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SUMMARY

In this work we utilize fuzzy sets theory to evaluate and make predictions of flexural

strength and density of NASA 6Y silicon nitride ceramic. Processing variables of milling

time, sintering time, and sintering nitrogen pressure are used as an input to the fuzzy system.

Flexural strength and density are the output parameters of the system. Data from 273 Si3N 4

modulus of rupture bars tested at room temperature and 135 bars tested at 1370 degrees

Celsius are used in this study. Generalized mean operator and Hamming distance are

utilized to build the fuzzy predictive model. The maximum test error for density does not

exceed 3.3%, and for flexural strength 7.1%, as compared with the errors of 1.72% and

11.34% obtained by using neural networks, respectively.

These results demonstrate that fuzzy sets theory can be incorporated into the process of

designing materials, such as ceramics, especially for assessing more complex relationships

between the processing variables and parameters, like strength, which are governed by

randomness of manufacturing processes.

INTRODUCTION

High engine operating temperatures made possible by ceramics will result in energy

savings, reduced weight, and environmental benefits. Estimates of potential efficiency

improvements for automotive engines with structural ceramic components range from 30

to 50 percent over current engine technology. Structural ceramics such as silicon carbide
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and silicon nitride are leading candidates for engine hot-section components because of

their relatively light weight, excellent oxidation and thermal shock resistance, and good

high-temperature strength. They consist of nonstrategic materials that can be inexpensive

when mass produced. However, their wide variation in strength properties and relatively low

fracture toughness have precluded a large-scale move toward replacing many metal engine

parts with ceramics. The scatter in strength and low toughness are generally attributed to

discrete defects such as voids, inclusions, and cracks introduced during processing. Current

cost-effective fabrication procedures also frequently produce ceramics containing bulk

density variations and microstructural anomalies that can adversely affect performance [1].

Therefore it is essential to have non-destructive evaluation (N'DE) methods available that

can not only detect discrete flaws but also provide information regarding the material's

physical and mechanical properties and uniformity. By incorporating NDE technology into a

ceramic materials technology development program, information may be obtained

regarding the source of defects so that steps can be taken to minimize their occurence

through improved fabrication procedures. Thus, N'DE may help to reduce the effort

expended in a materials research pro_am and shorten the time needed to develop strong,

reliable structural ceramics.'

Scatter in mechanical properties of ceramics is a great drawback from a design/reliability

standpoint. This scatter is attributed to defects and inhomogeneities occuring during

processing of silicon nitride powder compositions and during fabrication. From research

work on a silicon nitride composition at the National Aeoronautics and Space

Administration Lewis Research Center (NASA LeRC) it was evident that density gradients

were strongly dependent upon sintering conditions [2, 3]. Based upon the sintered silicon

nitride preliminary X-radiographic characterization work at NASA LeRC, a program was

undertaken to systematically investigate density gradient-flexural strength relationships as

affected by sintering and powder processing variables. The sintering variables were

temperature, nitrogen overpressure, time, setter contact, and furnace position. The powder

processing variables were grinding time, and inclusion or exclusion of powder wet-sieving

procedures. In [4], the results of an extensive investigation of one silicon nitride composition

involving sintering trials of 21 batches of material were described. Sintering/processing

conditions were varied based on feedback from radiography to obtain high-density uniform

structures with concomitant improved strength and reduced scatter. These previous results,
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in turn, were used in neural systems[5], and are usedin this paper to study the viability of

using fuzzy sets for predicting strength and density, speeding the optimization of the

manufacturingprocess,and for comparingfuzzy systemswith neural systems.

