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Abstract

A methodology is proposed for the research and implementation of a learn-
ing and planning system for robotic tasks named T he Organizer. Under the
framework of the Organization level of the Intelligent Machine. the Organizer
follows a bottom up approach by creating condition /action/effect rules through
experimentation and observation of an abstracted environment. Created rules
may have probabilistic effects in non-deterministic environments. Feedback
is returned from the lower levels of the Intelligent Machine which provides a
measure of complexity and describes the difficulty of executing a particular
action in a given environment. The rules form a symbolic model of the ef-
fect of the Intelligent Machine on a given environment and are compiled into a
connectionist-based complexity model to allow modeling and generalization of
complexity values to untested rules. The rules are also compiled into a goal-
directed Boltzmann Machine which allows subtask determination, skill forma-
tion and goal-directed exploration through the maximization of an analytic
value representing Knowledge in the system. Methods are shown for overlaying
existing symbolic learning systems on the Organizer’s rule structure by a sym-
bolic generalization example. A graph search planner is used to develop task
plans which achieve a user-provided goal through the use of rules and skills. In
the development of this architecture, comparisons are made between Procedural
planners, Symbolic learning systems, Neural networks and Classifier Systems.
Further research is proposed in the areas of goal-directed skill formation and
planning.
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1 Introduction

As technology progresses, man creates and explores worlds and environments which
were previously unattainable or non-existant. With the last several years, man has
ventured into space, explored the depths of the oceans. and charted frozen lands
in the Antartic. Man’s pursuit of knowledge has also led to the construction of
environments required for nuclear energy production and its counterpart, nuclear
waste disposal. Ironically, man has also discovered that he cannot survive unaided
in each of these created or encounted environments because of inclement conditions
or extreme hazards. However, man has also found it necessary to continue limited
exposure to these new worlds in order to maintain currently required capabilities and
pursue further research.

To eliminate man’s exposure to such hazards, it is necessary to create a device
which can perform with some of the anthropomorphic capabilities of humans. and
substitute the device in place of a human operator in these environments. For sit-
uations in which decision making by a human is not available or expedient. these
devices must also possess the necessary intelligence to perform their tasks reliably in
a world which may possess varying degrees of uncertainty. These devices have been
termed Robots or Intelligent Machines.

In general, intelligent robots or machines must be able to perform a variety of
functions ranging from high intelligence to high precision tasks. depending on the
situation. The structure of such a device can be stratified from high level mechanisms
to low level functions. Some examples of high level mechanisms for an Intelligent
Machine are:

o Learning about its capabilities and its environment through observation and
discovery or through a teacher.

¢ Forming an abstract internal model of its environment based on what the In-
telligent Machine has learned.

¢ Developing abstract plans and making decisions based on desired goals and
needs through the use of internal models.

Some muddle level mechanisms are:

e Selecting and scheduling planned tasks for execution.
e Mapping abstract concepts to current environmental situations.

o Aiding the formation of internal models by processing features of sensory infor-
mation.

¢ Monitoring task execution and completion.



Finally, lower level functions include:

e Executing tasks with a dictated degree of precision.
e Obtaining raw sensor data and performing limited processing on it.

¢ Providing reflex responses in extreme situations.

Methodologies for achieving structures for Intelligent Machines have been pro-
posed by [AlbT5, Sar79, Vam87, APWS8]. Saridis has proposed a mathematical
framework for an Intelligent Machine which can be viewed as an intersection of the
major disiplines of Artificial Intelligence, Operations Research. and Control Theory.
Saridis’ system is formulated to optimize a performance measure to allow for efficient
planning and execution.

This paper addresses the problem of devising a framework for the high level mech-
anisms of an Intelligent Machine patterned after Saridis’ model. These upper level
functions form the Organization level of this model. Included in this work is a proposal
for a suitable computational architecture which provides the necessary functionality
for this level. Also included are proposals for detailed research into two parts of the
architecture: goal-directed learning and exploration. and the development of abstract
task plans based on learned internal models.

1.1 An Overview

Environments which are hazardous to human life provide a good application for Intel-
ligent Machines. Valavanis [Val86] provided a case study detailing the performance of
an intelligent robot in a Nuclear Power facility. An overview of this study will serve
to outline the issues involved in designing the high level mechanisms of the machine.

1.1.1 The Scenario

Valavanis describes the following scenario:

Suppose that an emergency situation occurs in a Nuclear facility due to a power
failure which renders normal electronic remote control of the plant valves impossible.
As a result, the pressure control in this highly radioactive environment fajls and a
breach of primarv containment is identified and operating personnel are evacuated.

Several valve, flange or pipe related operations must be performed to control the
pressure in the facility, depending on the state of the plant when the power fails. An
autonomous mobile robot with visual capabilities is used to perform these operations.
The mobile robot has been trained to perform tasks in this type of environment, and
has an internal model of its capabilities. After receiving a goal to be achieved from
a human operator, it is the responsibility of this robot to cnter the radioactive area.
observe the state of the environment. develop a plan to acliieve the goal based on its
internal models. and execute each of the tasks in that plan. The robot is responsible

)
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for planning and performing actions towards the goal which are efficient and have
high likelihood of success.

For example, suppose such an emergency situation occurs and the robot is given
the command “Shut off Pipe 1. The robot, based on its past training and planning
experience, might generate the following plan:

1. Robot Travel to Entrance

SQ

Robot Travel to Toolchest

3. Arm2 Open Toolchest

4. Arml Grasp Wrench

3. Robot Travel to Pipe 1

6. Arm?2 Grasp Pipe 1

7. Arml Turn Valve with Wrench

8. Arm2 Release Pipe 1

9. Robot Travel to Toolchest

10. Arml Release Wrench in Toolchest
11. Arm2 Close Toolchest

12. Robot Travel to Exit

This plan would be generated if the Wrench is known to be in the Toolchest. and
it 1s necessary to turn the Valve on Pipe 1 with the Wrench in order to shut off Pipe
1. It should be noted that if the Toolchest was Open upon entry to the situation, the
step which opens it would have been omitted.

1.1.2 High Level Mechanisms

The following steps must be taken in order to allow the high level functions of the
mobile robot to perform with the capabilities described above:

1. Training the mobile robot to allow for the development of internal models of
objects which it may encounter and its capabilities in manipulating these ob-
jects.

(8

Training the mobile robot to plan for goal-oriented behavior. This allows the

formation of the proper sequence of valve, flange, pipe, manipulation and travel
operations.



3. Receiving an operator goal and development of an abstract plan of tasks based
on its internal model which minimizes both complexity and risk of failure.

The above scenario indicates several required high level functions and provides a
brief introduction to the desired capabilities of an Intelligent Machine.

1.2 Functional Decomposition of High Level Mechanisms

Based on the above observations, we can segment the high level functions of the
Organization level as follows:

¢ Training:

— Training for internal model development: Through some procedure. such
as supervised learning, reinforcement learning, ur learning through explo-
ration and discovery, the Intelligent Machine must build up an abstract
internal representation of actions it can perform on objects. By abstract-
ing the representation of an object from its actual form. many of the details
of the object and its environment are lost or ignored. At this level. the
abstracted representation allows the machine to develop conceptual re-
lationships between actions and objects withoul bothering with complex
details. Included in this representation should be the difficulty or complex-
ity of performing the actions. in order to provide a measure of efficiency
when executing a task.

— Training for goal-seeking behavior: Using one of the learning methods
above. the Intelligent Machine must learn the -onsequences of actions it
performs on objects in its abstracted environmeut. The effects the Intel-
ligent Machine has on objects may be probabilistic which facilitates the
modeling of likelihood of success. By developing an abstract internal model
of its effects on objects, it can formulate a plan of actions to execute in
order to transform objects from an initial state 1o a desired goal state.

¢ Planning: Provided with a description of the current {or initial) state of objects
in the abstracted environment, the Intelligent Machine must plan an ordered
series of tasks to achieve a desired goal state for the objects. The following
considerations should be made:

— Since the high level functions maintain an abstract description of the ob-
jects in the world, the plan that is formulated is also abstracted to a large
degree. The function of planning at this level is 10 develop an ordered list
of tasks to perform which achieve an abstracted goal. The plan. which
at minimum provides the necessary actions required to achieve the goal.
ignores many environmental details. Lower levels in the system must map

ORIGINAL PLQE IS
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this plan to a more detailed description of the environment. This mapping
will enhance the goal directed behavior of the abstracted plan by adding
additional subtasks dictated by a richer environmental model.

This abstraction can be illustratated using the mobile robot example above.
In the generated plan, the intelligent robot has specified the steps:

1. Arm2 Open Toolchest
2. Arml Grasp Wrench

Within the Toolchest, the Wrench may be in various positions covered by
several other tools. However, the environmental specifics of the situation
are not richly represented in the abstraction space. Therefore, the plan
does not include subtasks which solve the more detailed problems. These
subtasks must be added to the goal plan by on-line planning mechanisms
which are resident in the Inteiligent Machine. but outside of the domain
of the Organization Level.

The plan should be formulated in a manner which minimizes the com-
plexity of its execution while maximizing the likelihood of success. To do
this. the planner must build on information stored in the internal models
developed during training.

Provided with this introduction, it is possible to give the formal problem state-

ment.

1.3 Statement of Problem

A computational architecture and its underlying analytic functions must be created
for the Organization Level of the Intelligent Machine as cescribed by Saridis. The
Organization level must possess the following capabilities:

The ability to build and store an abstract internal model of the effect of the
Intelligent Machine on objects in its environment.

The ability to represent the capabilities of the Intelligent Machine by modeling
the learned complexities of actions executed by the Machine.

The ability to exhibit goal-directed behavior through learning.

The ability to analytically describe tasks in terms of complexities and likelihood
of success.

The ability to develop an abstract plan which optiniizes an analytic criteria
based on task complexity and likelihood of success which achieves a desired
zoal state from an initial state based on internal models.



1.4 Problem Domain

The desired capabilities of the Organizer dictate which internal models should be
considered. Thus, it is important to consider the problem domain before developing
the internal structure of the system.

As presented above, the Organization level must develop a sequence of tasks which
form a plan or procedure by manipulating objects in the environment. The example of
a mobile robot in a hazardous nuclear environment described typical responsibilities
of this level, and demonstrated one practical application. Let us consider two types of
planners, determine which is best for planning in the Organization level, and decide
on a suitable data structure for the internal model.

The first type of planner is termed a Procedural Planner. Characteristics of a
Procedural Planner are:

¢ Functionally, a generated plan calls for object manipulation which changes the
state of the environment.

¢ Many types of objects are manipulated or transformed through a host of differ-
ent actions.

o Objects change state in the environment but generally do not decompose into
subobjects.

e A goal is achieved by developing an ordered sequence of different actions on
objects wich transform the environment to a desired state.

Procedural planners use groups of individual states to represent objects in the
environment. Examples of this type of planner are predicate calculus planners and
expert systems.

The second type of planner is termed a Hierarchical Planner. Characteristics of a
Hierarchical Planner are:

¢ Functionally, a generated plan calls for the composition or decomposition of
objects.

¢ Objects can be formed by combining subobjects.
¢ Interrelations between object parts and whole is often detailed.

¢ A goal is achieved by executing tasks which reach a certain state or node in the
hierarchical object model.

Hierarchical planners use hierarchical data structures such as graphs or trees to
represent objects. Examples of this type of planner are assembly planners such as
(HdMS83, HdM89, KM89]

From these descriptions, the Organization level best fits within the domain of
Procedural planners. Therefore, the internal model of this level should be able to
represent objects as sets of individual states in the environment.



1.5 Problems Addressed

The problems addressed in this research are:

o The design of a suitable computational architecture and internal models for the
Organization level of the Intelligent Machine.

o The determination of an analytic criteria which combines complexity of task
execution and likelihood of task success for use in goal-directed behavior.

¢ The development of methods for goal-directed exploration and learning which
seek to optimize the analytic criteria. This is one functional block of the archi-
tecture.

¢ The development of an abstract planner which formulates a list of actions which
change objects in the abstracted environment from an initial state to a goal state
through the optimization of the analytic criteria. This is a second functional
block of the architecture.

1.6 Organization of this Report

The report is organized as follows: Section 1 presents an introduction and overview
of the problem. A literature search of Procedural Planners and Symbolic Learning
Systems. Neural Networks, Classifier Systems and Saridis’ [ntelligent Machine con-
cepts 1s presented in section 2. Also included in section 2 is a discussion on the
method of approach for this research. Section 3 describes the architectural model for
the Organization level, some preliminary results. along with a detailed description of
the proposed research. Section 4 provides a list of the proposed research, and other
research which should be performed under this architecture.

CRIGINAL VACR 1
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2 Literature Review and Method of Approach

The goal of this literature review is to provide the reader with background on both
past and on-going research in the areas of planning and learning as they pertain to the
development of the Organization level of the Intelligent Machine. To accomplish this
goal, research from the fields of Procedural planners and Symbolic Learning Systems.
Neural Networks, Classifier Systems and Saridis’ Intelligent Machine concepts will be
presented and critiqued. A method of approach will be formulated and contrasted
with techniques presented in the review.

2.1 Literature Review
2.1.1 Procedural Planners

Procedural planners are planning systems characterized by the following features:

e Functionally, a generated plan calls for object manipulation which changes the
state of the environment.

¢ Many types of objects are manipulated or transtormed through a host of differ-
ent actions.

e Objects change state in the environment but generally do not decompose into
subobjects.

¢ A goal is achieved by developing an ordered sequence of different actions on
objects which transform the environment to a desired state.

Some systems of this nature have also been called Domain Independent planners
or Predicate Calculus planners. Most of these planners were developed in the field of
Artificial Intelligence and used theorem proving by resolution as a method to create
a plan which transformed an initial state into a desired goal state.

STRIPS [FNT71] was one of the first Al planners. In STRIPS, the problem space
is divided into the world model, a goal state, and a set of operators which acted on
object states in the world model to produce new object states. The world model is
created from a set of well-formed formulas (wff) which comprise the state of objects
in the world. The operators are first-order predicate calculus rules which contain two
parts: condition of use, and effect of use. The goal state is also a wff.

For example, the world state might be:

ON(BOX1,TABLE)
ON(BOX2,FLOOR)
AT(ROBOT,ROOM1)
GRASP(ROBOT,NOTHING)

8



A typical operator might be:
ON(x,TABLE) A AT(ROBOT,TABLE) = GRASP(ROBOT x)
The goal state might be:

ON(BOX2,TABLE)

Along with the effects of an operator is a list of wff to be added to the world
model (called the add list) and a list of wif to be deleted from the world model
(called the delete list) when the operator is executed. .\ search strategy named
Means-End Analysis is used to eliminate differences between the present world model
and the goal state by selecting subgoal operators. This is accomplished by fomulating
a “difference clause” comprised of object states which are in either the present world
model or the goal state but not in both. Operators to be applied are then selected
based on whether their effect clauses remove difference clauses. or whether clauses
on the add list of an operator’s effect can be used to resolve-away difference clauses.
This technique recursively breaks down the problem into subgoals which it attempts
to solve through matching or resolution.

Since Means-End Analysis tries to solve many possible subgoals in order to solve
a problem. a copy of working memory must be stored at cacii level of the search tree.
Since the amount of storage required would be huge. STRIPS instead maintains a list
of all wif for all possible configurations of world states in a slobal memory. Flags are
set at each level of the search tree which indicate which clauses in the global memory
are active at that node.

STRIPS has several problems. First, the Means-End Analysis search strategy is
often not effective for plans which must take the world mo«iel further away from an
initial state in order to reach a goal. Second, Means-End Analysis does not guarantee
that a goal will be found if one exists. Third, when a plau is found from an initial
state to a goal, it is not known how good the plan is. or if it is the most efficient
plan. Fourth, STRIPS is a top-down approach to plannine. since it requires a user
to encode all the possible rules, conditions and effects that can occur. as well as all
the possible world model states in global memory. This tvpe of top-down approach
suffers when the system encounters an unexpected situation in the real world which
the user did not forsee and has not been exactly encoded in the rules. Fifth. STRIPS
provides no learning or generalization capabilities.

In later work, [FHN72] MACROPS were added to the STRIPS syvstem which
allowed STRIPS to formulate and store generalized plans. However. the number
of preconditons required to execute a MACROP were larse so their usefulness was
overshadowed by the amount of processing time required to test its applicability.

9
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ABSTRIPS [Sar73] was built upon STRIPS and allowed the system to ignore a
large number of operator preconditions during planning by the use of Abstraction
Spaces. A plan was formulated at different levels of abstraction by the following
procedure:

1. Rank the criticality of each precondition.

2. At a given abstraction space level, consider only the preconditions which have
critical values equal to or above the value of that level.

3. Develop a set of tasks using Means-End Analysis to solve the problem at the
current abstraction level.

The above procedure is repeated for each level of abstraction. progressing from
the most critical levels to the least critical ones. At each stage. the more abstract
plan is used to guide the lower, less abstract one.

The idea of a set of abstraction spaces can also be used to allow a planner to
operate at different levels of detail, which is a large contribution of this work. How-
ever. since ABSTRIPS is built on the STRIPS system. it still contains many of the
drawbacks native to STRIPS.

NOAH ([Sar75] uses some of the methods developed in the ABSTRIPS system
along with novel techniques to solve non-linear pians. This svstem enhances the
Means-End Analysis search technique with a method for representing plans as non-
linear sequences of actions and ordering these actions to achieve a desired goal.

NOAH maintains a hierarchy of representation spaces called a procedural net.
Each node in the net represents an action which can recursively be broken down into
a set of subactions. some of which can execute in parallel. As the net is expanded.
a more detailed plan is formulated which achieves the goal. At each expansion level.
a set of critics determine whether a parallel action node at rhat level is constrained
by other parallel action nodes. and therefore must be sequenced in some manner. In
this way, NOAH separates subgoals into parallel partial orderings of actions and then
sequences these orderings to form non-linear plans.

A major problem with the NOAH system is its top-down approach which requires
a vast amount of encoded knowledge in order to perform well. Not oniy does the user
need to encode the conditions and effects of actions and the world model. but he/she
must also encode the entire abstraction space. Many of the problems mentioned with
STRIPS are also present here. such as evaluating the efficiency of a plan, and the
guarantee of finding a plan if one exists.

