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SUMMARY

The electromagnetic modeling of packages and interconnects plays a very important
role in the design of high-speed digital circuits, and is most efficiently performed by
using computer-aided design algorithms. In recent years, packaging has become a
critical area in the design of high-speed communication systems and fast computers, and
the importance of the software support for their development has increased accordingly.
Throughout this project, our efforts have focused on the development of modeling and
simulation techniques and algorithms that permit the fast computation of the electrical

parameters of interconnects and the efficient simulation of their electrical performance.



PROJECT DESCRIPTION

The development of efficient and accurate computer-aided design tools is essential
for the implementation of high-speed digital circuits used in computer systems and
communication networks. With current trends in which network complexity and signal
speed keep increasing, problems associated with signal integrity such as crosstalk,
distortion, losses can compromise the overall electrical performance of computers and

communication systems.

Presently, industrial needs for computer support in network design is increasing
rapidly; however the availability of design and analysis tools capable of handling the
complexity and volume of manufactured systems lags seriously. Future winners in the
competitive world of high-speed communications will have to possess sophisticated
packaging analysis and design tools and system performance will be more and more

determined by the adequacy of these tools.

Because of their important role in the design process, CAD tools must offer certain
essential features such as speed, accuracy, availability of extensive library and good user
interface. CAD tools will insure minimum manufacturing cost, faster turnaround time
and more reliable hardware for production. To achieve the required performance,
optimization routines must be made available and efficient algorithms must be
implemented to guarantee speed and good user interface, friendliness and portability of

the software.

Our group at the University of Illinois has been involved during the past three years
in the development of modeling and simulation techniques for interconnects and
packages. In the parent project, the main emphasis of our work is directed toward the
modeling of complex interconnect structures as well as the simulation of interconnects.

The development of efficient and accurate computer-aided design tools is essential
for the implementation of high-speed digital circuits used in computer systems and
communication networks. With increasing clock rates and reduced circuit sizes,
electromagnetic phenomena such as crosstalk noise, distortion, ground bounce will
become more pronounced in both circuit boards and chip environment. These effects
seriously degrade the signal integrity of high-speed networks and compromise the

overall network performance.



Development of Interconnect Modeling Techniques

In many situations, one factor that contributes to the increased computation time in
the calculation of the electrical parameters of the Green's function in the spatial domain,
which represents the vector field produced by an infinitesimal dipole placed over the
dielectric substrate layer backed by a ground plane. An efficient method to compute the
2-D and 3-D capacitance matrix of multiconductor interconnects in a multilayered
dielectric medium was developed in our group. The method is applicable to conductors
of arbitrary polygon shape embedded in a multilayered dielectric medium with possible
ground planes on the top or bottom of the dielectric layers [2], [7]. The method has been
extended to the computation of equivalent capacitance of via structures in multilayer

environment [5].

In the time domain analysis, the ability to model fine features, e.g., wire bonds, is an
important requirement and is unavailable in the conventional finite-difference time-
domain (FDTD) approach unless a very high density of discretization is employed. The
FDTD method is one of the most widely used techniques. In the FDTD, the derivative
operators are replaced with the central difference operators, which preserves the second
order accuracy. Hence, its extension to the general nonuniform grids is not possible
without losing the second order accuracy or reformulating in terms of the curvilinear
coordinates. However, in solving any practical problems nonuniform grids are highly

desirable due to the limitation of computer resources.

An efficient way to implement the surface impedance boundary condition (SIBC) for
the finite-difference time-domain FDTD method was introduced [4]. Surface impedance
boundary conditions are first formulated for a lossy dielectric half-space in the frequency
domain. The impedance function of a lossy medium is approximated with a series of
first-order rational functions. Then the resulting time-domain convolution integrals are
computed using recursive formulas which are obtained by assuming that the fields are
piecewise linear in time. Thus the recursive formulas derived are second-order accurate.
The preprocessing time is eliminated by performing a rational approximation on the
normalized frequency-domain impedance. This approximation is independent of material

properties.



Simulation of Interconnects

In the real world of electronic packaging, transmission lines are more likely to be
nonuniform and may include discontinuities such as bends, tapers and transitions; hence,
the standard simulation tools for uniform lines can no longer be used to analyze them.
Presently, a number of methods are available for the simulation of coupled transmission
lines that are used to model interconnects. In the past two years, we have carried out a
systematic comparison of these methods with a view to developing an approach that
would be optimal in terms of both accuracy and efficiency. This has led to the
development of a transient simulation method based on the difference approximation
which has the highly desirable feature that it can be conveniently incorporated in a
circuit simulator [6]-[7], [10]-[13]. This approach not only outperforms the standard
scattering parameter method, but is very accurate and computationally efficient as well.
Software designers at Cadence Design Systems and Intel have recently implemented this

method in the latest circuit simulators.

The problem of distributed line simulation was analyzed, and the optimal method,
which results in the maximum efficiency, accuracy and practical applicability, was
developed. The method is applicable to transmission lines characterized by frequency or
time-domain data samples. The resulting line model can be directly used in a circuit
- simulator. The efficiency of the optimal method allows for the accurate transient
simulation of real circuits containing thousands of lossy coupled frequency-dependent
nonuniform lines surrounded by nonlinear active devices with virtually no increase in the
simulation time compared to that for the simple replacement of interconnects with

lumped resistors.

As components of the optimal method, the following novel techniques were
introduced:
- The system mode! for uniform and nonuniform lines which simplifies analysis of
distributed networks; the open-loop device model for uniform and nonuniform lines
which relates voltages and currents at the line terminals via the simplest possible transfer

functions and time-domain responses;

- The indirect numerical integration--a class of numerical integration methods, which has

ideal accuracy, convergence and stability properties;



- The difference approximation, a general method for applying numerical integration to

systems characterized by discrete data samples was developed and put in a matrix form.

- The matrix delay separation from the matrix propagation function, which avoids the use

of frequency-dependent modal transformation matrices;

- The relaxation interpolation method, which allows for an accurate and efficient
approximation of line responses in the time and frequency domains, automatically
reduces the approximation order depending on the original function and eliminates

spurious positive poles.

The complete set of frequency-domain relationships between the matrix Z, Y and S
parameters were derived and the direct interpolation-based complex rational
approximation method for transient simulation of macromodels for complicated multiport
interconnects (such as IC packages and connectors) was developed. The direct
interpolation-based method was applied to the automatic generation of lumped

equivalent-circuit models of multiport EM systems (with Dan).

Approximation Techniques for Circuit Analysis

Our research has also been focused in developing a unified methodology of model-
order reduction techniques for circuit and interconnects simulation. The following three
classes of model-order reduction methods: moment-matching technique, Krylov subspace
techniques, and reduced optimum approximation have been studied and their applications

for efficient circuit simulations have been identified.

The moment-matching technique has been shown to be very effective for generating
low order models for linear lumped and distributed systems. The method is useful for
systems whose main features can be retained by the first few orders of reduced system
models. These include the response estimations of linear lumped networks of medium
complexity, wave propagation in transmission lines with short delays and diffusion

process in p-n junctions [20].

Krylov subspace based methods such as Arnoldi algorithm and Lanczos algorithm are
effective and robust in generating reduced-order model of large complex systems
described by ordinary differential or difference equations. The methods are important in

obtaining reduced-order models to systems that can be characterized by relatively higher



order models. The methods avoid the construction of ill-conditioned moment matrices
and the loss of information contained by the eigenvalues of the systems with smaller
magnitudes when higher models are sought. The methods are suitable for analyzing large,

complex lumped networks.

An optimum approximation in conjuction with model order reduction techniques such
as balanced representation and aggregation methods represents a very effective
methodology for generating reduced-order models of complex interconnects (infinite
dimension systems). The approximation method is applied to the distributed systems to
drive high-order finite models as an intermediate stage and then using balanced

transformation and aggregation method lower-order models are generated.
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Optimal Transient Simulation of Transmission Lines

Dmitri Borisovich Kuznetsov, Student Member, IEEE, and José E. Schutt-Ainé, Member, IEEE

Abstract— This paper presents an attempt to formulate a
high-level description of the optimal transmission line simulation
method. To formulate the optimal approach, most significant

aspects of the problem are identified, and alternative approaches .

in each of the aspects are analyzed and compared to find the
combination that results in the maximum efficiency, accuracy
and applicability for the transient analysis of digital circuits.
The practical implementation of the optimal method for uniform
multiconductor lossy frequency-dependent lines characterized by
samples of their responses is outlined. It is shown on an extensive
set of runtime data that, based on the optimal approach, the
accurate line modeling in a circuit simulator is as efficient as the
simple replacement of interconnects with lumped resistors.

