
NASA Contractor Report 177599

///-_,,3

Two Neural Network Algorithms
for Designing Optimal Terminal
Controllers with Open Final-Time
Edward S. Plumer

CONTRACT NG'F-50642
October 1992

National Aeronautics and
Space Administration

(NASA-CR-177599) TWO NEURAL N93-25137

NETWORK ALGORITHMS FOR DESIGNING
OPTIMAL TERMINAL CONTROLLERS WITH

OPEN FINAL TIME (Stanford Univ.) Unclas

24 p

G3/63 0159303

NASA Contractor Report 177599

Two Neural Network Algorithms
for Designing Optimal Terminal
Controllers with Open Final-Time
Edward S. Plumer

Department of Electrical Engineering

Stanford University

Durand Building, Room 104
Stanford, CA 94035-4055

Prepared for
Ames Research Center
CONTRACT NGT-50642
October 1992

N/kSA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field. California 94035-1000

1 Abstract

Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have

been used successfully as state-feedback controllers for nonlinear terminal control problems. Current

BPTT techniques, however, are not able to deal systematically with open final-time situations such

as minimum-time problems. Two approaches which extend BPTT to open final-time problems

are presented. In the first, a neural network learns a mapping from initial-state to time-to-go.

In the second, the optimal number of steps for each trial run is found using a line-search. Both

methods are derived using Lagrange multiplier techniques. This theoretical framework is used to

demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods

used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the

resulting trajectories compare favorably to optimal control results.

2 Introduction

The use of neural networks as controllers for dynamic systems is currently the subject of much

interest. Controllers for linear systems can be designed using well-established techniques, but no

general design approaches yet exist for the larger class of nonlinear systems. A neural network can

be a useful alternative tool for the synthesis of nonlinear controllersl The feasibility of training

neural controllers has, moreover, been demonstrated by numerous applications.

As distinguished by Bryson and Ho [1], there are two main classes of controllers: regulators

and terminal controllers. A regulator maintains the state of the system about some known refer-

ence. It accomplishes this despite external disturbances and internal uncertainties. Narendra and

Parthasarathy, among others, have analyzed neural network regulator structures [2,3], training their

networks using Williams and Zipser's dynamic backpropagation algorithm [4]. Unlike a regulator,

a terminal controller drives the plant to some final state while maintaining acceptable state and

control values along the trajectory. Whereas a regulator continues its task indefinitely, a terminal

controller stops when the desired final state is reached. One example of a terminal controller is the

truck-backer of Nguyen and Widrow [5] in which a network was trained, using a variant of Werbos's

backpropagation through time (BPTT) algorithm [6], to implement a state-feedback control law.

An important class of terminal controllers is that in which the controller does not know, and

must optimize, the number of steps along the trajectory. However, current BPTT techniques for

terminal controller design do not provide a systematic way of incorporating the time elapsed along

a trajectory as part of the cost function. As a result, it is not practical to solve problems such

as minimum-time control. On the other hand, such "open final-time" problems have been dealt

with for several decades using classical optimal control methods [1]. However, as I point out in

section 3, these optimal control techniques typically find a set of open-loop control vectors which

are valid only along a single trajectory. This is a limitation, as often control over many trajectories

is needed. Such control can be accomplished, if full state information is available, by capturing the

optimal state-feedback control mapping over the desired range of state-space.

Dynamic programming [7,8] provides one way of computing this optimal feedback control; for

problems with many dimensions, however, the computation and storage requirements of dynamic

programming are prohibitive. A second, less problematic, technique involves the precomputation

of a number of nominal optimal paths and the subsequent use of second variation methods to

find optimal solutions near one of the precomputed trajectories [1]. However, this requires both

deciding upon a good representative set of nominal trajectories as well as explicitly storing the set

of computed control vectors.

Sigmoidal feedforward neural networks with 2 layers of neural elements are capable of approxi-

mating any sufficiently well-behaved function, given that they contain a sufficient number of nodes

in the hidden layer [9,10]. In consequence, they can be used to approximate the control law with-

out explicitly storing control vectors over the state-space. A way of combining the state-feedback

structure of a neural network controller with the open final-time methods of optimal control would

permit theapplicationof neuralnetworksto the classof terminalcontrolproblemsdescribedabove.
Thispaperderivestwosuchextensionsto BPTT usingwell-establishedLagrangemultiplier meth-
ods. A similar theoretical framework for backpropagation has already been proposed by le Cun

[11]. This paper extends the framework to describe a state-feedback control structure.

3 Review of N-Stage Optimal Control

Before considering the neural network problem, we first review N-stage optimal control methods for

designing terminal controllers. A typical N-stage problem can be phrased as: choose the state-space

trajectory, x = Ix(0),..., x(N)], and open-loop control sequence, u = [u(0),..., u(N- 1)], for the

discrete-time plant, f, which minimize a cost function subject to the constraints of the system:

jo = min ¢[x(N)]+ _ L[x(i),u(i)]
X,U i=0

x(O) - z0, known initial condition (1)

x(i+l) = f(x(i),u(i)), i=0,...,N-1. (2)

The key points to observe are 1) the solution is found for a single trajectory, 2) the problem

requires explicitly finding the open-loop control vectors at each increment in time. This problem

can be solved by converting it into a two point boundary value problem (TPBVP). To do this, the

plant-update equation is first adjoined to the cost function using a Lagrange multiplier sequence

or adjoint vector sequence, ,_ :

N-1

] : ¢[x(N)]+ _ /(L[x(i),u(i)]+ _(i+ ')T (f, --z(i + 1))).
i=0 "

For notational convenience, a ttamiltonian sequence Hi is usually defined as

Hi -- L[x(i), u(i)] + A(i + 1)Tf(x(i),u(i)), i = 0,...,N - 1.