In this work we are interestedin finding whether it is possibleto utilize fuzzy systemsto

help in the material developmentprocessof advancedceramics.Fuzzy systemsare good in

function approximation, and if the trend could be easily noticed as to which variable

contributesmost for the increaseof a desiredoutput parameter,say strength, then this may

help in speedingup the processof manufacturingand optimizing a new material. Material

developerscaneasily notice suchchangesfor a few variablesbut it becomesvery difficult to

do so for a large numberof variables.From the datacollectedby Sandersand Baaklini [4],

we selectedonly three input variables,namely, milling time of the composition powder, the

sintering time of the modulus of rupture test bars, and the nitrogen pressureemployed

during sintering.From the output variables,flexural strengthand density were selected.The

rationale for using only the above mentioned variables is that there were not enough

training pairs (outputsassociatedwith inputs) for all the variablesused in the experimental

work [4]. In this paper, relationshipsbetweenthe milling time, sintering time and nitrogen

pressureand the resultantstrengthand densityareestablishedby using fuzzy systems.Fuzzy

set resultsarecomparedwith thoseobtainedusing radial basisfunction neural network [5].

BASICS OF FUZZY SET THEORY

Randomness is not the only form in which uncertainty reveals itself. In the sixties a

mathematical tool was developed to formulate and deal with other forms of uncertainty and

became to be known as fuzzy set theory. It was first introduced and published by Zadeh [10,

11]. Essentially, fuzzy set theory provides a natural approach to manipulating problems in

which the transition between membership and nonmembership of the classes of objects is

gradual rather than abrupt, and the source of imprecision is the absence of sharply defined

class membership rather than the presence of random variables. In other words, it renders a

methodology for dealing with phenomena that are vague, imprecise, too complex or too ill

defined to be susceptible to analysis by conventional strict mathematical approaches [7, 9].

In the next sections we provide basic definitions of the fuzzy set theory which are used in

this paper.
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Definition of Fuzzy Sets

Let R be the set of reals and U be the universe of discourse (crisp set) which is a

collection of items of interest. Let u be a generic element of U. A fuzzy subset A of U is

defined by a membership function gA : U -> [0, 1], where [0, 1] denotes the closed unit

interval on the real line. Then the fuzzy subset A of U can be expressed as:

A= {gA(u)/u;uEU, I.tA(u) g. [0,1]}.

In this case, the value gA is referred to as the degree or grade of membership of u in A.

Note that a classical non-fuzzy set B can be considered as a binary characteristic function

U -> {0, 1}, where {0, 1} is the set of values 0 and 1 rather than an interval.

Support

Let A be a fuzzy subset of U. The support of A, Supp(A), is the set of elements in U whose

memberships in A P.A ( U ), are positive. That is,

Supp(A)= { u /u e U, gA ( u ) > 0}.

Normality

A fuzzy subset A is normal if and only if Sup ( _ A ( U ) ) = 1.

That is, the supremum over U is unity; otherwise, it is subnormal.

As an example let us consider a crisp set U, where U = 1 + 2 + ... + 10, where 1, 2, ..., 10

are elements of U, and the sign " + " is used here to express membership (union) in the set.

Then a fuzzy subset of U, called "much less than 5", may be expressed as:

Much less than 5 = 1/1 + 1/2 + 1/3 +1/4 + 0.6/5 + 0.4/6 + 0.3/7 + 0.1/8.

Note that the items which have zero value in the grade of membership have been ignored in

the above itemizing expression.

Fuzzy operations

Let A and B be fuzzy subsets of a crisp set U, with membership functions gA and I.tB. Major

operations for fuzzy sets follow:
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Complement

Thecomplementof a fuzzy subsetA of a crisp setU, denotedA', is definedby

A'= _., (1-ktA(u))/u,ueU,
U

where _ is used as a convenient notational form.

Union

The union of A and B, denoted Ak.JB, is defined by

A k..)B = _ (Max [_A(U),I.tB(U)])/U, ueU.

U

Intersection

The intersection of A and B, denoted A CkB, is defined by

A (-'IB = _.,(Min[_A(U),p.B(u)])/u,ueU.

U

The union corresponds to the connective "OR", while the intersection corresponds to the

connective "AND", and the operation of complementation corresponds to negation.