MOLGEN ([Ste8la. Ste81b] extends NOAH’s capabilitics by propagating con-
traints while formulating plans. Each task in the formulated plan posts constraints
to a constraint list which cannot be violated by later tasks. The constraints serve to
reduce the size of the search space by eliminating branches of the search tree which
can no longer be pursued. The constraints are svntacticallv matched to outcomes of
operators, and have no semantic bhase.

10
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A large body of work has been done on symbolic learning systems. Based on
predicate calculus rules, these learning systems create new rules or generalize existing
ones to extend the knowledge in the system to new situations. The research on
symbolic learning has extended to the domain of procedural planning systems, with
studies focusing on new rule generation, and on composition of existing rules into
skill sets for more efficient planning.

The ACT system [And83] is a symbolic learning system which operates on a
rule database. It contains two subprocesses, composition and proceduralization.
Composition takes a sequence of connected rules and combines them into a single
rule or skill. Proceduralization generalizes existing rules by removing some domain-
specific knowledge from the condition for rule execution.

Carbonell [Car86] divides search in problem solving methods into four classes,
which are differentiated by the amount of domain-specific knowledge. These classes
are:

e If no domain knowledge is available, weak methods such as heuristic search and
means-end analysis must be used.

e If specific domain knowledge in the form of plans and procedures exists, these
plans can be instantiated directly.

e [f general plans apply but not specific ones, the general plans can be used to
reduce the problem.

e If no specific plans apply, analogical transformations can be used from similar
problems which have been solved previously.

Carbonell develops a process for reasoning by analogy called Derivational Trans-
formation. This process examines problem steps, subgoals aind decisions in order to
recount past reasoning traces so they can be applied to new. similar problems.

DeJong [DeJ86] demonstrates the necessity of building schemata, or skills, into
knowledge based systems in order to reduce the dimensionality of the search space
for planning. This work focuses on creating and generalizing schemata, and classifies
the situations for generalization as:

o Schema Composition: This operator is called on to combine known schema in
a novel way. The technique is employed when one or more of the preconditions

of a primary schema must be satisfied in a manner which has not yet been
detailed.

e Secondary Effect Elevation: This procedure employs existing schema in a new
way by modifying the existing schema to denote that they can be used under
new situations.

11
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o Schema Alterations: This technique modifies slots of a nearly correct schema
so it can fit the requirements of a new situation.

¢ Volitionalization: This method incorporates a non-planning declaritive schema
which provides factual information about a situation or event into a planning
schema that can be used in problem solving.

DeJong uses each of these techniques for generalizing and creating schemata in
order to reduce the number of search steps required for gencrating a task plan.

These examples provide a brief view of symbolic learning systems which operate on
predicate calculus-based systems. Each system allows the creation or generalization
of existing plans to new situations. However, it must be noted that these systems
are based upon the top-down, user-encoded rules, so the svstems will still contain
and maintain the same inaccuracies present in Al procedural planners. Further.
symbolic systems do not “compile” the rules in the data hase to implicitlv extract
semantic relationships between symbols. Instead, these learning systems use symbolic
substitution based solely on the symbol names. However. these symbolic learners
could be layered upon other systems which provide semantic information about the
symbols, and together form a unified learning and planning architecture.

2.1.2 Neural Networks

It is desirable for a high level planning system to possess or develop an internal
representation of its actions and capabilities so that it can eifectively issue commands
which have a predictive outcome. Most robotic task planncrs [FN71, FHN72, Sar73,
Sar75. Ste8la, Ste81b] attempt to achieve this representation through the use of
syntactic models. These systems model the robot and its environment as a set of facts.
and actions on the world as rules which manipulate the current set of facts or symbols.
These strictly symbolic systems often suffer from Minsky's [Min61] “frame problem”
which causes the system to perform unintelligent behavior due to the emergence of
an unexpected set of conditions. Harnad [Har89] has charged that this problem is
innate to such systems because the symbols or syntactics are not linked to actual
meanings or semantics. This “Symbol Grounding Problem™ ulso prevents the svstem
from generalizing similar action/effects with repeated exposure because no semantic
decomposition of a rule is available to explain the reason fur its effects. The same
limitation also inhibits a strictly symbolic system from predicting the effect of a newly
created rule which has not yet been tested.

Harnad examines the use of a combined symbolic/conncctionist architecture to
solve the “Symbol Grounding Problem”. In such a design. a neural network is used
to ascertain the complex interrelationships between the svinbols and their effects.
The network can be used to direct and improve upon the [unctioning of the svntactic
rules to allow for generalization of old rules and emergence ot new ones.

Dethick and Plaut [DP86] examine the Physical Symbol Svstem Hypothesis [NS76,
New80] in light of recent advances in rule processing with listributed connectionist
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networks. By comparing the strengths and weaknesses of both systems, they conclude
that a comprehensive theory of intelligence may require a hybrid model which com-
bines the strengths of both approaches. Steels [Ste87] advocates self-organization of
data through the use of neural networks as an alternative to totally explicit program-
ming systems. Hutchison and Stephens [HS87| present the concept that symbolic
rules are often only approximate descriptions of more complex or probablistic rela-
tionships in the real world. They claim that in large systems, the imprecision and
context dependence of individual rules can produce unacceptable error rates in final
outputs. In contrast, they assert that neural network systems allow much more pre-
cise representation of complex and imprecise relationships, and the knowledge can be
learned directly from experience. The researchers concede, however, that the form of
knowledge in distributed systems usually defies verbal description or explanation.

Neural networks, or connectionist networks generally refer to sets of simple pro-
cessing units which are interconnected in a often complex way. The interconnecting
links contain weights which determine the influence of the output of one processing
unit on the input of another. Good reviews of connectionist models are provided in

[AR88. RM86, Lip87]

The field of neural networks for computation arose from early work on simple
binary thresholding units called the “McCulloch-Pitts” neuron [PM47). This research

developed methods for training a single neuron element to develop logical functions,
such as AND or NOR

Rosenblatt’s development of the Perceptron processing unit [Ros58] in which out-
put of a unit is a sigmoidal thresholded linear function ol the inputs to the unit,
and use of groups of Perceptrons to learn some complex functions and classify data,
furthered connectionist research. Widrow and Hoff [WHG0] «lcveloped a technique for
efficiently altering connection values, called “synaptic weights”. Combined with the
proof of the Perceptron Convergence Theorem [Blo62] methods were established for
modifying weights in a network of Perceptrons in order to reduce classification error.
However, as Minsky and Papert demonstrated [MP89], a single layer of Perceptrons
can not handle many classification problems, such as EXCLUSIVE-OR or PARITY
functions.

Kohonen [Koh72] and Anderson [And72| simulatenously published identical mod-
els for associative memory (or Content Addressable Memory). The “linear associator”
model provides a linear model for processing elements. or neurons. which deviates
from the binary representation developed in earlier models. The method for initial-
izing these networks was based on Hebbian learning, assigning weights as a factor of
input/output node correlation.

Based on this initial work, many other connectionist theories developed. Hopfield
[Hop82] developed a theory for binary content-addressable inemory (CAM) based on
a network with time varying neuron values. This theory used an Energy analog to
demonstrate how dynamic changes in node values approached the correct associative
output of the network by minimizing the Energy in the network. Later [Hop84], neu-
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rons with graded response were used in CAM design. Grossherg [Gro88] approaches
connectionist theory from a neurobiological viewpoint, and demonstrated that the
Energy function in Hopfield’s CAM formed a Lyapanov function which could be min-
imized. Hirsch [Hir87] examines convergence in the Hopfield model in some detail.

McEliece et al [MPRV87] discuss the capacity of the Hopficld model.

Feldman and Ballard [FB82] extolled the use of distributed representations for
storing data in a network. Barto, Sutton and Anderson [BSA83] demonstrated a
reinforcement learning technique for pattern classifying neurons.

From this background, two major connectionist models evolved which are rele-

vant to the problems addressed in this report. They are Backpropagation networks
(RHWS6a] and Boltzmann Machines [AHS85].

Backpropagation networks are created using layers of Perceptron elements. The
researchers of these networks have pointed out that by using hidden layers of Per-
ceptrons between input and output layers, arbitrary mappings can be made between
input and output data. A technique for training these inherently feedforward networks
was developed based on gradient descent of the error between the actual output of the
network and the desired output. The error between these values is “backpropagated”
from output nodes, to hidden nodes, to input nodes and modifies the synaptic weight

between nodes at each layer. Simple Backprop networks can easily learn PARITY or
EXCLUSIVE-OR operations.

Applications for Backpropagation networks are numerous and cover a broad range.
The capability for creating arbitrary mappings between input and output values has
led some researchers to use these networks as Transfer Functions from a control-
theoretic viewpoint. Kawato et al [KUIS88, MKSS88| use Backpropagation networks
to develop the multiplicative constants of non-linear terms for the inverse-dvnamics of
a Puma manipulator. Their model. which is based on the moior cortex in the brain, is
able to produce a torque value given a desired angular change in the first three joints
of the Puma over a set of trajectories. Goldberg and Pearlmutter [GPS8] have used
these feedforward networks to control a two-link direct-drive arm. Their network is
trained by providing a window of trajectory points as input. and the correct torque
as the desired output.

The ability to classify patterns is another important application of Backpropaga-
tion networks. Since so many experiments have been done under this application,
only two are mentioned here for examples. Using a network. Marra et al developed
a mechanism for terrain classification using texture for an ALV [MDMS88]. Given a
scene image in RGB, statisical measures for regions of the image are provided as input
to the network. The network produces a classification of the region such as “road”,
“grass” or “sky”. Ruck [Ruc87] used satellite range information to classify ground
targets such as tanks, jeeps, and trucks using a Backpropagation network.

Boltzmann Machines are connectionist networks which use the minimization of an
Energy formulation to produce its output. A Boltzmann machine contains a set of
nodes which can take on binary values, and a set of weights which dictate connections
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between nodes. In a manner similar to Backpropagation networks, the nodes can be
labeled as input nodes, hidden nodes, or output nodes. However, unlike Backprop,
Boltzmann machine nodes are generally not arranged in feedforward levels.

The Energy in the Boltzmann Machine is a function of the node values and weights
between nodes. It can be though of as a correlation value between node pairs which
provides a measure of “goodness” for a particular input-output pair. The lower the
Energy, the more likely the output response is the correct one for the particular input
data. Given a particular input data set on its input nodes. a Boltzmann machine
searches the set of possible states on the hidden and output nodes in order to find a
set of node states which minimize the Energy in the network. This set of states is
the correct associative output of the network.

The search technique generally used for determing the network output of a Boltz-
mann Machine is Simulated Annealing [KJV83]. Grossberg [Grod8] has shown that
a Boltzmann Machine is identical to a Hopfield network which uses Simulated An-
nealing to alter the characteristics of its node thresholding (unctions. Methods have
been developed to train a Boltzmann machine to associatc input-output patterns
[AHS85, Sus88|.

Several systems have been developed which combine svmbolic processing with
neural networks to create knowledge-based or predicate calculus svstems. Touretzky
and Hinton [TH85| used a distributed Boltzmann Machine architecture to represent
two types of production systems. The first system contains rules which consist of
pairs of working memory triples for the rule condition, and an arbitrary set of triples
which must be added to or deleted from working memory as the rule effect. Typical
rules are of the form:

Rule-1: (FA A) (FBB)= +(GAB)-(FAA)-(FB B

The second production system is similar, but allows variable matching in the con-
dition part of a rule. For example:

Rule-2: (z AB)(zCD)= +(PDQ)-(RST)

where z is a variable to be matched by working memory clements.

The weights of the network are fixed once setup by a user. These weights are used
to represent the rules and working memory elements. Goud results were obtained
with a working memory alphabet size of 25 symbols. a set of about six rules, and six
elements in working memory at a time.

Touretzky [Tou87] expanded the production system coucept for neural networks
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by developing the DUCS architecture which provides multi-level distributed repre-
sentations for frame-like concept structures. The goal of this research is to develop
a powerful short term memory that can construct and manipulate concepts rapidly.
Given some slot name/slot filler values as cues, DUCS can retrieve entire frames from
concept memory. DUCS can also complete frames which have empty slot values.

For example, given the frame:

AGENT: JOHN
VERB: THROW
OBJECT: T
DESTINATION: FOX
LOCATION: HOUSE

DUCS would retrieve the correct frame with r = ROCK.

The architecture of DUCS is based on the Hopfield and Tank model [HTS85] which
is an optimization network based on Hopfield’s 1984 design. Again. all concepts are
stored a priori by the user by designating the connection weights. Once these weights
are assigned they are fixed and the network cannot learn new concepts. In other
work, Hinton developed methods for learning some types of concepts [Hin86].

Dolan and Dyer [DD87] present the CRAM system which also performs role bind-
ing in knowledge schema. The procedural memory in this svsiem is similar to that of
Touretzky and Hinton. with the memory composed of many winner-take all cliques.
Although they propose schema learning, they do not detaii a technique for imple-
menting it. Shastri [SA89] uses a high level representation of concepts to develop a
connectionist system for rule based reasoning with muiti-placed predicates and vari-
ables. This work focuses on the problem of variable binding in networks which try
to perform predicate calculus operations. Again, this svstem possesses no ability to
learn new rules or place bindings.

Day proposes a method for building an architecture in which connectionist and
standard symbolic Al implementation techniques complement each other [Day87].
The theory behind the system calls for a connectionist network to observe the internal
workings of a symbolic AI program and thereby learn to carry out the same problem
solving behavior. Day proposes the use of a Backpropagation network to learn the
Al rules. As he states, a major problem with this proposai is how to achieve the
desired linkage between the two systems, so the network can observe the behavior of
the rules. He does recommend the network learning be achieved by watching pre-
and post-effects of the expert system chaining, where the pre-effects are the input
and post-cffects are the desired output of the network. In the paper, Day develops a
rongh architecture for this theory.

16



As demonstrated by this review, neural networks have been used to create learn-
ing systems which can extract relationships between input data items, and produce
a desired output from data set correlations. Also, neural nets have recently been ap-
plied to concept storage in knowledge-based systems, but without significant learning
capabilities. Some work has been proposed on combining these two capabilities into
a single model for expert systems, but without actual results.

2.1.3 Classifier Systems

A novel approach to rule-based systems was presented by Holland [HHNTS86] and is
entitled Classifier Systems. This system combines a simple representational scheme
with highly general learning mechanisms to create a parallel. multi-rule production
system.

A basic classifier system contains a list of classifiers. a message list, an input
interface and an output interface. A classifier is string of characters from the three-
letter alphabet (0,1,#) and is divided into a condition part and an action part. The
form of a classifier is:

ChC'Zv e 3C1'/‘A‘
where C; is a condition field and A is the classifier action. An example of a classifier is:

010101#+#10/1111004110

A classifier is active when a message on the message list matches the condition
part of the classifier. The # symbol is a don’t care element in the condition part.
and matches messages with either a 0 or 1 in that field. The basic execution cycle of
a classifier system is given by Holland as:

1. Place all messages from the input interface on the currcnt message list.

(8]

Compare all messages on the current message list to all conditions of all classi-
fiers and record all matches.

3. For each set of matches satisfying the condition part of some classifier, post the
message specified by the action part to a new message list.

4. Replace the current message list with the new message list.

(51}

Process the message list through the output interface Lo produce the system’s
current output.

6. Go to step 1.
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In addition to the basic mechanisms of message matching and posting, classifier
systems allow learning through the bucket brigade algorithm and by the genetic
algorithm. The first algorithm allows competition between classifiers by apportioning
credit to them on the basis of past usefulness to the system. This competition allows
stronger classifiers to have a higher success rate at posting messages to the message
list than weaker classifiers. The genetic algorithm provides a method for new classifier
creation from building blocks of previously successful classifiers.

The bucket brigade algorithm is a process of alternate bidding and payback. When
a message is posted to the current message list, all classifiers matching the message
bid for the opportunity of posting their actions to the new message list. The bid
a classifier can make is a function of the strength of the classifier. the specificity of
the condition of the classifier, and the support of the classifier. The strength of a
classifier is a measure of its past usefulness. The specificity of the condition allows
classifiers which are more detailed to have a higher probability of being selected to
post messages. In effect, this condition implements a default hierarchy, where more
general matching classifiers are chosen only when specific ones are weak. The support
parameter is dependent on the strength of the past classifiers which posted the given
matched message to the current message list. To some degree. this assigns a weighting
to messages on the current message list. A classifier is probabiistically chosen to place
its message on the new message list depending on its total bid.

When a winning classifier places its message on the new message list. its strength
is decreased by the amount of its bid. At the same time. all classifiers which sent
the message (in the previous time step) matched by the winner have their strengths
increased by a fraction of the bid of the winner. In this way. strengths are propagated
backward through a chain of classifiers. When messages arc posted which satisfy a
goal-state. a reward is given to all the classifiers which posted the messages. Even-
tually, this reward is past back through the bucket brigade to the chain of classifiers
which “set the stage” for the goal-state. Over repeated trials. this chain gets rein-
forced as the classifier strengths increase. When a classifier repetitively bids and fails,
its strength continues to decrease, since it receive no pavhack. When the strength
drops below a given threshold, the classifier is either removed or replaced by a new
classifier.

The genetic algorithm is a search technique orignally prescnted in [Hol75]. In the
context of classifier systems, the genetic algorithm performs selective recombination
of existing classifiers to create new ones. Pairs of strong classifiers are selected and
combined to create “offspring” classifiers. These offspring arc placed in the classifier
system with a strength value which is the average value of its two parents.

Goldberg [Gol83] employed a classifier system to generaic a rule set to cover the
operating conditions of a gas pipeline. The results of this work demonstrated the
existance of default hierarchies. Wilson's [Wil85] Animat svstem was the first to
demonstrate the bucket brigade under infrequent pavoll conditions. Sutton [Sut88]
has classified the bucket brigade as a temporal — i f ference method and has begun
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placing the algorithm in a theoretical framework.

Wilson and Goldberg [WG89] present several inherent problems with classifier
systems. They cite that a primary weakness of the bucket brigade algorithm is the
difficulty in generating and maintaining long chains of rules which achieve a desired
goal. This weakness is due to the fragility of long chains and the difficulty of rein-
forcing early rules in a chain.