Substituting this Hi into], rearranging terms, and considering differential changes in] due to

changes in x and u gives

(T) 0-0
OHo

d,] = O'x'(-N) _ _ d u (O)

N-, ((OHi OHi du(i))

Since x(0) is fixed, clx(O) = 0. By the Kuhn-Tucker conditions [12], in order to have optimal x(i)

and u(i), we must have the gradient vector _7] = 0. Thus, we need dJ = 0 for all choices of

dx(1),...,dx(N), and clu(O),...,du(i- 1). For this to hold, we must have

0¢
)_(N) T -

Ox(N) (3)

(i)r OH (OL_ _ OI_)
= 0"_(/) - \Oz-_ + A(i+ 1) _-_], i = 1,...,N- 1 (4)

oM, (oL, _ ol,)
0 -- Ou(i) - _ +A(i+l) _:_], i=0,...,N- 1. (5)

The terminal value of the Lagrange multiplier sequence A is given by equation 3. Earlier values

of A are then found using the iterative procedure given by equation 4. In order to have optimal

u(i) and x(i), the optimality condition (eqn. 5) must be satisfied. These equations define a TPBVP

which typically must be solved numerically. One numerical method [1] consists of guessing an initial

control sequence, uo(i), and then making many trial runs of the system (eqns. 1-2) After each run,

the terminal error is swept backward (eqns. 3-4) and the control vector at each time step is updated

by gradient descent:

(OLi T Oft _ ,
Uk+l(i) -- uk(i)-p\-_+_(i+l) -_]k i=0,...,Y-1. (6)

This derivation assumed that the number of time-steps was known, an assumption which is also

implicitly made in BPTT. In many terminal control problems, the final time, t], is not known a

priori and an optimal selection of this final time must be made. To do this in optimal control, the

problem is typically solved in continuous time so that the number of control parameters does not

change as t! is changed. Thus we have:

(/0")J° = min ¢[x(ti),t]]+ L[z(t),u(t)]dt
X,U,t!

x(O) = xo

_(t) : f(x(t), u(t)).

This problem is similarly converted to a two-point boundary value problem with continuous forward

and backward equations. In addition to requiring that an optimality condition similar to equation 5

holds, this procedure requires that the transversality condition

= (7)0 s = (_t+L[x(t)'u(t)]+'_T(t)f(x(t)'u(t)))l,=,s

be satisfied at the terminal point. This can be done by using gradient descent on ts 1, an approach

which motivates method 1 of section 4.

1One such routine,]cnopt, written by Bryson [13], numerically integrates the continuous time system using a fixed

number of steps. The integration time step, At, is then varied by gradient descent in order to effect a change on tI.

This provides a way of varying t I without changing the number of control vectors. The routine is used for comparison

purposes in section 5.

4

4 Neural Network Terminal Controller

4.1 Optimal Control Formulation of Problem

Given this background, we can now describe the neural network control structure shown in figure 1.

As before, the block f is a discrete-time model of the dynamic plant with sampling interval At. The

model determines the next state of the plant given the current state x(i) E _'_ and control u(i) E

_m. The block g is a nonlinear state-feedback controller consisting of a multilayer feedforward

neural network with weight vector 0 E _. Of course, the state vector is assumed to be available to

the controller at each iteration. Although this paper focuses on multilayer networks, the algorithms

derived are equally applicable to any parameterized mapping which is differentiable with respect

to the input and parameter vectors.

neural network

I

g

X.

discrete plant model

t

u i

f

At

time delay

Figure 1: Feedback control loop with neural network controller.

So that we can deal systematically with having unknown trajectory lengths, we define a "time-

to-go" function N(xo) which maps the initial state to the length of the associated trajectory. This

is analogous to the parameter ty described in section 3. Furthermore, in order to formulate the

optimization problem over many trajectories simultaneously, we assume that the initial state is a

discrete random vector 2 X0 taking on values Xo E {x_,... ,ZPo} with some probability mass function

p(xo =

The choice of N(zo), 8, and xo determines a state trajectory x(x0,/9) = Ix(0),..., z(N(xo))]

and control sequence u(z0,/9) = [u(0),..., u(N(zo)- 1)]. Given these sequences, we can define a

trajectory cost J(x(z0,/9), u(x0, 0), g(x0)). We could then attempt to find the 0 and g(zo) which

minimize the expected cost over all trajectories,

P

jo = min _](x(x_, 0), U(Zop, 0), g(x_)) P(Xo = xt]), (8)
O,N(xo) _=I

_Justiflcation of the derivations when X0 is a continuous random vector is not presented due to the subtleties

involved in applying the Kuhn-'l_ucker conditions when the parameter vector is not in N'_.

