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Abstract

This paper presents a brief report on the application of Radial Basis Func-
tion Neural Networks (RBFNN) to the prediction of sensor values for fault
detection and diagnosis of the Space Shuttle’s Main Engines (SSME). The
location of the Radial Basis Function (RBF) node centers was determined
with a K-means clustering algorithm. A neighborhood operation about these
center points was used to determine the variances of the individual processing

nodes.




1 Introduction

In test firing and during on-line operation of the Space Shuttle’s Main Engines
(SSME), an efficient method of detecting anomalous sensor values is needed
for detection and diagnosis of engine and sensor faults. Due to the volume
of data acquired during a single test, and the fact that the nominal ranges of
sensor values are dependent upon system parameters, the analysis currently
consumes many man hours. To automate the analysis of anomalous sensor
values, the use of Radial Basis Function Neural Networks (RBFNN) is being
investigated. This report shows that by using the last five samples in time
of a select group of sensor values, it is possible to have a RBFNN predict the
value of a particular sensor at the next discrete instant of time. The predicted
value can then be compared to the actual value. If the difference is greater
then some threshold (which could be based upon the standard deviation of
the data), then an anomalous sensor value has been detected.

A brief review of RBFNNGs is given next, after which a description of the
SSME data is presented. This is followed by a presentation of the implemen-
tations and experiments performed, and suggestions for future work.

2 Radial Basis Function Neural Networks

The basic radial basis function neural network contains an input layer for
input signal distribution, a single hidden layer of processing units, -and an
output summation unit as shown in Figure 1.

The input vector £ with components 1 to n is presented to each process-
ing unit. Each processing unit has a centroid vector ¢ which determines the
location of the center of the radial basis function. The radial basis function is
applied to the Euclidean distance between the input vector and its own cen-
troid. The output of each unit is then weighted by w; and summed together
by the unit in the third layer:

K
@) = 3wz - &ll)

=1

where ¢ is the radial basis function (typically Gaussian), & are the K centers,
and w; are the K weighted connections from the units to the third layer.
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Figure 1: Radial Basis Function Neural Network

With this basic topology, the system can be represented in state space
form:
y=(F-w)
where F' is the matrix of activations:
fllgr =) -+ f(lg1 — k)
flley =dll) -+ fllzn — k)

The weights can be calculated using the Moore-Penrose inverse:
G=(FT-F+al)™ - FT.§

where « is much less than 1, and I is the identity matrix. «f is added in
the event that the square matrix FT - F' is close to being singular. This
singularity will only occur if redundant data is applied to the input of the
neural system. It is also possible to calculate the weights using an iterative
gradient descent algorithm.




Internal normalization can be implemented amongst the Gaussian nodes
themselves. Without normalization the output of each node is calculated as:

¢(llz — cll)

The following equation incorporates normalization across all of the Gaussian
nodes upon presentation of each input vector:

¢(ll£ — &ll)
s 1 e(llE - éll)

The normalization requires that the sum of the outputs of all nodes be 1 for
any input vector. This allows for the output of smaller units to have a greater
impact on the overall output. Thus when an input vector falls between two
nodes, the system will be able to better interpolate [1].

The parameters which need to be established are the locations of the
centroids (means), the weight values, the widths of the radial basis functions
(variances), and the type of radial basis function to be used. It may be
desirable to alter the topology of the network to include direct weighted
connections from input to output, and to change the linear unit in layer
three to use a nonlinear function. Although the modifications to the topology
may reduce output error, it is no longer possible to use the simple weight
calculation mentioned above, so learning time will increase.

The locations and widths of the radial basis functions depends upon the
data being presented to the network. One way to find these parameters is to
use a clustering algorithm such as K-means on the data. Once the data has
been clustered, the centers of these clusters can be used as the centers of the
Gaussian nodes. Note that this method requires some a priori information as
to how many clusters should be performed. This number is not as important
as one might believe. This will be demonstrated when the results of the
experiments are presented.