I. INTRODUCTION

HE PROBLEM of transmission line simulation gained

special importance with the development of high-speed
digital electronics. As transient times become faster, the trans-
mission line behavior of electronic interconnects starts to
significantly affect transient waveforms, and accurate mod-
eling of on-board and even on-chip interconnects becomes
an essential part of the design process. The complexity of
contemporary digital circuits necessitates the simultaneous
simulation of thousands of lossy coupled frequency-dependent
lines surrounded by thousands of nonlinear active devices.
Lines to be simulated may be characterized by measured or
electromagnetically simulated samples of their responses.

There are two approaches to the interconnect simulation.
The first approach creates macromodels for linear subcircuits
that may contain many transmission lines and other linear
elements [1], [2). This paper discusses the second approach,
in which each multiconductor line is treated as an individual
circuit element.

The problem of the line simulation involves several areas of
science, such as electromagnetics, computational mathematics,
and circuit and system theories. The solution of the problem
is straightforward in the sense that all of the components
involved are well known and only have to be combined
together. The integration of areas, however, is a difficulty
that keeps the problem open and accounts for the diversity
of developed methods.

This paper presents an original attempt to identify the
components of the problem and to formulate a high-level de-
scription of the method that provides the maximum efficiency,
accuracy and applicability for the transient analysis of digital
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1995. This work was supported by NASA under Grant NAG 2-823 and by
the Office of Naval Research Joint Services Program under Grant NOOO14-
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circuits. Such an approach allows one to more accurately
assess and compare the performance of numerous and diverse
line simulation methods.

The next section presents the formulation of the optimal
approach and discusses many of the existing line simulation
methods. Section III outlines the authors implementation of
the optimal method and presents numerical verification of the
method’s accuracy and efficiency.

II. FORMULATION OF OPTIMAL APPROACH

To formulate the optimal approach, major aspects of the
line simulation will be analyzed, viz., the formulation, the line
characterization, the line model, and, the transient simulation
method (see Fig. 1). Altemative approaches in each of the
aspects will be compared to find the optimal combination
that results in the maximum efficiency, accuracy and practical
applicability.

A. Formulation

The formulation affects dimensions of the problem. One
can distinguish between time-and-space formulations and time-
only formulations.

Time-and-space formulations (such as segmentation models
[3), [4]) are based on the voltage and current distributions
inside the line. These formulations are multidimensional and
computationally extensive.

Time-only formulations deal exclusively with the voltages
and currents at the line terminals. These formulations are one-
dimensional and more efficient. Consequently, to achieve the
maximum efficiency, the line simulation should be based on
a time-only formulation.

B. Line Characterization

As can be observed from the system diagram [5] shown
in Fig. 2, a line with terminations forms a feedback system.
Therefore, one can distinguish between closed- and open-loop
characterizations.

Closed-loop characterizations (such as Z-, Y-, H- and S-
parameter characterizations [6], [7]) include reflections from
the terminations and lead to complicated oscillating transfer
functions and transient characteristics (unit-step responses).

The open-loop characterization (direct characterization in
terms of the propagation functions) separates forward and
backward waves and results in the simplest transfer functions
and transient characteristics (see Fig. 3). The complexity of the
transfer functions and transient characteristics is an important
factor affecting accuracy and efficiency of the transient sim-
ulation. Consequently, to attain the maximum efficiency and

1057-7122/96805.00 © 1996 1EEE



KUZNETSOV AND SCHUTT-AINE: OPTIMAL TRANSIENT SIMULATION OF TRANSMISSION LINES

Transmission Line Simulation

Formulation
« affects dimensions of the problem

Line Characterization

« affects complexity of the transfer functions. and transient
and impulse characteristics used for the simulation

Formulations

» muludimensional, com-|
tanonaily inefficient

« affects applicability of the

‘Closed-Loop Transter Function

Charscterizations

(such as giobat Z-, Y-, H- and 5-p

chancienzatons)

« result in compiex, oscillating transfer func-
and N

Open-Loop Transter Function
Characterization

fi and ch. od-

{propag;
mittance)
« results 1n simple, apenodic transfer func-

tions.

resulting method

Noncircult Modeis

Transient
» affects computational efficiency and accuracy of the resulting method

b

P 1sucs tons. and 1mp [3

Simulation Technique

« can not be directly

placed in 8 circust si-
mulasor, can not be
used with efficiency
for the transient $imu-

\ation of real circuits ‘

Transformations
» use system transfer functions

than linear

and time-varying systems
Equivaient-Clrcult

fNumerical Fourter and Lapiace

« computational compiexity 18 worse
« can not directly handle nonlineas

« in addition to the discretization er-
ror, introduce frequency- and ume-

Nomerical Integration )
* uses system differenoal equations
* computational compiexity 15 b-

(Numerical Convoiution)
* uses system impuise res-
ponses

« computational complewuty|
is worse than linear

*can not directly handle
nonlinear and time-varying
systems

* in addition to the discre-

Modeis
+ have a larger num-
ber of nodes than the

* have the same
number of nodes
as the line they re-

TESPONIE TUNCANON EITOrS

present, are com-

» can not be directly used with recur-
sive ume-doman solvers employed

tization efror, inuroduces
impuise-response qunca-

\uon error '

* has 1deal accuracy.

Line they "w‘wn,',‘ Jiy effi- Qy curcun simulators

.

convergence and sta-

are 2 | ¢

ient

Qnefﬁcie:u J

Fig. 1. Aspects of the transmission line simulation.

v, N+1-conductor line vg), .
el : {v,); Sigal (vq) . @ 2h
S 33| : Aok

C T ER | 1y conductors e | 2EC
. 1 g .
el A B N el
_ Reference conductof _

Fig. 2. lines. Wy ¢ and Wy represent

System model for transmission
the forward and backward matrix propagation functions for voltage waves:
Tv;.Tvz and Py, . Fvz stand for the near- and far-end matrix transmis-

sion and reflection coefficients.! 2

accuracy, the line simulation should be based on the open-
loop characterization. The complete set of expressions for the
open-loop functions for uniform lines is given in Appendix A.

C. Line Model

Line models can be divided into two large groups: circuit
and noncircuit.

Noncircuit models can not be directly integrated into a
circuit simulator. As a result, these models cannot be effi-
ciently applied the transient analysis of real circuits containing

! Throughout the paper, capital boldface, small boldface and normal italic
symbols denote matrices, vectors and scalars. respecuively.

2Gince only multiconductor lines will be considered, the modifier “matrix™
will be omutted in the future for brevity.

bility propernes

thousands of nonlinear active devices. Examples of noncircuit
models are the scattering-parameter model {6] and system
model shown in Fig. 2.

Circuit models can be directly incorporated into a circuit
simulator and are of prime practical interest. They relate
voltages and currents at the line terminals and do not depend
on the terminations. Circuit models can, in turn, be subdivided
into equivalent-circuit and device models.

Equivalent-circuit models have a larger number of nodes
than the line they represent. Examples of equivalent-circuit
models are lumped and pseudo-lumped segmentation models
(3], modal decomposition models for multiconductor lines (8],
(3], [9], and equivalent-circuit modeling of the propagation
function and characteristic impedance based on Padé synthesis
[10].

Device models have the same number of nodes as the line
they represent. A well-known example of device models is
the method of characteristics [11]-[15]. The circuit simulation
time is cubically proportional to the number of nodes and to
the number of voltage and current variables. Consequently,
to achieve the maximum efficiency and practical applicability,
the line simulation should be based on a device model that
does not require the introduction of current variables.

D. Transient Simulation Method

The transient simulation method is the prime factor affecting
the efficiency of the line simulation. The selection of the
transient simulation methods is confined to the numerical
Fourier and Laplace transformations, numerical convolution
andnumerical integration.
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Fig. 3. Examples of (a) open- and closed-loop transfer functions and (b)
transient characteristics. The scattering parameters correspond to the matched
lossless relerence system.

For the transformation and convolution methods, the com-
putational complexity is higher than linear. These methods
cannot directly handle nonlinear and time-varying systems,
and. along with the discretization error, introduce time- and/or
frequency-response truncation errors. In addition, the trans-
formation methods cannot be directly used with recursive
time-domain solvers employed by circuit simulators, that leads
to relaxation techniques which additionally degrade the overall
efficiency and accuracy [12). Examples of the convolution-
based technidues are the Spice model for lossy lines [9] and
the scattering-parameter approach [6].

Numerical integration has linear computational complexity;
it can directly handle nonlinear and time-varying systems.
does not introduce truncation error, supports variable time-
stepping and is compatible with recursive time-domain solvers.
Numerical integration methods can be subdivided into direct
and indirect.

Direct numerical integration is based on approximations
for integrals or derivatives and includes such conventional
methods as linear muitistep formulas, Euler, Euler-Cauchy and
Runge-Kutta techniques.