5

while implicitly incorporatingthe systemconstraintsby judiciousapplicationof the chain-ruleas
the gradient_TeJis determined. If wedisregardthe minimizationover N(xo) in equation 8 by

assuming some value of N for each trajectory, then this unconstrained problem is equivalent to

the usual formulation of BPTT. An alternative method is to rephrase equation 8 as a constrained

optimization problem with the system constraints made explicit. To do this, we assume that the

state and control sequences can be chosen independently of 0 and then attempt to find the x(x0),

u(x0), 0, and N(xo) which minimize the expected cost

P

jo = min _ j(x(z_),u(zg),Y(zg)) e(Xo = x_)) (9)
x (xo),u(xo),$,N(xo) P= 1

while also satisfying the system constraints,

x"(o)=

xP(i + 1) = f(xv(i),uV(i)) ,

uP(i) = g(xP(i),O) ,

along each trajectory.

p= 1,...,P

i = O,...,Y(xg)- 1,

i= O,...,U(x g)- 1,

(10)

p = 1,...,P (11)

V = 1,...,P. (12)

For notational convenience, we will use the expected value operator and

drop the explicit dependence of x and u on z_).

4.2 Choice of Cost Function

Equation 9 is a general form of the cost function. In this paper, a specific cost function is phrased

as a Bolza problem:

N(xo)-I]J = E ¢[x(N(z0)),N(z0)At]+ _ L[x(i),u(i)] . (13)
i=0

The term L is used to incorporate cost that is accumulated along the trajectory. For example, a

quadratic function of the control vector will minimize control effort. Path state-constraints can be

implemented as part of L using barrier-function methods [12]. The terminal cost ¢ can be used

to implement soft terminal constraints. Note that hard terminal constraints which must be met

ezactly typically result in an ill-posed problem when this neural network structure is used. As an

example cost function, consider

¢[x(Y°), g°At] = Qt g°At + (xd -- z(Y°)) T Q_ (Xd -- x(g°)). (14)

This ¢ is linear in the final-time and is a quadratic function of the difference between the final state

and a desired state. The matrix Qx, assumed to be symmetric and positive semi-definite, weights

the various state terms. Using this cost will minimize the trajectory time while approximately

maintaining the desired end condition. More complicated functions of final state and time can be

used as well. The soft terminal end-constraint on the state is adequately dealt with using standard

BPTT. The extensions presented in this paper are designed to incorporate terms such as Q, N°At

which involve final time.

4.3 Solution of the Optimal Control Problem

We now derive two algorithms for solving the constrained optimization problem given by equa-

tions 10-12 and equation 13 using the optimal control methods introduced in section 3. Although

somewhat complex, the derivations yield very simple, intuitive extensions to BPTT. Both algo-

rithms use the same stochastic gradient descent structure as BPTT. The training procedures con-

sist of a sequence of trial runs of the system with initial states drawn independently from the

distribution of X0. Each run is followed by a computation of the terminal error, a backward sweep

of that error, and a weight update based on the instantaneous gradient from that one sweep. The

new algorithms differ from BPTT in the selection of the stopping point for the forward sweep.

4.3.1 Method 1: Explicit Model of "Time-To-Go"

In the continuous open final-time problem of section 3, the final time t! was treated as a parameter

and gradient descent was used to update that parameter. Here we extend this idea to neural

network controllers by attempting to explicitly determine the optimal trajectory lengths. In order

to use gradient descent, however, we replace N(xo) with the continuous time-to-go function tl(xo).

To permit this, we first compute the state history x(0),..., x(N) along each trajectory by forward-

iterating the system N = [tl(xo)/AtJ steps using equations 10-12. We then simulate the effect of

running the system for one partial step of length aAt = tl(xo) - At N and find x(t:) by linear
interpolation:

x(ty) _ (1 - oc)x(N) + c_x(N + 1)

= (1 - c_)x(N) + af(x(N), u(N)). (15)

We also augment the cost function (eqn. 13) to reflect the cost incurred during this partial step:

[]J = E ¢[x(ts),t/] + aL[x(N),u(N)] + _ L[_(i),u(i)] . (16)
i----0

The x(xo), u(zo), 0, and tl(xo) which minimize this cost function, subject to the system constraints

(eqns. 10-12), are then sought. To do this, we first adjoin both the plant constraints (eqn. 11) and

controller constraints (eqn. 12) to the cost function using two sets of Lagrange multiplier sequences,

,_l(x0) = [,_i(0),..., ,_/(N), 1l(tl(x0))] and J_a(x0) = [,_g(0),..., lg(N)]. Like x and u, these are

ensembles of sequences indexed by x0. The adjoined cost function becomes:

= E [¢[x(tl),ty] + aL[x(N), u(N)]
]

+ ((1- _.<,,>)+ _

._i)I]

An ensemble of Hamiltonian sequences Hi(xo) is now defined as

Hi = L[x(i), u(i)] + Al(i + 1)Tf(x(i), u(i)) + Aa(i)Tg(x(i), 0),

i=O,...,N-1, Vx0E{x_,...,x P}

HN =-- aL[x(N), u(N)] + 2I(t])T ((1- a)x(X) + af(x(U), u(U))) +)_a(N)T g(x(N),O),