3 Description of Data

Three sets of startup data were available, each of which contained a different
number of sensor parameters. The parameters used in each list were selected
in the work of [2]. The sensors I.D. numbers used in the training and recall




Table 1: Training-based Parameter Lists

Parameter | Number Parameters
List of PIDs used in training
1 6 21 58 209 734 951 1050
2 7 21 58 209 327 734 951 1058
3 8 21 52 58 209 327 734 951 1050

are depicted in Table 1. Descriptions of the sensor I.D. numbers are given
in Table 2. In this table a “T” indicates that a set of vectors was used for
training, a “V” indicates a set used only for validation. Only Listl was used
in this report. It was the easiest of the three lists to learn in terms of the
extent of required generalization necessary for adequate performance on the
validation sets. List 1 uses 6 sensor values which, when combined into a single
input vector representing the last five sampled sensor values for each sensor,
becomes a 30 dimensional vector. The sensor value that was to be predicted
for all sets is the SSME’s High Pressure Oxidizer Turbine (HPOT) discharge
temperature, which has Parameter Identification (PID) number 233. It is
important to note that all of the data was transient startup data. This
data contained many transients which varied from test firing to test firing.
These transients increase the difficulty that any learning paradigm will have
in accurately interpolating between the training and validation data sets.
The HPOT sensor values for the four training sets are plotted against time
in Figure 2, the HPOT values for the validation sets are plotted in Figure 3.
From these figures it can be seen that there was a wide range of nominal
sensor values.

4 Implementations and Experiments

Six different variations of RBFNNs were implemented in C and tested on List
1: RBF1, RBF11, RBF6, RBF8, RBF10 and RBF12. All simulations were
executed on a SPARC IPX. These implementations mainly differ in the way
that they calculate the variance associated with each Gaussian node. All of
implementations used Gaussian based radial basis functions. The means of
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Table 2: Parameter Descriptions

PID Description

21 Main Combustion Chamber Oxidizer Injection Temperature
40 Oxidizer Preburner Oxidizer Valve Actuator Position

42 Fuel Preburner Oxidizer Valve Actuator Position

52 High Pressure Fuel Pump Discharge Pressure

58 Fuel Preburner Chamber Pressure

59 Preburner Boost Pump Discharge Pressure

209 High Pressure Oxidizer Pump Inlet Pressure

231 High Pressure Fuel Turbine Discharge Temperature

233t High Pressure Oxidizer Turbine Discharge Temperature

327 | High Pressure Oxidizer Pump Balance Cavity Pressure

480 Oxidizer Preburner Chamber Pressure

734 Low Pressure Oxidizer Pumnp Shaft Speed

951 High Pressure Oxidizer Pump Primary Seal Drain Pressure
1050 Oxidizer Tank Discharge Temperature

1058 Engine Oxidizer Inlet Temperature

1205 Facility Fuel Flow

1212 Facility Oxidizer Flow

O/Cs Dwnmy Parameter indicating Open/Closed Loop Operation
OPBs | Dummy Parameter indicating Oxidizer Preburner Prime Time

t the modeled parameter
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Figure 2: P.I.D. 233 Training sets
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Figure 3: P.I.D. 233 Validation sets




the functions were chosen by the K-means algorithm. The number of clusters
to be formed by this algorithm was selected by the user. It will be shown
that the number of nodes selected was not that important as long as it fell
within a reasonable range. '

In the experiments, the start up data was sampled from 0.4 to 5.96 seconds
at 25 hertz. This resulted in 140 vectors per set, or 560 vectors total for the
4 training sets:

(5.96 — 0.4) * 25 cycles/sec. + 1 = 140 vectors

If one Gaussian node were to be placed on every data vector, this would result
in 560 nodes. The following number of nodes were used in the experiments:
28, 56, 112, 140, 560. These correspond to using 5%, 10%, 20%, and 100%
of all possible nodes.

Note that if 560 nodes were used, then no data clustering was performed.
560 nodes were only used with RBF11, in order to see what error would be
associated with Gaussian function interpolation on the data with fixed vari-
ance. Training occurred by presenting the four training sets to the system:
B1046, B1060, B1070 and B1077. The error statistic were then generated by
individually presenting each set and recording the errors. The experimental
results are presented in the tables and plots at the end of this text. In the
plots, both the cutput of the network and the desired output are plotted, next
to these are plots of the associated error. Note that in the plots the solid line
represents the output of the neural network, and the dashed line represents
the actual value of the P.I.D. 233 sensor. All the plots used between node
normalization unless otherwise noted on the plot.

All of the implementations used an iterative singular value decomposition
to invert the matrix in the weight calculation except for RBF6. RBF6 used
gradient descent to solve for the weights. This was implemented only for
processing time considerations. All of the data had originally been mapped
into the range [-0.5,0.5], although it was not necessary to have the data in
the [-0.5,0.5] range. The data was then normalized to have zero mean and
unit variance before it was presented to the K-means preprocessor. The data
was denormalized back to the [-0.5,0.5] range before it was presented to the
RBF algorithm. All algorithms randomized the order of the data vectors
so that K-means could better cluster the data. The randomization made a
dramatic improvement on the uniformity of the center distributions found
by K-means.