Indirect numerical integration [16] is based on the time-
response invariant discrete synthesis, and has ideal accuracy,
convergence and stability properties. Consequently, to achieve
the maximum efficiency, accuracy and practical applicability,
the line simulation shouild be based on indirect numerical
integration. Indirect numerical integration covers as special
cases techniques such as recursive convolution [13], [17],
and approximation of the response of a linear network to an
arbitrary piecewise linear input waveform used by some of the
asymptotic waveform evaluation (AWE) methods [18].

To systems characterized with samples of their responses.
numerical integration is applied via the difference approxima-
tion method [19]). The method is based on the approximation
of the system response with the corresponding response of a
system for which numerical integration formulas are already
available. The complexity of the difference approximation
method is only that of the approximation itself. As soon
as a system response has been approximated, the numerical
integration formulas are readily available directly in terms of
the approximation parameters.

To attain the maximum efficiency and accuracy, the differ-
ence approximation should be applied in the domain of the
system characterization. For transmission lines it usually is
the frequency domain. The time-domain approximation should
be used only when time-domain responses are available. The
complete set of analytical expressions for the fundamental
time-domain open-loop responses of two-conductor uniform
constant-parameter lines is given in Appendix B. It also
includes a new simple and accurate asymptotic approximation
for the responses of propagation functions.

To improve accuracy. the delay should be separated from the
propagation functions before the difference approximation is
applied. The conventional frequency-domain method of delay
separation for multiconductor lines is based on diagonalization
with the frequency-dependent modal transformation matrices
[14], [15]. [17]. These matrices are nonminimum-phase func-
tions of frequency with unstable time-domain responses. that
limits the applicability of the modal transformation to special
cases in which the matrices are constant [9], [20].

A novel matrix delay separation method [19] avoids the
use of the frequency-dependent modal transformation matrices
and is applicable to a general case of matrix transfer functions
containing delay. For uniform lines, the formulas for the matrix
delay separation from the propagation functions are included
in Appendix A.

E. Approximation Methods

The choice of the approximation method for the difference
approximation affects the overall efficiency, accuracy and reli-
ability of the line simulation. Based on approximation criteria,
approximation methods can be categorized into four major
groups: minimum maximum error based methods, least square
based methods, interpolation methods, and series expansion
based methods (see Fig. 4).

Mini-max methods provide the highest accuracy. but result
in the most inefficient and unreliable algorithms (nonlinear
optimization).
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TABLE 1
COMPARISON OF APPROXIMATION METHODS

Maumum ; Relative

Approximation Method Relative Error | runume
Mini-max approximation 0.0004% 200
Least squares approxumauon 0.002% 50
Interpolation 0.003% 1.0
Economized rational approximation 0.004% 20
Padé synthesis at 210 0.06% 13
Padé synthesis at infinity 03% ! 1.5

Least square methods provide high accuracy, but are still
computationally extensive. The examples of least squares
based methods for the time-domain difference approximation
are Prony's method [21] and pencil-of-function method [22].

Series expansion based methods (such as Padé synthesis
used for the AWE [23]-[25]) are computationally efficient,
but provide the poorest accuracy.

Interpolation (point-fitting) [19] agrees exactly with the
original function on a given set of samples. It provides high
accuracy for simple functions, such as open-loop transmission-
line responses, and is the most efficient among the approxima-
tion methods. It also requires the minimal number of the orig-
inal function samples, which is important when the samples
are obtained from electromagnetic simulations. Consequently,
to achieve the maximum efficiency, the line simulation should
be based on interpolation.

Table I presents the typical values of the maximum relative
error in the full frequency range from zero to infinity and
relative runtime for various approximation methods as applied
to the third-order frequency-domain difference approximation
of open-loop transmission-line functions. Economized rational
approximation starts with the Padé synthesis, which is not
accurate away from the expansion point, and then perturbs it to
reduce the leading coefficient of error in a given approximation
interval [23], [24].

As one can observe, interpolation provides accuracy com-
parable with that of the least square approximation, and

is 200 times more efficient than mini-max approximation.
Interpolation is also up to two orders of magnitude more
accurate and 30-50% more efficient than Padé synthesis.
Note also that. because of the simplicity of the open-loop
characterization. a very high accuracy is achieved with as low
as third-order approximation and as few as seven samples of
the original function used for the interpolation.

F. Summary of Optimal Approach

To summarize. the analysis of the problem showed that
to achieve the maximum efficiency, accuracy and practical
applicability, the line simulation should be based on

« time-only formulation:

» open-loop characterization:

« device model that does not require the introduction of

current variables;

« indirect numerical integration;

+ frequency-domain difference approximation based on the

interpolation and matrix delay separation.

A method close to the optimal, but based on the time-
domain difference approximation, was first proposed by Sem-
lyen and Dabuleanu [17], and was further developed by
Gruodis and Chang [15] to accommodate the frequency-
domain approximation. The advantages of the approach were
recognized only in recent years, and an increasing number
of techniques close to optimal are published [13], [14], in-
cluding techniques based on the AWE, recursive convolution
and method of characteristics, and by researchers previously
advocating transformation and direct convolution techniques.
The applicability of the methods, however, had been limited
by the lack of accurate, reliable and efficient frequency-
domain approximation and delay separation techniques such as
interpolation-based approximation methods and matrix delay
separation [19], and by the lack of open-loop models for
nonuniform lines.

The authors’ implementation of the optimal method for uni-
form lines is outlined in the next section. The implementation
of the method for nonuniform lines is described in {261].

111. IMPLEMENTATION OF OPTIMAL
METHOD FOR UNIFORM LINES

A. Frequency-Domain Line Model for Transient Analysis

The frequency-domain element characteristic (for the tran-
sient analysis) which does not require the introduction of
current variables and is suitable for the line modeling, is given
by

{il(w) = Yl(w)V1(w) —jl(w)
ig(w) = Yg(w)V2(w) —j2(“))'

The conventions for the terminal voltages and currents are
shown in Fig. 5. The expressions relating the matrix admit-
tances Y and Y3 and vector current sources ji and js to the
transmission line characteristics are derived directly from the
continuity conditions for the voltages and currents at the line
terminals. To separate forward and backward waves and open
the feedback loop, the current source j; must depend only on
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Fig. 5. Conventions for the voltages and currents at the line terminals.

the backward wave, and jo only on the forward wave. This
condition uniquely defines Yy,Y2 and j;,j2 as follows:

Yi(w) =Yz (w) = Ye(w) )
and
Jilw) = 2ip1{w)
{jm) = 2ip(w). =

where Y. stands for the characteristic admittance. and the
forward and backward current waves, ig ,ig and ip1,ip2 are
related as follows:

{

For uniform lines, the propagation functions for the forward
and backward current waves are equal, Wi = Wi, The
propagation function and characteristic admittance can be
computed from the insertion loss data [15], scattering param-
eters (27], or distributed RLGC parameters (see Appendix
A).

As can be observed, for uniform lines, the open-loop device
mode! (1)~(4) is equivalent to the generalized method of
characteristics [12], {13], [15]. However, for nonuniform lines,
the generalized method of characteristics no longer separates
forward and backward waves and loses physical meaning [26].

ib1(w) = Wip(w)[ib2(w) = iz(w) + ig(w)]

im(w) = Wig@)lin(@) = h(@) + @) 7

B. Difference Approximation

To perform the transient analysis, indirect numerical in-
tegration [16] is applied to the propagation functions and
characteristic adminances in the frequency-domain line model
(1)~(4) by using the difference approximation method [19].

For the difference approximation in the parallel canonic
form, samples of the frequency-domain transfer function are
approximated with the rational polynomial function

H(jw) = (5)

M
- A
Ho + —_—
> mz=0 1 + jw/wem

or samples of the time-domain unit-step response are approx-
imated with the exponential series

A

h(t) = Ho - Z ame= =t

m=1

where Hy and H.. denote the initial and final values of the
approximating transfer function H(jw).
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Once the approximation has been performed, indirect nu-
merical integration formulas (discrete-time difference equa-
tions) are readily given in terms of the approximation param-
eters. For the step invariance the formulas are

M
y(tn) = Hoo-r(tn) + Z Zm(tn)
m=]

am(l — e~ T )z(t,_y) + e~ wemTnz (tao1).
6)

where z,y and z,, stand for the excitation, response and state
variables, respectively, and T, = {, — tn—1 is the time step
at the nth transient iteration.

For the ramp invanance

Zm(tn)

M
Y(tn) = Hoxz(ta) = D 2ml(tn)
m=1
Zm(tn) = dm(Tn)(z(tn) — T(ta-1)) + gmwemTn Zm(tn-1).
(7N
where

1 - "_W'tan
dm(Tn) :arn_e__"

WemTn
An alternative form of the ramp-invariant indirect numerical
integration formula has the coefficients of the present-time
sample of the excitation lumped together
X M M
y(tn) = [Ho= Y dm(Ty) |2(ta) = ) 2m(tn)
m=1 m=1 (8)
(tn) (dm(Tn_l)e—-dcan - dm(Tn )I(tn—l)
+€—w‘"'T (tn—l)~

" Zm
This form is especially suitable for discretization of charac-
teristic admittance, because, for admittances. the present- and
past-time terms of the numerical integration formulas have
different physical meanings.