Substituting the Hamiltonian sequences into 3=, we simplify the expression to

j = F[¢[x(ti),t]]+ (HN- _](ty)Tx(t]) - _g(N)Tu(N))

N-,_ (1)Tx(i A,(i)Tu(i))]+ ,Hi - _j(i + + 1)- .
i=0

Replacing t I with (N + _)At and rearranging terms gives

= E[(¢[x(tl),(g +c_)At]- _](tl)Tx(tl)) + Ho-
J Ag(o)Tu(o)

+ __.H, -
i=l

We now consider differential changes in] due to changes in O, _, x(1),... ,x(N),x(ti) , and

u(O),..., u(N). We require that admissible changes in oc be small enough that [(/f + dtI)/AtJ =

[tl/AtJ, thus allowing N to be treated as a constant. We then have

[(0¢ _](tl)r) dx(t')OHo dx(O) + O_t(t])d j= E-_-_

N (OHi) N (OHi)+ _ k-ggg,- aJ(i)r _x(0 + _ \-b-_ - a,(_)r e.(i)
i=1 i----0

Since x(O) is fixed for each trajectory, dx(O) = O.

The function ti(xo) can be implemented using a second neural network with weights O,

t I = r(x(O),O),

which will approximate the optimal time-to-go function to any required accuracy. The variation of

the step ratio _ can now be written as a function of the variation of the network weights O:

1

a = -_tl-N

1

= _-_r(x0,0)- N

1 Or
dc_ - dO.

At OO

Substituting this expression for da back into d,] yields

dJ = E
[(Ox(ty)O¢ ,_y(t]) T) dx(t])

+ \-_xi -)tl(i)r dx(i) + _ \-_ui -)tg(i)T du(i)
"= i=0

+ E dO+ +

In order to have optimal x(i) and u(i), we must have V] = O, which requires that along ev-

ery trajectory d] = 0 for all choices of dO, dO, dz(1),...,dx(N),dx(tl) , and du(O),...,du(N).
Therefore,

,o uT)_s(ty)T = Ox(tf)' ""

= { }axi i= l, N, Vx0 E x_ x (18)

= Oui' i=0,...,N, VXoE x_,...,x (19)

: =

0 = E _+ At _) 0"-# ' (21)

The terminal condition on h I is given by equation 17. It is identical to the expression found for

N-stage optimal control (eqn. 3). We can expand the equations for the adjoint vector (eqns. 18-19).
For i = N we have

(OLN ,TOfN '_
Ag(N) T = a \O-_(-N) + _l(t]) 0--_)) (22)

(OLN .TOfN _ OgN

AI(N) T = e k,a-_-_) + Ay(t]) Ox-_} + Ag(N)T_ + (1 - a))_y(tf) T (23)Ox(N)

ForThese expressions sweep the terminal error A](t$) back through the simulated final step.

i = 0,...,N- 1 equations 18-19 become

,_g(i)T _ aLl Ofi
+ ,_](i + 1)Tou(i) (24)Ou(O

(OLi T Ofi _ z Ogi
l(i)T = \-0- + _f(i + 1) _-_] + _g(i) 0-_)" (25)

These expressions sweep the error at time step N back through the iterations of the feedback loop.

Note that the backward sweep equation for the neural network structure (eqn. 25) and for optimal

control (eqn. 4) differ only in the term Ogi/Oz(i). This term appears in equation 25 because

in a feedback control loop, the u(i) are determined by x(i). The optimality condition given by

equation 20 is analogous to equation 5 derived.for N-stage optimal control. In optimal control,

however, the gradient is found with respect to each of the control vectors and gradient descent is

directly employed on each of these vectors separately (eqn. 6). Here, the average weight gradient

over the trajectory is used since the same control weights must be used at each stage. In practice,

a weight update is made after each forward/backward sweep using the instantaneous gradient:

N (- T Ogl
ok+,(i) = ok(i)- k (26)

i=1

To analyze this stochastic gradient descent over time, we consider the total weight change after K

random trajectories:

k=l i=l

If Po is small, we can assume 01 _ 02 _ ... _ OK. Furthermore, the probability that Xok is chosen

on the k th iteration is P(X0 = Xok). Thus the summation converges to

We see that, as with the LMS algorithm, the slow adaptation process smooths the weight-gradient

estimate so that the change in the weight vector follows the true gradient on average [14].

So far this derivation has produced an algorithm exactly like BPTT with an added partial

final-step. The critical new term, however, is the transversality condition (eqn. 21) which can be

expanded to give

where

AT = (0¢_ -I- _LN +)_I(tI)T (f[x(N), u(N)]-x(N)))At (28)

will be called the final-time error. Equation 28 is a discrete-time approximation of equation 7.

To improve the final-time, we can compute ,_ after each sweep, backpropagate it through the

network r, and update the time-to-go network weights based on the resulting instantaneous gradient
estimate:

/ TOrX
Ok+, (i) = tgk(i) - pe _A, -_) k. (29)

To gain some insight into the transversality condition, consider the three terms of the final-time

error (eqn. 28). The first term, O¢/Otj, is the direct effect on the terminal cost of varying tf. The

second term, LN/At, is an incremental trajectory cost. The last term can be rewritten as

A 't 'T['f[x(N)'u(N)]- x(N) T(ex_] .