Riolo [Rio87] showed that the bucket-brigade algorithm can correctly allocate
strength when classifiers are coupled together to form chains. In [Rio89], Riolo ex-
amined the emergence of coupled chains of classifiers through use of the Triggered
Chaining Operator and the genetic algorithm. In this experiment, it was determined
that classifiers present in the early generations of the system may become parisites
on chained classifiers and lead to the demise of the entire coupled sequence. To over-
come the breakdown of coupled chains. Riolo recommends. among other things. that
competition between coupled and uncoupled rules be biased so that coupled rules are
usually executed to completion.

Wilson [Wil87] proposes the use of a hierarchical credii allocation scheme for
maintaining long chains. He shows that using bucket brigade for reinforcement re-
quires 150 repetitions of a 10 step sequence in order to produce proper reinforcement,
which is quite inefficient. Instead. Wilson proposes using bucket brigade on short,
behaviorial chains which are arranged hierarchically to form the complete task. A
high-level task in the hierarchy is broken down using the bidding algorithm from
standard classifier systems, and payment is distributed to all levels of the hierarchy.

Booker [Bood9] attempts to overcome long chain problems by representing each
situation with a cluster of rules instead of a single classifier. The structure of a cluster
represents regularities in the input categories that excite it. and the similarity that
each of these rules has in obtaining a goal. In this work. Booker points out that using
the genetic algorithm for rule discovery based on classifier strength is very inefficient,
and leads to extended learning efforts.

Zhou [Zho37] separates groups of classifiers into context memories in order to
develop systems which achieve context-dependent goals. By developing classifier con-
text memories. he allows the classifier system to maintain strong rules and chains for
each goal. such as finding a path through different mazes. A\ set of context classifiers
is called into main memory when the maze which it operates on is presented as the
problem to be solved. If different contexts are not used. chains which find paths
through one experimental maze would become weak and die in another experimental
maze. Since the strength of chains and rules in one context is not valid when another
goal is sought. Zhou demonstrates the need to separate rule and chain strength from
goal-directed behavior in classifier systems.

Classifier systems possess several interesting features. They are combined learn-
ing/planning systems which develop new rules and exhibit goal-directed behavior.
Also, the representational simplicity of classifiers fosters the development of default
hierarchies of general and specific rules, and provides simplistic mechanisms for rule
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specialization. Third, the strength of a rule provides a mechanism to evaluate per-
formance of the system.

However, there are problems inherent to classifier systems. It is difficult to gen-
erate and maintain long chains of classifiers and this complicates planning. Second,
using the genetic algorithm to generate new rules based solely on classifier strength is
not efficient. Third, there is an exhibited need to separate how good a rule is (context
independence) from how well it leads to a goal (context dependence).

2.1.4 Saridis’ Intelligent Machine

Since 1977 Saridis has been developing an engineering approach to the design of
an Intelligent Machine [SV88, Sar79, Valg86, SM88, MS89|. This approach, called
Hierarchically Intelligent Control, is designed to organize, coordinate and execute
anthropomorphic tasks by a machine possessing various amounts of autonomy. This
approach utilizes analytical (probablistic) models to describe and control the various
functions of the Intelligent Machine.

The Inteiligent Machine consists of the following three layers:

1. The Organization level.

2. The Coordination level.

3. The Execution level.

These layers are organized in a tree like structure are shown in Figure 2.1, and are
arranged according to the Principle of Increasing Precision with Decreasing
Intelligence. The function of each layer is described briefly [Sar89]:

1. The Organization Level is responsible for high level decision making. It must
organize a set of abstract rules or primatives to perform goal planning tasks. It
combines inductive reasoning and inference capabilities ro formulate such task
plans.

o

The Coordination Level is an intermediate structure serving as an interface
between the Organization and Execution levels. It combines the commands from
the Organzation level with real-time world information to generate a proper
sequence of subtasks for execution by the Machine. [SC84, WS88]

3. The Execution Leve] performs the appropriate actions in the environment as
dictated by the Coordinators. These actions can be expressed as control func-

tions and a measure is assigned to determine the execution performance.

A performance measure is provided as feedback to each level of the Machine. This
value provides evaluative information about the performance of that level, and allows
that level to modify its future actions based on the the evaluation of past executions.
For the Organization Level, this feedback allows for reinforcenient learning of success-
ful plans, and avoidance of disastrous actions. The Machine can therefore be derived
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analytically as an optimization problem designed to extremize the performance value
at each level, as well as the performance of the Machine as a whole.

The focus of this approach is to provide an analytical structure to each level of
the machine. To develop this analytical structure, physical values are assigned to
abstract concepts from the field of Machine Intelligence in order to place the system
within a mathematical framework. The analytic formation is based on the following
fundamental definitions:

Def. 1: Machine Knowledge is defined to be the structured information acquired
and applied to remove ignorance or uncertainty about a specific task pertaining to
the Intelligent Machine.

This definition defines Machine Knowledge as a variable which can be assigned
and examined in the Intelligent Machine. When executing a task, the amount of
Knowledge in the Intelligent Machine changes. Therefore. we must also define the
Rate of Machine Knowledge. which updates the cumulative Knowledge in the Ma-
chine.

Def. 2: Rate of Machine Knowledge is the flow of knowledge through an Intelli-
gent Machine.

Assuming that the Intelligent Machine contains a databasc of rules, a mechanism
must be defined which operates on this database in order to npdate the cumulative
Knowledge in the Machine. This operator is called Machine Intelligence.

Def. 3: Machine Intelligence (MI) is the set of actions which operates on a
database (DB) of events to produce flow of knowledge (R).

In the Organization level of the Intelligent Machine. a task plan to achieive a goal
is developed by minimizing the uncertainty or complexity of the plan. This uncer-
tainty is a function of the imprecision of the process to be cxecuted. Similary, the
complexity of a process is a function of the required precision. This is defined as:

Def. 4: Imprecision is the uncertainty of execution of the various tasks of the
Intelligent Machine.
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On the other hand, one may define Precision as follows:

Def. 5: Precision is the complement of Imprecision, and represents the complex-
ity of a process.

The above definitions present an outline for the development of an analytic struc-
ture for an Intelligent Machine, but do not inherently provide the actual measures to
be optimized at each level. Based on these definitions, Saridis developed an engineer-
ing analog to the problem formulation by casting the variables Knowledge, Rate of
Machine Knowledge and Uncertainty in terms of physical quantities. These physical
quantities are Energy and Entropy.

For the Intelligent Machine, Knowledge (X) about a particular state (n) in the
system is defined as:

K(n) = Energy

[t is necessary to develop a concept which provides an analytic relationship be-
tween the knowledge possessed about a state in a system. and the uncertainty that
the system is in that state given that knowledge. From Jaynes’ principle of Maxi-
mum Entropy {Jay537], we can relate Knowledge of State n to the Probability that
the System is in State n (abbreviated P(K(n))):

P(K(n)) = e=*=K(n)

where « is a probability normalizing constant to insure that

Z P(K(n)) =1

This probability distribution comes from the field of statistical mechanics, and
relates the Energy of a system to the probability of the system being in the state
with that Energy value.

From this definition, it is apparent that when /(n) is extremized, the Probability
that the System is in State n approaches 1. This indicates that possessing a large
amount of Knowledge about a particular state increases the probability that the
system can correctly recognize when it is in that state.

Uncertainty, which is equivalent to the imprecision of the state of the system, is
a function of P(/(n)). An entropy measure is used to relate these two values:

H(K(n)) = = 3 [P(K(n))in{P(K(n))}]

n

[S¥]
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Here, H(K(n)) is the Uncertainty that the System is in State n. Saridis has shown
that Entropy can be used as a suitable measure to minimize in optimization problems
in order to guarantee good performance.

The Rate of Machine Knowledge (R), which reflects the updating of Knowledge
over time can be simply described as:

R=—

where T is a discrete time interval.

The advantage of using Saridis’ Intelligent Machine as a blueprint for planning
systems is that it provides an analytic framework to operate within. Using the details
presented here, a planner can be created which develops task plans by minimizing
the uncertainty of the plan, and can describe its actions analytically in terms of
Machine Knowledge. Rate of Machine Knowledge. Machine [ntelligence, Uncertainty

and Complexity. This planner would form the Organization level of the Intelligent
Machine.

2.2 Method of Approach

It is desired for the learning and planning system to have the following capabilities:

e The ability to build and store an abstract internal model of the effect of the
system on objects in its environment.

o The ability to represent the capabilities of the system b modeling the learned
complexities of actions executed by the robot.

¢ The ability to exhibit goal-directed behavior through learning.

¢ The ability to analytically describe tasks in terms of complexities and likelihood
of success.

e The ability to develop an abstract plan which optimizes an analytic criteria
based on task complexity and likelihood of success which achieves a desired
goal state from an initial state based on internal models.

The Al predicate calculus-based procedural planners provide methods for devel-
oping an ordered set of tasks which achieve a given goal. To do this. they maintain
an abstract internal model of their effects on the environment. but do not possess any
learning capabilities. The user must encode all the possible condition/action/effect
rules, but this may not adequately represent what the robot can actually do. as stated
in the “frame problem”. Also, these rules have deterministic cilects. which is often an
incorrect model of actual robot systems. These rules also contain no :nechanism for
representing the complexity of executing the rule in the given cuvironmental situation.
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Symbolic learning systems which are layered on these top-down planners can con-
tain and maintain these pre-encoded problems. Symbolic learning systems also are
not able to extract “semantic” relationships between the symbols, since the learning
procedure incorporated in such systems is based on symbol matching.

Neural networks provide a suitable mechanism for learning relationships between
symbols, thereby establishing a “semantic base”, if the svmbols are simple enough to
be provided as input to the network. Boltzmann machines are also able to provide
a quantitative performance value based on the Energy of the network, a feature
necessary to provide analytic information about a plan. Although techniques exist
for training connectionist networks and methods have been demonstrated for using
neural networks for devising predicate calculus rules. very little work has been done
on combining these two types of systems.

Classifier systems present a rule-based system which has the representational sim-
plicity required by neural networks, and provides techniques for generalization and
specialization of rules. However, goal-directed behavior through use of the bucket
brigade algorithm is inefficient. Also, the genetic algorithm is not efficient for gener-
ating useful new rules by combining old rules strictly by rule strength.

The Organization level of Saridis’ Intelligent Machine provides an analytic en-
vironment for the incorporation of the strengths of each of 1he above systems into
a unified learning/planning model. The systems are incorporated in a bottom-up,
emergent model as follows:

e Use the simpliticity of classifiers to represent rules which are in the form of
condition/action/effect.

e Allow the rules to be created through the Machine's experimentation with the
environment. and the observation of its effects.

o Allow a probability to be associated with the effect portion of a rule to incor-
porate the likelihood that the condition/action part leads to the given effect.

o With the execution of an action for a given condition. receive feedback from the
Coordination level of the Intelligent Machine which provides the complexity of
the task.

e Maintain a neural network model of complexities for condition/action pairs.
A neural network allows generalization of complexities across similar condi-
tion/action pairs by developing an inherent relationship between the symbols.

¢ Maintain another neural network which extracts the relationships between con-
ditions for an action and effects of the action. This network will build “semantic”
relationships between symbols across a rule and should be used to foster emer-
gent goal-directed behavior by providing information on objects which change
state due to the action. Employ this neural network to Jdevelop emergent skill
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sets in order to minimize search during planning by using the Energy of the net
as a performance measure.

e Use a search technique for formulating a set of tasks to a goal which minimizes
the complexity of tasks while maximizing likelihood of success during execution.

This method of approach creates an emergent connectionist/symbolic system for
planning robotic tasks within the framework of the Intelligent Machine. If desired,
it is possible to overlay top-down symbolic learning techniques on the rules which
emerge, but techniques for doing this will not be explicitly examined in this work.



3 Design and Operation of the Organizer

3.1 Introduction

The Organizer is responsible for high-level task planning and decision making in
a combined planning, coordination and execution system. Together, the Organizer
(task planner) and lower levels of the system (task coordination and execution) per-
form tasks to affect the environmental state within which the system is operating. To
develop an engineering approach to the design of the Organizer, the functionality of

this system has been patterned after the Organization level of the Intelligent Machine
[SV88, SarT9, Val86, SM88, MS89].

3.1.1 Responsibilities of the Organizer
A list of features which encompass the Organizer are as follows:
1. The Organizer is responsible for generating high level pians and decisions.

2. A User must provide a description of the goal which the Organizer will attempt
to achieve through planning.

3. The Organizer must have information about the state u( its environment.

4. The Organizer must provide commands in a given grammar to the Coordination
level for execution in the environment. The result of the vxecution of a.command
will be a change in the state of the environment.

5. Feedback from the lower system levels indicating the complexity/imprecision of
executing a command must be available to the Organizer.

6. Over time, the Organizer must develop an internal model of its effects on the
environment in order to facilitate the planning of tasks.

‘*l

The Organzier must also develop an internal model of the capabilities of the
execution system within which it operates.

8. The Organizer must provide an analytic measure of its performance. and make
decisions based upon the optimization of this measure.

To accomplish these responsibilities, the Organizer is divided into 5 main units.
These units are:

1. The Rule Store. This unit maintains the list of rules an their effects.

2. The Complexity Model. This unit stores the execution . omplexity of a particu-
lar sentence provided from the Organizer to the Coordination level and predicts
complexity values for similar sentences.
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3. The Generalizer. This unit generalizes rules held in the rule store to allow for
a wider range of application.

4. The Boltzmann Machine for Directed Exploration. This unit allows goal-directed
behavior in the Intelligent Machine.

5. The Planner. Given a goal, this unit employs the above four functions to
construct a set of sentences which achieve that goal.

It is the purpose of this chapter to detail the functions of the units presented
above.

3.2 Input/Output Description

To understand the design of the Organizer, the following input /output characteristics
must be described which link the Organizer to the lower levels of the Intelligent
Machine. as well as the Machine to its operating environment.

1. The state of the environment as it is perceived by the Organizer.
2. The nature of the environment within which the Machine Operates.

3. The output that the Organizer provides to the Coordinator level.

4. The effect of the lower levels on the environment.

[l

The feedback provided by the Coordination level to the Organizer.

3.2.1 State of the Environment

The Organizer is intended to be a high level planner and handles data and commands
in an abstract form. One reflection of the abstract nature of the data within the
Organizer is the internal representation of objects in the environment.

The environment consists of a set of R objects, = (wo,ws, - -,wr_1). Each
object w; can be in any of m(j) states. Let Q; be a vector Q; = (7, g, ,q;"(:')'l)
where qfe(O. 1) represents the states of object w;. Let q;" = 1 if object w; is in

state k, else qf-' = 0. Therefore, the vector Q; is a binary string which indicates the
inclusion or ezxclusion of a particular state for object wj. This mapping from the
actual environment to a binary state string is performed by the lower levels of the
Intelligent Machine and is provided to the Organizer.

The state of the environment is denoted by Q = ['7%.,Q: where T is the string
concatenation operator. Q is therefore a binary string consisting of the states of all
objects in the environment. The length of Q is given by M = 2;m(j).

For example. the object bottle may be in state (full, hal f full, empty). It may
also be in the state (on —table, in — cabinet.in — gripper). This would be represented
by a binary string of length six. Assume that bottle is object number b. Then:
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wy = bottle.

Q= (%%, % %%, B)-

g = 1 if bottle is full, 0 otherwise.

gi = 1if bottle is half full, 0 otherwise.

g = 1 if bottle is empty, 0 otherwise.

g; = 1 if bottle is on — table, 0 otherwise.

g = 1 if bottle is in — cabinet, 0 otherwise.

g5 = 1 if bottle is in — gripper, 0 otherwise.

For simplicity, the state string Q can also be indexed as Q = (go, q1, - -, qar—1)-

Some parallels can be drawn between this representation scheme and methods
used in other research. Classifier systems [HHNT86] use binary strings as messages
to trigger internal and external events. This binary message string is also used to
represent the quasimorphism structure which describes objects and their features in
the environment in which the Classifier operates.

3.2.2 Nature of Operating Environment

[t is important to consider the nature of the environment within which the Intelligent
Machine operates in order to construct an Organizer which will perform well. For
this system. we assume that the environment as perceived by the Organizer has the
following features:

I. The environment can change slowly over time without influence from the Intel-
ligent Machine.

2. The environment is not completely observable.

These features combine to force a non-deterministic structure on the design of
the Organizer. Since the environment can change slowly. thie effects of actions by
the Intelligent Machine on objects may also change slowly. This forces the Organizer
to monitor the execution of actions that it plans in order to continually update its
selection scheme for future plans.

Since the environment perceived by the Organizer is an abstraction of the actual
environment, all the details which are present in the world are not available to the
Organizer. This indicates that under certain contexts. the eifects of an action in a
particular environmental state may not be deterministic. In order to compensate for
a not completely observable environment, a probablistic structure should be used to
capture unmodeled relationships in the world.

3.2.3 Organizer Commands to the Coordinators

The Intelligent Machine consists of various effectors and sensors. The Machine can
perform a set of actions which alter the state of objects in the world. The Organizer
must be able to specify a command in a known grammar to the Coordination level
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directing the use of the sensors and effectors to change the state of the environment.
From this description we can say:

A = (ag,ay,---,a,) is the set of effectors/sensors which are called actors.

V = (vo, 1, -,v,) is the set of actions.

D = (do,dy,---,d¢) = (U D) is the set of direct objects.

I = (i,01,-,4) = (RUD) is the set of indirect objects.

S = (A, V,D.I) is the set of possible output sentences from the Organizer to the
Coordination Level.

A particular sentence is given by s; = (a;, vk, d}, im) where (ajed. veeV, dieD, imel)

Then a sentence s; is a 4-tuple set consisting of one actor. one action. zero or one
direct objects. and zero or one indirect objects.

Let N = ||A|l + [|V]| + ID|| + ||T!|. Thus. N is the sum of the number of actors.
actions. direct objects and indirect objects defined for the Organizer.

This sets A.V.D.I form the primative events described in [Val86] However. the
form of the grammar is an extension of the repeatable and non — repeatable events
also described in that work.

Let S* be the set of finite strings over S plus the null string, 8. Then a plan P is
any subset of S*.

An example of a sentence is (ARM1 MOVE PEN TABLE). In this example,
ARM1 ¢ A. MOVE ¢V, PEN e D. and TABLE ¢ 1. Note that (PEN, TABLE)
€  as well.

