 70.3 57.3 || 71.93
9 1. 100.0 100.0 995 | 99.83 || 88.8 54.5 81.9 75.09
81. 100.0 100.0 99.5 99.83 88.8 54.3 82.1 75.09
7 1. 100.0 100.0 99.5 |l 99.83 (| 88.2 54.1 81.9 | 74.74
.6 1. 100.0 100.0 995 || 99.83 | 88.2 53.9 81.9 || 74.67
KRR 100.0 100.0 995 99.83 88.0 53.9 81.5 74.46
4 1. 100.0  100.0 99.5 | 99.83 {| 88.0 53.9 81.3 || 74.18
3 1. 100.0 100.0 99.5 || 99.83 || 88.0 53.1 80.8 73.96
2 1. 100.0 100.0 99.5 [ 99.83 || 88.0 52.8 81.1 73.96
Jd 1, 100.0 100.0 99.5 || 99.83 || 88.0 53.1 80.6 73.89
0 1. 100.0 100.0 99.5 || 99.83 88.0 53.1 80.4 73.82

of pixels 200 200 200 600 475 475 475 1425

The columns labeled s1 and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 84 sec.
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Table 4.97

Linear Opinion Pool Applied in Classification of Simulated
HIRIS Data (300 Training and 375 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 || oA 1 2 3 [loaA
Single Sources
source #1 96.3 86.7 89.3 { 90.78 1} 90.7 82.4 79.5 || 84.18
source #2 100.0 99.0 98.3 § 99.11 96.0 94.4 94.1 || 94.84
sl s2 Multiple Sources
1. 1. 99.7 99.0 99.0 || 99.22 | 96.5 96.0 95.2 || 95.91
1. .9 987 98.7 99.0 || 99.11 || 96.5 96.0 95.2 || 95.91
1. .8 99.7 98.7 99.3 || 99.22 [} 96.8 96.3 95.2 | 96.09
1.7 997 98.3 99.3 || 99.11 |} 96.5 96.3 85.2 i 96.00
1. .6 99.7 97.3 99.3 |l 99.11 || 95.7 96.0 95.5 95.73
1..5 99.7 97.3 99.3 | 98.78 || 944 96.0 95.7 || 95.38
1. 4 99.0 97.0 99.7 || 98.56 [| 93.9 94.4 95.5 || 94.58
1.3 98.3 947 983 | 97.11 | 93.1  92.0 92.5 [ 92.53
1. .2 98.0 93.7 950 || 95.56 || 92.5 88.0 89.1 || 90.13
1. .1 97.0 90.7 92.7 || 93.44 { 92.0 86.9 86.9 | 88.62
1.0 96.3 86.7 89.3 || 90.78 [} 90.7 82.4 79.5 || 84.18
.9 1. 997 99.0 98.7 | 99.11 |} 96.3 96.3 84.9 [} 95.82
.8 1. 99.7 99.3 98.7 || 99.22 || 96.3 957 94.9 || 95.64
7 1. 99.7 99.3 98.7 || 99.22 || 96.3 955 94.9 || 95.56
61, 9.7 99.3 987 | 99.22 || 96.5 95.5 94.9 || 95.64
5 1. 100.0 99.3 98.7 |} 99.33 || 96.5  95.2 94.7 || 95.47
4 1. 100.0 99.3 98.7 | 99.33 |l 96.3  95.2 94.4 i 95.29
31, 1000 99.3 98.7 || 99.33 || 96.3 95.2 94.4 || 95.29
2 1. 100.0 99.0 98.7 || 99.22 || 96.3  94.7 94.4 || 95.11
ad1. 100.0 99.0 98.7 | 99.22 || 96.0 94.7 94.4 || 95.02
.01. 100.0 99.0 98.3 | 99.11 | 96.0 94.4 94.1 || 94.84
| # of pixels 300 300 300 900 375 375 375 1125

The columns labeled sl and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 86 sec.