Examples of the operations defined above follow:

Let

U={ 1, 2, 3,4, 5, 6, 7 },

and A = 0.8/3 + 1/4 + 1/5 + 0.6/6,

and B = 0.7/3 + 1/4 + 0.5/6.

Then

A k..)B = 0.8/3 + 1/4+ 1/5 + 0.6/6,

A _ B -- 0.7/3 + 1/4 + 0.5/6,

A' = 1/1 + 1/2 + 0.2/3 + 0.4/6 + 1/7.
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AGGREGATION OF FUZZY SETS

Aggregation operations on fuzzy sets are operations by which several fuzzy sets are

combined into a single set. In general, any aggregegation operation is defined by the

function

h'[0,1]"410,1]

for some n > 2. When applied to n fuzzy sets def'med on U, h produces an aggregate fuzzy

set A by operating on the membership grades of each element of U in the aggregated sets.

In order to qualify as an aggregation function, h must satisfy at least the following two

axiomatic requirements, which express the essence of the notion of aggregation:

Axiom 1. Boundary conditions

h(O,O .... ,0)= 0 and h(1,1 ..... 1)= 1.

Axiom 2. For any pairai , bi ,whereai e [0,1land bi e [0,1],ifai > bi for alli, then

h ( ai ) >- h ( bi ), that is, h is monotonic nondecreasing in all its arguments.

Two additional axioms are usually employed to characterize aggregation operations despite

the fact that they are not essential:

Axiom 3. h is a continuous function.

This axiom guarantees that an infinitesimal variation in any argument of h does not produce

a noticeable change in the aggregate.

Axiom 4. h is a symmetric function in all its arguments, that is, the aggregated sets are

equally important.

We can easily see that fuzzy unions and intersections qualify as aggregation operations

on fuzzy sets. Although they are defined for only two arguments, their property of

associativity provides a mechanism for extending their definition to any number of

arguments. Hence, fuzzy unions and intersections can be viewed as special aggregation
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operationsthat are symmetric, usually continuous,and required to satisfy some additional

boundary conditions. As a result of theseadditional requirements,the standardmax and

min operationsrepresentboundariesbetweenthe averagingoperationsand the fuzzy unions

and intersections,respectively.

There are severalclassesof averagingoperations[8, 9]. One of them that coversthe entire

interval between the rain and max operationsconsistsof generalizedmeans.This class of

operations will be usedin thispaper. It isdefined asfolows:

1
ha ( al , a2 , .... an)= ( aT+ a_ +n ""+ a_ ) -6

f \

where a is a parameter by which different means are distin_ished, and o_ E R _ (x _ 0 ).

In our application we used _x = 2. Function ha clearly satisfies Axioms 1 through 4, and,

consequently, it represents a pararneterized class of continuous and symmetric aggregation

operations.

A METHOD FOR PREDICTION

The fuzzy system was built using the data from 273 Si3N4 modulus of rupture bars which

were tested at room temperature and 135 bars which were tested at 1370 C. For the room

temperature, 18 different combinations of milling time, sintering time, and nitrogen

pressure yielded the composition strengths and densities which are listed in Table I. Also

listed in Table I are the strengths and densities for 9 combinations at 1370 °C.

In order to determine our confidence in the fuzzy system predictions, we needed to test

the system using known test vectors and then evaluate the error of the predictions. We were

particularly interested in the ability of the network to predict the output values for batch

number 6Y25, as this batch number represents the optimium combination for the

processing variables from the available data set [4]. Thus, batch number 6Y25 was first

removed from the data. The data were then pseudo-randomly divided into a ratio of

approximately 70 % for training and 30 % for testing. Batch number 6Y25 was then

inserted into the test data set. This was repeated for 5 times in order to have 5 different

pairs of training and test data sets which were labeled as combinations A through E (Table
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Room temp
Batch #

Number of

specimen

6Y2B

Millingtime,
[hr]