RBF1 and RBF11 used a global variance parameter, in this case all nodes
used a variance of 0.01. This parameter was chosen heuristically to work
best with the given data. Two other forms of RBFs were created to avoid
having to choose a global variance parameter, and to allow for the variance
to vary with each node. In order to determine the effect of normalizing
across the Gaussian nodes, RBF1 was implemented without the between
node normalization, and RBF11 was implemented with the between node
normalization described previously.

RBFS8 used the square of the mean of the 50 nearest vectors to a centroid
(the mean of a Gaussian node) for the variance of the node which belongs to
that centroid.

RBF10 used the square median of the 50 nearest vectors to a centroid as
the variance of the node. The size of the neighborhoods used in determining
the variance was selected by trial and error. A larger size neighborhood
helps reduce the effect of data point outliers. Too large a neighborhood will
cause all nodes to have essentially the same variance. The performance of
the system was sensitive to the size of the neighborhood.

RBF12 used the kmeans algorithm to calculate the variance of each clus-
ter. Note that a Euclidean distance metric was used in calculating the dis-
tance of each vector in a cluster for the centroid of that cluster. Otherwise,
it would have been necessary to use a covariance matrix approach.

RBF6 was the same as RBF8 except that the weights were calculated
using gradient descent. The error statistics of this method will be as good
as those of the algebraic method as long as enough iterations are performed.
Thus, an important consideration is the processor time used in convergence.

The tables at the end of this text contain three columns of numbers: the
Root Mean Square (RMS) of the error between the output of the network
and the actual prediction value, the Normalized Root Mean Square Error
(NRMS), and the Maximum percentage of the error (Max %). The last two
columns will be used for comparison between the experiments.

The error statistics for RBF1 with global variance of 0.01 and 25% nodes
(i.e. 140 nodes were used out of 560 possible nodes) without between node
normalization is shown in Table 3. The Normalized Root Mean Square Error
(NRMS) was always under 6%, and the maximum percent error was as high
as 55%. Clearly this is unacceptable for most applications. When between
node normalization was added, the greatest maximum percent error dropped
to 11% as shown in Table 4.




All algorithms described from here on will incorporate between node nor-
malization. Table 5 shows the error statistics when a node was located at
every data point (560 nodes), with a global variance of 0.01. The errors were
higher in this case then when 140 nodes were used. This can be explained
by the fact that with a node on every data point, individual variances were
needed from node to node. With less nodes than data points, the clusters
may overlap without adverse affect on the function approximation capabili-
ties. It should be noted that this conjecture is only valid for the data used
in these experiments.

The greatest difficulty with the above method involves the heuristic se-
lection of two parameters: variance, and the number of nodes. In order to
avoid having to pick a variance parameter, and to provide for the ability of
each cluster to have an individual variance, other methods are being inves-
tigated. The next two methods use a neighborhood operation to assign a
variance to each cluster. Unfortunately, this still involves heuristic selection
of a neighborhood size, and of the number of nodes to be used in the network.

RBFS used a mean neighborhood operation to determine the variance of
each node individually. To determine the variance of a node, the algorithm
calculates the mean of the vectors within some neighborhood about the cen-
troid (mean of the Gaussian) of that node. If we let N represent the size of
the neighborhood, then this can be written as:

N dim

variance = — Z Z(:I:, — c,)2

]—'1 i=1

where z; is the ¢** component of the input vector #, and dim refers to the
dimension of the input vectors. Thus if N = 50, this means that the 50 input
data vectors with the smallest square distance from the centroid will be used
in calculating the variance for that centroid.

Table 6 shows the error statistics for Rbf8 with 140 nodes and a nelghbor-
hood size of 50. This neighborhood size was arbitarily chosen. The effects
of this selection will be discussed later. The errors in this table are slightly
higher than for the Rbfll with 140 nodes in Table 4. However, the problem
of selecting a suitable global variance has been traded for selecting a suitable
neighborhood size. This is only a benefit if the neighborhood size selection
is less sensitive than the variance parameter.