210

Table 4.98

Linear Opinion Pool Applied in Classification of Simulated
HIRIS Data (400 Training and 275 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 || oa 1 2 3 || oa
Single Sources

source #1 96.8 87.3 87.3 | 90.42 || 83.6 82.2 71.3 || 79.03
source #2 100.0 99.0 98.0 || 99.00 || 94.2 94.2 96.7 || 95.03
sl s2 Multiple Sources

1. 1. 99.8 99.3 98.8 || 99.25 | 95.3 94.9 96.0 |} 95.39
1. .9 99.8 99.0 98.8 | 99.17 || 95.3 94.5 95.3 || 95.03
1. .8 99.5 99.0 99.0 || 99.17 || 94.2 94.2 95.3 || 94.55
1..7 99.0 99.0 98.3 99.75 91.3 93.5 92.0 92.24
1. .6 98.8 97.0 97.3 | 97.67 |l 89.5 92.0 89.5 |} 90.30
1.5 98.8 95.5 96.3 96.83 86.5 90.5 88.7 88.61
1. 4 98.5 93.3 93.8 95.17 85.1 89.8 86.2 87.03
1. .3 97.8 92,5 92.0 94.08 84.7 87.3 82.5 84.85
1. .2 97.3 90.5 91.0 92.92 84.4 84.7 79.3 82.79
1. .1 97.3 89.0 89.8 | 92.00 || 83.6 85.5 75.3 || 80.48
1..0 96.8 87.3 87.3 90.42 83.6 82.2 71.3 79.03
.9 100.0 99.3 98.8 99.33 95.3 94.9 96.0 95.39
.8 1. 100.0 99.3 99.0 || 99.42 || 95.6 94.9 98.0 || 95.52
g1, 100.0 99.3 99.0 || 99.42 || 96.0 94.5 96.0 || 95.52
6 1. 100.0 99.3 98.8 99.33 95.6 94.2 96.4 95.27
51, 100.0 99.3 98.8 99.33 95.6 94.5 96.0 95.52
4 1. 100.0 99.3 98.5 99.25 95.3 94.5 96.4 95.36
3 1. 100.0 99.3 985 || 99.25 || 94.9 94.5 98.4 || 95.27
2 1. 100.0  99.3 985 || 99.25 || 94.9 94.5 96.4 | 95.27
d1. 100.0 99.0 98.3 || 99.08 | 94.2 g4.2 96.7 | 95.03
01, 100.0 99.0 98.0 | 99.00 || 94.2 942 96.7 || 95.03

of pixels 400 400 400 1200 275 275 275 825

The columns labeled s1 and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 89 sec.
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Table 4.99

ation of Simulated
amples per Class).

Percent Agreement with Reference for Class
Training Testing
1 2 3 || oA 1 2 3 |loa
Single Sources
source #1 95.8 88.0 84.8 | 89.53 || 78.9 78.3 73.7 || 76.95
source #2 998 98.4 96.8 | 98.33 [l 943 94.3 98.9 || 95.81
s1 s2 Maultiple Sources
1.1. 09.6 98.8 98.0 || 98.80 || 95.4 95.4 97.7 96.19
1. .9 99.6 98.8 98.2 98.87 94.9 95.4 97.7 96.00
1. .8 99.6 98.8 98.2 98.87 93.7 95.4 97.7 95.62
1..7 98.6 98.6 98.0 98.40 91.4 94.3 96.0 93.90
1. .6 98.2 97.2 98.4 [l 97.27 89.7 93.7 92.0 91.81
1..5 98.2 95.4 95.6 96.40 86.3 92.6 90.3 89.71
1. .4 97.6 93.2 93.8 | 93.87 84.6 89.1 89.1 87.62
1..3 97.0 91.8 92.8 93.87 82.9 86.9 85.7 85.14
1..2 96.8 01.0 89.8 | 92.563 || 82.9 84.0 82.9 || 83.24
1..1 96.4 89.8 87.6 91.27 80.0 80.6 76.6 79.05
1. .0 958 88.0 84.8 | 89.53 || 78.9 78.3 73.7 || 76.95 |
91 99.6 g8.8 98.0 || 98.80 94.9 95.4 97.7 96.00
.81 99.6 98.8 98.0 || 98.80 || 95.4 94.9 98.3 96.19
g1 99.8 98.8 97.8 98.67 94.9 94.9 98.3 96.00
b1 9.6 986 97.6 || 98.87 94.3 943 989 96.00
51 69.6 98.86 97.6 | 98.60 | 94.3 94.9 99.4 || 96.19
41 996 98.6 97.4 | 98.53 || 94.3 94.9 99.4 || 96.19
31 99.6 98.6 97.4 98.53 94.3 94.3 99.4 96.00
2 1. 99.6 g8.6 97.4 98.60 94.3 94.3 99.4 96.00
11. 99.8 98.4 97.2 98.47 94.3 94.3 99.4 96.00
.0 1. 99.8 g8.4 96.8 98.33 94.3 94.3 98.9 95.81 |
|4 of pixels | 500 500 500 || 1500 || 175 175 175 || 525 |

The columns labeled s1 and s2 indicate the weights

applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 90 scc.
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Table 4.100

Linear Opinion Pool Applied in Classification of Simulated
HIRIS Data (600 Training and 75 Test Samples per Class).