'6Y1B 30 24

30 24

6Y11
6Y12

15

15
156Y13

100

300
100

6Y14 14 300 ..... 1
6Y1516 19 24 2

6Y17 10 100 2
106Y18
10
10
15

6Y19
6Y20
6Y23

6Y25

6Y24A 15

6Y24B 15
10

100

6Y28
1370C

Batch #

Sintedng
time, [hr]

100

1.5

Nitrogen
pressure,

[MPa]
2.5
2.5

2

2.5
2.5

Actual
strength,

[MPa]
556

532
490

579

Actual

density_
[g /cm "q

3.12

3.18
3.23
3.25

2.5 684 3.24
, !

2.5 746 3.24
5 664 3.22

5
5

646

608

3.23

619

3.21

3.5

100 1.5 5 570 3.22
r

100 2 5 650 3.22
100 1.25 5 631 3.24

100 1.25 3.5 586 3.26
3.26

2300 7145 3.28

6Y26A 15 100..... 1 3.5 479 3.20
6Y26B 15 100 1 5 503 3.18

10 100 2 5 671 3.21

29

100 2.5

24 1 2.5 383
100 1 2.5 444

300 1 2.5 416
406

300
224

13
14
15
14 2.5 425

402

6Y9B
6Yll

6Y12
6Y13
6Y14

6Y1516 20

6Y17 10 100 2 439
6Y18 10 100 1.5 5 458

,r

6Y25 10 300 2 5 467

3.12
3.23
3.25

3.24
3.24
3.22
3.23
3.21

3.28

Table I: Strength/Density at room temperature and 1370 C for different processing and

sintering conditions.



Table !I: Selected batch numbers for 70% and 60%

Room

Temp.
Batch

13o.

training sets..A through E

A
Training Sets 70%

B C D E A 8
Traininq Sets 60%

C D E

6Y13

6Y14 I * *

6Y15 * "
6Y16

6Y17 I * I * *

6Y18 I " !,,,"
6Y25 I

6Y12

6Y11 I

6Y9B

1370°C

Batch

no.

6Y25 I I

6Y26A * * * * 1

6Y2e8 I * * I *

6Y28 I * * I * *
. .,,.

I .

I •

I .

6Y24B

6Y20 I * * I * '1 * " * I I "
6Y23 I • * I * * I • • • I I -
6Y24AI I * • I * 1 I I •

W • •
I •

I * I

I

it •

* I •
l • • I •

• -I- I- i-, i• i * • I • * I •
I I I

6Y1£

6Y17 * * * *

6Y_8 I • •

I t I
• t I

• '1 - I * I "
• I - I t I •

6Y15

6Y16
* i -

I *

* I
• t •

" I

I

I
I -

- I * I - I •

I - I

I

r.

6YIB I * w * } * l * l " } *

6Y2B I * * I * I I * I •

6Yll I * * * I * * * I I •

6Y12 * * * I " I * " I * t *
L 6Y13 ! * * * I * ,! I "

6Y14 [ * * * * I * I * I * I
nu



II). This entire process was then repeated using a ratio of approximately 60 % data used for

training and 40 % for testing.

Next, a training data set consisting of all the batch numbers (100 %) except 6Y25 was

created. Batch number 6Y25 was placed in the test data set as the sole vector. Finally, all the

batch numbers were placed in a training data set and we made predictions for the input

vectors for which we do not know the outputs.

The collected data representing sintering and processing variables of 21 batches of silicon

nitride composition was formed to establish 42 fuzzy sets for each batch of the material (21

input and 21 output fuzzy sets). The input fuzzy sets are defined for three values of support

(nitrogen pressure, sintering time, and grinding time) while the output ones have their

support of two elements (flexural strength and density). Different fuzzy sets were formed for

the room temperature and 1370 C. The grades of memberships were normalized

elementwise, and the normalization was repeated for every step of prediction. The resulting

membership grades were combined by means of generalized mean operation to produce the

resulting fuzzy sets. The fuzzy sets for 70% and 60% training data for the room temperature

are shown in Tables UI and IV, respectively. The grades of membership for 1370 C are

shown in Tables V and VI. Thus, appropriate models were formed for the flexural strength

and density as the output parameters, and for nitrogen pressure, sintering time and grinding

time as the input parameters.