10

This is the indirect effecton the terminalerrordueto the terminalstatechanging.In summary,
the algorithmusesthe networkr to predictthe.stoppingtime. The final-stateerror (eqn.17) for
thegivenpredictionof t] is backpropagated through the stages of the feedback loop to update the

controller network weights and the final-time error (eqn. 28) is backpropagated once through r to

update the time-to-go network weights.

4.3.2 Method 2: Implicit Determination of "Time-To-Go"

Although the optimization problem consists of finding both the optimal 0 and N(z0), once training

is complete it is often only necessary to store 0. The evolution of the actual physical control system

will typically provide a natural stopping point. In training, however, some method must still be

used to determine at what time-step to stop the forward run and compute the terminal error. In

this second approach, we assume that once the controller is trained, the time-to-go mapping is no

longer necessary and thus it is not explicitly stored. This, as we shall see from the experimental

results, yields a simpler and more robust algorithm.

In order to optimize the choice of time-to-go function N(z0), we begin by reconsidering the

general cost function (eqn. 9) and distributing the minimization over N across the expected value

P

jo = min < J(x(xg),u(zg),N(zg)) P(Xo = zg)
X(xo),U(xo),O,N(_o)_=

= min _ {m_n j(x(xV), u(x_), N) } P(Xo = ZoV),
x(::0),u(::0),0 v= l

We are now minimizing the cost function over N E Z + for a specific trajectory and choice of &

The distribution is allowed since the original minimization on N(zo) was taken over _'_ x Z +. The

minimizing value of N within the expected value will depend on the choice of z0 and 6 and is

defined as

N °-'N°(xo,O) =- argm_n:(x(xo),u(xo),N).

Note that this is not the desired function N°(zo) unless we have optimal O. Assuming for the

moment that N ° is known, we can substitute it back into the expression for J:

P

jo = min Y_](x(z_),u(x_),U °) P(X0 = x_).
X(x0),U(x0),0 p=l

Effectively, we have projected the problem of optimizing over x, u, 6 and N(zo) into a problem of

only optimizing over x, u, and 6. We will come back to how to determine N °.

First we consider how to find the optimal 6 by again deriving a set of necessary first-order

stationary conditions. As before, we seek the x, u, 6, and N(zo) which minimize

N(x0)-I]
J - E ¢[x(N(xo)),N(xo)At]+ Z L[x(i),u(i)] (30)

i----0

ll

subjectto the constraintsgivenby equations10-12.Substitutingin, the asof yet unknown,N ° ,

we can write

[]S = E ¢[x(N°),N°At] + _ L[x(i),u(i)] . (31)
i=O

We adjoin the system constraints to the cost function using two Lagrange multiplier sequences, h L

and Ag, as before:

= E [¢[x(N°), g°At]]

+_ {_E_(_),ul,)l+_,(,+1)_(,_-_(_+1))+_,1_(_,-_(_)•
We substitute the ttamiltonian sequence,

Hi - L[z(i), u(i)] + Ii(i + 1)rf(x(i), u(i)) + ,_9(i)rg(x(i), 0), i = 0,..., N ° - 1,

into] and rearrange the terms to produce

---- E [¢[x(N°), N°At] - _I(N°)Tx(N °) + Ho -J ,_9(O)T u(O)

No-1

i=1

Consider differential changes in J due to changes in O, x(1),..., x(N°), and u(O),..., u(Y ° - 1). We

require that admissible 60 are chosen small enough that N°(xo, O) = N°(xo, 0 + 60), thus treating

N ° as a constant:

[OHo (0¢ ° hi(go)T) dx(NO)dJ

+ _ _0-;_-(0_j(;)r dx(i)+ _ \gu-_) _o(Or du(O
i=l i=0

N°- I dO.]+z
i=0

Again, we know that dx(O) = O. In order to have optimal O, x(i) and u(i), we require that dJ = 0

for all choices of dO, dx(1),...,dx(N°), and du(O),..., du(N ° - 1) along every trajectory, thus

giving

0¢
)v(N°) T = Ox(No), VxoC{xl,...,x P}

al(i)T OHi
-- Ox(i)' i=l'""N°-l' Vx°e{x_''"'xP°}

(32)

12

(OL z O/i T Ogi
= _-_)+ Af(i + 1) _(_j + Ag(i) O-_(i) (33)

- Ou(i)' i=O,...,N °-1, VxoC Xlo,...,x

= 1) ' (34)

rN°-I OHi]
0 = ELi___O --_-j

Equations 32-34 are the same terminal condition and backward sweep equations as equation 17

and equations 24-25. The optimality condition (eqn. 35) is again satisfied using stochastic gradient
descent:

N°-I (TOgi'_ (36)Ok+l(i) = Ok(i)--pO E Ag(i) NJk
i=0

The extension beyond BPTT in this algorithm is the new expression

NO

N-1)= argm_n ¢[x(N),NAt]+ y_ L[x(i),g(x(i),O)] (37)
i=O

which takes the place of the transversality condition of method 1 (eqn. 27). This expression is

not in the form of a stationary condition but is rather in the form of an explicit expression for

minimum value. Application of this second method is straight-forward: we simply stop the forward

run at the time-step which minimizes the total cost function for the current value of 0. Note that

this is not necessarily the time-step where the state is closest to the terminal position. We then

use equations 33-34 to propagate the error at that time-step through the control feedback loop.