Percent Agreement with Reference for Class

Training Testing
1 2 3 | oa 1 2 3 || oA
Single Sources
source #1 95.2 86.5 85.2 ‘ 88.94 72.0 78.7 73.3 74.67
source #2 | 100.0 98.3 96.8 || 98.39 || 92.0 973 97.3 | 95.56
sl 52 Multiple Sources
1. 1. 99.7 985 98.3 || 98.83 || 93.3 100.0 98,7 || 97.33
1.9 99.5 98.5 98.5 | 98.83 (| 93.3 100.0 98.7 || 97.33
1. .8 98.5 98.3 98.5 || 98.78 |l 92.0 97.3  98.7 || 96.00
1. .7 99.2 98.5 98.2 98.61 85.3 97.3 97.3 93.33
1..6 98.3 975 96.5 | 97.44 || 81.3 93.3 93.3 || 89.33
1. .5 7.8 96.3 95.2 || 96.44 || 80.0 92.0 92.0 (| 88.00
1. 4 97.2 94.3 94.0 95.17 78.7 89.3 90.7 86.22
1..3 96.8 91.8 92.2 | 93.61 74.7 84.0 88.0 | 82.22
1. .2 96.3 90.2 90.7 92.39 73.3 82.7 85.3 80.44
1. .1 95.5 89.2 87.8 | 90.83 | 73.3 81.3 81.3 || 78.87
1..0 95.2 86.5 852 | 88.94 || 72.0 78.7 73.3 || 74.87
9 1. 99.8 98.3 98.3 98.83 93.3 100.0 98.7 97.33
81. 99.8 98.3 98.3 || 98.78 || 93.3 100.0 98.7 || 97.33
71, 99.8 983 98.0 | 98.72 || 93.3 100.0 98.7 || 97.33
.6 1. 99.8 98.3 97.8 | 98.67 || 92.0 100.0 98.7 || 96.89
S5 1. 99.8 98.3 97.8 98.67 90.7 100.0 98.7 96.44
4 1. 99.8 98.3 97.7 || 98.61 90.7 100.0 98.7 || 96.44
3 1. 99.8 98.3 97.2 Il 98.56 || 90.7 100.0 98.7 || 96.44
2 1. 99.8 98.3 97.2 | 98.44 || 92.0 98.7 98.7 || 96.44
d1. 100.0 98.3 96.8 | 98.39 |l 92.0 98.7 97.3 || 96.00
01, 100.0 983 96.8 | 98.39 || 92.0 97.3  97.3 || 95.56
| # of pixels 800 600 600 | 1800 75 75 75 225

The columns labeled s1 and s2 indicate the weights
applied to sources 1 (s1) and 2 (s2).

CPU time for training and classification: 90 sec.
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addition rather than multiplication in its global membership function. As
compared to the 40-dimensional ML classification, these two methods were
about 25% slower (Figure 4.17). It is worth noting that a ML classification of
60-dimensional data would have been still slower. Also, classification using
the LOP and the SMC improved in terms of accuracy as compared to the ML

classification of 40-dimensional data.

The CGBP neural network (720 input neurons, 20 hidden neurons) was
trained to perfection for the 60-dimensional data (Tables 4.101 (training) and
4.102 (test)). In terms of accuracy of classification of test data, it was a little
better than for the lower-dimensional cases. Also, a sample size of 300 or
larger increased the overall accuracy for test data. The CGBP converged
slowly. As with the other experiments its time to convergence grew rapidly
with the number of training samples used. For 600 training samples per
class, the algorithm converged in 3.65 CPU hours. The LOP and the SMC
were 146 times faster. If compared to the 40-dimensional case, the CGBP was
about 1.2 times slower in training and classification of the 60-dimensional data
(Figure 4.18). In the 60-dimensional case the algorithm needed fewer

iterations than for the 40-dimensional data.