After that a measure similar to Hamming distance is proposed to calculate the difference

between the actual and generalized fuzzy sets of input parameters. The measure is defined

by:

ucS

where S is an interval in R, and A and B are fuzzy subsets on S. In the case when S = R,

thenD(A,B/R)= D(A,B).

Nextl the k-fraction of the measure, where k e (0, 1), is either added to or subtracted

from the generalized grades of memberships of the output parameters. This results in the

values for flexural strength and densit3r, k was chosen to be 0.1. The graphical explanation of

the method is depicted on Fig. 1. As an example let us consider 6Y12 test batch from

combination A with 70% training at the room temperature. The generalized input fuzzy set
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Actual input fuzzyset

l.t

Supp

Generalized input fuzzy set

_t

mt st p Dissimilarity measure

>

Supp

Generalized output fuzzy set

_t

/
s d

mt st p

Predicted output fuzzy set

i

I

s d

I'he generalized input fuzzy set consists of grades ol
_embership obtained by generalized mean operation
3erformed on normalized values of input parameters: milling
:ime, sintering time, and pressure (note that these fuzzy sets
:lifter for different combinations of training data). The actual
nput fuzzy set represents normalized values of a parficulat
nput. The dissimilarity measure based on Hamminc
:listance concept is then employed, that is, the elementwise
:lifferences are summed up. k- fraction of the measure is
:hen added to the grades of membership of the generalizec
_utput fuzzy set ( a fuzzy set obtained by generalized meat
_peration performed on normalized values of outpul
3arameters: strength and density), resulting in the predictec
_utput fuzzy set. The grades of memberships of the latte_
are compared then with the actual ones obtained b
normalization of the values of a particular output.

I-t

Actual output fuzzy set

s d

Supp

Supp

Supp

Fig. 1. A graphical explanation of the method used for fuzzy set prediction.
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consistsof gradesof membershipobtained by generalizedmean operation performed on

normalized values of input parameters:milling time (mt), sintering time (st), and pressure

(p). In this particular case the fuzzy set with the support of (mt, st, p) has grades of

membership0.44, 0.73, and 0.82, respectively (Table III). Note that generalizedinput fuzzy

setsdiffer for different combinationsof training data.The actual-input fuzzy set represents

normalizedvaluesof the 6Y12 batch input, that is, a fuzzy set with supportof (mt, st, p) with

gradesof membership1, 0.5, 0.5, respectively.The dissimilarity measurebasedon Hamming

distance is then employed, that is, the elementwise differences between grades of

membershipof actual and generalizedinput fuzzy sets are summed up. In this particular

case the dissimilarity measureis 0.01. The k-fraction of the measure,which is 0.001 when

k=0.1, is then added to the gradesof membershipof the generalizedoutput fuzzy set.The

generalized output fuzzy set, obtained by generalized mean operation performed on

normalizedvalues of outputparameters,strength(s) and density (d), has in this casegrades

of membership0.82 and0.99, respectively,as shownin Table III. Addition of the k-fraction

of dissimilarity measureresults in the predicted fuzzy set with gradesof membership0.821

and 0.991, respectively.The latter are then comparedwith the actual gradesof membership

obtained by normalizationof the valuesof the 6Y12 batch output0.781 and 0.99i, resulting

in error of 4% for the strength and perfect prediction of density for the batch under

consideration.