Before the approximation, the delay is separated from the
matrix propagation function using the matrix delay separation
formulas from Appendix A, and is modeled separately using a
low-order spline of the simulated time points. The difference
approximation is applied to each element of the delayless
propagation function and characteristic admittance matrices.
For the characteristic admittances in (1), the excitations are the
terminal voltages and the responses are the terminal currents.
For the propagation functions in (4), the excitations and
responses are the current waves.

Since the open-loop functions are aperiodic. they have to
be approximated with only real poles, —w.m. In addition, the
poles have to negative to be assure stability.

To represent the original functions accurately with the
minimum number of samples, the variation of the original
function from sample to sample should be about the same.
The following empirical formula for the sampling frequencies
was found to provide good results

l—cosﬂ). k=0.1..--

Wk=‘-l)}(( K

The end of the approximation interval, w . should be cho-
sen so that the original function would closely approach its

-
“m

K.
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final value. This assures that the resulting indirect numerical
integration formulas wiil be accurate in the full frequency and
time ranges from zero to infinity.

C. Interpolation-Based Complex Rational Approximation
Method for Frequency-Domain Difference Approximation

The method fits samples of a complex transfer function
H(w) with the rational polynomial function (5) at the set of
arbitrary spaced frequencies {0.wj.wo. - .wr} The method
proceeds in three steps.

First, the real part of the original function is fit with the real
part of the complex rational polynomial function, which is a
real rational polynomial function of squared frequency [19]

T _Co +cw? + ca(w?)? + ...+C:\[(w2)n1
Re(H(jw)) = 1+/i1h)2+132(w'2)2+'--+;3J\1(w3)~‘1' 9)

The following linear system of equations ( 10) (see bottom of
the page) results from matching the real part of the original
function with (9) at the set of frequencies and premultiply-
ing both sides of each equation with the denominator For
interpolation, K = 2M and solving (10) produces a rational
polynomial function which coincides with the real part of the
original function at all of the sampling points. For a set of
samples larger than 2M + 1, the least square solution of (10)
can be obtained. However, it minimizes the approximation
error premultiplied by the denominator, which can lead to
inaccurate approximation. Better results are achieved with the
method of averages {28], which partitions the larger number
of equations into 2M + 1 subsets in the order of the increasing
of w. The equations within each subset are added up, which
makes the system consistent. The method is effective in
averaging out the noise in measured data.

After the real part has been approximated, the denominator
of (9) is factored yielding the squared poles, —-w?,,. Conse-
quently, no unstable right-half-plane poles can be produced.
However, there still can be spurious complex conjugate and
purely imaginary poles, which are removed. The remaining
real negative poles are used to formulate the equations for the
partial expansion coefficients, am, of (5). As a result, the order
M of (5) is less or equal to that of (9).

Matching the real and imaginary parts of the original
transfer function H(w) with the corresponding parts of (5)

following linear system of equations

M1 1 | ]
1 |
l +-'T/“"71 L+wijwly
| 1 ' 1
A= 1 +uf\-/ufl 1 + u:;)\»/\u;)'\,
0 —wi /Wi —wy/wear
14 wi/wi L+ wi/wly
0 —wp fwel —W fwer
L Lt wg/wd L+ wi fwiy |
_ H, W
He RG(H_(M))
a) .
X = as :b: R(’(H(u./}\')) (l])
Im(H{wy))
axy :
Lim(H(wk)) ]

For interpolation, M = 2K and both real and imaginary parts
of the original transfer function are matched exactly at all of
the K frequency points and dc. For an arbitrary larger number
of points, the least square solution of (11) is obtained from

ATAx = ATb.

The total computational complexity of the approximation
method is that of two real linear solutions and one polynomial
factoring. The orders of the polynomial and linear systems
depend only on the order of the approximation and not on the
number of the original function samples. Since no iterative or
relaxation techniques are involved. the method is free from
convergence problems. The method can be extended to match
exactly the initial and final values of the original function and
to perform a complex-pole approximation [19].

Fig. 6 shows an example of the fourth-order approximation
of an open-loop transmission-line transfer function. As can be
observed, although only nine samples of the original function
were used, the approximation exhibits an excellent match in
the full frequency range. In general. due to their simplicity, the
open-loop functions can be accurately fit with the 3rd-9th-

at the set of frequencies {0,w1,wa, -, wk} leads to the order approximation.
Ch
1 0 - 0 0 0 : Hy
1w} Wi ~w}Re(H(w1)) —wiMRe(H(w1)) | |em Re(H(w)) 10)
B :
1wk wiM | —wkRe(H(wk)) —wiMRe(H(w)) ] | - Re(H(wk))
LB
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E 0.00368 t— 4
é" £ } element characteristic (1) is transformed into the following
0.00366 . 1 ‘ ) . . discrete-time element characteristic, or companion model
°oo® 130 Mn;“’ Bo 0 {il(tn) = Ya(ta)va(tn) = Jaltn) (12)
reavency. o (M i2(tn) = Ya(ta)Vva(t) = J2(tn)-
(a) N . . . .
? The circuit-diagram interpretation of the companion model is
‘ shown in Fig. 7. )
0.0 ? ‘ ' i The admittances Y, and Y represent present-time co-
3 ! i efficients in the indirect numerical integration formulas for
g 0.005 E . the admittances Y, and Y. The current sources j; and j2
E combine the currents jy, and jy,. which correspond to the
§ o L ] remaining parts of the numerical integration formulas for the
2 admittances, and j; and ja, which are given by the discretized
£ 0005 L 3 (G ad 4
g {jl(tn)z_le(tn)+jl(tn) (13)
g -0.01 - 7 J?(tn) = _jYz(tn) +j2(tn)-
£ Jj Equations (3) and (4) do not contribute to the admittance part
0015, : : : ‘ . of the companion model because the propagation functions
0 50 100 150 200 250 300 contain a delay.
Frequency. @ (Mrad/s) The Modified Nodal Approach (MNA) stamp corresponding
®) to the companion model (12) is (see (14) at the top of the

Fig. 6. An example of the 4th-order complex rational approximauon. The
original function is shown by the thin continuous curves and the approximating
function by the thick dashed curves.

D. Companion Model!

By applying the difference approximation to the propagation
function and characteristic admittance, the frequency-domain

page).

In the circuit simulator during the transient analysis. the
lines are represented by the tables of numbers (14). which
are recursively updated at each time iteration using numerical
integration. The left-hand side of the stamp ( 14) has to be
updated only when the value of the time step changes. If the
step-invariant indirect numerical integration formulas (6) are
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used. the LHS of the stamp becomes independent of the time
step, and only the right-hand side vector has to be updated.

Since the terminal currents are not introduced as varables,
the values of i, and iz in (4) are computed from (12).

E. Line Model for AC and DC Analyses

For ac and dc analyses, the complexity of the transfer
functions is not important, and the element characteristic that
does not require the introduction of current variables and is
suitable for the ac/dc modeling of transmission lines is the
Y -parameter characteristic

{

The Y -parameters are related to the open-loop functions as
follows:

i1(w) = Y (w)vi(w) + Yiz(w)va(w)

o) = Yor (v (@) + Yoa(wva(w). )

Yii(w) =Yaz(w)
=Y (w) + 2[I - WHw)] " WH(w)Ye(w).
Yiz2(w) =Ya21(w) 2(1 - Wi (w)] ™' Wi(w)Ye(w),

where I is the identity matrix. The expressions were derived
by eliminating j; and j2 from (1)~4), and transforming them
to the form of (15).

The dc model is merely the ac model at zero frequency. For
the limiting case of lines with zero distributed conductance,
G = 0, the dc values of the Y -parameters are

1,
Y12(0) = Y22(0) = =Y12(0) = Y21 (0) = 7R L

The MNA stamp corresponding to (15) is (see (16) at the

top of the page).

F. Initial Conditions for Transient Analysis

The dc model is used to perform the operating-point (op)
analysis before the transient simulation. The op solution is
then used as the initial conditions for the transient analysis.
The initial conditions for the indirect numerical integration are
the dc values of the state variables, which are related to the dc

value of the excitation. rg. as follows: z,,,(tg) = amsy for the
step-invariant case (6}, zm (o) = () for the ramp-invariant case
(7. and zm(to) = —dm(T1)xo for the ramp-invanant case
(8). The dc values of iry and ip2. which serve as excitations
for the propagation functions in (4), have to be expressed in
terms of the terminal voltages obtained from the op analysis.
Resolving (1)—(4) leads to

in(0) = (I - W{(0)] ! [Yc(0)v1(0)
— W1(0)Yc(0)v3(0)]

ib2(0) = [I - W(1)]7}[Yc(0)va(0)
- W1(0)Yc(0)v1(0)].