3.2.4 Effect of Lower Levels on the Environment

After the Organizer generates a plan P. it is sent to the Coordination level for ex-
ecution. Each sentence s; € P is executed individually. The execution of 3; causes
the environment to change state in some fashion. and the .bstraction of the state
can be observed by the Organizer. After the execution of serntence s;, the Organizer
perceives the environment to change from state Q to Q. Cherefore, as perceived
by the Organizer, there exists a transition function A: S x Q — Q. The following
assumptions are also made which are accounted for in the design of the Organizer:

1. Given a sentence s containing d; ¢ D and i, ¢ I, with (d; = wj, 1 = wyi) € 0,
and a probability function PQ(1) defined as the probability that bit i of state
vector Q inverts due to the execution of 5. we assume Lhat P3(i]1eQ; U Qi) >

P4 (ilie~(Q; U Qu)).

Let A(z,y) be the Hamming distance between two binary strings z and y. Given
a sentence s which causes the Organizer to perceive a change of state from Q

to Q', then A(Q, Q') < M.

o

The first assumption states that the execution of a sentence sent from the Orga-
nizer to the Coordination level tends to effect the state of vl jects which are directly
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mentioned in the string rather than other objects in the environment. This forces
a focus of attention or locality of ef fect. The second assumption affords some
degree of continuity to the actions of the Intelligent Machine by insuring that the
environment does not alter radically due to the execution of a sentence.

3.2.5 Feedback Provided by the Coordination Level to the Organizer

Besides abstracting the state of the environment into a string Q, the Coordination
level is responsible for providing a feedback response He(s) to the Organizer which
indicates the complexity or difficulty of executing a particular sentence s. The feed-
back from the lower levels of the system should influence the lormulation of a plan P
to optimize this feedback response. Since Saridis [Sar38] was able to reformulate the
system control problem to use entropy as a control measure. entropy can effectively be
used as feedback from the Coordination level to represent the complexity or difficulty
of executing s.

We must assume that there is some cost of determining the feedback value by the
Coordination level each time a sentence s is passed from the Organizer. This cost is
due to the computational complexity of determining Hc(s) by analytic formulation of
the Coordinator. or due to the cost of feedback after executing the sentence s by the
execution level. Since optimal plan formulation requires a complexity measure for each
sentence in P. the Organizer should be able to internally develop a computationally
efficient model of the feedback response for a given sentence. This would reduce the
overall cost of executing a plan by the Intelligent Machine hy removing the cost of
interaction with the Coordination level during pianning.

3.3 Internal formulation of the Organizer

With the input/output requirements of the Organizer detailed, it is possible to pro-
ceed with the description of the internal formulation of the Organizer. The following
section provides a blueprint for the basic mechanisms which form the Organizer ar-
chitecture, the methods for training the Organizer, and how ihe formulation of plans
are facilitated by more complex structures.

The internal formulation can functionally be divided into training operations and
planning operations. A brief description to these operations is provided here as an
introduction to more lengthy definitions.

The main algorithm for non-goal directed training is named PLAY. PLAY cre-
ates rules by generating somewhat random sentences, sending the sentences to the
Coordination level for execution, and observing the abstracted effects of the sentences
on the environment once execution has completed. A rule is created by concatenating
the state string of the abstracted environment (condition), the sentence string that
was executed (action), and the new state string of the environiment after the effects of
the sentence have taken place (effect). Since the nature of the operating environment
allows non-deterministic effects for particular condition and action pairs, a variable
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is maintained in the rule which stores the probability of the rule effect occuring given
the condition and action pair.

Each rule also maintains a variable which stores the complexity of executing the
sentence given the current environment (precondition). This value is computed by
the Coordination and Execution levels of the Intelligent Machine and is supplied as
feedback to the Organizer. New rules created through PLAY are added to the Rule
Store.

A mechanism called The Generalizer is included in the architecture and pro-
vides one form of symbolic learning. This mechanism removes unnecessary precondi-
tions of rules, so they can match novel situations. This extends the knowledge base
represented by the rule store, by allowing application of existing rules to different
conditions.

When a rule is generalized, it is necessary to compute the complexity of the
generalized rule under a novel situation. Also, when the nature of the environment or
the capabilities of the Intelligent Machine are altered, the complexity of executing a
sentence might change. A model must be maintained in the Organizer which extracts
the semantic relationships between symbols in rules in order to compute complexity of
sentence execution under a given set of environmental conditions. This connectionist
model is called the Complexity Model.

As demonstrated by the literature review, planning is a search process which is
computationally expensive due to the size of the state space. In order to reduce the
size of the search space, the Organizer must be able to build up skills from subsets
of tasks which move toward a user-defined goal. While man y approaches to skill or
schema formation have been based on top-down symbolic learning approaches which
require large amounts of a priori heuristic knowledge, it is desirable for the Organizer
to develop some of this capability from its own emergent knowledge base. To do
this, another connectionist network called the Goal-Direct Boltzmann Machine
is trained on the rules in the rule store to develop semantic relationships between rule
conditions and effects. After training this network, skills can be formed by presenting
the Organizer with problem subgoals, and using the network to extract small chains
of low complexity rules which achieve the subgoal. These chains form skills which
can be added to the rule store and used in planning.

Planning involves the proper selection of rules and skills {rom the rule store which
cause the abstracted environment to transform from an inital state to a goal state.
Recognizing that the conditions and effects of rules are isomorphic to nodes in a
graph, and sentences are graph arcs, the Planner uses a graph search technique to
find a low complexity, high likelihood of success text of sentences which achieve the
goal state. This text is then transferred to the Coordination level for plan execution.

In short, the Organizer follows the following procedure:

1. Training: Using the PLAY algorithm, experiment with the actual or simulated
environment: PLAY builds an initial base of rules describing the capabilities of
the Intelligent Machine.
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Generate sentences and send to Coordination level.

Observe the probablistic effect of sentences on the environment.

Form rules about the abstract environment.

e Receive a measure of sentence complexity from the lower levels of the
system.

o Store these feedback measures in the Complexity model.
2. Knowledge abstraction: Expand the capabilities of the Organizer rules by ab-
stracting knowlege:
¢ Generalize rules to apply to similar, but untested cases.

e Store rule effects in the goal-directed Boltzmann Machine.

3. Goal training: Generate skills through use of the goal-directed Boltzmann Ma-
chine.
o Receive a goal state from a user.
¢ Provide desired state changes as input to goal-directed Boltzmann Ma-
chine.
¢ Discover low Entropy rules which move toward goal.

e Store the sequences of rules and effects in the skill store.

4. Planning: Use a search technique to find a path from an initial state to a goal
state.

e Receive a goal state from a user.

Search the rule and skill store for a path of sentences from the initial state
to the goal state which minimizes cost.

If the cost of the cheapest path is excessive, either fail or enter goal-directed
exploration.

If the cost of the cheapest path is acceptable, send the text of sentences to
the Coordination level and observe execution.

A picture of the system and its environment is provided in Figure 3.1 w1th appro-
priate command and feedback paths.

3.3.1 Basic Mechanisms and Operation

The basic mechanisms of the Organizer are:

1. The rule store.
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2. The complexity model for sentence execution.

These mechanisms and their method of operation allows the Organizer to build
up a rich knowledge about the capabilities of an Intelligent Machine. Together, these
units provide both syntactic and semantic systems which allow the analytic formation
of optimal plans based on the minimization of a cost criteria when combined with
the advanced mechanisms of the Organizer. The next sections describe the function
of each unit, and how it operates.

The Rule Store

The rule store contains a list of condition/action/effect triples and forms the main
syntactic mechanism in the Organizer. The following definitions are needed:

Let R = (&, X, Y, H, Py) define the rule store. The rule store is then the set of
5-tuples where = represents the set of conditions, X is the set of binary sentences,
and Y is the set of ef fects. The value H > 0 is the feedback entropies from the
Coordination level for a particular state/binary sentence pair. The values 0 < Py
< 1 represent the probability of the condition/action pair causing the given effect.
The assignment of these values will be discussed in depth later in another section. A
particular rule R; is in the rule store if R; ¢ R. _

Each Z; € Zis a string (£2,¢},- -+, €M) where ¢/ is ¢ (0,1,#) and is called a field.
Note that the length of =; is M, the length of the state string Q. If a particular field
in a string Z; is 0, that field is said to be ezcluded from the condition. If a field is 1,
that field is said to be included in the condition. If a field is #, that field is said to
be don't care. .

Similarly, each T; € X is a string (v, v},--,v}™") where v/ € (0,1,#). Note that
the length of T; is M, the length of the state string Q. If a particular field in a string
T; is 0, that field is said to be ezxcluded from the effect. If a field is 1, that field is
said to be included in the effect. If a field is #, that field is said to be dependent on
the condition.

Each T; € T is a binary string (02,4}, --,0N~") where N is the sum of the number
of actors, actions, direct objects and indirect objects defined for the Organizer. If a
field in ; is 1, that field is said to be included in the binary sentence. Else, the field
18 excluded from the binary sentence.

The binary sentences L are a direct one-to-one and onto mapping of the sentences
S. X can be separated into four disjoint sets, each corresponding to the actor, action,
direct object and indirect object sets of S. Let || - || denote the number of fields in a
string. The first || A[| fields of a binary sentence Z; are mapped to the actors, the next
|Vl fields of Z; are mapped to the actions, etc. If a particular field cf (k< |All-1)
is set to 1, then actor ay is represented in £;. Note that exactly one actor, one action,
zero or one direct objects and zero or one indirect objects is included in any ;.

For example, given the following sets:

A = (ARM1, ARM?)
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V = (MOVE, GRASP, RELEASE)

D = (BLOCK, BALL, TABLE)

1= (BLOCK, BALL, TABLE)

Then the sentence s; = (ARM1 MOVE BLOCK TABLE) would be mapped to
the binary sentence o; = (10100100001). Here, ARM]1 is in the sentence so the first
field of the binary sentence is included. Since ARM?2 is not in s;, the second field of
the binary sentence is excluded, etc.

For convenience, rules will appear as:

E£..-§/a‘a.-.a‘/vv--.v

such as:

100#0100+4,/100010010010/ 400400010

A rule is active if all of its conditions are matched. The conditions of a rule R;
are matched if for a given environmental state Q, the Hamming distance A(Z,Q) =
0. Note that the Hamming distance between a don't care field, #,in=Z;andalor0
in the corresponding field in Q is 0. The active set is the set of active rules.

A rule can fire when it is active. If a rule is chosen to fire, the binary sentence
portion of the rule is mapped back onto the sentence grammar defined over S. The
sentence is then passed to the Coordination level for execution.

The structure of the rules is very similar to the rules used in Classifier Systems.
Both use a trinary algebra (0,1,#) for representing condition strings. Rules in both
systems contain a sentence portion, which in Classifier systems is called the rule
message. The rules are also similar to those in most forward chaining expert systems
such as OPS5 [BFKM86]. In both Classifiers and forward chaining systems, the rules
attempt to match a condition portion with a current state message, and then produce
an action to the system or environment as output. However. the Organizer rule also
contains an effect portion which provides a model of the environmental state after
execution. Because of this portion, the results of a rule firing are known a priori to its
execution. This allows for efficient planning, as will be described later in this work.

The Complexity Model

As discussed previously, the Coordination level of the Machine provides a feedback
value to the Organizer which reflects the complexity/difficulty of executing a sentence
passed from the upper to lower levels. This feedback value is called Hc(s) and is the
entropy of executing the actions called for by sentence s in the current environment.
This value is computed by the lower levels either through analytic means at the
Coordination level, or by control performance at the Execution level. To minimize
the cost involved with this computation, it is necessary to model in the Organizer the
value H¢(s) due to the execution of sentence s in the current environment. This model
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should function as both 1) a database for recalling complexities of past state/sentence
pairs; and 2) a predictor of complexities for state/sentence pairs not yet executed.

This model performs the “compatability evaluation” described in [Val86]. It pro-
duces a measure of complexity for binary sentences based on co-occurance probabili-
ties of primative events developed over repeated presentations.

The predictive nature of this model will allow the Organizer to discard certain
classes of sentences which it has learned perform pooly over past experience. This
generalization across similar sentences requires some semantic knowledge about the
co-ocurrance of actor, action, direct objects and indirect objects. Based on these
criteria, a connectionist structure will be used to form the complexity model.

For input, the state of the abstract environment and the binary sentence will be
place on the nodes of the network. The Energy of the network will then be calculated,
which is equivalent to the trained complexity of the sentence in the given environment.

Let Be = (£, W) be a connectionist network. Let node levels £ = (Lq, Lgg,La4,
Lav, Lv, Lvp, Lp, Lvy, L;). Each node level is defined as follows:

Lg = (ng,ng,--- ,ng‘l).where M is the length of state vector Q.

Lqq = (ngq:ngg, - 1ndq) where (i <j < M —1). Note: The number of nodes
in Lqq given by [|QQ|| = (M=M=1)

Ly =(n%,n}, .. ,ng“"‘l_) where ||A|| is the number of actors.

Lav = (n%yv,n%%,-- -, nly) where (i < ||A|, j < I'V]|). Note: The number of
nodes in L,y is denoted [|[AV] and equals the number of actors multiplied by the
number of actions.

Ly = (n},n}, .. ,nl",V”-l.) where || V|| is the number of actions.

Lvp = (nVp,n¥p, -+ ,nyp) where (i < ||V]], j < [ID]}). Note: The number of
nodes in Lyp is denoted ||VD]|| and equals the number of actions multiplied by the
number of direct objects.

Lp = (nd,n},.-- ,n%D“."l) where [|D|[ is the number of direct objects.

Lyr = (n¥,n¥, - ,ny;) where (i < ||[V]], j < [ITll). Note: The number of nodes
in Lyy is denoted ||VI|| and equals the number of actions multiplied by the number
of indirect objects.

Ly = (n%,n},---,nl1="y where |IX]| is the number of indirect objects.

For simplicity, the nodes can also be indexed £ = (no, 1, -+ -, nygy) where ||L]| =
M +[1QQIl + [ A]l + [|AV] + [V + [VD|| + D]l + [ VI| + 1.

Any node, n; € (0,1). The value of n; is called its activation.

W is called the weight matriz for B,. W is of size (€1l x I£]]). Each element
w;; € W is called a weight between node i and node J. The following rules hold for
weights in W:

L Jlw;|l < 1.0.
2. Some weights are fixed at 0.0. Other weights can vary between -1.0 and 1.0.
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3. If w;; is fixed at 0.0, there is no connection between nodes n; and n;. Else, a
connection exists between nodes n; and n;.

For the network B., the following weight assignments are made:

1. For any nodes n'; and n'}}, w;; is fixed at 0.0 for X ¢ (Q, QQ, A, AV,V,VD,D,VI, I).
This indicates that there is no connection between any two nodes on the same
level.

2. For any nodes n; and néq, w;; is fixed at 0.0.

3. For any nodes ni; and n’,, w;; is fixed at 0.0.
4. For any nodes n, and nly, w;; is fixed at 0.0.
5. For any nodes n}, and nip, w;; is fixed at 0.0.
6. For any nodes n, and njp, w;; is fixed at 0.0.
7. For any nodes ni, and n{,,, w;; 18 fixed at 0.0.
8. For any nodes n} and n‘{,,, w;; is fixed at 0.0.

9. All other weights can vary between -1.0 and 1.0.

A diagram of this network is provided in Figure 3.2.
A connection between nodes n; and n; is active if w;; is not fixed at 0.0, n; = 1,

and n; = 1.

As part of the Intelligent Machine, the network is defined in terms of the analytic

model. The output of B, is defined as the Ezecution Complezity of a Task given
the State of the Environment and is abbreviated Hn(s;) for sentence s;. Therefore,

we define the Hy(s;) = !':(',' 2!,':',' wijn;n;. This is similar to the energy definition

for Boltzmann Machines defined in [HS86]

Training the complexity model

The method for adjusting W over repeated trials is called training the network.
The following procedure is used to train the network to produce the complexity of a

binary sentence Z; given I; and Q as input. We assume that Hmax is the maximum

complexity value and Hy,;,, is the minimum value.

Given a state vector Q, a binary sentence I, and a measure of complexity from the
Coordination level, Hc(s;), where s; is a sentence mapped [rom the binary sentence

1. For each field ¢; in Q, if ¢; = 1 then set nj;, = 1.
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2. For each field o; in T; where (0 < i < [|A|| = 1), if o; = 1, then set ni, = 1.
3. For each field o; in &; where (J|A]| <i < ||V|| = 1), if o; = 1, then set ni, = 1.
4. For each field o; in Z; where (J|V|| <i < ]|D|| —1),if oy = 1, then set ni, = 1.
5. For each field o; in E; where (]|D|| < i < N —1), if 6; = 1, then set nf = 1.
6. For each pair of nodes nf; and n{; (t < j), if both nodes equal 1 then ngq = 1.
7. For each pair of nodes n’;, and n{,, if both nodes equal 1 then ni{v =1.
8. For each pair of nodes n}, and njD, if both nodes equal 1 then n:}'D = 1.
9. For each pair of nodes nj, and nf, if both nodes equal 1 then ny ;=1

10. Set all other nodes to 0.

11. Compute the Complexity from B., Hy(s;) = EP:.!' Zyil,l Wi;nin;.

12. Compute éH = Hc(s;) — Hp(s;).

13. For each and every non-fixed w;; e W: If §H > 0,

oH

Hmax —Hxnin

6w.-,' = 0(1.0 - 'w.-,-) nin;

IféH < 0,
SH

Hmax - Hmin

6w.-,- = ‘}'(1.0 + ‘w.'_,') nin;
Where 0 < o,v < 1.
Each iteration of this algorithm is a training step.

Over repeated iterations, the output of the network Hy (si) should converge to
Hc(s;). The following theorem is useful:

Theorem 3.1. For a connectionist network of type B. with a training procedure
given above, let ! equal the number of active connections in B. for a given sentence
8. fac< QF then ||[§H|| before a training step is larger than |6H|| after a training
step. Similary, v < -—51!3-.

Proof: Let us first examine the case where §H > 0. In this case, He(s;) > Hy(s;).
For the updating step, we have: ‘

6H
Hmax - Hmin
The maximimum value (1.0 — w;;) can obtain is 2.0, since -1.0 € w;; < 1.0. The

maximum value H—sflnm—_m can obtain is 1.0. Thus dw;; < 2a. Then, the maximum

6w.-,- = a(l.O - w,-,-) nin;

37



change in the output of the network due to a training iteration is 2 x [ x a, since only
[ weights are updated.