Since in Rbf8 a mean neighborhood operation was used, it is only natural
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to determine if a median neighborhood operation would produce better re-
sults. Rbfl10 used the median of the square of the distance to the N nearest
input vectors to a centroid, to calculate the variance for that centroid. The
error statistics for Rbfl0 using 140 nodes with a neighborhood size of 50 is
shown in Table 7. Note that the mean and median implementations produce
very similar error statistics, with the mean operation being slightly favorable.

The effects of changing the neighborhood size and the effects of changing
the number of nodes will now be discussed. Since both the mean and median
implementations produce nearly identical results, only the mean implemen-
tation RBF8 will be used to show the results. Tables 8, 9, and 10 represent
the error statistics for Rbf8 with 140 nodes and neighborhood sizes of: 5, 60,
and 95. This represents 10%, 120%, and 190% of the original value of 50.
Looking at both the NRMS and the maximum % error, it can be seen that
the errors were lower for the training sets and higher for the validation sets.
When considering only the validation sets, a neighborhood size of 5 was the
best. But even with a 90% change in the value of the neighborhood size,
the errors still remained low except for set B1071 with a neighborhood size
of 95. It should be noted that B1071 requires the most generalization of all
of the validation sets. This indicates that the selection of neighborhood size
was not critical as long as it fell within some reasonable range. This is only
significant if the output of RBF1 is sensitive to similar variations in the value
of the global variance parameter.

Tables 11, 12, and 13 show the error statistics for the global variance
(RBF11) values of 0.001, 0.012, and 0.19. This represents a variation of
10%, 120%, and 190%. Comparing these tables with Table 4 reveals that the
errors don’t really change that much even with a 90% change in the variance
parameter.

The bottom line of this is that neither the selection of the neighborhood
size nor the global variance parameter are critical as long as they fall within
some reasonable range. Thus, there is no advantage to using the neighbor-
hood operation to determine the variance.

The other heuristic to be investigated is the selection of the number of
nodes in the RBFNN. Tables 14, 15, and 16 specify the error statistics for
RBF8 with 28, 56, and 112 nodes with a neighborhood size of 50 respectively.
This represents 5%, 10%, and 20% of the possible nodes. Compare these
tables with Table 6 which had 140 nodes (25%). The error did increase
when only 5% of the nodes were used, especially the maximum percent error
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for set B1071. The difference in error between 20% and 25% nodes seems
insignificant.

Tables 17, 18, and 19 represent the error statistics for RBF11 with global
variance parameter of 0.01 with 28, 56, and 112 nodes respectively. As the
variance increases the error for the training sets increases, but overall, the
errors remain small. This is because as the variance increases, the overlap
becomes too great for an individual set to be learned exactly. The RBF1
implementation seems to be a little more sensitive to the selection of the
number of nodes than the neighborhood operation RBFS.

Another performance consideration was the computation time required by
the various implementations. Since most of the algorithms were virtually the
same, only RBF8 and RBF6 will be compared. RBF8 used the weight matrix
inverse approach and RBF6 used gradient descent to calculate the weights.
RBF8 takes approximately 225 cpu seconds whereas the gradient descent
approach RBF6 takes hours when working with 112 out of 560 possible nodes.

The gradient descent approach can be greatly improved by performing
only localized weight update. Therefore each epoch will involve only updat-
ing a small number of weights directly having influence on the output of the
given input vector, rather than updating all of the weights. Since the error
statistics for the gradient descent approach change with the number of iter-
ations performed, and those iterations are currently too expensive to justify
performing, no error statistics have been generated for the gradient descent
approach.

The latest implementation (Rbfl2) involved using the kmeans algorithm
to determine the variance of each cluster and assigning this value to each
node associated with that cluster. Since it is possible that a cluster will only
contain one or two vectors, it was necessary to create an artificial lower bound
on the calculated variance. In this case the lowest the variance was allowed
to be was 0.01. This value was chosen so that this method could be compared
to the the global variance method. In other words, the variance of each node
will be 0.01 unless a larger value is required. Since it was desirable to have
enough overlap between the nodes to provide for sufficient generlization, all
of the calculated variances of this procedure were multiplied by a constant.
The error statistics for this method are presented in 20. Plots of this appear
at the end. The error statistics for this implementation are similar to those
presented for Rbfl1l. The plots also show that the behavior of the output of
the network is oscillatory about the desired value.

11




Timing comparisons have also been made between the two clustering
algorithms: K-means and Kohonen’s LVQ [3]. The two took approximately
the same amount of C.P.U. time.