For the limiting case of G = 0. the expressions become

G. Optimal Line Simulation Algorithm

For an MNA-based simulator, the optimal line simulation
algorithm is as follows:

1) Before the transient analysis:

a) Perform op analysis of the circuit to find the initial
conditions for the transient analysis. Use the ac/dc
model (15)(16).

b) For each line in the circuit, perform the difference
approximation of each element of the propagation
function and characteristic admittance matrices.

2) At each time iteration: Recursively update the line
stamps using the indirect numerical integration formulas
obtained at step 1(b) and companion model (12)—14).

Since the method introduces neither additional nodes nor
current variables, the optimal line modeling does not increase
at all the circuit solution time. The only additional time is
required to perform a low-order interpolation once in the
beginning of the simulation, and for a low-order numerical in-
tegration. As shown in the next section, this time is negligibly
small compared to the circuit solution time.
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TABLE 1l
RELATIVE RUNTIMES
Relative Runtime?
Number Ml(‘:g:ls ] Lines Modeled with the Optimal Method
f Circuit Descripu e | Di .
N:dcs treuit. Descripaon with Total Indirect | Difference Approximanion®
Lumped Circuit Numerical Frequency Time
. bl G )
Resistors® | Simulation¢ | Integrationd | " ooy Domain®
10 2 two-conductor lines, | four-conductor line 0.937 1.00 0.0927 0.0793 0.0550
(lines and excitation sources only)
10 |2 two-conductor lines, 12 MOSFETs 1.00 1.00 9.66-10° | 9.47-107 | 6.57:107
100 20 two-conductor lines, 10 four-conductor 0.999 1.00 206107 | 175 107 1.21-107
lines (lines and excitation sources only)
1000 | 200 two-conductor lines, 100 four-conductor 1.00 1.00 1.64.10° | 1.39-10 | 9.64.107
lines (lines and excitation sources only)

& For 1000 tme points.

b One resistor per signal conductor.

¢ Does not include the difference approximation time.
d Seventh-order.

¢ Time-domain difference approximation was performed by the relaxation interpolation method [19]. The runtime includes
automatic determination of the approximation interval and interpolation points.

H. Numerical Results

The optimal method has been adopted in several industrial
and commercial circuit simulators, and, in numerous real-
life simulation exercises, proved to be reliable, accurate and
efficient. Table Il presents relative runtime data for circuits of
various types and sizes. As can be observed, even for the worst
case of a small circuit consisting only of lines, the optimal
model is virally as efficient as the simple replacement of
interconnects with lumped resistors. The resistive model was
chosen for the comparison because it represents the limiting
case in the simplicity and computational efficiency of the
interconnect modeling.

Fig. 8 shows verification of the optimal model accuracy with
the Spice3e2 lossy multiconductor line model [9]. A simple
network was chosen as an example to reduce the influence of
factors other than the line model on the simulation accuracy.
A variable, third-to-fifth-order frequency-domain difference
approximation was applied. As can be observed, the compared
waveforms are indistinguishable. In fact. the accuracy of
the optimal method depends exclusively on the accuracy of
the difference approximation which is very high (see Table
I). The runtime for the optimal model was three orders
of magnitude shorter than that for the Spice model, which
is. in turn. an order of magnitude faster than segmentation
models.

IV. CONCLUSION

From a novel analysis, based on identification of the most
significant aspects of the problem and comparison of alter-
native approaches in each of the aspects. it was shown that
to achieve the maximum efficiency, accuracy and practical
applicability, the line simulation should be based on: a time-
only formulation, open-loop characterization, device model
that does not require the introduction of current variables, in-
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N t. _ -
+ U +
{ ———l

[ T T T T N
1k 2
3 -
- I ]
2 :
» r N
E L :
< r -
§ 05 F -
3 |
= 4
al !
:
z 4

0

[ 1
T — . 1 — i L " . L ;_._j‘

0 10 20 30 40 50 60 70

Time (ns)
(b)
Fig. 8. (a) The network configuration and (b) comparison of the transient

waveforms generated using the optimal line model installed in an MNA-based
circuit simulator (thick broken curves) and Spice3e2 (thin continuous curves).

R = R, = 30 DRy, = N, =1 kQ.Ry = Ny = 10 NG
self-inductance L. = 418 nH/m. self-capacitance C. = 94 pF/m. mu-
tal inductance Lm = 125 nH/m. muwal capacitance Cv, = 22 pF/m.
R =15/m.G = 0.1 =0.677 m (ali signal conductors are the same .

direct numerical integration, and frequency-domain difference
approximation based on the interpolation and matrix delay
separation.
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TABLE ill

Function for Current Waves<

Funcuon for Voltage Wavesd

Name of Function In Standard Basis In Modal Basis In Standard Basis In Modal Basis
Admintance and Y(0) = G(w) + jo C(w) Ya(w) Z(w) = R(w) + joL(w) Z, (w)
impedance per unit o o - o
length =My() Y (@) M (@) | =M{'(@) Y(@)M,(@) | =My(w)Z_ ()M (0) =M (w) Z(w) M,(w)
lr;‘ano‘i?:)nnatjon M, (w) M @) = My(w), M, (w) M (@) = M{(w),
matrices = Eigenvectors{ Y(®) Z(w)), M =M] = Eigenvectors(Z(®) Y(w)), My =M!

M, = M, () M, =M, (=)
= Eigenvectors{C(ee) L()) = Eigenvectors{L(e) C(=c))

Characteristic
admittance and

impedance

Y. (0) =K (@) Z"(w)
=K' () Y(w)=Z;'(0)
=M (©) Y o (0) M (@)

t

Yo (@)= (2 (@) Y (W)
=KL (@)Y _(w)=Z o (w)
=M;"(0) Y (0) M{0)

Z. (=K, (w) Y'(®)
=K (0) Z(w) = Y' ()
=M, (@) Z,(w) M;'(0)

Z.(@=(Yi Z @)
=KL Z (@)=Y (0)
=M () Z (w) M, ()

Propagaton
constant®

K, (@) = (Y(0) Z()}

K. (@) =(Y (@) Z (@)

1
K, (@) =(Z(w) Y{w))i

3
Ky (@)= (Za() Y (@))

=M, (0) K, (0) M () = Eigenvalues(K, (w)) =M, (@) K_(0) M{ (0) - Eigeovalues(K, (@)
=M@ K, (0) My(©) = M3 (@) Ky () My (@) =
= Kv_((l.)) = K-((l))
. b 1 T, =K, (w0} ! 1 - v
Propagation delay T, = (Cls=) L(==))3 ! Elu. "ll-( )T T, = (L{ss) C(=))i | Tya = Kya (o) !
=K (=)= h"‘ll T lC’l-I B . glﬂl ,“CS( 2 =Ky(=) = Mv Tva M;' = I-'Jgenvalunv)
=M;' T, M, =T\, SN T, My =Ty
:’mmSIl;m W,(w) = e W (w)=e = W, () =e "™ W, (@)=~
i
- =My (@) W, (@) M{' (@) | =M (©) W@ M(©) | =M(0) Wy, (@) M) | =M@ W, @M, ©)
=Y. (@ W, (@) Z(®) =W =Z,(0) W,(@) Y, (0) =W (@)
= Wl((!)) e N = WV((D) e
=W, (0) M, ¢ = M;* =W, (0) M, ¢ T M;!
Fi.f’e"l;::aslfon W,(w) = W,(w) =" W, (@)= W,(w) e*™
function®

Transmission

T,(@ =({1+Y,@) Z,@)"

Ty(w)=(1+Z,(w) Y,(m))'I

{1-Y, (@) Z, (@)
=Y () Fy(0) Z ()

coefficient®

=Y, (0) Ty(0) Z,(w) =Z (0) T{w) Y (0)
Reflecti -1 _
coetficiont Ty =(1+Y,(0) Z,(@) Iy(@) = (Z,(@) Y, ()+1)"

{Z,(©) Y (@)-1)

=Z (0) () Y (0)

a Voltage and current functions are related via the following duality replacement rules: V&I Zo Y. R G, Lo C.

1
b Boldface (.)? and e*’ denote matrix squre root and matrix exponential, respectively.

¢ For a Thevenin's termination Z,(®).