As the dimensionality grew the CGLC (720 input neurons) did better in
classification of training data (Table 4.103). In classification of test samples
(Table 4.104), the CGLC was a little better than for the 40-dimensional data.
The CGLC was about two times faster than the CGBP algorithm in
classification of 60-dimensional data but the time to convergence also grew
rapidly with the sample size. Oddly enough the training times for the 40 and

60 dimensions were almost the same for the CGLC with 300 training samples
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Figure 4.17 Statistical Methods: Training Plus Classification
Time versus Training Sample Size
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Table 4.101

Conjugate Gradient Backpropagation Applied to
60-Dimensional Simulated HIRIS Data: Training Samples.

Sample | Number of | CPU | Percent Agreement with Reference for Class
size iterations time 1 2 3 OA
100 59 650 | 100.0 100.0 100.0 100.00
200 91 1921 100.0 100.0 100.0 100.00
300 183 4696 | 100.0 100.0 100.0 100.00
400 169 5969 | 100.0 100.0 100.0 100.00
500 172 7622 100.0 100.0 100.0 100.00

600 | 250 13174 | 100.0 1000 100.0 || 100.00

Table 4.102

Conjugate Gradient Backpropagation Applied to
60-Dimensional Simulated HIRIS Data: Test Samples.

Sample | Number of | Percent Agreement with Reference for Class
sige iterations 1 2 3 OA

100 59 89.7 57.9 52.5 66.72

200 91 89.3 57.5 46.9 64.56

300 183 89.1 62.7 56.5 69.42

400 169 88.0 55.6 61.8 68.48

500 172 86.9 59.4 65.7 70.67

600 250 92.0 600 573 69.78
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Figure 4.18 Neural Network Models: Training Plus Classification
Time versus Training Sample Size
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Table 4.103

Linear Classifier Applied to
d HIRIS Data: Training Samples.

Sample | Number of | CPU | Percent Agreement with Reference for Class

size iterations time 1 2 3 OA

100 102 201 | 100.0 100.0 100.0 100.00

200 246 843 | 100.0 100.0 100.0 100.00

300 517 2140 | 100.0 100.0 99.7 99.89

400 565 3030 100.0 100.0 100.0 100.00

500 1041 6511 100.0 99.8 99.4 99.73

800 857 6931 100.0 98.0 98.2 98.72
Table 4.104

Conjugate Gradie
60-Dimensional Simu

nt Linear Classifier Applied to
lated HIRIS Data: Test Samples.

Sample | Number of | Percent Agreement with Reference for Class
size iterations 1 2 3 OA

100 102 87.3 61.6 46.8 65.22

200 246 84.8 56.8 47.2 62.95

300 517 84.8 55.2 57.3 65.78

400 565 84.4 55.3 58.2 65.94

500 1041 86.9 61.7 56.6 68.38

600 857 88.0 66.7 58.7 71.11 J
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or less. With a larger sample size, the 40-dimensional classification was about

two times faster (Figure 4.18).

4.4.4 Summary

The Statistical methods were consistently superior to the neural network
methods in the classifications of very-high-dimensional data performed here.
The ML method, when applicable, was clearly the best, both fast and
accurate, in classification of the 20- and 40-dimensional data sets. It could not
be applied for the 60-dimensional data because of a singular covariance
matrix. In that case the SMC and the LOP outperformed the minimum
distance and neural network methods. In fact, these two methods must be
considered desirable alternatives for classification of very-high-dimensional
data. If the high-dimensional data can be split into two or more independent
data sources, the SMC and the LOP can be very accurate and extremely fast.
They are faster in classification than the ML method and can also be applied
in classification of multitype data when the ML method is not appropriate.
Also, in these experiments the LOP showed a far better performance than in
the classifications of the multisource data in Sections 4.2 and 4.3. The
apparent reason is that the two HIRIS data sources were rather agreeable.

When this is the case the LOP can provide very good performance.

The MD classifier showed very poor performance. It is very fast but
cannot discriminate the data adequately. Since it does not use any second
order statistics, it is bound to perform poorly in classification of high-
dimensional data [85]. Also, it shows saturation, i.e., above a certain number

of dimensions its classification accuracy does not increase. In the experiments,
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the MD classification accuracy did not improve for data sets more complex

than the 20-dimensional data.

Of the neural network methods applied, CGBP showed excellent
performance in classification of training data. However, its classification
accuracy for test data did not go much over 70%. The CGBP was very slow
in training and increasing the number of training samples slowed the training
process markedly. In contrast increasing the number of training samples did
not significantly improve the classification accuracy of test data. It seems
evident that CGBP needs to have seen almost every sample during training to

be able to classify them correctly during testing.