5 Conclusions and Future Directions

This report has shown that combination of the K-means algorithm with
- Radial Basis Function Neural Network with variable variance has allowed
for successful sensor value prediction.

Work is being done on automating the two main heuristics of this ap-
proach: the variance of the processing nodes, and the number of nodes to
use on the data. The automation is being done so that this approach may
be used as part of an on-line diagnostic, fault detection system. It should
be noted that the number of nodes and the value of the variance(s) was not
really that important as long as it fell within a reasonable range.

Investigation of the K-means algorithm as a stand-alone predictor using
vector component labeling is also proceeding. The purpose of this approach
is to determine if the weight calculations can be avoided, and to form a
comparison to component labeling with Kohonen’s LVQ.

Two approaches that are currently under investigation are the implemen-
tation of a regularization network using Radial Basis Functions, and the im-
plementation of a mulitplicative gaussian bar network. All of the approaches
described in this paper require that the variance be the same for all of the
dimensions of each node. The multiplicative gaussian bar network will allow
a varying variance not only for each node, but also for each dimension of
each node. It is hoped that this approach will allow the network to have a
smoother prediction output. Currently, as can be seen from the plots, the
output of the network tends to jump when a different group of nodes be-
comes active. This is bad when trying to use the system for fault detection
because it forces the use of large confidence intervals. Hopefully with variable
variance in each dimension, the confidence interval will be very small.
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Table 3: Error Statistics from Parameter List 1 for Rbfl, 140 out of 560
possible nodes, global variance 0.01, no normalization across nodes

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 51.59860 | 0.05187 | 55.43803
B1060 T 28.21390 | 0.02770 | 43.82708
B1061 \% 29.12591 | 0.02831 | 37.07641
B1062 \% 39.23239 | 0.038G3 | 47.86150
B1063 v 33.72927 | 0.03320 | 31.26490
B1066 v 53.21917 | 0.05209 | 46.77677
B1067 A\ 42.51067 | 0.04179 | 29.82455
B1070 T 22.83335 | 0.02182 | 27.27271
B1071 \% 56.68070 | 0.05435 | 40.25718
B1072 \% 41.90969 | 0.03953 | 38.49752
B1075 \% 48.30697 | 0.04708 | 44.38711
B1077 T 36.09605 | 0.03450 | 34.11739

Table 4: Error Statistics from Parameter List 1 for Rbfll, 140 out of 560
possible nodes, global variance 0.01, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 9.08039 | 0.00913{ 5.05390
B1060 T 15.11922 | 0.01484 | 8.18955
B1061 \% 16.56278 | 0.01610 | 7.55070
B1062 \% 23.88363 | 0.02352 | 8.80874
B1063 v 24.06748 | 0.02369 | 6.74517
B1066 v 28.07834 | 0.02748 | 10.30139
B1067 v 30.19188 | 0.02968 | 38.40462
B1070 T 7.80751 | 0.00746 | 4.90432
B1071 v 36.64726 | 0.03514 | 11.16738
B1072 v 22.29507 | 0.02103 | 4.61144
B1075 v 24.04426 | 0.02343 | 9.24767
B1077 T 10.94992 | 0.01047 | 5.01032
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Table 5: Error Statistics from Parameter List 1 for Rbfll, 560 out of 560
possible nodes, global variance 0.01, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 0.00721 | 0.00001 | 0.00164
B1060 T 5.83704 | 0.00573 | 0.86627
B1061 v 21.17175 | 0.02058 | 8.06793
B1062 \'% 26.14354 | 0.02574 | 8.81908
B1063 v 47.42858 | 0.04669 | 19.71690
B1066 \" 25.07479 | 0.02454 | 10.11135
B1067 v 55.24511 | 0.05431 | 24.98962
B1070 T 4.89017 | 0.00467 | 0.71944
B1071 \% 42.73459 | 0.04097 | 13.92102
B1072 v 37.87623 | 0.03572 | 16.95097
B1075 v 27.00886 | 0.02632 | 12.82674
B1077 T 7.48279 | 0.00715 | 0.96961