The practical implementation of the optimal method for
multiconductor lossy frequency-dependent lines characterized
by discrete samples of their responses was outlined, including
extraction of initial conditions from op analysis and the line
model for ac/dc analysis. The complete set of expressions for
the open-loop transmission-line functions was given, including
new formulas for the matrix delay separation from the propa-
gation functions, which avoid the use of frequency-dependent

L

modal transformation matrices. The complete set of analyt-
ical expressions for the fundamental open-loop time-domain
responses of two-conductor lines was presented, including a
new simple and accurate asymptotic approximation for the
responses of propagation function. The novel interpolation-
based complex rational approximation method was introduced,
and ramp- and step-invariant indirect numerical formulas were
given in terms of the approximation parameters.
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TABLE 1V
Name of G Transient Characteristic, h(t) Impulse Characteristic, g(r)
Function
Propagation Arbitrary .
, e o L(pNe-v
W G lmw= e+ aj o HONE-T) ) | a0 =coBO+ ae =2 ut-9)
(w) - ( a7 £-1
G=0 2a a
ho(t) = 1 - —==—="u(r -0® gw(t) = e28() + ut -t)b
( Van(Hd)) (2nbtr+ d)*
Characteristic | Arbitrary . G
admittance, G he() = Yo (e'"lo(bl‘) + %Jr"lo(bt) dt ) grin=Y, {5(!) + rﬂl[(f - B)lo(b‘) +b I,(bt)]}
Y ()¢
G=0 hy(t) = Yo P 1 (B0) gr(t) = Yo {80+ B > [ 1By - 1o(B0] }
Transmission | Arbitrary R R
coefficient for G he(n) = E%EE { —Zo[z*' (1 - E)f"] &= R,%Z 80 + E’Z_nig {Z° (c - ar"

voltage waves,
T, (0)%9

L4

+R, | ebily(bt) + @B - ) J.e"""‘ Io(br)
0

RG
+ R—{ir“’ Jt"“" () dt dt

+ R [ [(B - otbr) + b1:(b0)]

+ (c(c -9+ XG )rﬂJe"‘f" L &t }}

J

1

o g (- £

+ R [ﬂ'lo(b‘) + QB -c) e | e®ly(br) dt

- _é_ Z B "
e)=g,7Z &)+ ;'—_ﬂa {Zo(C- L)’
+ R [ [B-)o(n) + b1:(b0)

+c(c-2B) r“J’e‘k" ly(bt) dt }

he(t)=1-2h7(n)

Reflection coe-
fficient, T'(w)?*

R

Note: u(t) is the unit-step function, a= %(GZM Z)l, a= % lG&,— %‘l B= % (_C_‘*'L)‘ b= lf l-g—..

c= - E Z’ d= __;‘.a_z———
LR-z¢ 2nh(] - o)

sl = 8(n - 280

G, R R

Al
TN [ AL FrGo0asas L pese £
Ct= NCLIL, Yo = L,andZO- C.ForG-O.a—a-zzomdB—b-ZL.

a In the case of two-conductor lines, this functions are the same for both voltage and current waves.
b Approximation based on the asymptotic expansion of the modificd Bessel function /,(x). It is within 1% accurate in the full time

range.

¢ Expressions for the coresponding dual (voltage/current) functions can be obtained via the duality replacement rules (see

Appendix A).
d For a Thevenin's termination R,.

The optimal method is compatible with recursive time-
domain solvers employed by circuit simulators and supports
variable time-stepping. The method has been adopted in sev-
eral industrial and commercial circuit simulators. and, in
numerous real-life simulation exercises, proved to be reliable
and accurate. It was shown on an extensive set of runtime data
that. based on the optimal approach, accurate line modeling in
a circuit simulator is as efficient as a simple replacement of
interconnects with lumped resistors.

APPENDIX A
OPEN-LOOP TRANSMISSION-LINE TRANSFER FUNCTIONS

See Table 111

APPENDIX B
TIME-DOMAIN OPEN-LOOP RESPONSES OF
CONSTANT-PARAMETER TWO-CONDUCTOR LINES

See Table IV.
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Capacitance Computations 1n a
Multilayered Dielectric Medium Using
Closed-Form Spatial Green’s Functions

Kyung Suk Oh, Student Member, IEEE, Dmitri Kuznetsov, and Jose E. Schutt-Aine, Member, IEEE

Abstract— An efficient method to compute the 2-D and 3-
D capacitance matrices of multiconductor interconnects in a
multilayered dielectric medium is presented. The method is based
on an integral equation approach and assumes the quasi-static
condition. It is applicable to conductors of arbitrary polygonal
shape embedded in a multilayered dielectric medium with possi-
ble ground planes on the top or bottom of the dielectric layers.
The computation time required to evaluate the space-domain
Green’s function for the multilayered medium, which involves
an infinite summation, has been greatly reduced by obtaining
a closed-form expression, which is derived by approximating
the Green’s function using a finite number of images in the
spectral domain. Then the corresponding space-domain Green’s
functions are obtained using the proper closed-form integrations.
In both 2-D and 3-D cases, the unknown surface charge density
is represented by pulse basis functions, and the deita testing
function (point matching) is used to solve the integral equation.
The elements of the resulting matrix are computed using the
closed-form formulation, avoiding any numerical integration.
The presented method is compared with other published results
and showed good agreement. Finally, the equivalent microstrip
crossover capacitance is computed to illustrate the use of a
combination of 2-D and 3-D Green’s functions.

I. INTRODUCTION

N recent years, the characterization of microstrip disconti-

nuities in a multilayered dielectric medium by equivalent
circuits has gained special interest due to the modern develop-
ment of VLSI technology. For an inhomogeneous structure
the modes are hybrid, and the full-wave analysis must be
considered. However, the quasi-static approximation is suffi-
ciently correct when the transverse components of the electric
and magnetic fields are predominant over the longitudinal
components; in other words, the transverse dimensions of
microstrip lines are much smaller than the wavelength. Based
on this quasi-static approximation, we present an efficient
method to compute the 2-D and 3-D capacitance matrices
of multiconductor interconnects in a multilayered dielectric
medium.

Under the quasi-TEM approximation, the capacitance cal-
culation follows from the solution of Laplace’s equation
with appropriate boundary conditions. Various methods have
been employed to obtain the solution in two-dimensional
space [1]-{9]. Two commonly used techniques for both 2-D

Manuscript received April 5, 1993; revised October 11, 1993.

The authors are with the Electromagnetic Communication Laboratory,
Depantment of Electrical and Computer Engineering, University of Ilinois

at Urbana-Champaign, Urbana, IL 61801 USA
[EEE Log Number 9402933

and 3-D capacitance calculations in multilayered structures
are the integral equation method [10], [11] and the domain
methods, such as the finite difference and finite element
methods {12}, [13]). In the domain methods, the unknown
potential distribution is solved to compute the capacitance
over an entire domain by either directly approximating the
differential equation with the finite difference equation (FD) or
using the equivalent variational expression in conjunction with
the method of subareas (FEM). The major disadvantage of the
domain methods is that the unknown potential distribution to
be sought is over the entire geometry considered, inciuding the
dielectric regions; hence, it may be computationally inefficient
for the open geometry case even with the use of absorbing
boundary conditions to truncate the open geometry. On the
other hand, the integral equation approach first obtains the
Green's function for a layered medium using image theory,
which consists of rather slowly converging infinite series, and
solves for the charge density on the conductor surfaces using
this Green's function as its kernel. As noted in [2] for NV layers,
the expression for the Green’s function would consist of N —1
infinite series. Alternatively, the free-space Green's function is
used in [2], [3] to avoid infinite series, but additional unknown
charges on the dielectric interface and ground planes, on top
of the unknown charges on the conductor surface, must be
included. Hence, the dimension of the resulting moment matrix
is substantially increased.

Yet another approach to avoid an infinite summation is to
solve the integral equation in the spectral domain (SDA),
where the Green's function is in a closed-form expression;
however, this approach can not be applied to general problems,
e.g., conductor with a finite thickness. In this paper, the
Green's function for the layered medium is approximated
in the spectral domain using exponential functions, which
is equivalent to a finite number of weighted real images
in the space domain. Although complex-valued exponentials,
which are often used in a nonquasi-TEM analysis [14], can
also be employed to reduce the number of weighted images
{15), real-valued exponentials are sufficient to approximate
for quasi-TEM applications, and it further avoids the use
of expensive complex operations. Since the spectral-domain
representations of the Green's function for 2-D and 3-D cases
are identical, the approximation is only performed once for
both cases, and then the equivalent weighted images in the
spectral domain are directly used to evaluate the Green’s
functions in the space domain.

0018-9480/94504.00 © 1994 IEEE
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Fig. 1. (a) Cross-sectional and (b) planar views of possible configurations of

multiconductors in a multilayered medium. The two figures are not related.