In practice we assume that we can find some upper bound on N °, Nm_,z. The forward sweep is

terminated after Nmaz iterations, J(x(xo),u(xo),N) is computed for each N - 0,...,Nmaz, and

the time-step with minimum value of a; is chosen as N ° for that trajectory.

4.4 Comparison of Optimal Control Formulation to BPTT

It is instructive to compare the Lagrange multiplier equations just derived with the calculations car-

ried out in BPTT. First consider equation 32. If we used a quadratic soft terminal-state constraint

(eqn. 14), we can evaluate the terminal value of the Lagrange multiplier sequence as

0¢
,_.t(N) T -

Ox(N)

= O((Xd-- x(N)) TQ=(xd- x(N)))/Ox(X)

= 2(Zd -- x(N)) T Q=.

13

This is the samescaledstate-errorusedin BPTT.

Nextconsiderthe backwardequations(eqns.33-34).Figure2 showsa graphicalrepresentation
of the variouscomponentsof theseequationsfor onetime-step.The thin linesare the signalflow
for the state and controlvectors. The bold linesare the signalflow for the adjoint vectors. We
caninterpret h](i) to be thesquared-errorderivativeat theplant output at the ith stage and)_g(i)

to be the squared-error derivative at the controller output. With these interpretations, we see

that the adjoint vector equations exactly describe the BPTT process and that the _ are, in fact,

the backpropagated quantities. The term)_g(i)TOgi/Ox(i) is computed in BPTT by propagating

the error _g(i) through the controller network using the backpropagation algorithm described by

Rumelhart [15] with internal activation values determined by the forward sweep of x(i). This back-

propagation also computes the weight gradient component _g(i)TOgi/O0. The error components

_i(i + 1)Tofi/Ou(i) and _](i + 1)Tofi/Ox(i) can be computed in several ways. If f is a neural net-

work model of the plant then backpropagation can be used, as in the work of Nguyen and Widrow

[5]. If the equations of the plant are known, then the Jacobian matrices f,,(i) = Ofi/Ou(i) and

f_(i) = Ofi/Ox(i) can be computed analytically. Alternatively, these matrices can be estimated

numerically by perturbing the inputs to f and observing the output perturbations. The Jacobian

matrices are then directly multiplied by _l(i + 1).

gi r X,(i)"r

IL-.LJ !-
It--71

x(O......] L__L:G__;
I. Controller

).

Ofi
_'f(i+ 1)T _U i V.... 7

I r

I
! I

u(i) _---_,

gl tit
]L I

I I
I

I

_.f(i+ 1)T t
oxi Plant

-_ x(i+l)

_.f(i+l) T

Figure 2: Forward and backward signal paths through one stage.

5 Experimental Results

This section presents the results of applying the time-optimal techniques to a simple optimal control

problem. This Zermelo problem, proposed by Bryson [1], consists of a boat navigating in a river

14

with a linear currentprofile as shown in figure 3. The controller is required to steer the boat to

the goal at the center of the river in minimum time from many initial positions. This system was

chosen because it is simple enough to allow the family of optimal trajectories to be visualized and

yet provides an interesting time-minimization problem.

river bank

- y

- vboa

x ,, (x,y;

current velocity profile

river bank

Figure 3: Control of a boat navigating through a river with linear current profile.

The boat state-vector was [x, y, 0r], where (x, y) was the position of the bow of the boat with

respect to the goal and 0r = 0- tan-1(y/x) was the direction of motion of the boat relative to the

direction to the goal. This choice of relative angle instead of absolute angle prevented the desired

direction from being a discontinuous function of position along the radial {x, y : tan -1(y/x) = r}.

The control vector was the change in boat direction over a sampling interval, A0. The velocity of

the boat was a constant with respect to the water, V = 1, and the current profile was chosen to be

V_ = -y/25. This gave the plant equations

x(i+l) = x(i)+cos(O_(i)+tan-l Y(i)_ y(i)
x(i)] 25

y(i + 1) = y(i) + sin (Or(i) + tan -1 y(i)_x(i)]
Or(i + 1) = Or(i) + u(i) normalized to [-_r, _r]

The initial state for each run, (xo, yo, Or,0), was chosen from a uniform distribution over

(,v,0r : • • y • [-00,50],0r •

The cost function consisted of a soft quadratic end-constraint and a time minimization term:

J : E [N°At + x(N°) 2 + y(N°)_].

The controller and time-to-go neural networks each had 3 input nodes, 10 hidden nodes, and 1

output node. The number of hidden nodes was chosen by evaluating performance with different

network configurations and picking the smallest network with satisfactory performance.

15

Beforetraining began,the controllerweightswereinitialized to randomvalues.A fewsample
trajectoriesfor the untrainedcontrollerareshownin figure4. Theseand all subsequenttrajec-
toriesareplotted againstpathsderivedby optimal controlmethodsfor eachof the initial states
separately3. The controllerwasthen trainedto emulatea coarsecontrol law, thus providingan
initial, roughguessof the weights.This coarsecontrollersimplypointedtheboat towardsthe goal
at all times. Sampletrajectoriesafter this weightinitializationtrainingareshownin figure 5. No-
tice that thepathsarenot closeto theoptimal trajectories.Thispre-trainingwasdonein orderto
keepthesubsequent,on-linelearningprocessstable.Thisweightinitialization schemewaschosen
asanalternativeto the procedureusedby NguyenandWidrow [5]whichrequireda schedulingof
the initial statespresentedto the system.Their procedureadaptedthe controllerbasedon many
initial stateswhoseN°(xo) were small before initial states with larger N°(xo) were attempted.