We must show that ||He(s;) — (Ha(si) + 2le)|| < |[He(s;) — Ha(sy)|l.

We know He(s;) — Hp(s;) > 0. Assume He(s;) — (Hp(s;) + 2la) > 0. Then we
must show that He(s;) — Hn(si) — 2la < He(s;) — Hy(s;). This is true if 2la > 0
which is always the case. :

Now assume He(s;) — (Ha(s;) + 2la) < 0. Then ~H(s;) + (Hn(s;) + 2la) > 0.
For —Hc(s;) + (Ha(s;) + 2la) < He(s;) — Hu(s;) to be true, a < illi The proof is
analogous for «.

The above updating scheme and supporting theorem provide a method for succes-
sive adaptation of the output of the network to mimic the feedback signal provided
by the Coordination level. This adaptation is similar to gradient descent of the error
for a given sentence s; by modifying the weights of the network.

The constraints on a and v given by the above theorem are somewhat restrictive.
It is possible that the training routine will reduce the output error using larger values
of @ and 7. The important consideration is the distance of the current weight value
to the shunting value (-1.0 or 1.0) which may account for a smaller output change,
and allow larger constant values.

Extracting the complexity of a sentence

During execution, it becomes necessary to determine the complexity/entropy of a
sentence without going through an entire training step. To extract the complexity of
a given sentence s;, one must first map the s; to the binary sentence X;. Then, for
a given state vector Q, the complexity of s; can be found by executing steps 1-11 in
the training algorithm. The complexity, or entropy of s; equals Hy(s;).

A priori inhibitory connections and weights

It may be desirable to inhibit the execution of certain tasks or sets of tasks based
on a priori knowledge about the nature of the tasks under particular environmental
conditions. The Machine user should be able to encode this “innate” knowledge into
the complexity model.

Assume we have two nodes n;, n; which should not be asserted together (i.e
inhibited). The user should set w;; = 1.0 and not allow this weight to be modified
during training. By fixing this weight at 1.0, the complexity of any task requiring
both nodes active will be high.

Discussion of the complexity model

With the formal model defined, a short discussion is necessary to provide intuitive
insight to the model. The complexity model is based heavily on the Boltzmann
machine architecture, and uses the energy function to extract the output value of the
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network. The values of the nodes can be either 1 or 0, meaning on or off. For this
example, the weights ranged from -1.0 to 1.0. To maintain uniformity with other
parts of the Organizer, it is necessary to change the structure so that the weights
range from 0.0 to 1.0

The node levels of the model are segmented in a way which allows an easy mapping
from the current state vector and a chosen sentence to the network. Each node in
level Lq is assigned the corresponding bit value of state vector Q. Similary, the node
in L4 is asserted which corresponds to the actor in the given sentence, the node in Ly
1s asserted which corresponds to the action in the given sentence, etc. These nodes
are called the visible nodes of the model.

The levels Lgq, Lav, Lvp, and Ly; allow the assertion of pairwise combinations
of states, actions and actors, actions and direct objects, actions and indirect objects,
respectively. These nodes allow the machine to form boolean functions between nodes.
It is important to note that these nodes provide more than just the “AND” function.
Through repeated training, the combination of these paired nodes with nodes of the
other levels allows the formation of such boolean functions as “XOR”, “NOR?, etc.
These nodes are called the kidden nodes of the model.

Similar to a proportional controller, the weights of active connections are trained
to reduce the error between the current output of the network, and the desired output
of the network. The theorem presented states that an individual training step will not
increase this error for a particular sentence. This is important for stable operation.
The idea behind this training technique is that over repeated presentations, certain
active connections will always lead to very good or very bad values of complexity.
These links will tend to shift toward -1.0 or 1.0 respectively. If the weights are
restricted to the range of 0.0 to 1.0, the links will shift in a similar manner to these
bounds. Other links will tend to oscillate in the middle since the output of the network
when they are active ranges over the complexity scale. The effect of these links tend
to die out over repeated presentations. In other words, the network self-organizes to
find pairwise node combinations which tend to lead to bad performance, and ones
that lead to good performance, and these nodes become the major influencing factors
in calculating the network output.

It is important to see why this technique is used for training as opposed to one
like backpropagation [RHWS86a, RHW86b] or the Boltzmann machine training algo-
rithm [AHS85]. Backpropagation requires an a prioi knowledge of a particular string,
and the output of the network given that string as input. All of these paired values
must be known before the net is trained. The same type of knowledge is required by
the Boltzmann training technique. In contrast, the complexity model learns through
repeated experience over the course of execution of the Organizer, and does not need
to know all value pairs ahead of time (which is especially useful, since these values
are not available). Also, the technique used to train the coinplexity model is called
“Reinforcement Learning”, because we are training a network response by providing
a reinforcement signal. Backpropagation and the Boltzmann training technique both
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use “Supervised Learning”. A detailed description of the differences between super-
vised and reinforcement training methods is provided in [Wil88). Therefore, it can be
trained with or without a teacher.

An example of a complexity model

To demonstrate the effectiveness of this model, several simulations are presented.
The environment consists of a table and two objects labeled OBJ1 and OBJ2. The
Machine consists of a robot arm and gripper which can either pick an object up or
put an object down (GRASP or RELEASE). In the simulations, the Machine must
learn the following:

L. It is easy to grasp an object when nothing is in the gripper.
2. It is easy to release the object which is in the gripper.
3. It is difficult to pick up any object when one is already in the gripper.

4. It is difficult to release an object unless it is in the gripper.
The model was built as follows:

1. The Lq level consisted of 4 nodes:

(a) ng = OBJ1 in GRIPPER
(b) nY = OBJ1 on TABLE
(c) n} = OBJ2 in GRIPPER
(d) n4 = OBJ2 on TABLE

2. The L, level consisted of 1 node: n% = ARM.
3. The Ly level consisted of 2 nodes:

(a) nYy = GRASP
(b) n}, = RELEASE

4. The Lp level consisted of 2 nodes:

(a) n% = OBJ1
(b) n}, = OBJ?2

5. For this case, the L; level was unnecessary and not modeled.
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Including the paired levels (Lqq, Lav, Lvp) the network consists of twenty-one
nodes and eighty-four modifiable connections. The weight matrix is assigned as dis-
cussed in the previous section. Each element in W was initialized to 0.0.

In the first simulations, the feedback Hc(s) is 1.0 for difficult tasks (tasks 3,4
above) and 0.0 for easy tasks (tasks 1,2 above). The goal of training is to match
the output of the network with the provided feedback for every valid state/sentence
combination.

Figures 3.3a - 3.3i show the output of the network for several test sentences over
200 training steps with a, v = 0.05. Figures 3.4a - 3.4i show the output with o, v =
0.15.

Determination of Hpy(s) required 190 additions. Each training iteration required
update of the 84 weights. After computing §H, each weight update requires one
addition/subtraction and one multiplication.

The simulation results demonstrate that the network is able to learn the correct
feedback values during the limited number of presentations. It is important to note
that 200 presentations represent the total number of sentence instances the net trains
on. In other words, for 200 presentations, each of the twelve valid sentences 18 pre-
sented to network an average of 16 times. This is a very small number of presentations
when compared to techniques like backpropagation.

As shown in the simulations, with «, 7 = 0.05, the network is able to provide
correct responses within 5 percent to the test cases in about 165 training steps. This
corresponds to about 14 presentations of each possible sentence to the network. With
a, v = 0.15, the network performs much better. It responds within 3 percent to the
test cases in about 100 training steps. This averages to about 8 presentations of each
sentence to the network. After 120 presentations, the test case response is about 100
percent accurate.

The second simulation demonstrates a case in which non-binary responses are
provided as feedback. In this case, we try to model OBJ2 as a heavier object then
OBJ1. To represent this, the feedback provided when grasping OBJ2 is not 0.0, but
0.2. Again, the simulation results show in F igures 3.5a - 3.5i that the network is
successfully able to mimic the feedback values. After 120 training steps, or about 10
presentations of each of the twelve sentences, the output of the network is within 5
percent correct for each of the test cases. After 140 steps, it is within 2 percent of
the correct values.

Operation of the Basic Mechanisms

The rule store and complexity model form the basic mechanisms of the Organizer.
These mechanisms can be viewed as the primary building blocks required to provide
syntactic and semantic structure to the system. It is within these mechanisms that
most of the knowledge within the Organizer is learned and maintained. The next
section describes the operation of these building blocks, and how they work together
to form a base from which plans can be constructed.
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PLAY Algorithm (Non-Generalized Rules)

The purpose of the rule store is to develop a database of condition/effect relationships
for sentence execution by the Intelligent machine. Each rule R; ¢ R defines the effects
T of executing sentence s; when the environment is in a state which maches =;. The
question arises: How is R built?

Intertwined with the rule store is the complexity model B.. For a given sentence
s; in state Q, B, must develop a representation for the feedback complexities Hc(si)
provided by the Coordination level. The question arises: How are relevant matched
sentence/state pairs presented in order to effectively train B.?

These questions are answered by an algorithm called PLAY. PLAY forces the
development of rules in the rule store, and provides legitimate sentence/state pairs
for the complexity model. Through interaction with an abstracted non-deterministic
environment, PLAY allows the development of rules which have probablistic effects
and form a robust syntactic environmental model.

PLAY proceeds in this manner: Under the current abstracted environmental state,
the Organizer randomly picks a sentence to execute. The probability that a given
sentence is selected may be influenced by the user of the Machine. The sentence is
then passed to the Coordination level of the Intelligent Machine and is executed in
the environment, if possible. The Organizer receives the new abstracted environment
string and the complexity of execution as feedback. If necessary, a new rule is formed
by concatenating the precondition (current abstracted environmental string), the bi-
nary sentence and the effect (new abstracted environmental string). The complexity
value of the rule is assigned and the probability of the precondition/sentence causing
the given effect is updated. PLAY is described in more detail as follows:

Given an initial environmental state Q, a rule store R, a complexity model B,
a maximum complexity threshold 8y, a new rule generation probability p,, a set of
probability density functions P4, Py, Pp, P; which are the probabilities of selection
a particular actor, action, direct object and indirect ob Ject, respectively, for a newly
formed sentence, and Pg, the probability density function of selecting a particular
rule from the active set:

1. Find the active rule set R, ipe: (VR; e R: A(Q,Z)) = 0). If the active rule set
is empty, go to step 2a.

2. Randomly select a value p in (0..1). If p < p, 2 new rule is generated as follows:

(a) Generate a particular a, ¢ A according to Pj.
(b) Generate a particular v, ¢ V according to Py.
(c) Generate a particular d, € D according to Pp.
(d) Generate a particular i, ¢ I according to P;.

(e) sn is formed by the set (an, v, d,, n).
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(f) Map s, to the binary string T,.
(g) Transfer the sentence s, to the Coordination level for execution.
(h) Receive He(sn) as feedback from the Coordination level.

(i) Find the subset of rules in R,.;,. which have the binary sentence X,:
active = (VR; € Roctive : Bj = Lp).
(j) I He(sn) > 05 the sentence could not be executed. Update the complexity
model and set H = He(sy) for all R; € R._,;,.. Go to step 2.

(k) If He(sn) < G, the sentence was successfully executed. Observe the ab-
stracted state vector Q’, update the complexity model, and set H = He(sp)
for all R, ¢ R!

active*
(1) HVR; € R 4ipes A(Tj, Q') # 0, then create a new rule R, by concatenating
Q, I, and Q. Assign H = H(sp) for R.,. Else, let R, = (R; ¢ R ;..
L A(T;,Q) = 0).
(m) Update the effect probability values P+ for all rules R; e R, ;.. and com-
pute Py for R].

(n) If new, add R, to R.
3. If p > pn, an existing rule is selected from R:

(a) From R,.iye randomly select a rule R, according to Pg.

(b) Map I, to s,. Transfer s, to the Coordination level for execution.

(c) Receive He(s,) as feedback from the Coordination level.

(d) Find the subset of rules in R,.;,, which have the same binary sentence as
R,: R;ctiuc = (VRJ € R,,d,',,, : EJ' = 2,)

(e) If He(ss) > Oy the sentence could not be executed. Update the complexity
model and set H = He(ss) for all R; € R.,;,.. Go to step 2.

(f) If He(ss) < 0y, the sentence was successfully exccuted. Observe the ab-
Stracted state vector Q', update the complexity model, and set H = Hc(ss)
for all R; € R! ;...

(g) HVR; € Rl .o, A(T;, Q') # 0, then create a new rule R, by concatenating

' Q, %, and Q'. Else, let R, = (R; ¢ R, tA(T,,Q) =0).

active

(h) Update the effect probability values Py for all the rules R; e R, ,,,. and
compute Py for R,.

(i) Assign H = Hc(s,) for R..
(j) If new, add R/, to R.

4. Let Q = Q'.
5. Go to 1.
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Updating the effect probability values

The PLAY algorithm is responsible for updating the effect probability values Py for
the all R; € R.;,.. These values represent the probability of a particular = and &
pair causing a specified effect in Y. The probability updating method can be likened
to an attempt to revise a prediction of the outcome given a particular input to a
system and a particular action by the system. This type of probability modeling
scheme has been dealt with extensively in the field of Stochastic Learning Automata,
and provides one method for updating the effect probability values.

Fu and his colleagues [Fu71, FL69a, FL69b, Fu67] were among the first to intro-
duce stochastic automata to the control literature. Excellent reviews of the field of
Stochastic Learning Automata are available in [NT74, ME70]. Borrowing from these
theories, the probability updating scheme is:

Given VR; € R, ;,., the active rule R}, (R; # R.,), and some constant 0 < u < 1:

L. If R, ;.. is empty then Pr = 1 for R!. Else execute 2,3.
2. For each R;, let Pjr = P"-r - pP"-'r.

3. For R}, let P} = P& + Sy uPh.

This technique is known as the Linear Reward-Penalty scheme (denoted Lgr_p).
It subtracts probabilty from rules which have effects that did not occur, and adds
the total subtracted probability to the effect probability for a rule in which the effect
did occur. The Lg_p scheme is known to be ezpedient. As shown in [CS67), Lp_p
schemes work well in non-stationary environments (ones in which effects of actions
can change over time). Other methods which are e-optimal tend to lock onto certain
actions, and lose their ability to change.

Other approaches may be used to update the effect probability values. Stochasic
Approximation is also very appropriate to this type of model. Frequency of occu-
rance is another method which may be suitable for particular implementations of the
Organization level.

Updating the complexity model

The PLAY algorithm calls for the complexity model to be updated with each tested
sentence. This is accomplished using the complexity model training method given
previously, by providing the current binary sentence and Q as input, and adjusting
the weights according to the feedback response from the Coordination level.

A priori rules

The design of the Organizer allows the user to encode a priori rules and place them
in the rule store, if desired. If the pre-encoded rules have incorrect actions, they will
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perform poorly in experimentation and their effect probabilities will decrease. If the
pre-encoded rules have correct actions, they can be used in planning along with rules
developed during PLAY.

Discussion of basic operation mode

The basic operation mode described above by the PLAY algorithm allows the Orga-
nizer to build a large database of valid rules which can be applied to the environment.
The rules in the rule store are very similar to those found in expert systems or pred-
icate calculus planners with three important caveats. First, the rules in the rule
store model the abstracted environment by direct interaction with the environment.
A user does not need to enter the rules by hand in order to create the functions
of the system. This eliminates Minsky’s [Min61] “frame problem”, which is caused
when user-defined rules do not handle unexpected situations; on the contrary, in the
Organizer system, the rules are created by the situation.

The second caveat is that the effects due to the rule application (firing) are prob-
ablistic. This means that executing a sentence under some state Q may lead to effect
T, in 90 percent of the trials and T, in the other 10 percent of the trials. To repre-
sent this, the value Py is maintained for each condition/sentence/effect triple. Expert
systems and predicate calculus based planners usually account for only deterministic
actions.

The third caveat is that the rules in the Organizer maintain a cause/effect model
which describes the state evolution of objects due to actions by the Machine. This
will facilitate goal planning as discussed later in this work.

The intuitive notion behind PLAY can be likened to an infant experiencing the
world for the first time. By attempting to perform actions in the world, the infant
determines what acts he can perform using his arms, legs, fingers, etc., and how hard
it is to perform those acts. Also, the infant discovers how he can manipulate objects
in his world, and how he affects the world through his actions.

Similarly, PLAY allows the Intelligent Machine to experience its abstracted world.
It attempts to perform actions in its environment and receives feedback from the lower
levels which analyze the difficulty of performing the tasks. This difficulty measure
is stored in the rules, and is also applied to the complexity model which is used by
higher reasoning when attempting new tasks. By interacting with the environment,
the machine formulates new rules which reflect the changes in the world due to rule
execution. Old rules can be modified when their effects on the world become more
certain or less certain. Over time, the Machine builds up a robust store of these
concepts.

It is now necessary to describe the PLAY algorithm in conceptual terms. Initially,
the set of all rules which can be used in the current environmental state are gathered.
This is called the active rule set, or Rgctive- If no rules maich the current state, or
a new rule generation has been selected, we proceed to formulating a new rule. The

45



value p allows the Organizer to build new rules, and experiment with old rules during
PLAY mode.

If a new rule must be generated, we select an actor, action, direct object and
indirect object according to prespecified probability density functions. If the pdfs
are uniform, the sentence is randomly generated. A non-uniform pdf allows a user
to guide the Organizer during PLAY to discover certain types of rules which tend to

contain a particular actor, action, etc. Therefore, a user can “supervise” the actions

of the machine during PLAY, if desired.

The newly generated sentence is passed to the Coordination level and is exe-
cuted. At the same time, the Organizer finds all the rules which have the same
condition/sentence pair and calls this set R’ ;.. The determination of this set is
necessary in order update the complexities, H and effect probabilities, Py of the
rules. The set R’ contains all the experienced effects of vxecuting the sentence in

active

the given environmental state.

Based on the feedback value, Hc(s), the Organizer determines whether the sen-
tence was successfully executed. If it wasn’t, the complexity values of all the active
rules with the same sentence are updated. Updating all rules in R, reflects the
fact that the complexity value describes the difficulty of executing a sentence in a
particular state. Therefore, all rules which have the new sentence and the given state
must have their complexities modified. The complexity model B, is also trained with
this information. If the newly formed sentence is the only member of this set (no
other rules in R} ;,.), it is tossed away and the process begins again.