RESULTS AND DISCUSSION

The method described above was used to predict randomly chosen values of the flexural

strength and density batch samples in room temperature and 1370 C, as well as for

prediction of the 6Y25 batch. The training sets are listed in Table II. Table VII shows

detailed results for the 30% test data set, for the first combination (A). The overall results

for combinations A through E are shown in Table VIII for 70% training, and in Table IX for

60% training. Table X shows the results obtained to predict 6Y25 strength and density using

100% of the data. Table XI shows predictions made for selected new combinations of

processing and sintering variables. Resultant strengths and densities are lower than the

ones for the optimum batch 6Y25. The reason being is that fuzzy systems are bounded as
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wasprovenin our otherwork [6].

With 40% test data at room temperature,the strengthand density values were predicted

with an averagepercentageerror of less thanor equalto 7.1%and 2.8%,respectively.When

the slightly smaller test set of 30% was used,the averagepercentageerrors for strengthand

density droppedslightly to less thanor equal to 5.7% and 2.4%,respectively.Similar results

were obtained for the 1370 °C data (Tables XII-XV). With 40% test data the average

percentageerrors for strength and density were less than or equal to 5.4% and 3.3%,

respectivelylWith 30% test data thesevalues were 4.6% and 2%, respectively.For 1370°C,

prediction of the 25th batch was perfect (0% error) for all combinationsof 30% test data

and even for all combinations of 40% test data, for both strength and density. So, even using

only 60% of the data for training, the model was able to exactly predict 25th batch output

parameters. The reason for that is that the fuzzy set representing the 25th batch is actually a

crisp set with all membership functions equal'1 (it reaches maximum in all input

parameters).

The information in Tables XI and XVI suggests that there may be other combinations of

sintering and processing variables that will produce material almost as strong and dense as

that obtained for 6Y25 where shorter grinding time or lower nitrogen pressure and lower

sintering time can be used. For example, in Table XVI, using a milling time of 250 hours, a

sintering time of 2 hours, and a nitrogen pressure of 5 MPa, the fuzzy sets predict that a

strength of 462.86 MPa can be obtained. This is only slightly less than the value for 6Y25 of

467 MPa, but with a reduction in milling time of 50 hours. This also makes sense from the

materials processing viewpoint. Namely, shorter milling time results in a coarser powder,

which when sintered will yield a microstructure with large, randomly-oriented columnar

grains, which can make the ceramics of higher fracture toughness and more resistant to high

temperature creep. Long sintering times may lead to exaggerated grain growth and actual

material loss due to evaporation, and thus were not tried. Nitrogen pressure beyond that

pressure required to prevent decomposition was not found to have great influence on either

strength or density.

The system was also used to find the optimal combination of input parameters which

turned out to be the same as for 6Y25 for both room and 1370 C temperatures. In addition,

for the 1370 C some other combinations of input parameters gave the maximal output

parameters. They were the following triples ( mr, st, p): (300, 1.75, 5 ), (300, 2, 4.5), and

13



Table III: The resulting fuzzy sets, after generalized mean operation, for the room

temperature for 70% training.

Strength

.0.82

Density Milling time
0.44

Sint.ering time
0.73

Pressure

A 0.99 0.82

B 0.82 0.99 0.50 0.69 . 1 0.80
C 0.82 0.99 0.49 0.75 0.79 ......

D 0.83 0.99 0.49 0.67 0.77
E 0.79 0.99 0.39 0.76 0.79

Table IV: The resulting fuzzy sets, after generalized mean operation, for the room

temperature for 60% training.

Strength
0.82A

B 0.81
C 0.82
D 0.79
E 0.79

Density
0.99

0.99
0.99

Milling time
0.45
0.53

0.53
0.99 0.42
0.99 0.41

Sintering time
0.72

Pressure
0.82

0.72 0.85
0.73 0.79
0.70 0.82
0.75 0.77

Table¥: The resulting fuzzy sets, after generalized mean operation, for 1370 C

temperature for 70% training.