The two extended BPTT algorithms were then used to further train the control system to

minimize the above cost function. Trajectories for method 1 after about 150,000 training cycles

with /a0 = 10 -3 and /a_ - l0 -4 are shown in figure 6. Figure 7 shows the same trajectories for

method 2 after about 30,000 training cycles with /a0 = 10 -2. Larger values of p caused learning

instabilities. Although the trajectories were not identical to the optimal control solutions, they were

very close. In figure 7, all of the trajectory times are within At of the optimal control solutions. In

figure 6 the times differ by at most 3At. Algorithm 1 was found empirically to require smaller p

than algorithm 1 to prevent the learning process from diverging. Also, the paths in algorithm 1 were

not quite as close to the optimal continuous solutions. One possible reason for this was that errors

in the time-prediction mapping may have caused artificial errors in the control mapping. Since the

time-to-go is not explicitly represented in algorithm 2, it does not suffer from this problem.

6 Conclusions

This paper was written with two goals. The first was the presentation of two algorithms which

extend backpropagation through time (BPTT) to terminal control problems with unknown final

time. One algorithm that uses an auxiliary network to explicitly predict the optimal final-time is

of theoretical interest because it is a direct extension of optimal control techniques, specifically, the

optimal control method which satisfies a transversality condition through gradient descent on t].

A second algorithm stops runs at the time-step which minimizes the total cost function, including

the time-minimization term. This algorithm was found to be less sensitive to the learning rate, less

likely to diverge, and easier to implement than was the first algorithm. Because of this, use of the

second algorithm is recommended unless the time-to-go mapping is required. Even in situations

which do not require final-time minimization, it is still necessary to decide upon a stopping point

for the forward run. The choice of N should not be made indiscriminately, as this choice will have

a direct effect on the controller weights. For example, a stopping heuristic which tends to pick

small N might result in a controller which uses larger control effort than otherwise. Because of

3Recall from section 3 that the optimal control formulation is not valid for discrete time controllers with open

final-time. Thus, comparisons were made using a continuous plant and Bryson's]cnopt routine [13].

16

this, algorithm2 shouldbeusedto stopthe run at the iterationwhichminimizesthe requiredcost
function,evenif the costdoesnot involvetrajectory-time.

The secondgoal of this paperwas the demonstrationof the relationshipbetweenclassical
optimalcontrolmethodsandBPTT. BPTT, with theopenfinal-timeextensionspresentedhere,can
bedirectly derivedusingstandardoptimal controlmethods,and the propagatederrorsin BPTT
areequivalentto the Lagrangemultipliers in optimal control. A realizationof the similarities
betweenoptimal control and BPTT will allow the applicationof optimal control techniquesto
neuralnetworks,while,conversely,the abilityof neuralnetworksto realizea wideclassof nonlinear
functionswill permit themto solveproblemsin classicaloptimalcontrolthat mightotherwisehave
beendifficult.

The useof a multi-layerneuralnetworkas a generaltool for synthesizingan optimal state-
feedbackterminal controllerdependson certainassumptions.First, by definition, the neural net-
work realizesa continuousmappingfromstateto control.In terminalcontrolproblems,the desired
mappingis not necessarilycontinuous.Forexample,in the boatproblemabove,if the direction
had not beenchosenasa relativeangle,therewouldhavebeena discontinuity.Althougha net-
workcanapproximatea functionwith discontinuities,I havefoundthat, in practice,this makesit
difficult to obtainconvergencefor terminalcontrollerproblems.Second,dueto thestructureof the
network,the rangeof statespaceoverwhichthe networkattemptsto learntheoptimalcontrollaw
must be restricted. We alsoassumethat the problemis stationary,so the optimal costfunction,
jo, does not depend explicitly on time. Thus the controller weights 0 are not dependent on time

either. Finally, and perhaps most importantly, the methods described assume full state feedback

is possible.

There are a number of issues open to future research. Necessary first order stationary conditions

have been examined, but an investigation of sufficient conditions for local minima with regard to

conjugate and focal points [1] is still needed. Furthermore, the neural network control scheme

presented here relies on full state information. In situations where the controller does not have

this information, some form of state estimation must be used. This is an issue that needs to be

addressed in the context of neural network terminal controllers.

7 Acknowledgements

I would like to thank the members of B. Widrow's research group, most especially M. Lehr and

S. Pich_, for their ideas and comments. Also, a special thanks to A. E. Bryson for discussions on
optimal control.

17

50 ,

40 / /j j

%/,

' ', , , , , ,,,

i _i ". . "--. r'- _'-_/--'_.. ""_-. /u_ ".. "-- "...... __"_..!'<'-J.