II. GENERAL STATEMENT OF THE PROBLEM

The general geometries of systems of multiconductors em-
bedded in a multilayered medium are illustrated in Fig. I;
(a) shows a possible cross-sectional view while (b) shows a
possible planar view. An arbitrary number Ny of nonmagnetic
dielectric layers are backed by two optional ground planes
with possible top or bottom locations, and within these layers
an arbitrary number N, of perfect conductors are placed
throughout the layers with arbitrary orientations and possible
discontinuities. The geometries of the dielectric layers are
assumed to be uniform in the z- and z-directions, and the
cross sections and planar geometries of the conductors can be
arbitrary as long as their boundaries can be described with a
piecewise linear function.

The integral equation relating the electrostatic potential
V(r) to the charge density p(r) is

V(r)=/{;G(r,r')p(r')dr' )

where G(r.r') is the Green's function for the multilayered
medium, and 2 denotes the surfaces or cross-sectional bound-
aries of conductors for 2-D or 3-D problems, respectively. The
capacitance can be computed by solving this integral equation
for the charge density p(r') with various settings of voltages on
the conductors. We will first concentrate on the determination
of the Green's function G(r,r’).

1II. APPROXIMATION OF THE
SPECTRAL-DOMAIN GREEN'S FUNCTION

Consider a unit point charge located at the mth layer at
{(zo,yo0.20) (Fig. 2). By definition, the 3-D Green's function

Fig. 2. the geometric configuration used for determining the Green's func-
tion.

satisfies Poisson’s differential equation:

VG (2,y,2 | 70.0:20) = 26(z ~ 20)6(y ~ 10)6(z — 20)

(2)
with the appropriate boundary conditions at the possible
ground planes and dielectric interfaces. Noting that the
dielectric medium is uniform in two directions, we can
represent the Green’s function and the point source in the
spectral domain in terms of its transforms in the z- and z-
directions. The space-domain and the spectral domain Green's
functions are then related by

GSD(If ¥,2 | Zo. Y0, 20)

1 +o0 +oo » - )
= dadﬂe'-"’ z~20)—-38(z—2¢
). |

X GSD(asysﬁ I anyO-ZO)
(3a)

ésD(a‘yaﬁ l Iy, yOaZO)

+oo  poo
- / / drdzeia(z=r0)+i3(z=20)
-0 J-=

x G30(z.y,2 | 20, y0, 20)
(3b)

where G%P(a.y. 8 | zq,y0.20) is the 3-D spectral-domain
Green’s function and o and 3 are the transform constants
associated with the z and z directions, respectively. Then, (2)
can be written as

82 - 1
(537 -a’ - 52)G3D(a,y,ﬂ | 20, ¥0, 20) = ~6(y ~ vo)-
4)

The general solution of the above equation is given by

. Amne=" + B, nem
G*P(r,y | o) = =P 2Ly =Vl + 2
7 (5)

where the first subscript m denotes the layer where the
source is located (source point), while the second subscript
n denotes the layer where the Green's function is evaluated
(observation point). The same expression can be obtained by
Fourier transforming G?P(z,y | zo,yo) in the z-direction

4

v r————————— . o
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with the transform variable ~. Furthermore, since the unknown
coefficients A,, , and B, are to be determined using the
boundary conditions in the y-direction only, it is easily seen
that the expressions for G20 and G3P must be identical
under our Fourier transformations. Thus, in what follows,
we will omit the superscripts for the spectral-domain Green’s
functions. Applying the boundary conditions at the dielectric
interface and ground planes, (5) can be wntten as

- A+ i
G(vy|r) = ﬁ(e"“’“” + Fn‘n+le-27d.‘+w) v> 1
m
(6a)
G(rylro) = f*ﬂ(e*’” + f‘,,,,,_le+2wdn—w) Y < v
-m
(6b)
where
4+
A H JJ+1
Ar.n,n = m m H Js J 1 (7)
j=n+l
S+ = - ijj'f-l
7 1- ri+l.jrj+1,j+282‘7(d1-d;+1)
i = _ Tj-i-l @)
3i-1 1- Fj_l'jrj_l'j_zeh(dj_l_dJ)
izl = I-‘.7‘.J'+1 + fj+1,j+2ez7(41'dj+1)
a 1+ rJvJ+lI:j+l,j+2621(dJ-dj+l)
[ - F-1+ fj_l'_,'_ge27(dl-2—d;—1)
W 1+ Fj,j—lfj—1,j_262‘7(d:-:—d1-1)
(9a)
€i — & 25,‘
Fl‘,j=€>+6. i‘j=6_+6_'
1 J i g
(9b)

Here, I j41 is the generalized reflection coefficient, which
is the ratio of the amplitudes of voltages at y = dp, due to the
image charges located above and below the jth layer. T'; ;4
takes the value of 0 or —1 if the jth layer is a half space, or the
(7 + 1)th layer is a ground plane, respectively. The unknowns
to be determined are A}, .. and A, ... Using the facts that,
at y = yo, (6a) and (6b) must be equal and that the normal
component of the displacement field must be discontinuous by
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the charge density at ¥ = yg, we can obtain expressions for

A and A7 | as follows:
AL =Mn [e*‘”’" + f‘m,m-le°2"““"'“’y°} (10a)
A = Mn [e'wo + Fm,mﬂe‘?"““*"w} (10b)
where

(1D

Now to approximate the Green’s function with respect to -y
but independently of y and o, we rearrange these expressions
by factoring out all y and yo dependencies as follows in (12a)
and (12b), shown at the bottom of the page. where

“‘[m - [1 - f‘m.m—lfm,m+le+27(dm_l_dm)}_

n—1
K:tnl-M I-‘ﬂn+l HSJJ+1
j=m
n~1
Ko =MuTaneiTmm-t [] S5in1
j=m
mnS—"u HSJJ+1
j=m
mnA—‘M me 1H G+l (13a)
J-—m
Kny=Malmms H -1
j=n+1
mn2—A’I H j.g=1
j=n+l
mn3_h1 I‘mmd-lrnn 1 H =1
j=n+l
Knpsa=Mulan [ S5i-r (13b)
j=n+1

The determination of the closed-form space-domain Green's
function can now be preceded by the approximation of the
coefficient functions Km n,; Of the exponential terms.

A physically intuitive approach to approximate the potential
due to a charge in the layered medium is the use of a finite
number of the weighted image charges in the homogenous
medium, which is equivalent to approximating the coefficient

functions K= ; with exponential functions. The equivalence

mﬂl

G(ry|ro) = ———7(K+ e 2dn) gt

+ K;‘"’4ev(-y—vo+2dm-l)) ¥ > %0

( m,n,1

Glryiro) = 57—

+ Ky, g€ "ymvot2dn- 1))

K- ,eYvtvo=2dm) o K'

¥ <%

e'1(+v vo+2(dm-1dn)) L K " e7(-v+yo)

(12a)
e*r(+u vo) +K} ., e“r(—v+vo-—2(du-x—dm))

(12b)
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Fig. 3. The geometry used to test the approximated Green's function.

Vorioe

between the weighted image charges and exponential functions
will be shown below in (15) and (16). In EM analyses,
the complex-valued exponentials are often used for pole-
zero modeling of signals, such as an electromagnetic-scatterer
response. The least-square formulation of this exponential
approximation results in nonlinear equations and can only
be solved by iterative methods, such as gradient descent
procedures or the Newton method. Due to the computa-
tional inefficiency of these algorithms, some other suboptimal
noniterative techniques are also proposed: the least-squares
Prony method and the generalized pencil-of-function (GPOF)
method [16], [17]). Although these algorithms are noniterative,
their computation involves matrix inversions and a polyno-
mial factoring or a solution of the generalized eigenvalue
problem, which are still computationally inefficient compared
to the proposed method. By taking into account the specific
properties of the coefficient functions K ,ﬁ,nvi, which are real-
valued and nonoscillatory, we can utilize more simple and
efficient methods than the universal approximation techniques
mentioned above; in particular, real exponentials are sufficient
to approximate the coefficient functions and avoid any com-
plex operations!. Thus, we have devised a simple relaxation
algorithm based on curve fitting. The details of the procedure
are given in Appendix A. Although this method is simple and
iterative in nature, it converges to reasonable accuracy in a few
iterations, and requires less computation time as compared 1o
those for the previously mentioned methods.

In general, the coefficient functions K fn_n',» have asymptotic
values, and an analytical extraction of these values should
be performed to increase the accuracy of the approximated
functions or to reduce the computation time. The expressions
for these asymptotic values can be easily obtained numerically
or analytically. Furthermore, some of these coefficient func-
tions are often zero, one, or symmetry of the others and these
properties can also be explored to reduce the computation time.

It can be seen that there exists a pole at v = 0 for a case with
a presence of both top and bottom ground planes, and K, :'N-
can no longer be approximated with exponential functions.
To remove the singularity for this case, one can subtract
the original Green’s function by the Green's function for a
homogenous case. Then, the remain part can be approximated
as before, and for the homogeneous Green’s function a closed-
form or a fast converging summation form can be used in the
space domain [18]. The detailed discussion of a stripline case
for the 2-D case is given in Appendix B.