A

B 0.91
C 0.93

Strength
0.92

Density
0.99

I D 0.92 0.98E 0.92 0.99

Milling time
0.61

0.99 0.60
0.99 0.47

0.24

0.62

I. Sintering time
0.65
0.71
0.74
0.74
0.55

Pressure
0.71
0.71

0.79
0.79

0.61

14



Table VI: The resulting fuzzy sets, after generalized mean operation, for 1370 C

temperature, for 60% training.

Strength
0.93

E

Density Milling time
0.65

Sintering time
0.68

Pressure

A 0.98 0.74
B 0.93 0.99 0.65 "0.74 0.74
C 0.94 0.99 0.26 0.78 0.84
D 0.93 0.98 0.26 0.68 0.74

0.91 0.98 0.67 0.56 0.63

Table VII: Predicted room temperature strength with 70% training, Combination A

Batch
Number

6Y2B

6Y12
6Y17

Actual
Strength, MPa

Predicted

Strength, M Pa

% Error Actual

Density,
cj/cm _
3.12

6Y18 608 614
6Y24A 586 604 3 3.26
6Y25 714 686 4 3.28

AveraQe Error

Predicted

Density,
g/cm-
2.93

% Error

532 537 1 6
579 602 4 3.25 3.25 0

646 633 2 3.23 3.26 1
1 3.21 3.27 2

3.23
3.28

3

0
i|

Table VIII: Overall results for room temperature, 70% training

Combination Strength - average Strength - % error Density - average Density - % error
% error for all test for 6Y25 % error for all test for 6Y25

vectors vectors
A 2.2 4 2.0 0

B 3.0 4 2.8 0
C 7.0 4 3.6 0
D 6.2 3 1.6 0 ....
E 10.0 7 2.0 0

Combined Average 5.7 4.4 2.4 0
% error
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Table IX: Overall results for room temperature, 60% training

Combination Strength- average
% error for all test

vecto rs

E

CombinedAverage

Strength- % error
for 6Y25

Density oaverage
% error for all test

vectors

Density - % error
for6Y25

A 2.7 4 .2.5 .... 0
B 6.0 6 4.3 0

C 7.3 4 3.6 0
D 10.5 7 2.2 0

9.0 7 1.3 0
57.1 2.8

% error

o Table X: Prediction for 6Y25 density and strength at room temperature, 100% training

Batch Actual
Number Strength, MPa

6Y25 714

Predicted
Strength, MPa

716

% Error Actual

Densit,_,,
g/cm_ ....

' ' _0.3 3.28

Predicted

Density/,
g/cm_
3.28

% Error

0

Table Xl: Prediction of selected processing and sintering variables for optimum room

temperature strength and density, 100 % plus 6Y25 training

Milling Time, hr

15C;

Sintering Time, hr Nitrogen Pressure,
MPa

Predicted Strength,
MPa

1.5 3 596

175 1.5 3 604 3.18
200 1.5
200 1.75

250

Predicted Density,
g/cm 3
3.15

1.5

3 611 3.21

4 634 3.28
619

250 1.5 4 634
250 1.75 4 649

300 1.5 4 649

300 .1.75 4 656
2 686300

3.25
3.28
3.28
3.28
3.28

3.28
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Table Xil: Predicted strength at 1370 °C with 70% training, Combination A

Batch
Number

Actual
Strength, MPa

Predicted

Strength, MPa

% Error Actual

Density,,
_cm_
3.23

Predicted

Density,
g/cm-
3.04

% Error

6Yll 444 395 11 6
6Y156Y16 402 426 6 3.22 3.25 1

6Y25 467 467 0 3.28 3.28 0
5.7Average Error I 2.3

Table Xlll- Prediction for 6Y25 density and strength at 1370 °C with 100% training