If the sentence can execute, the complexity values of the rules in R, .ive are updated
to the feedback complexity, and B. is trained on this data. The new environmental
state vector, Q' is observed. If the rule formed by combining the old state, sentence,
and new state is not in the rule base, it is added. The probabilities for all members
in R, .. are then modified to reflect the effect caused by applying the sentence in
the old environment. The rule with the correct effect has its probability value Py
increased, and all other rules in R.,;,. have their values decreased. The process of
PLAY then begins again.

If the creation of a new rule is not called for, the process is somewhat similar.
Of the rules in the active set, one is selected for execution hased on the probability
density function Pgr. If Pg is uniform, each rule is selected with equal probability.
However, the user can adjust Py to guide or supervise the system to execute particular
sentences and learn the effects of certain classes of sentences.

As described above, the sentence is passed to the Coordination level, evaluated,
and in similar fashion, the rule complexities and probabilities are updated and the
complexity model is trained. If a new environmental state is found, a new rule is
formed and added to the rule store.

The PLAY operation should continue until the user «lecides the Machine has
developed a rich enough model of its environment. It is tnportant to realize that
during PLAY, the Machine may be interacting with a simulator providing all the
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responses of the real world. This is one way to prevent the Machine from carrying out
rules which have disastrous ends. Another method is through the adjustment of the
rule selection probabilities, which allows supervision of the rules that the Organizer
chooses to discover. '

3.3.2 Advanced Mechanisms and Operation

Given a complete description of the basic mechanisms and the basic method of op-
eration, it is possible to describe the advanced structures in the Organizer model.
These advanced mechanisms facilitate the formation of plans by abstracting knowl-
edge maintained in the basic mechanisms without destroying the original information.
The advanced mechanisms in the Organizer are:

1. The generalizer.
2. The Boltzmann Machine for directed exploration.

The next sections describe the function of each unit and how it operates.

Symbolic Learning and The Generalizer

Many researchers have developed learning techniques for expanding and generaliz-
ing knowledge from rules in a rule base or from the examination of rule execution
[And83, Car86, DeJ86]. Since the Organization level maintains a rule base of condi-
tion/sentence/effect rules, many of these symbolic learning systems can be overlayed
on the Organizer in the same manner they can be overlayed on a top-down symbolic
system such as STRIPS or ABSTRIPS. As an example, the Generalizer is presented
as one type of symbolic algorithm which removes preconditions from a rule in the
rule store to allow the rule to match more environmental conditions.

The PLAY algorithm is the basic mechanism used to explore the abstracted envi-
ronment and formulate new rules based on the effects that a particular binary sentence
Z; had on a given environmental state. Through this exploration, PLAY forms rules
which are specific to a particular environmental instance Q. It is very likely that
many of the states in Q are not affected by the execution of Z;. This implies that
certain ¢ ¢ Q will not change state when a particular L, is executed. Other fields
in Q are highly likely to change state, namely those which are within the locality o f
effect as defined earlier. It would be helpful if only the relevant g, ¢ Q (those likely
to change state) were represented in rules, while the irrelevant fields were ignored.

Ignoring the fields outside the locality of effect allows a specific rule formed dur-
ing PLAY to become more general by allowing application of the rule to a host of
abstracted states. The rule could effectively disregard object states which do not
matter. For example, when sharpening a pencil, one is not concerned with a ball
in the corner of the room. Similarly, when getting a glass of water, the state of the
television is not highly relevent.

47



By increasing the generality of rules, one can also abstract knowledge into untested
domains. For example, if it turns out that filling a glass with water can be done with
the television on, the rule may be generalized to say that it is possible to fill a glass
of water regardless of the state of the television. In this example, generalization has
allowed the rule to apply to a state which has not yet been tested, namely when the
television is off. This type of generalization works because the television is outside of
the locality of effect.

The Generalizer works by removing preconditions of rules. This is done by creating
a rule which contains a # (don’t care) in a condition field which was previously
occupied by a 1 or 0. The new rule can now match environmental states which have
either a 1 or 0 for that field. The effect string is also modified to contain a # in the
effect field which is at the same location in the effect string as the modified condition
field in the condition string. This allows the 1 or 0 value which matches the # in the
condition to be carried over to the effect.

For example, given the generalized rule:

11104/1010101/1111#

The condition of this rule matches environmental states:

11100

and
11101

The effect string when the environmental state is 11100 would be
11110

The effect string when the environmental state is 11100 would be
11111

because the value assigned to the # field in the condition is passed through to the
# of the effect.

Before introducing the generalizer algorithm, some notation is needed. For rule
R;, let =F be the substring of =; which contains all the states which observe object
k. Similary, let T! be the substring of T; which contains all the states which observe
object I. Let =¥ and T;™ be the substrings of =;, T, respectively which do not
contain any states which observe objects k or . Also, Let Rg = (VR; e R:# ¢ Z;).
This is the set of all generalized rules. Finally, let Rs = ~Rg. This is the set of all
specific rules.

Then the following algorithm allows for the generalization of rules:
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A Generalization algorithm

Given a rule store R, a probability matching threshold 0 and a complexity matching
threshold 8y: :

1.

2.

3.

6.

7.

Select a binary sentence, I;.
Map X, to the sentence s;.

Let d; be the direct object and #; be the indirect object of s;. Let wy be the
object in Q2 represented by d; and let w; be the object in Q represented by ;.
For shorthand, these can be called objects i and d.

Let Rpaten = (VRJ € Rg: 2,’ = ).

For each pair of rules R,, R, in R determine if the following is true:

(a.) =d _ =d = _ =

Sb = Say S = S
(b) T3 =TI, T} = Ti.
(c) Z5% = 17,
(d) =;% = 174,
(e) || Ha - Hy || < 6.
(f) 1| P& - P} || < 6r.

If true, do:
(a) Create a new rule R, where =, = Z, except all fields ;% = #, £, = I,,
and T, = T, except all fields Y;% = #.
Ha+H
(b) Set Hg = —23"h
P2 +Pb
(c) Set P§ = XX
(d) If Ry € R discard R,.
(e) Determine the total support for Ry and check the validity of the general-
ization (as described below).
(f) If Ry is VALID, add R, to R.
Go to 1.
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Default hierarchies and valid generalizations

Together, the general rules (those with # as fields) and the specific rules (those
without # as fields) form default rule hierarchies. As discussed in (HHNTS6], a default
hierarchy is a set of rules which contain general rules of thumb, specific instantiations
of these general rules, and exceptions to the general rule. By using an algorithm
such as the one above for generalization, general rules can be formed and applied
to domains where specific rules do not exist, while specific rules are available to
represent instantiations of, and exceptions to the general rule. The main difference
between Holland’s default hierarchy and this version of the Organizer’s is that the
former is built from general rules to specific instances, while the latter is constructed
from specific instances to general rules. Using the generalization algorithm above, the
Organizer’s hierarchy is limited to two levels: 1) Generalized rules for fields outside
the locality of effect and 2) specific rules.

For the default hierarchy to remain effective, bad or conflicting generalizations
must be eliminated and existing ones must be updated to reflect newly acquired
information. To do this, we must find the set of rules which support the generalization
and those which conflict with it. The following scheme allows for the removal of bad
or conflicting generalizations by checking the validity of a generalized rule R,.

Given a rule store R, a generalized rule R,, a generalization acceptance threshold
0 < 6 < 1, a probability matching threshold -+ and a complexity matching threshold
Ox, and a function INSTANTIATE(R,, R,) defined as follows:

1. For each field £} € Z, and €f ¢ Z,, if €* = # then set £, =E(0<k<M-1).

2. For each field v¥ ¢ T, if vy = # then set vk =¢0<k<M-1).
The following is a test for validity of a generalization:

1. Let Rypec = (VRi € Rs: T, = £, AND A(Zk,Zg) = 0). This is all the specific
rules in R which can be instantiated from the generalization R,.

2. Let TOT AL yypport equal the number of specific rules which support R,. Initialize
TOTAL,umrg to 0.

3. For each R, ¢ R,,,., INSTANTIATE(R,, R,). If:

(a) A(T,,T,) = 0, and
(b) I/Hs — Hg || < 6y, and
(c) IP% —P% || < ér.

4. OR:
(a) ACTLTY) # 0 0r AT, T) £ 0
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5. then TOT AL upport = TOT AL support + 1.

6. If T gesmert > g then the R, is VALID.

Discussion on generalization

Generalization allows a wide range of rules to be summarized in a generalized rule. In
a generalized rule, some fields which would normally be assigned 0 or 1 are replaced
by #, which is the don’t care symbol. Any field in the condition containing a # will
match a 1 or a 0 of the current state vector. Thus, a rule containing n don’t care’s
in the condition can match 2" specific rules. The # symbol also allows knowledge
abstraction to new domains as mentioned previously.

One type of generalization is accomplished by the algorithm above. This method
generalizes across object states which are outside the locality of effect. Other types of
generalization should be researched and developed which allow for generalization of
actions for affected objects, generalization of effects for particular actions, etc. Also,
more research must be done to build a more robust default hierarchy, each level of
which handles small exceptions to rules at the previous level.

The generalization process can run in the background while PLAY or PLAN is
being executed, or it can run while the Coordination and Execution level are executing
a particular plan since it can search the rule store without interfering with these
processes. The background process will create new generalizations and remove bad
ones which will immediately take effect in PLAY mode, or wait until plan completion
during PLAN mode.

The algorithm presented above can be summarized as follows:

For a particular sentence, find all the rules which contain the mapped sentence.
This is called Rpgecn, or the matched rule set. Obviously. since the sentences are
identical, all rules in the matched set have the same direct and indirect objects. For
each pair of rules, R, and R;, in the matched set, if the fields relevant to the direct
object in the condition of R, are identical to the fields in R, and the same holds
for the indirect object fields it means that the rules within the locality of effect are
identical. Next, if the fields which are not relevant to the direct or indirect objects
in the condition of R, are identical to those fields in the effect of R,, it means that
the rule does not change states outside of the locality of effect. If the same holds for
Rs, and the complexities and probabilities of effect are similar across the two rules,
then the rules can be generalized. Generalization involves the replacement of all fields
outside the direct and indirect object fields with #. This indicates that the field is
now don't care, and can match either a 1 or a 0.

The function INSTANTIATE generates a specific rule from a generalized one.
Given R,, the specific rule and Ry, a general one, it sets all the # fields in the
condition of R, to be identical to those in R,. The # fields in the effect part of a
generalized rule are direct mappings of the respective fields in the condition part.
This indicates that the rule does not effect those states, i.c. they remain the same.
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Therefore, the # fields in R, are assigned the respective values from the condition of
R,. . Co

The validity of a generalization is examined by finding all the specific rules which
match the condition and sentence of the generalization, and counting the number
which support the effect, complexity and probability of effect denoted in the general
rule. Rules which don’t have the same effect on the direct or indirect objects don’t
negatively influence the support, because generalization conflicts caused by the gen-
eralization algorithm presented above are due in large to cases where locality of effect
does not hold. By computing the ratio of generalization support to total number of
matches, the validity of the generalization is assessed.

Example of generalization

We can use an extension of an examples presented earlier to demonstrate the gener-
alization process.

Let:

Q = (wo,wy,ws,ws,wy) = (bottle, table, cabinet, wrench, arm).

QO = (qg’ q(l)a qg’ qg, qg, qg)

qo = 1 if bottle is full, 0 otherwise.

gs = 1 if bottle is half full, 0 otherwise.

gé = 1 if bottle is empty, 0 otherwise.

qs = 1 if bottle is on — table, 0 otherwise.

g = 1 if bottle is in — cabinet, 0 otherwise.

g5 = 1 if bottle is carried — by — arm, 0 otherwise.

Qs = (43, 63,43, 63, 93)-

g3 = 1 if wrench is open, 0 otherwise.

g3 = 1 if wrench is closed, 0 otherwise.

g3 = 1 if wrench is on — table, 0 otherwise.

q3 = 1 if wrench is in — cabinet, 0 otherwise.

g3 = 1 if bottle is carried — by — arm, 0 otherwise.

Q= (qg, Q(l), qa» QSs QS7 qgv Qgs Q:},’ qga ‘Ig, Qg)

Let A = (a9) = (ARM).

Let V = (vg, v1, v;) = (MOVE, GRASP, RELEASE).

LetD=1I=Q.

Assume we have two rules present in the rule store which have been created
through PLAY. The first rule is:

01010010010/10101000000001 /01000110010

denoting:

Condition: (bottle — half full, bottle — on — table, wrench — open, wrench —in —
cabinet).

Rule: (arm grasp bottle arm)
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Effect: (bottle — half full, bottle — carried — by — arm, wrench — open, wrench —
in — cabinet).
and the second rule is:

01010001100/10101000000001,/01000101100

denoting:

Condition: (bottle — half full bottle — on — table, wrench — closed, wrench —on —
table).

Rule: (arm grasp bottle arm)

Effect: (bottle — half full, bottle — carried — by — arm, wrench — closed, wrench —
on — table).

Assuming similar probabilities and complexities (within threshold margin), we
can generalize to create the general rule:

010100 ##0/10101000000001 /010001 ###0

which replaces the fields relevant only to the wrench, table and cabinet by don’t
care. It is important to note that since the arm was the indirect object in the
sentence, the field wrench — carried — by — arm could not be replaced. Intuitively, it
can be seen how the generalization allows the rule to apply to 4 specific cases where
only 2 specfic rules were needed to generate it.

A Boltzmann Machine for Directed Exploration and Learning

The PLAY algorithm provides an effective means for developing rules for the rules
store and testing these rules to determine the probability of ¢ffect and complexity val-
ues. The PLAY algorithm can be guided by the user to examine particular rules, but
it is not goal directed. It is important that the Organizer contain a mechanism which
allows for goal directed exploration of its actions in a manner which also minimizes
the cost of exploring. The goal-directed behavior is the topic of this section.

An introduction to the architecture designed to achieve this functionality is pre-
sented in [SM88, MS89)]. A more formal, expanded version is presented here.

The function of this unit is to facilitate goal-directed exploration of the environ-
ment and determination of subgoals during planning. Since goal directed behavior
implies an attempt to pursue a method for modifying an objects state in a given way,
a goal-directed Boltzmann Machine, denoted B,, is designed to model the change of
state of objects due to the execution of particular sentences.

A Boltzmann Machine is a neural network that provides associative recall by
minimizing the Energy, which is a measure of correlation between the asserted nodes
in the network. Placing the goal-directed Bolzmann Machine within the framework of
the Intelligent Machine, we can define the Energy of the Machine as Knowledge about
a particular state (K). Since the minimization of Energy yields the correct associative
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response, this maximizes the Knowledge about the state. Again, minimizing Energy
of the state of the Boltzmann machine maximizes the Knowledge about that state.

Training the goal-directed Boltzmann Machine modifies the weights of the network
and alters the Energy function. Therefore, training updates the Knowledge in the
Machine over time, and can be defined as the Rate of Machine Knowledge (R).

The B, network is trained to search for a binary sentence which produces the given
object state changes by maximizing the Knowledge about the state of the network.
Combined with information from the complexity model B., this unit will produce low-
complexity sentences which have a high probability of changing given object states.
These sentences will be used to form steps in subtasks or skills. Skills, which are
called schema in Artificial Intelligence, are sequences of sentences which achieve a
subgoal. Skills allow reduction in planning search time by collapsing many search
steps into a single one.

Consider the earlier example of a mobile robot which must use a wrench to shut
off a pipe. The goal of this plan is to shut off the pipe, while a subgoal might be “get
wrench from open tool-chest”. It is the responsibility of this system to create a set
of sentences which can be combined to achieve this subgoal. This set of sentence is a
skill.

To achieve these capabilities the goal-directed Boltzmann Machine is provided
with a desired set of object state changes on its input nodes. The Machine then
searches the sentence nodes to find the proper combination of actor, action, direct
object and indirect object which maximizes the Knowledge about the state. Using
this value, K, the analytic formulation allows the computation of the Probability
that the computed binary sentence is correct, and the Uncertainty associated with
the sentence given the desired state changes. Sentences with low uncertainty form
subtasks of the subgoal plan. A subgoal plan is developed by using a graph search
technique with large predictive value placed on use of the discovered subtasks.

The goal-directed Boltzmann Machine is defined as follows:

The B, network is divided into two parts, B and B;. The B} network models
object states which switch from 0 to 1 in the state vector Q. The B; network models
states which switch from 1 to 0.

For example, assume we wish to change from state Q = 10010 to Q = 00011.
We see that go changes from 1 to 0 and g, changes from 0 to 1. This information
about gy would be input to B, while the information about g, would be input to
B}. 1t is the responsibility of B} to search for the binary sentence which maximizes
the Knowledge (i.e. minimizes the Energy) of the network given 00001 as input and
the responsibility of B; to search for the binary sentence which maximizes K given
10000 as input.

The B;‘ and B; networks are each identical to the B, nctwork in terms of node
levels and connections, i.e.:

Let B = (£, W) be a connectionist network. Let node levels £ = (Lq, Log,La,
Lav, Lv, Lvp, Lp, Lvy, Ly). Similarly, let Bg = (£, W) be a connectionist network.
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Let node levels £ = (Lg, Lgg,L., Lav, Lv, Lvp, Lp, Lvr, L;). The node level
description, £ is identical in B,, B} and B;.

Because B} and B, are Boltzmann machines, we use an Energy function to de-
scribe the individual output of these two networks. Energy output values must be
greater than or equal to 0.0 because negative Energy does not exist in such a system.
Therefore, we will restrict our weight values to:

0.0 S w,-,- S 1.0
The following rules hold for W in By and B;:

1. Some weights are fixed at 0.0. Other weights can vary between 0.0 and 1.0.

2. If w;; is fixed at 0.0, there is no connection between nodes n; and n;. Else, a
connection exists between nodes n; and n;.

Similar to B., we denote the Knowledge about a particular state n of B} as
K(n) where n represent the state of the nodes. This values is defined as:

el el
K = K(Bf(n)) = 33 wijnin;

1=0 j=¢
Also,

e uell
K7 =K(B;(n)) =33 wiynin;

i=0 j=i

Minimizing K} or K results in maximizing K(n).

Knowledge in this system relates the amount of correlation between pairwise as-
serted node combinations. The higher the weight w;;, the less correlated the two
nodes n;, n;. The lower the weight, the higher the correlation. Correlation describes
the assessment over time of the chance that two nodes are asserted simulataneously.
As discussed previously, this pairwise correlation is important in determining which
binary sentence nodes should be asserted in order to find the best match for asserted
state change nodes.