Table 6: Error Statistics from Parameter List 1 for Rbi8, 140 out of 560
possible nodes, neighborhood size of 50.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 2.38426 | 0.00240 ] 1.39597
B1060 T 12.59777 | 0.01237 | 8.94835
B1061 v 17.01483 | 0.01654 | 10.51706
B1062 v 27.73178 | 0.02731 | 7.73836
B1063 \% 36.67299 | 0.03610 | . 8.43292
B1066 \" 30.88582 | 0.03023 | 9.61599
B1067 v 35.97727 | 0.03537 | 8.59062
B1070 T 7.00646 { 0.00670 | 4.22006
B1071 v 38.58204 | 0.03699 { 13.70739
B1072 v 23.79091 | 0.02244 | 7.77105
B1075 v 30.23295 | 0.02946 | 12.56111
B1077 T 9.82221 | 0.00939 | 7.98302
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Table 7: Error Statistics from Parameter List 1 for Rbf10, 140 out of 560
possible nodes, neighborhood size of 50.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 2.83764 | 0.00285{ 2.27082
B1o60 T 13.01944 | 0.01278 | 10.44688
B1061 v 16.99191 | 0.01652 | 8.35701
B1062 \% 27.63844 | 0.02721 | 10.59826
B1063 v 35.93978 | 0.03538 | 7.85795
B10G6 v 30.68942 | 0.03004 | 8.84875
B1067 \" 34.05498 | 0.03348 | 7.91770
B1070 T 7.27333 | 0.00695 | 4.86389
B1071 v 40.26593 | 0.03861 | 12.87269
B1072 v 23.99103 | 0.02263 | 7.29484
B1075 \'% 31.83439 | 0.03102 | 14.72255
B1077- T 9.86484 | 0.00943 | 6.64400

Table 8: Error Statistics from Parameter List 1 for Rbf8, 140 out of 560
possible nodes, neighborhood size of 5

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B10o46 T 12.59036 | 0.01266 [ 5.91643
B1060 T 18.86700 | 0.01852 | 8.26020
B1061 \% 15.54236 | 0.01511 | 8.09296
B1062 v 23.84036 | 0.02347 | 7.95695
B1063 \% 29.50691 | 0.02905 | 6.01330
B1066 v 27.19326 | 0.02661 | 8.17823
B1067 \% 27.51375 | 0.02705 | 6.54893
B1070 T 12.13479 { 0.01160 | 4.74145
B1o71 v 37.65979 | 0.03611 | 14.24448
B1072 v 20.79559 | 0.01961 | 6.86008
B1075 \% 25.46773 | 0.02482 { 9.03917
B1077 T 11.67591 | 0.01116 { 5.18719
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Table 9: Error Statistics from Parameter List 1 for Rbf8, 140 out of 560
possible nodes, neighborhood size of 60

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 1.99468 | 0.00201 | 1.47569
B1o60 T 12.11123 ] 0.01189 | T7.26255
B1061 v 16.98131 | 0.01651 | 9.71268
B1062 v 26.68269 | 0.02627 | 8.88408
B1063 v 35.55722 | 0.03500 | 8.21124
B1066 v 31.38819 | 0.03072 | 9.40951
B1067 v 39.94933 | 0.03927 | 9.00299
B1070 T 6.99072 | 0.006G8 | 4.03056
B1071 v 39.72683 { 0.03809 | 14.84076
B1072 \% 25.54100 | 0.02409 | 7.60504
B1075 v 27.51913 | 0.02682 { 10.99728
B1077 T 9.43180 | 0.00902 [ 5.93759

Table 10: Error Statistics from Parameter List 1 for Rbf8, 140 out of 560
possible nodes, neighborhood size of 95

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 2.52465 | 0.00254 | 1.01239
B1060 T 5.89194 | 0.00578 | 2.65420
B1061 v 14.11111 | 0.01372 | 8.36682
B1062 v 25.79183 | 0.02540 | 14.42955
B1063 v 32.26750 | 0.03177 | 14.87512
B1066 v 28.31700 | 0.02771 | 15.87984
B1067 A\ 40.62741 | 0.03994 | 11.26816
B1070 T 5.18299 ( 0.00495 | 2.84313
B1071 v 65.97996 | 0.06326 | 32.48063
B1072 v 39.38403 | 0.03715 | 21.43067
B1075 v 20.39765 | 0.01988 | 9.73600
B1077 T 5.62804 | 0.00538 | 2.67773
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Table 11: Error Statistics from Parameter List 1 for Rbfll, 140 out of 560
possible nodes, global variance 0.001, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 17.39792 | 0.01749 | 9.41842
B1060 T 19.24398 | 0.01889 | 8.72347
B1061 v 14.868G0 { 0.01445 | 9.14472
B1062 v 22.17325 | 0.02183 | 7.69G61
B1063 v 25.62952 | 0.02523 | 6.37022
B1066 v 24.79422 | 0.02427 | 8.00535
B1067 v 25.81279 | 0.02538 | 6.63005
B1070 T 12.97352 [ 0.01240 | 5.38796
B1071 v 39.82024 | 0.03818 | 15.11610
B1072 v 26.84831 { 0.02532 { 6.29536
B1075 v 25.14532 | 0.02450 | 9.98049
B1077 T 11.28997 | 0.01079 | 5.32295