Training of the CGBP is more efficient than conventional
backpropagation and requires fewer parameter selections. However, as in the
conventional backpropagation, the number of hidden neurons must be selected
empirically. We selected the lowest number of hidden neurons which gave
100% accuracy during training. Use of too many hidden neurons makes the
neural network computationally complex and can degrade its performance
(analogous to the Hughes phenomenon (29]).

The CGLC uses no hidden neurons, and in the experiments with high-
dimensional data it did not do much worse than the CGBP. The relatively
good performance of the CGLC indicates good separability of the data. The
CGLC was not as accurate as CGBP in classifying training data but achieved
similar accuracies in classifying test data. The CGLC converged faster than
CGBP, so it seems to be the better alternative for classification of very-high-

dimensional data.
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In defense of the neural network methods, it can be said that the
maximum likelihood method had an unfajr advantage since the simulated data,
were generated to be Gaussian. Neural networks are easy to implement and
do not need any prior information about the data whereas a suitable
statistical model has to be available for the ML method. Also, neural network
methods were shown earlier to have potential in classifying difficult multitype
data sets. However, the neural networks do not have as much ability to
generalize as the statistical methods, which was evident in the test data
results. These methods will not be comparable to the statistical methods in
terms of speed unless irpplemented on parallel machines. Currently their
computation time inc\reases very rapidly with an increased number of training
samples in contrast to the statistical methods which require almost no

increased time when the training sample size increases.
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CIH'APTER b
CONCLUSIONS AND
SUGGESTIONS FOR FUTURE WORK

5.1 Conclusions

This empirical evaluation of statistical methods and neural networks for
classification of both multisource remote sensing/geographic data and very-

high-dimensional data has revealed some striking differences.

The neural network models, the CGLC and the CGBP, showed good
performance as pattern recognition methods for multisource remotely sensed
data. Both neural networks were superior to the statistical methods used in
terms of classification accuracy of training data. However, in classification of
test data better results were achieved with statistical methods. Also, the
neural network models have an overtraining problem. If their training
procedure goes through too many l:arning cycles, the neural networks will get
too specific in classifying the train ng data and give less than optimal results
for test data. This overtraining >roblem is a shortcoming that has to be

considered in the application of neural networks for classification.

The neural network models have the advantage that they are
distribution-free and therefore no knowledge is needed about the underlying

statistical distributions of the data. This is an obvious advantage over most
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statistical methods requiring modeling of the data, which is difficult when
there is no prior knowledge of the distribution functions or when the data are
non-Gaussian. It also avoids the problem of determining how much influence
a source should have in the classification, which is necessary for both the SMC

and LOP methods.

However, the neural networks, especially the CGBP, are computationally
complex. When the sample size was large in the experiments, the training
time could be very long. The experiments also showed how important the
representation of the data is when using a neural network. To perform well
the neural network models must be trained using representative training
samples. Any trainable classifier needs to be trained using representative
training samples but the neural networks are more sensitive to this than are
the statistical methods. If the neural networks are trained with representative
training samples the results showed that a two-layer or a three-layer net can
do almost as well as the statistical methods in multisource classification of test
samples. However, the neural network methods were clearly inferior to the
statistical methods in the classification of the very-high-dimensional
(simulated) HIRIS data. It was known beforehand that the HIRIS data were
Gaussian; they were simulated that way. Therefore, the neural network
methods did not have much chance of doing better than the statistical
methods. The neural network models are more appropriate when the data are
of multiple types and cannot be modeled by a convenient multivariate

statistical model.

The SMC method worked well for combining multispectral and

topographic data. The classification of four and six data sources gave
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significant improvement in overall and average classification accuracies as
compared to single source classification. Using different levels of weights for
different sources also showed promise in the experiments in terms of increase

in overall classification accuracy.

Three different modeling methods were used in the experiments for
density estimation of non-Gaussian data sources. The Parzen density
estimation showed very good test performance in terms of overall classification
accuracy. However, the Parzen density estimation was more time consuming
than the other methods (histogram approach and maximum penalized
likelihood method) when the sample size was large. The maximum penalized
likelihood method also gave very good test accuracy. Both the Parzen density
estimation and the maximum penalized likelihood method are useful

alternatives for modeling of non-Gaussian data in multisource classification.