• -I0_':';:'" ,', :", " " ',-

.o- 7 ,, _ t l i i _

i_ .--" .- " ' i _ j i i
-20 ..-'" ..'" ," ,' ,: ;

.30 / " . , , ,, ,,

-40 L__/_//_,.,II,,,, "
--optimal contr%61J _ neural controller

-50 "40 -:20 () 20 40

Position upstream, X

Figure 4: Trajectories for 3zlOzl neural controller with random weights.

40

30

20

10

0

o10

-20

-30

-40

-50 i

-40 -20 0 20 40

Position upstream, X

Figure 5: Trajectories for 3zlOzl neural controller after rough weight initialization.

18

50

40

3O

20

I0

0

-I0

-20

-30

-4O

-50
-40 -20 20 40

Position upstream, X

Figure 6: Trajectories for 3zlOzl neural controller trained using method 1.

40

_30 ¸

4o I

- - - optimal control
1 •

-50 --40 -20 0 20 40

Position upstream, X

Figure 7: Trajectories for 3xlOxl neural controller trained using method 2.

19

,

o

o

o

°

.

o

8.

°

10.

11.

12.

13.

14.

REFERENCES

Bryson, A. E., Jr.; and Ho, Y.: Applied Optimal Control. Blaisdell Publishing Co., New York,
1969.

Narendra, K. S.; and Parthasarathy, K.: Gradient Methods for Optimization of Dynamic

Systems Containing Neural Networks. IEEE Transactions on Neural Networks, vol. 2,

March 1991, pp. 252-262.

Narendra, K. S.; and Parthasarathy, K.: Identification and Control of Dynamical Systems

Using Neural Networks. IEEE Transactions on Neural Networks, vol. 1, March 1990,

pp. 4-27.

Williams, R. J.; and Zipser, D.: A Learning Algorithm for Continually Running Fully

Recurrent Neural Networks. Neural Computation, vol. 1, no. 2, 1989, pp. 270-280.

Nguyen, D.; and Widrow, B.: The Truck Backer-Upper: An Example of Self-Learning in

Neural Networks. Proceedings of the International Joint Conference on Neural Networks,

vol. II, Washington, DC, June 1989, pp. 357-363.

Werbos, P.: Backpropagation through Time: What It Does and How to Do It. Proceedings of

the IEEE, vol. 78, Oct. 1990, pp. 1550-1560.

Bellman, R.: Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

Dreyfus, S. E.: Dynamic Programming and the Calculus of Variations. Academic Press,
New York, 1965.

Cybenko, G.: Approximation by Superpositions of a Sigmoidal Function. Mathematics of

Control, Signals, and Systems, vol. 2, no. 4, 1989, pp. 303-314.

Irie, B.; and Miyake, S.: Capabilities of Three-Layered Perceptrons. Proceedings of the IEEE

Second International Conference on Neural Networks, vol. I, San Diego, CA, July 1988,

pp. 641-648.

le Cun, Y.: A Theoretical Framework for Back-Propagation. Proceedings of the 1988

Connectionist Models Summer School, San Mateo, CA, June 17-26, 1988, pp. 21-28.

Morgan Kauffman.

Luenberger, D. G.: Linear and Nonlinear Programming. Addison-Wesley, Reading, MA,

second edition, 1984.

Bryson, A. E., Jr.: Optimal Control of Dynamic Systems. Class notes AA-278A, Stanford

University, 1990.

Widrow, B.; and Lehr, M.: 30 Years of Adaptive Neural Networks: Perceptron, Madaline and

Backpropagation. Proceedings of the IEEE, Sept. 1990, pp. 1415-1442.

20

15. Rumelhart,D.; Hinton, G.; andWilliams, R.: LearningInternalRepresentationsby Error
Propagation.ParallelDistributedProcessing,vol. 1,eds.D. RummelhartandJ.McClelland,
TheMIT Press,Cambridge,MA, 1986.

21

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-01Se
Public repo'rtingburden for this collection of informationIs estimated to average 1hour per response, lncludin'gthe time for reviewinginstructions,searchingexisting data sources,
gatheringand maintaining the data needed, and completingand reviewing the collectionof information. Send comments regardingthis burden estimate or any other aspect of this
collectionof information,includingsuggestions for reducingthis burden, to WashingtonHeadquarters Services, Directoratefor informationOperations and Reports, 1215 Jefferson
Davis Highway.Suite 1204. Arlington, VA 22202-4302, and to the Office of Managementand Budget,Paperwork ReductionProject (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1992 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Two Neural Network Algorithms for Designing Optimal Terminal

Controllers with Open Final-Time

6. AUTHOR(S)

Edward S. Plumer

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Department of Electrical Engineering

Stanford University

Durand Building, Room 104

Stanford, CA 94305-4055

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

NGT-50642

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-92194

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR- 177599

11. SUPPLEMENTARY NOTES

Point ofContact: Charles Jorgensen, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000
(415) 604-6725

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 63

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Multilayer neural networks, trained by the backpropagation through time algorithm (BPTr), have been used

successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques,

however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two

approaches which extend BP'IT to open final-time problems are presented. In the first, a neural network learns a

mapping from initial-state to time-to-go. In the second, the optimal nlamber of steps for each trial run is found

using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework

is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used

in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories

compare favorably to optimal control results.

14. SUBJECT TERMS

Neural network, Terminal controller, Optimal control

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

23
16. PRICE CODE

A02
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-t8