Batch
Number

6Y25

Actual Predicted
Strength, MPa Strength, MPa

467 467

% Error Actual Predicted % Error

Density, Density,
....g/cm _ g/cm V

0 3.28 3.28 0

Table XlV: Overall results for 1370 °C, 70% training

Combination Strength- average Strength - % error Density- average Density - % error
% error for all test for 6Y25 % error for all test for 6Y25

vectors vectors

A 8.5 0 3.5 0
B 6.5 0 1.5 0
C 1.0 0 3.0 0
D 2.5 0 0.5 0

E 4.5 0 1.0 0

Combined Average 4.6 0 2.0 0
% error

Table XV: Overall results for 1370 °C, 60% training

Combination Strength - average Strength - % error Density- average Density - % error
% error for all test for 6Y25 % error for all test for 6Y25

vectors vectors
A 6.3 0 5.7 0
B 4.3 0 4.3 0

C 3.3 0 3.0 0
D 6.3 0 0.7 0
E 6.7 0 2.7 0

Combined Average 5.4 0 3.3 0
% error
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Table XVI: Prediction of selected processing and sintering variables for optimum
density and strength at 1370 °C with 100 % plus 6Y25 training

MillingTime
150
175
200

200
200

Sinterincj Time

1.5
1.5
1.5

1.5

250

300
300

30,0
300

Nitrogen Pressure
4
4

4
5

5

Predicted Strength
425
430
434

444
4481.75

5 462

Predicted Density
3.18

3.21
3.25
3.28

3.28
3.28

1.5 4 453 3.28

1.5 5 462 3.28
1.75 5 467 3.28

2 5 467 3.28

Fig. 2

Average

error % 60% 70%

- RBF

- FS

12 60% 70%

8

0

Room temperature 1370 C

Average errors in predicting strength using radial basis function neural network

(RBF) and fuzzy sets (FS).

Fig. 3

Average

error % 3

2

0

60% 70% 60% 70%

Room temperature 1370 C

Average errors in predicting density using radial basis function neural network

(RBF) and fuzzy sets (FS).
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(270, 2, 5).

The results show that fuzzy set theory can be a powerful tool for both process modeling

and property control. Fuzzy logic should help optimize and speed the development and

processing of emerging ceramic materials. The fuzzy system was found to be applicable for

learning the host processing parameters and consequently predicting strength and density

based on three processing variables as input features for silicon nitride.

In general, predicting bulk density was more successful than predicting strength. This

was due to the fact that bulk density is directly related to milling time, sintering time and

pressure, whereas the flexural strength is additionally dependent on pore morphology, on

microstructure, and on the presence of failure causing defects.

Comparison of the results obtained by using fuzzy sets with those obtained previously

with neural networks on the same data [5] indicates that fuzzy sets are superior in modeling

less precise relationships existing between the processing variables and strength (Fig. 2 and

Fig. 3) which are due to statistical variations in the manufacturing process. The more precise

relationship between the processing variables and density was modelled better (in terms of

error) using neural networks.

Developers of ceramics and composite structures can achieve better strength and density,

and shorten the processing by utilizing fuzzy sets and neural networks in tandem. The

former will help to capture imprecise relationships which are due to unavoidable variations

in a manufacturing process, the latter to capture more precise, although still very complex,

relationships. This can be seen as the alternative to the Taguchi method [12].

CONCLUSIONS

Fuzzy sets theory was applied to learn the relationships that exist between the strength

and density, and the three processing variables: milling time, sintering time, and nirogen

pressure. The learned relationships were used for predicting strength and density for new

combinations of the processing variables. The reliability of these predictions was validated

by calculating the errors on test data encompassing either 30% or 40% of available data.

The maximum error for strength was 7.1%, and for density it was 3.3%. It was found that

fuzzy sets are superior to neural networks in capturing vague relationships between the
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processingvariablesand strength.However, for density which is more directly related to the

input variables,neural networksgave better results.

Summarizing,developers of structural ceramics and ceramic composites, may utilize

computational paradigms of fuzzy sets and neural networks to optimize the desired

parametersand to shortenthe processingand manufacturingcycle:
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