The SMC algorithm requires representative training samples but tends
not to be as sensitive to their being representative as are the neural network
models. The SMC algorithm outperformed the neural networks in classifying
test data since it was provided with more prior knowledge in the form of the
statistical model(s) for the data. Carefully modeled density functions make
the statistical approach more capable of generalizing to samples not seen
during training. Also, the neural network models require computationally
expensive iterative training in contrast to the SMC algorithm. On the other
hand, significantly more insight and effort are required on the part of the
analyst to use the SMC. Also, when the Parzen density estimation is used
with the SMC, the training time of the SMC can become computationally

intensive in its own right.
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The LOP did not do well at all in the multisource classification of
multisource remote sensing and geographic data. The LOP is appealing
because of its simplicity but it is not appropriate for classification of
multisource data. It was clearly inferior to the SMC in classification of these
data. However, in classification of the very-high-dimensional data, both the
LOP and SMC algorithms showed excellent performance. Both methods were
faster than the conventional ML classifiers and can always be used in contrast
to the ML which shows singularity problems with limited number of training
samples. The reason for the good performance of the LOP in the high-
dimensional classification was that the two data sources were rather agreeable
and had high source-specific accuracies. That was not the case for the sources
in the multisource classification experiments. When the data sources are
relatively agreeable the LOP can do well in classification and improve the

overal] accuracy as compared to the single source classifications.

The three suggested reliability measures were employed as ranking
criteria for the data sources in the SMC and LOP classifications. These
worked well for the SMC in all cases where sample sizes were adequate. The
ranking criteria also worked well for the LOP in the classification of very-
high-dimensional data. They could not help in classifications of multitype
remote sensing and geographic data because the sources were not agreeable
and the LOP tended toward dictatorship of the best source. It is very hard to
determine the optimum weights for both the SMC and the LOP. That
problem is still being investigated. With both optimum weighting and
optimum data modeling the SMC will certainly give an excellent performance

in classification of multisource remote sensing and geographic data.
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In general the main advantage statistical classification algorithms have
over the neural network models is that if the distribution functions of the
information classes are known these methods can perform very accurately.
But for those cases, as for instance in multisource classification, in which we
do not know the distribution functions, neural network models can be more

appropriate, although at considerable computational expense.

There are several problems related to both the statistical and neural
network approaches in multisource classification which need further work.

Suggestions for future research directions in this area are discussed next.

5.2 Future Research Directions

The most important problem with the statistical methods is weight
selection. As observed previously, it is very hard to find optimum weights for
the statistical multisource classifiers. One general approach for determining
weights appears to be the use of optimization techniques similar to the
mathematical programming methods suggested in Sections 2.3.4 and 2.3.5.
These methods need more research to be applicable for optimum weight

selection.

As discussed in Chapter 3, it is very difficult to implement statistics
explicitly in neural networks. Therefore, it is very hard to combine the
statistical consensus theory approaches and the neural networks models.
However, one possibility for a consensual neural network is the stage-wise
neural network algorithm described as follows. This network does not use
prior statistical information but is somewhat analogous to the statistical

consensus approaches.
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In the stage—wisé neural network a single-stage neural network is trained
for a fixed number of iterations or until the training procedure converges.
When training of the first stage has 'ﬁnished, the classification error for that
stage is computed. Then another stage is created. The input data to the
second stage are obtained by non-linearly transforming the original input
vectors. The second stage is trained in a similar fashion to the first stage.
When the training of the second stage has finished, the consensus from both
stages is computed by taking the weighted sum (using stage-specific weights)
of output activities from the stages. The stage-specific weights can, e.g., be
selected based on the overall classification accuracies of each stage. Then the
consensual classification error for the consensual neural networ ¢ is computed
using both stages. If the consensual classification error is lower than the
classification error for the first stage, a new stage is created an{ trained in a
similar way to the second stage, but with another set o- non-linearly
transformed input data. After treining of this stage has finished, the
consensus and the consensual error are computed for the ou.put activities

from all the stages.

Stages are added in the consensual neural network as long as the
consensual classification error decreases. If the consensual classification error
is not decreasing, the training is stopped. Testing can be done by applying all

the stages in parallel.

The consensual neural network algorithm combines the information from
various different "sources." In contrast to the data sources usually referred to
in multisource classification, the "sources” here consist of non-linearly

transformed data which have been transformed several times from the raw
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data. In neural networks it is very important to find the "best” representation
of input data and the consensual neural network attempts to average over the
results from several input representations. Also, in the consensual neural
network, testing can be done in parallel between all the stages, which makes
this method attractive for implementation on parallel machines.

This type of consensual neural network may be a desirable alternative for
multisource classification. However, it needs further work in terms of
guidance of weight-selection for the sources and selection of the best non-

linear transformation.
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