Table 12: Error Statistics from Parameter List 1 for Rbfl1l, 140 out of 560
possible nodes, global variance 0.012, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 7.53711 | 0.00758 | 4.02564
B1060 T 14.65475 | 0.01439 | 8.15110
B1061 v 16.48162 | 0.01602 | 7.53241
B1062 v 24.26593 | 0.02389 | 8.67870
B1063 v 25.48573 { 0.02509 | 8.54002
B1066 v 27.90006 | 0.02731 | 10.27619
B1067 v 31.02996 | 0.03050 | 8.69295
B1070 T 7.65893 | 0.00732 | 4.90027
B1071 v 36.54959 | 0.03504 | 10.38719
B1072 v 23.02699 | 0.02172 | 4.71767
B107s v 23.63481 | 0.02303 | 9.14347
B1077 T 10.89041 | 0.01041 | 4.90642
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Table 13: Error Statistics from Parameter List 1 for Rbfll, 140 out of 560
possible nodes, global variance 0.019, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 3.77056 | 0.00379 | 1.80409
B1060 T 13.21858 | 0.01298 { 7.99314
B1061 v 18.48718 | 0.01797 | 7.70497
B1062 v 26.25988 | 0.02586 | 8.18643
B1063 \% 29.54284 | 0.02908 | 11.77689
B1066 v 26.13952 | 0.02558 | 9.94572
B1o67 \' 31.32031 | 0.03079{ 9.47755
B1070 T 6.90393 | 0.00660 | 4.77293
B1071 \% 37.59862 | 0.03G05 | 9.40809
B1072 \% 29.65932 | 0.02797 | 7.29677
B107s v 24.94946 | 0.02431 | 9.01241
B1077 T 10.57636 | 0.01011 ] 5.07506

Table 14: Error Statistics from Parameter List
possible nodes, neighborhood size of 50.

1 for Rbf8, 28 out of 560

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 14.41434 | 0.01449 | 9.00289
B1060 28.22631 | 0.02771 | 15.22439
B10o61 \% 20.45557 ) 0.01988 { 15.12137
B1062 v 27.14355 | 0.02673 | 13.25370
B1063 v 31.14893 | 0.03066 | 7.27571
B106G6 \'% 25.22222 | 0.02469 | 9.23387
B1067 \% 31.01706 | 0.03049 | G.86656
B1070 T 18.86116 | 0.01803 | 6.47004
B1071 v 42.92448 | 0.04116 { 23.21731
B1072 \ 25.89541 | 0.02442 | 7.66308
B107s v 29.25733 | 0.02851 | 14.23219
B1077 T 14.43709 | 0.01380 | 7.00140
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Table 15: Error Statistics from Parameter List
possible nodes, neighborhood size of 50

1 for Rbf8, 56 out of 560

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 4.45642 | 0.00448 | 2.73107
B1060 T 19.72829 | 0.01937 | 8.06534
B1061 v 13.82834 | 0.01344 | 7.98474
B1062 v 27.61247 | 0.02719 | 6.78202
B1063 \% 30.51164 | 0.03004 | 5.60983
B1066 \% 27.69112 | 0.02710 | 7.22070
B1067 v 28.52224 | 0.02804 | 6.90655
B1070 T 9.74294 | 0.00931 | 4.63169
B1071 v 36.70488 | 0.03519 | 11.93740
B1072 v 19.51650 | 0.01841 | 4.33229
B1075 v 23.80098 | 0.02319 | 8.70032
B1077 T 13.61962 | 0.01302 | 4.74346