Given a desired change of state, the purpose of each Boltzmann machine is to
output high K(n) (low Energy) values for sentences which have a high probability of
accomplishing that state change. To produces the maximum K (n) output, a search
technique must be employed to examine the “goodness” of binary sentences, and
select new sentences to test based on some performance criteria, i.e.:

1. Let 6Q represent the state vector of states which change from 0 to 1. Any field
gi € 6Q is set to 1 if it must change from 0 to 1, else it is set to 0.
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2. For each field ¢; in 6Q, if ¢; = 1 then set n"Q = 1lin Bf.
3. Search the node levels L4, Ly, Lp, L; to maximize K(n) of B} .

The same method holds for B, except we use 6Q to represented object states
which change from 1 to 0.

Search techniques

Three random search techniques are compared here which may be used to find the
minimum Energy in a Boltzmann Machine.

A genetic algorithm search technique

A technique which minimizes a system cost function is the Genetic Algorithm [Hol75).
In contrast to other random search techniques, the Genetic Algorithm (GA) maintains
a population of points in the space while searching for the optimum.

Here we present a modified GA which will converge in probability to the minimum
cost. The standard GA has been changed by inserting spacer steps of an algorithm
which is known to converge in probability, Expanding Subinterval Random Search.

Spacer steps are defined as follows: Suppose B is an algorithm which together
with a descent function Z and solution set T converges in probability. We can define
an algorithm C by C(z) = {y : Z(y) < Z(z)}. In other words, C applied to z can give
any point so long as it does not increase the value of Z, the current cost. B represents
the spacer step, and the complex process between spacer steps is C. Thus, the overall
process amounts to repeated applications of the composite algorithm CB. CB will
converge in probability if B is repeated infinitely often and C does not increase the
value of the current cost [Lue84].

We introduce the concept of immigration to imbed ESRS into GA. Infinitely
often, we insert a randomly generated point into the GA search which forms the
spacer step. The frequency of insertion is called the immagration rate. By changing
the immigration rate, the algorithm adjusts its focus from global to local searches.
This rate may be fixed dependent on the complexity of the search space, or may
vary while the search is in progress. A high immigration rate will force random
search. A low rate will cause the GA. Parallels can be drawn to Simulated Annealing
which starts as a near random search, and eventually becomes gradient descent. For
the modified GA, the immigration rate is analogous to thermal energy in Simulated
Annealing. The modified algorithm described in detail below converges in probability
to the minimum cost.

In general, for Holland’s Genetic Algorithm, each point in the space is represented
by a binary string and has an associated cost dictated by the system cost function for
that point. Since the makeup of the population is changed each iteration to emphasize
members (points) which minimize the cost function, a near-uniform population will
develop corresponding to a local minima in the cost function.
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The following notation is used:
P = population of members (points)
P' = new population of members
|P| = number of members in P
P, = kth member of the population P
Pi(m) = mth bit of P,
Ji = cost of Py
Sk = probability of member & being selected from current population
Jmaz = max cost of an possible member in P
n = length of P in bits

Each iteration of the standard GA search algorithm proceeds as follows:

Repeat until (P; ¢ P and P, has minimum cost)
(1. Compute Ji, VP, ¢ P.
2. Let J; = Jmaz — Ji, Vk. Compute Sj = /(T JL) Yk
3. Repeat until [P'| = |P| '
( 3a. Randomly select P;, P, from P based on S;, Sk.
J 3b. Randomly generate an index i between 1..n.
Exchange the right string halves of P;, P,
(i.e. Pi(i..n) = Pi(i..n) and Pl(i..n) = P;(i..n)).
This is called “crossover” or “mating”.
| 3c. Place P/, P{ in P’. Return P;, P, to P.
| 4. Set P = P'.

.

In an attempt to prevent population convergence on a local minima (premature
convergence), a mutation operator is added to the system. With a new generation
of the population, each bit of every member has a small probability of inverting.
The inversion adds diversity to the population and promotes search in previously
unexplored regions of the space in an attempt to find the global cost minimum.

Particular aspects of this algorithm make it a powerful search tool. The crossover
mechanism forces search on an n-dimensional hypercube by discovering and promot-
ing particular substrings (called building blocks) which perform well. These building
blocks combine to discover the topology of the search space, which may not be known
initially. Since the algorithm uses a population of points, many planes of the hyper-
cube can be searched at once, leading to implicit parallelism. Further, since members
within a population are independent, a new population may be formed by mating in
parallel. Steps 3a-3c can be blocked together and generate two new members in par-
allel with other mating blocks. These features as well as others are described in depth
in [Gol89]. Applications of this algorithm are presented in (DJ75, GGRG85, DC87].

Heuristic algorithms have been developed within GA to avoid convergence at
local minima [Mau84, SG87]. The “SIGH” system [Ack87] uses active and passive
subpopulations to escape local minima. When particular members of the population
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are performing poorly, they become passive until the active subpopulation converges.
If this convergence is premature, the passive members are activated, bringing diversity
and new structure to the search. .

Unfortunately, many of the heuristically driven GA searches perform well for a
small set of functions, and prematurely converge for functions outside that set. How-
ever, it can be shown that under certain conditions, the GA will converge in proba-
bility to the global minimum of the cost function.

Theorem 3.2:The Genetic Algorithm (GA) converges in probability to the global
minimum of a cost function Z if:

1.

2.

Instead of (or in addition to) the mutation operator, an tmmigration operator
is used. Introduce a member P! generated randomly from a uniform density
function to population P’ every M populations for some integer M > 0.

If P.eP and VP,eP,J. < J; then P.cP'. In other words, the best performing
string in the current population is placed in the next population.

Proof:

1.

Let us define a function G which at iteration i generates P! which is a randomly
selected state vector from a prespecified i.i.d. density function. Call G the
immigration function.

Let B be a function which generates a state vector X;,, at iteration i + 1 based
on:

Xous = Pl i Z(P)-2Z(X:) <2
T X if 2(P) - Z(X)) > 2u

where Z(X) is a descent function for the state vector X, and g is 0 since the
cost function is deterministic.

The function B is called Expanding Subinterval random search and is known
to converge in probability to the minimum of Z(X).

Let C be the Genetic Algorithm described above with the modification that if
P.eP and VPP, J, < J; then PreP'.

In C, let the evaluation function Ji = Z(P,).

. At any iteration of C during a particular iteration i of B, let X; = (PpeP :

Then C is an algorithm such that C(z) = {y: Z(y) < Z(z)}
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8. Let us form a process CB from repeated iterations of C and repeated iterations
of B in any order with the constraint that B be repeated infinitely often.

9. Then the algorithm CB converges in probability to the minimum value of Z.

This proof inbeds ESRS into the GA, where ESRS is algorithm B as described
by [Lue84] and stated above. It insures C(z) = {y : Z(y) < Z(z)} where C is the
GA algorithm. Therefore, CB, the modified GA, converges in probability to the cost
minimum.

As one can see, these necessary conditions do not bind the algorithm severely.
The immigration rate (immigrations/population), 1/M, is related to the mutation
rate (mutations/bit) as follows:

1/M = (mutations/bit) * (members/population)

In fact, the immigration of new members may be probabilistic, with probability
1/M.

Simulated annealing

One random search technique commonly used to find the global minimum cost in a
Boltzmann Machine is Simulated Annealing. This technique simulates the annealing
process of metal by probabilistically allowing uphill steps in a state-dependent cost
function while finding the global cost minimum, or ground state. The algorithm
allows control of the search randomness by a user specified parameter, T'. In true
metal annealing, this cost function is the Energy of the system, E, and T is the
annealing temperature [KJV83].

Given is a small random change in the system state X; = {z1,22,...,2,} to X!
and the resulting Energy change, §E, if §E < 0, the change is accepted. If 6£ > 0,
the probability the new state is accepted is:

P(Xipr = X!) = e~0B/KsT

where K is the Boltzmann Constant and T is a user set parameter. By reducing
T along a schedule, called the annealing schedule, the system should settle into a
near—-ground state as T approaches 0.

Another method for simulated annealing is discussed in [HS86]. Using this method,
if the Energy change between X; and X! is §E, then regardless of the previous state,
accept state X/ with probability:

1

P Ko = Xi) = r—F7r

Since an Boltzmann Machine consists of a set of binary states, it should be noted
that in both of the above methods, X! is hamming distancc | from X;.
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The process of simulated annealing escapes local minima through its probabilis-
tic random search, and probabilistically convergences to the global cost minimum
under certain conditions [GG84]. The next technique, Expanding Subinterval Ran-
dom Search, probabilistically guarantees convergence within a § neighborhood to the
global minimum of a specified cost function.

Expanding Subinterval Random Search

A third technique for finding the global minimum value for a cost function for a
dynamic system is Expanding Subinterval Random Search as described in [Sar77).
Using Energy as the cost function and given a state X;, one may define the following
random search algorithm for an appropriately selected u:

X < | Xi G E(XD) = B(X;) < 2
ME X i E(X) - E(X) > 2u

where E(Y) is the Energy induced by state ¥ = (y1, s, ..., Ya) and X] is a randomly
selected state vector generated from a prespecified independent and identically dis-
tributed density function.

It is shown that:

lm  Prob [E(X,)-Ey, <é8=1

where EZ;, is the global minimum Energy of the network. The existence of B, is
proven in the cited work.

This method can be used on-line to find the global minimum Energy in a Boltz-
mann Machine.

Experimental Results

A net was created which recognized strings of 15 bit binary numbers. This was done
by creating a network of 15 nodes, each connected to every other. The net was
formulated using the standard Energy methods found in [HS86).

The state of nodes 4 and 6 (000010100000000) were held at 1, which corresponded
to a fixed input to the network. By changing the values of the other nodes in the
network, the minimum Energy of the network could be found. For this purpose,
search techniques were invoked to find the minimum Energy by altering the node
values. The value of the nodes when the network was at minimum Energy formed an
ordered binary string which was the correct associative recall of the network for the
given input.

For the given input, the net had three Energy minima, corresponding to states
(001010100100100, 110110110001101, 001111101100010) which were associative recall
strings. The respective Energy for these three states were (0.8, 0.6, 1.0). Each
simulation technique attempts to find the global Energy minimum of the net, which
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was 0.6, and corresponds to the correct associative response to the input. The cases
presented here show best and worst performance of each technique over 10 trials.
Other case which varied the depth and width of the Energy wells are presented in
[SM88]. For this experiment, the wells were narrow.

The Modified Genetic Algorithm was performed with the added convergence
techniques intact. The population was set at 20 members. Each member was 15 bits
long, so the number of bits in each population was 300. The immagration rate was
set to 0.5 which corresponds to a mutation rate of 0.025.

Simulated Annealing was performed and the system was cooled in accordance
with:

T(t) _ 1
To - log(lO + t)
where T;(t) = temperature at time ¢
To = initial temperature.

The net state changed in Hamming distance 1 increments.

Expanding Subinterval Random Search was slightly modified to reinforce
the probabilistic selection of node states which reduced the Energy in the net. The
probability of a node being active as initially 0.5. When the Energy was reduced
during search, the probability of the node being reactivated became

P(zi=1)=P(z; =1) +[1.0 - P(z; = 1)] % 0.1
if the node was active, or
P(z:; = 1) = P(:L',' = 1) - P(:c; = 1) *().1

if the node was inactive.

Figures 3.6a - 3.6f present the best and worst performance of each algorithm
over 10 trials. Modified GA found the minimum Energy string between the 20th
and 180th population. Since there were 20 strings per population, this indicates that
between 400 and 3600 points had to be generated. The best performance by Simulated
Annealing required over 5500 iterations. The worst performance did not converge in
12000 iterations (the most attempted). As a guideline, the best performance of the
random search ESRS was slightly over 2000 iterations. The worst performance did not
converge in 12000 iterations. The results of these limited experiments force a closer
examination of the Modified Genetic Algorithm as a search technique for minimizing
the Energy in a Boltzmann machine. ' :

Discussion on search techniques

The techniques discussed and simulated above are all valid for application to the
B} and B; networks. With the state change vector 6Q fixed on the nodes, the L,
Lv, Lp, and L levels can be searched to find the maximum K (n). However, a few
modifications to the search algorithms must be made.
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1. Valid search strings must include exactly one asserted node in L4, one asserted
node in Ly, zero or one asserted nodes in Lp, and zero or one asserted nodes
in L I

2. Along with a particular string asserted on the node levels, the respective nodes
on levels Lgq, Lav, Lyp, Ly; must be asserted.

The minimum Energy search finds the binary sentence which has the highest
probability of achieving the desired state changes.

Item one of the above list yields a high rate of non-allowable strings compared to
allowable strings. Thus, the search techniques above may be inefficient at this task.
Research must be done to investigate and discover a set of efficient search techniques
which can find the minimum Energy in Boltzmann Machines of this nature.

Combined search of B;*' and B;.

The minimization techniques presented above independently find a binary sentence
which maximizes K(n) (minimizes the Energy) for B} and another binary sentence
which maximizes K(n) for B;. This technique may lead to the discovery of two
different binary sentences. To eliminate this possibility, let us define the K, = 1K} +
(1-9)K g » Where 0.0 < n < 1.0. Further, let us force each network to assert the same
binary sentence at each search step:

1. Generate a binary sentence I;.

2. Assert T; on nodes in both B} and B;.
3. Assert the pairwise node levels.

4. Compute K,.

5. Go to 1.

This will force the system to find a sentence which accomplishes both sets of
state changes simulataneously and will maximize X (n) by minimizing K, which is
the combined state change performance.

How good is the found sentence?

Given a binary sentence, I; found by maximizing K (n) for B,, L; is the best available
sentence which may achieve the desired state changes. The questions arise: How good
is X; at actually changing the desired states? How likely is it to change other states
instead?

One method for examining the “goodness” of a sentence in acheiving the desired
results is by looking at the Entropy of B, for the given sentence. If the system has low
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Entropy for the given sentence, the sentence is likely to affect the states as desired.
If the system has high Entropy for ;, the sentence may not affect the states in the
desired way, and may actually affect other states.

The Entropy value can be derived from the Knowledge of the states of B} and
B;. We know that:

" <l i -
L K(Bj(n)) =3 3 winin;
=0 j=1
Using the analytical model of the Intelligent Machine, we can find the Probability
T that the System is in State n:

P(Bj (n)) = e=#= K5

where p is a probability normalizing factor, and we can define:

H(B7(n)) = = 3 P(B} (n))in{P(B} (n))}

which is the Uncertainty that the System is in State n.

Similar definitions are used for B; . In the above equations, n represents the state
of the nodes in the network.

The value H is an Entropy measure which gives the uncertainty of knowledge
given a particular binary sentence ;. This Entropy value reflects the uncertainty
that the Intelligent Machine changes only the desired ob ject states given the I;.

To compute the uncertainty value H (Bf(n)) given I, for network B}:

1. For each field o; in T; where (0<i<||A|| —1),if o; = 1, then set ni = 1.

2. For each field o; in T; where (JJA]| < i < ||V|| - 1),ifo; = 1, then set ni, = 1.
3. For each field o; in T, where (||V|| < i < |D||-1), if o; = 1, then set ni, = 1.
4. For each field o; in I, where (|D|| <i < N - 1), if o; = 1, then set n} = 1.
5. For each pair of nodes ng and né (¢ < j), if both nodes equal 1 then ngQ = 1.
6. For each pair of nodes ni, and ni,, if both nodes equal 1 then ni{v = 1.

7. For each pair of nodes n}, and n}, if both nodes equal 1 then n{;D = 1.
- 8. For each pair of nodes n}, and n}, if both nodes equal 1 then n§; = 1.
9. Set all other nodes to 0.
10. Set p to 0.

11. For each possible state vector §Q:
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(a) For each field ¢; in 6Q, if ¢; = 1 then set n‘Q = 1, else set na to 0.
(b) Compute K.
(c) Compute the probability value P(B}(n)).

12. Sum the probability values computed for each state §Q and find the necessary
probability normalizing factor p so the sum equals 1.

13. Normalize the probabilities by e=*.
14. Compute H(B}(n)).

A similar algorithm can be used for B;.

This algorithm is of order O(2M) where M is the length of the state vector Q. To
reduce the computational complexity of this algorithm, one can employ the locality of
effect premise. Under this assumption, the only states which need be considered are
those containing the direct or indirect ob ject of T;. If wy is the direct object and w; is
the indirect object the order of the algorithm becomes O(2m(@+m(i)), (m(d)+m() <

Goal-directed exploration

Goal-directed exploration is the process of changing particular object states in the
state vector Q such that the new state vector Q' is closer (in a Hamming distance
sense) to a particular goal vector Q*. That is A(Q,Q") > A(Q',Q"). Given a
Boltzmann machine as described above, how can it be employed for goal-directed
exploration?

Provided with a given state change vector 6Q it is desirable for the Boltzmann
machine B, to maximize K'(n) in order to produce a binary sentence which accom-
plishes the necessary change of state. However, it is possible that the binary sentence,
although very likely to accomplish the task in some environmental states, cannot per-
form in the current environmental state Q. How can this be accounted for?

One method for accomplishing this type of exploration is by searching the networks
B7, B}, and B, simultaneously. Let us assign a measure K; = ¢AHn(s) + (1 - ¢) K,
where 0.0 < ¢ < 1.0. K, represents the combined values of the outputs of the
complexity and goal-directed networks. ¢ allows the system to tradeoff between the
complexity and goal-directed outputs, while A transforms the complexity output of
the complexity model to a scale applicable to the goal-directed networks. A

Given a maximum Entropy threshold 8; which is the maximum allowable Entropy
of a goal-directed sentence, the search for a low complexity sentence which is likely
to produce the desired state changes can be described by:

1. Let 6Q represent the state vector of states which change from 0 to 1. Any field
¢ € 6Q is set to 1 if it must change from 0 to 1, else it is set to 0.
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2. For each field ¢; in 6Q, if ¢; = 1 then set n‘Q = 1lin B].

3. Let 6Q represent the state vector of states which change from 1 to 0. Any field
g € 6Q is set to 1 if it must change from 1 to 0, else it is set to 0.

For each field ¢; in 6Q, if ¢; = 1 then set n‘Q =1lin B;.

o e

For each field ¢; in Q, if ¢; = 1 then set ng =1 iﬁ B..