Table 16: Error Statistics from Parameter List 1 for Rbf8, 112 out of 560
possible nodes, neighborhood size of 50.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 2.83689 | 0.00285 | 1.87113
B1060 T 15.10454 | 0.01483 | 7.26094
B1061 v 15.33540 | 0.01491 | 9.99841
B1062 v 27.02377 | 0.02661 | 7.66580
B1063 v 31.69655 | 0.03120 . 6.39428
B1066 v 30.97042 | 0.03031 | 9.15610
B1067 v 30.84572 | 0.03032 | 7.25803
B1070 T 7.02387 | 0.00671 | 4.29946
B1071 \% 36.32853 | 0.03483 | 11.16077
B1072 v 19.99030 | 0.01385 | 7.18022
B1075 v 20.72743 | 0.02020 | 9.70741
B1077 T 13.02576 | 0.01245 | 7.72375




Table 17: Error Statistics from Parameter List 1 for Rbfll, 28 out of 560
possible nodes, global variance 0.01, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 27.18175 | 0.02732 | 15.67179
B1060 T 25.14493 | 0.02468 | 11.02959
B1061 v 16.65054 | 0.01619 | 10.56191
B1062 \'% 24.08476 | 0.02372 { 8.69066
B1063 v 30.18663 | 0.02972 | 6.02264
B1066 \% 22.65658 | 0.02217 | 6.00475
B1067 v 30.09099 | 0.02958 | 6.73048
B1070 T 18.25288 | 0.01745 | 6.61461
B1071 v 39.08114 | 0.03747 | 15.32269
B1072 \% 22.67000 | 0.02138 | 5.39135
B1075 v 26.91294 | 0.02623 | 11.02567
B1077 T 12.99691 | 0.01242 | 5.55255

Table 18: Error Statistics from Parameter List 1 for Rbfll, 56 out of 560
possible nodes, global variance 0.01, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 16.89184 | 0.01698 | 9.67346
B1060 T -22.36876 { 0.02196 | 10.31860
B1061 \% 14.56266 | 0.01416 | 10.03354
B1062 \'% 20.76527 | 0.02045 | 8.12575
B1063 v 23.57223 | 0.02321{ 5.79424
B1066 \% 21.93067 | 0.02146 | 5.90312
B1067 v 25.39526 | 0.02497 | 6.24095
B1070 T 15.45565 | 0.01477 | 5.73375
B1071 \" 40.40978 | 0.03875 | 13.09041
B1072 v 23.68318 { 0.02234 | 5.45226
B107s v 24.96156 | 0.02433 { 10.16316
B1077 T 11.03639 | 0.01055 | 5.47923
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Table 19: Error Statistics from Parameter List 1 for Rbfll, 112 out of 560
possible nodes, global variance 0.01, with normalization across nodes.

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 9.19158 | 0.00924 | 5.07136
B1060 T 18.42548 | 0.01809 ( 8.74580
B1o61 \'% 14.63324 | 0.01422 | 7.68326
B1062 v 22.38574 | 0.02204 | 7.07681
B1063 \% 22.37034 | 0.02202 | 5.83572
B1066 \% 24.51416 | 0.02399 | 7.59422
B1067 v 27.92617 | 0.02745 | 7.61870
B1070 T 9.62823 | 0.00920 | 5.21438
B1071 \% 37.67616 | 0.03612 | 11.96297
B1072 v 26.63420 | 0.02512 | 4.70912
B1075 v 25.96042 | 0.02530 | 9.57053
B1077 T 12.05393 | 0.01152 | 4.43430

Table 20: Error Statistics from Parameter List 1 for Rbf12, 140 out of 560
possible nodes

Test Training/ RMS NRMS Max.
Firing | Validation % Error
B1046 T 6.01873 | 0.00605 | 3.15011
B1060 T 14.86046 | 0.01459 | 7.73349
B1061 \% 16.48907 | 0.01603 | 7.48909
B1062 v 23.49133 | 0.02313 | 8.62899
B1063 v 23.95228 | 0.02358 | . 6.73804
B1066 \% 28.18141 | 0.02758 | 9.58983
B1067 v 30.06580 { 0.0295G | B8.39829
B1070 T 7.49930 | 0.00717 | 4.29970
B1071 v 36.89098 | 0.03537 | 11.30262
B1072 v 22.69011 | 0.02140 { 4.92904
B1075 v 24.03571 | 0.02342 | 9.16707
B1077 T 11.20852 | 0.01071 | 6.01282
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Figure 1: Rbi8 with 140 nodes, neighborhood 5
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Figure 2: Rbf8 with 140 nodes, neighborhood 5
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Figure 4: Rbf8 with 140 nodes, neighborhood 5
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