&

Generate a binary sentence I;.
7. Assert L; on nodes in the three networks.
8. Assert the pairwise node levels in the three networks.
9. Compute K.

10. Until minimum Kj is found, go to 6.

11. Compute H(B,(n)).

12. If H(By(n)) < 8 then execute s;.

This algorithm searches for the binary string which minimizes the combined En-
ergy value of the three networks, finds the Entropy of the binary string in obtaining
the desired state changes, and sends the string to the Coordination level if it is sat-
isfactory.

Task Decomposition in Planning

The main function of the Organizer is the development of a plan P composed of a
set of sentences S* which accomplishes a defined goal Q" [rom an initial state Qp.
The networks B} and B} can be used to extract binary sentences which have a high
probability of changing particular object states. Given Q" and Qg, the object states
which must change can be easily determined. Using different combinations of this
state change vector, the goal-directed networks can develop a set of low Entropy
binary sentences to accomplish subsets of state changes, or subtasks.

After a set of subtasks is found, a graph search algorithm such as the one presented
in the next section can be used to develop skills which achieve task subgoals by
sequencing the subtasks and adding additional rules if necessary. These skills will be
placed in the rule store and can be extracted by the planner to form a task plan. This
1s one of the research directions proposed in this report.

A Planner can use these skills to reduce its search space when planning for a goal,
since each skill contains achieves a multi-step subgoal. The Planner must be more
robust, however, because many plans may require a step away from the goal (in a
Hamming distance sense) in order to achieve the goal at sone later time.
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3.4 The Planner

With the basic architecture of the Organizer in place, we can now focus on planning,
which is the main function of the Organizer. Planning consists of observing the current
state of the environment, receiving a desired goal state from an outside source (such
as a user), and formulating an ordered list of sentences which move the state of objects
to the goal state when executed. Planning can be likened to a search process which
must find an ordered list of sentences which accomplish the goal state and minimize
some analytic criteria for the plan.
The following functions are essential to the Planner:

1. A structured search method including subgoal determination.
2. A cost function to be optimized.

3. An evaluation function which predicts the cost of following a particular search
direction and other methods for focusing the search.

Acquisition of new information (i.e. exploration of the environment) may also be
included when a plan becomes to costly.

3.4.1 A structured search method.

To decide on a structured search method for the Organizer, let us examine a few
alternatives.

Exhaustive Search

In the initial formulation for the Organization level of an Intelligent Machine, Vala-
vanis [Val86] forms an optimal plan P* to achieve a given goal using the following
procedure:

1. For each input command, formulate all possible ordered strings of primative
events.

2. Determine which ordered strings are compatible by a table lookup. Compatible
ordered strings have pairwise events which do not conflict.

3. Develop augmented ordered activities (strings) by inserting one repetitive pri-
mative event at a time between all positions of an ordered string.

4. Reject incompatible augmented ordered activities.

5. Find a complete plan which accomplishes the goal and minimizes the Entropy
of the system.
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This method is an exhaustive search technique which must develop all possible
plans before those which achieve the goal can be filtered out. In a case study per-
formed by Valavanis on plan formulation by a maintanence robot in a Nuclear Power
Facility, for a typical user input it was found:

1. The number of unordered strings to be evaluated was 262,143.
2. The number of ordered strings to be evaluated was NOP = 17,403,456,152,414,460.

3. The number of ordered strings to accomplish all user commands was therefore
29*NOP, since there were 29 user commands.

As Valavanis states, these numbers are already huge and not realistic even though
they do not include the augmented ordered activities.

Neural Network search

As described in previous sections, a neural network such as a Boltzmann Machine is
an efficient environment to perform searches which optimize some analytic measure.
The Boltzmann Machines presented search for sentences which minimize an Energy
measure manifested in the weights of the network. Each of the sentences contain one
actor, one action, one or zero direct objects and one or zero indirect objects. The
number of nodes in the network, denoted ||£]|, equals

1€ = M +|QQ|| + All + |AV]| + V]| + [[VD|| + |D|f + [[VI}| + T

For a system with 10 objects each in 4 states, 5 actors, 3 actions, 10 direct ob jects
and 10 indirect objects, the number of nodes in the network is:

IC]l =40 + 780 + 5+ 25 + 5 + 50 + 10 + 50 + 10 = 975

Of these nodes, 70 are visible and must be actively searched. The other 905 nodes
are hidden and are the pairwise connection nodes which are asserted automatically
depending on the state of the visible nodes. The number of weights in the network is
9@ = 474825. A network of this size is quite reasonable for search and updating.

Expanding a Boltzmann machine to allow for the minimization of complete plans
would involve an expansion of the number of nodes and weights. Let us assume that
the maximum length of a plan is 10 sentences. Further, let us assume that each
sentence in the plan must be represented explicitly for the search to occur. Then a
first estimate for the number of nodes for the above system is 9750, with 700 visible
nodes. Since the number of states is 2numberofvisiblenodes the \umber of states for this
system would be 2™ which is tremendous. Also, the number of weights for this
system is 47482500, an unwieldy amount considering current memory capacities. A
weight matrix of this size also forces an extremely slow learning procedure.
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Graph Search

A technique which lends itself well to the Organizer planning problem is Graph Search.
Starting at a particular state which corresponds to a place in a graph, the search
decides which arc to follow in order to examine other places. The arcs dictate the
cost from one place to the next. The objective of the search is to find the minimum
cost path from the start place to the goal place. Typical graph representations and
graph search algorithms are A* [HNR68], Means-End Analysis [NE65, NST2] and
AND-OR Graphs [Nil71].

The knowledge structure contained in the Organizer decomposes well to a graph.
The places in the graph are correspond to object states which are the condition and
effect portions of rules. The arcs are formed by the sentence portion of the rule.
Searching the graph corresponds to moving from the initial state to the goal state
by means of binary sentence execution. The cost of a particular path through the
graph is a function of the complexity of a rule and the probability of the rule going to
the desired next state. Since all paths do not have to be searched. this technique is
much better than exhaustive search. Using a good place evaluation function further
reduces the search size so that it performs much better than the neural network search
described above.

Graphical decomposition of rules

The following section provides a formal method for the decomposition of rules in the
rule store into graph form, and a method for searching the graph based on the 4®
algorithm. Proceeding sections will detail sections of this algorithm. as necessary. It
should be noted that the “rules” used here can be extended 1o include skills developed
by the goal-directed Boltzmann Machine.

Before presenting the algorithm for graphical decomposition of rules. the following
functions must be defined:

1. Let Gp(m.A) represent the directed graph of all possible plans formed bv de-
composing the rules in R. 7 denotes the set of all places and A represents the
set of all arcs.

[V

Let NAMEP(7,) be the set of all place names for a subset 7 ¢ .
3. Let NAMEA(Ax) be the set of all arc names for a subset A e Al
4. Let PLACEN(NAME) be the place with name NAME.

5. Let ARCN(NAME) be the set of arcs with name NA\E.

6. Let PLACEA(A4) be the set of places directed [rom arc Ay.

. Let ARCP(m,) be the set of arcs directed from place 7.
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8. Let CREATEP(NAME) create a new place and assign it name NAME.

9. Let NEWARC(7,,SENTNAME, H,P,x;) create a new arc from place 7, to place
71, assign it name SENTNAME, complexity H and effect probability P. .

10. Let NEWPLACE(r, SENTNAME, H, P, PLACENAME) create a new place
named PLACENAME and create a new arc from place 74 to the new place,
assign it name SENTNAME, complexity H and effect probability P.

The following algorithm constructs a directed graph of places and arcs from de-
composing the rules in the rule store:

1. Let Rgen = (VRJOER : #631)

[S™]

- Let Rypec = “Ryen.

w

. For all R; € Rypec:

(a) If Zie NAMEP(x) then:
1. Let 7, = PLACEN(Z,).
. I[f T, ¢ NAMEA(ARCP(7,)) then:
A. Let 44 = ARCP(r,) A ARCN(T,).
B. If T, ¢ NAMEP(PLACEA(Ay)) then go to 3.
C. If Y. ¢ NAMEP(x) then NEWARC(x.. %, H;, Pi. PLACEN(
T.)). Go to 3.
D. else NEWPLACE(7, T, H;, PL.T.). Goto 3.
iii. Else NEWPLACE(, T, H;, PL.T,). Go to 3.
(b) ELSE:
i. Let 7, = CREATEP(Z)).
ii. If T; ¢ NAMEP(r) then NEWARC(xy, T, Hj, Pi. PLACEN( T))).
Go to 3.
iii. Else NEWPLACE(my, T,, Hj, PL,T,). Go to 3.

For each specific rule in the rule store, the above algorithm assigns a new place
for each cause or effect that has not vet been encountered, and builds an arc from the
cause to the effect of a rule. The places are given the same name as the cause/effect
string, and the arc is given the binary sentence as its name. The arc is also given the
complexity of the rule and the effect probability in order 1o determine the cost of a
particular path while searching.

The algorithm above provides an explicit representation for the graph formed by
the rules in the rule store. Many search algorithms do not need an explicit represen-
tation. Instead. these methods develop a graph implicitly as the search proceeds. An
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example of such an algorithm is the A search technique. The implicit representation
is extremely useful when considering the decomposition of generalized rules. In order
to create places for generalized rules, one must instantiate all the possible values that
can occur when replacing a #, and create a place for each one. An implicit represen-
tation would allow the search technique to generate only applicable instantiations for
generalized rules.

Given a Rule store R, a Complexity model Be, a goal directed Boltzmann Ma-
chine By, a maximum complexity difference fg, a maximum allowable path cost
MAXCOST, an initial set of object states Qo and a user-defined goal state Q- let
us define the set ACTIVE as the set of places to be expanded and the set CLOSED
as the set of already expanded places. Then, the A~ algorithm PLAN proceeds as
follows:

PLAN Algorithm

1. Let Tezpand = g = CREATEP(Q()).

[ O]

. Let =~ = CREATEP(Q").
3. Determine R, . = (VR; e R : A(NAMEP(7erpand)r=,) = 0)

+. Generate all places with arcs directed from Terpand USIng the algorithm above if

Rf € Ructivc A Rl € Rspcc-
- If Bi ¢ Racuve A Ri € Ryen then INSTANTIATE(NAMEP(7ezpang).R:). This

creates the instance of the general rule R; which applies to the given state.
Then generate arcs and places as above.

(]

6. Add this set of places to ACTIVE.
7. Move Tezpana to CLOSED.
8. For each 7 ¢ ACTIVE, assign a cost value by:
(a) Compute H.(NAMEA (7)), the complexity of the rule dictated bv the

Complexity model.
(b) If || He(NAMEA(my)) - Hy || > 6g then there is a large diffence be-

tween the complexity model computation and the current rule complexity.
For computing the cost using evaluation function f(), assume the higher
complexity value.

(c) Else, compute cost using f() with Hy.

9. Find 7; ¢ ACTIVE such that (Vre ACTIVE |7; < 7). This is the place with
the minimum cost.
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10. If m; = 7~ then DONE. A path has been found. Convert the arcs in this path to
binary sentences in T, and then to sentences in S. This set of sentences forms
the plan P € S*. Send P to Coordination level for execution.

11. If the cost of 7; > MAXCOST then enter goal-directed exploration if allowed.
Else, return FAILURE.

12. Else, let Tezpana = 7;. Go to 3.

The A" algorithm develops a graph implicitly be expanding found places denoted
by the ACTIVE set until the goal is reached. It should be noted that decomposing the
task into subgoals could significantly reduce the search space for the A* algorithm.
Since subgoal determination is not a trivial task, research must be done on this topic
in the context of the Organizer.

Under certain conditions the A* algorithm can find the minimum cost path to the
goal state if one exists. These conditions are dependent upon the place evaluation
function. Before we can discuss possible evaluation functions. it is necessary to detail
the cost function which must be optimized by the search.

3.4.2 Cost of a plan

The analytic measure which describes the performance of Lhe Intelligent Machine is
the Entropy of the system. It is the goal of the Inteiligent \lachine to minimize this
measure, which reflects the execution of a highly certain plan by highly precise means.
As the Entropy increases at the Organization level. the certainty of the plan decreases.
As it increases at the Execution level. the precision of the control decreases. It is the
responsibility of the Organization level to develop a plan which has low Entropy with
respect to execution and certainty of success.

The Organizer maintains the complexity of execution Hec(s) of a sentence s for
given object states Q. This value, stored in the rule. is an Entropy measure. Also
captured in a rule is the probability that the execution of s nnder conditions = causes
effect T. This value is denoted Py. As discussed above. these values can be assigned
to arcs in the graphical decomposition of the rule store. We must find a cost function
which promotes the search of paths which have high probability effects and have low
complexity measures.

Denoting the cost of an arc A; for rule R by C(A4y), one such measure is:

C(Ak) = pIn*(Pf) + (1 — @)He(sy ]

The first half of the summation forces search on highly probable rules. The second
half forces search based on the Entropy of execution. The constant 0.0 <2<1.0
allows a tradeoff between these two values.
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3.4.3 Evaluation Functions

An evaluation function is employed to estimate the past cost and future performance
of a search at a given place in a graph. Typical evaluation functions are given by:

f(me) = g(me) + h(me)

where f(7;) is the evaluation of place m, g() is an estimate of the past cost and
h() is an estimate of future performance. Let h*(m:) be the actual cost from place =
to the goal state. it has been shown [Nil80] if:

h(7e) < A™(m)

for every place m; ¢ =, then the solution generated by A" search will be the
minimum cost path. Such a search technique is said to be udmissible.

Research must be done to find admissible evaluation functions for the Organizer.
Two simple ones are:

1. Best First: Set h to 0 for all places. Let g(mi) equal the total arc cost of the
path from 7, to 7.

[V

Locality of Effect: Under the locality of effect proposition. the execution of a
sentence effects the states of the direct and indirect objects. At each place 7y,
enumerate the number of objects which must change state. This determines
the minimum number of rules which must be executed. Multiply this value by
a constant to scale to an arc cost, and set A(ry) equal to this value.

Other methods may also be incorporated to focus the search along particular
paths. As described previously. the goal-directed Boltzmann machine can be used to
generate subtask sentences which have a high certainty of achieving desired object
state changes. These sentences can reduce the search spacc by focusing the exami-
nation on arcs which possess the subtask sentence name. The effect of this focusing
procedure on the search space must be examined in depth in the context of the 4
algorithm.

3.4.4 Acquisition of New Information

When developing a plan, it may become apparent that the least cost path found
exceeds a maximum cost threshold, even though the goal place has not yet been
found. If this is the case, the Organizer may select to explore the environment in
a similar method as PLAY. Instead of randomly selecting sentences to execute in
the environment, the Organizer can generate sentences through the goal-directed
Boltzmann Machine. By providing desired state changes as input to B,, the Planner
can receive a set of sentences to execute which have a high certainty of moving the
system toward the goal. After executing these sentences, the Planner can replan from
the current state to the goal.

-1
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3.5 Summary

This section described the architecture and operation of the Organizer, which is the
level that accomplishes abstract planning and decision making in the Intelligent Ma-
chine. The Organizer contains the following features:

¢ Symbolic rules which form a syntactic environmental effect model.

o Connectionist networks which assign semantic interpretation to the svmbolic
rules.

¢ An emergent framework which develops and modifies its information through
experience.

¢ Rule effects modeled probablistically.
¢ Generalization of both symbolic and semantic knowledge.

¢ Goal-directed behavior. search and planning.

The blueprint presented details the Rule store. the Complexity model. the Gen-
eralizer, the goal-directed Boltzmann Machine and the Planner. The first two mech-
anisms maintain the basic knowledge structures which are required to model the
actions of the Intelligent Machine on its environment. The advanced mechanisms
abstract information from the basic mechanism to facilitate the planning procedure.
The Planner uses a graph search technique to find the set of ordered sentences to
execute to achieve a given goal. Each of these mechanisms is developed within the
context of Saridis’ Intelligent Machine. which provides an analytic framework for the
development of the architecture.



4

Further Research

Research Goals

The following list presents a set of research topics spawned by the architecture and
methodology proposed in this paper:

1.

10.

11.

The complexity model must be modified to bound the connection weights be-
tween 0.0 and 1.0. This will form a uniform model with the goal-directed
Boltzmann Machine.

. The training technique must be verified and full experimentation must be done

on the complexity model. Testing must be done to characterize the generaliza-
tion capabilities of the network.

Other methods of generalization must be developed and experiments must be
performed with the Generalizer. Methods for creating a more robust default
hierarchy must be examined.

Symbolic learning systems developed by other research should be tested in the
context of the Organizer.

A training technique must be developed for the goal-lirected Boltzmann Ma-
chine.

Search techniques must be further developed which extract minimum Energy
binary sentences from the goal-directed Boltzmann Machine. corresponding to
sentences with maximum K'(n).

- A method for developing subgoals in planning must be explicitly designed and

experimented with.

. Several place evaluation functions must be found and tested.

The determination of a suitable analytic search criteria combining task com-
plexity and likelihood of success must be addressed.

The use of goal-directed behavior as an ebxploration tool after plan failure must
be looked into.

Computer simulations must be run to test each of the units separately and as
they function together.

- A case study must be performed in a problem domuin which examines the

performance of the Organizer.



Proposed Research

This report proposes accomplishing the following research, in addition to the work
aiready completed in this paper: .
Given a rule store and a complexity model intact:

1.

o

A training technique will be developed for the goal-directed Boltzmann Machine.
The Boltzmann Machine will train on each rule in the store to develop a semantic
representation between the binary sentences and the object state changes.

Search techniques will be developed for extracting sentences which maximize
the Knowledge about the state of the machine. These search techniques must
take into account the sparseness of the Machine states in order to be efficient.

. Methods for forming skills based on subtask determination using the goal-

directed Boltzmann machine will be designed and tested.

Place evaluation functions for search during planning will developed to reduce
the search space.

Development of an analytic cost criteria during searcih must be experimented
with. An example of one, which provides a simple tradeoff between complexity
and probability of effect, is presented in this paper.

A case study using the above five research goals will be performed to test their
functionality.

Future work

Eventually. the following areas must also be researched and developed:

1

to

Allowing the architecture to dynamically expand to accommodate the introduc-
tion of new objects or states in the environment.

Testing the Organizer in a real-world environment.

Abstracting the binary states into predicate calculus relations to increase the
generalization capacity of the system.
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