) The complex-valued exponentials can be viewed as the complex images
in the space domain in this paper.
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Green's Function
, In the Spectral Domain
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Fig. 4. Comparison of approximated and exact Green's functions in the
spectral domain.

The Green’s function for the structure shown in Fig. 3 is
approximated and compared with the exact Green's function
in the spectral domain. The dielectric constants €, 5, and €3
are taken to be 2eg, 3¢9, and g, accordingly. The thicknesses
of the layers ¢, and t; are 0.6 mm and 1.0 mm, and the
observation and source points, y and v, are 0.6 mm and 1.6
mm, respectively. A maximum number of eleven exponentials
were used to approximate the Green’s function. As shown in
Fig. 4, the approximated results agree with the original one,
and the maximum relative error was 0.0003. It is important to
observe that although the exponential approximation might fail
for the large argument case due to its fast decaying nature, by
extracting the asymptotic value and the exponential factor from
the coefficient function, the limiting behavior of the overall
approximated Green’s function would still remain accurate.

After approximating the Green’s function in the spectral
domain, one can obtain the expressions for 2-D and 3-D spatial
Green’s functions using the following identities:

1 1

Tzl 424 22

I

1 +o¢  p+oc ) -~lyl
=5 / / dadBe™e=+80 5 (14q)
T /e Jooo Y
—lIn(p) = —ln(\/:c2 + y"’)
+ -
R i (14b)
2 o 7l

The above identities can be easily derived by considering the
potential due to the unit point or line charges?. Thus, in the
space domain, the approximated Green’s function for 2-D and
3-D cases, in general, can be written as

4
3D __1 aD.x
G (r|r) = e 2 [ (r | ro) (15a)
&
G®(p | po) = ~5= 2 % (el p0).  (15H)

j=1

Again, the superscripts + and — are used to denote the cases
for y > yo and y < yo, respectively. For j = 1 and y > yo.

2liquau'on (14a) can be viewed as the static version of Weyl's identity.
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2-D Green's Function
In the Space Domain
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Fig. 5. Comparison of approximated and exact Green's functions in the space
domain.

the expressions for fm *(r | ro) and fm *(r | rg) are given
by (16a) and (16b), shown at the bonom of the page. Here,
K¢ denotes the asymptotic value of Km n,; and we have

m,n,J
assumed that K, , . is approximated by

nj

NT
m,n.;
Koni= 2 Comse®ma7, §=1.2,34 (7
where N7 ; is the number of exponential functions used

to approximate K= = n.j- The approximated Green's function is
also compared in the space domain for the 2-D case. The same
structure is used as in the previous one with €2 = £; = 2¢o,
and y and yo were 0.6 mm and 1.6 mm, respectively. A
maximum number of exponentials used in the approximation
was five. The exact Green's function is obtained by applying
the image principle in the space domain. Fig. 5 shows the
comparison. The maximum relative error was 0.0033.

Finally, we note that considering the forms of (15) and
(16) it can be seen that the exponentials used to approximate
the Green’s function in the spectral domain correspond to the
weighted images in the space domain.

IV. SOLUTION METHOD FOR THE INTEGRAL EQUATION

Once we obtain the approximated Green's function, the
integral (1) can now be solved by the moment method. First,
discretizing the surface or the cross section of each conductor
with polygonal-type elements, the unknown charge density can

1447

be expanded with the puise basis functions over the discretized
elements. Then, applying the point matching technique to each
cell, (1) for 3-D problems becomes

Nt

V.= qu// G(ziyyi,z: | T,y.2)ds; i=1,2....,Nr.
k=1 9%

(18)
Here, qx is the unknown coefficient to be determined, and Nr
is the total number of cells used to discretize conductors. si
is the surface of the kth cell, and point matching is applied at
the center of the ith cell (z;,yi, ;). The similar equation can
be also obtained for 2-D problems. Assuming that all possible
ground planes are held with the same potential and the ith cell
is in the jth conductor, V; is the voltage difference between the
jth conductor and the ground plane; in the case of no ground
plane, any one of the existing conductors can be chosen to be
the ground reference to define the voltage. For the capacitance
computation, V; takes the value of 1 or 0 depending on the
excitation of the jth conductor.
With manipulations in y,y:, and the terms due to the
exponential approximation, the surface integration in (18) can

be put into the following forms:
M=

/,/ (z -1 2+(yd Y2+ (z - 2)
it

(19a)

Similarly, for 2-D problems we have

fc In(VE =7V + (v - V)a = / In(lp - &/l

= / In(P)dl'.

The evaluations of (19a) and (19b) over an arbitrary polygonal
patch and a line segment are well-known and the closed-form
formulas are given in [19].

Now solving the system of linear equations obtained from
(18) will give the unknown charge distribution in terms of
its basis function. It is important to point out that without the
closed-form expression of the Green's function, the integration
(19) must be performed, theoretically, an infinite number of

(19b)

1

£ (r I ro) =

mv\l

+,00
™ ST — 20)2 + (¥ + yo — 2dn)? + (z — 20)°

+ Z mnl (

2% (o | po) = Km ln(\/(? =~z + W+ v0 - 2,))

- . (16a)
T - T0)2 + (y + yo — 2dn + @}, )2 + (z — 20)?
Z AR (\/(17—1?0)2 + (v + yo — 2dn +a}h, 1)2) (16b)
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TABLE 1

Computation Delabare et al. [4]

-0.8900 -18.097 87.962

14138 -21.493 —0.9924
-21.491 92951 -17.844 | (PF/m)

14209 -21.765 -0.8920
-0.9023 -17.844 87.495

—21.733 93529 -lams} (pF/m)

Single Microstrip (w/h=1,6r=4)

-2
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S q 4 —— Spectral
£ -2
C 16210 o i o = = - Result |-
1
16010 2 L S,
!
15810 - 4
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Number of Basis Functions

Fig. 6. Comparison of the present method with the spectral domain approach
as a function of the number of basis functions.

times. For most practical problems, the time to construct the
matrix of the linear equation (moment matrix) takes the major
portion of the computation time. We have significantly reduced
this computation time by approximating the Green's function
with a finite number of exponentials.

V. NUMERICAL EXAMPLES

A computer program was developed based on the above
algorithm, and it is capable of handling an arbitrary number
of dielectric layers and conductors and designed to read mesh
data from a conventional mesh generator to allow computation
of the complex geometries and meshes. The algorithm is tested
for both 2-D and 3-D problems, and the equivalent crossover
capacitance of two orthogonal microstrip lines is computed
based on the integral equation with both 2-D and 3-D Green'’s
functions.

A. 2-D Problems

First, a simple microstrip capacitance is computed to verify
the method, and the results are compared with those for
the spectral domain approach (SDA) in Fig. 6. The spec-
tral domain method used for comparison solves the integral
equation iteratively in conjunction with the minimization in
the boundary condition error. A more complex geometry, a
three-conductor system in a layered medium, shown in Fig.
7, is also computed. The number of basis functions used
was 50 for each conductor. In both cases, the maximum
number of exponentials used to approximate the coefficient
function K , ; was 7. Comparison with the results in {4] is
shown in Table I. In [4], the spectral-domain Green’s function
is numerically integrated to obtain the corresponding space-
domain Green's function using a Gaussian quadrature formula
in conjunction with analytical asymptotic extraction.

350 um
v 7 =
um == — 1 ]
7
&=32 100 pm

> a3 200 pm
150 um
W///}/W%

Fig. 7. Three conductors in a layered medium. All dimensions of conductors
and spacings are identical.

2

M gl 'y
i e B e | | I/ 1
6 7 [ 9 10
D ' K]
U — 1 [ /Y
1 2 3 4 5 &
> e e e b
[ ] 12 15
600
[231]

/7

Fig. 8. Ten conductors in a layered medium. All dimensions of conductors
and spacings are identical, and all units are in micrometer.

TABLE II

30713 412 -1L.34 628 -535]1 2188 4966 -1.385 0814 0729
4120 3196 -2804 -1.79 4987 .5.025 -21695 -354 0985 0.666
-11.34 2804 3105 -2429 8587 -1366 -3.503 -2184 318 -1.148
6279 -7.79 -2429 3035 2473 0798 0946 -3.164 2194 -3.34S

-5.351 4988 -8.588 -2473 2905 0708 0627 112 -3325 .2213
-2188 -501 -1.363 079 0709 2317 2074 0393 0182 0134
-4.954 21697 -3494 0544 0628 -2074 2320 -119 0255 0135
-1.382 -3.532 -2184 3157 -1.12 0393 -119 2318 08752 0242

0813 0982 -3174 2195 -332 0182 0255 -0875 2316 -0.763
0729 0665 -1.145 -334 2214 0.134 0135 0242 0763 2313

A ten-conductor transmission line system above a thick
dielectric substrate, shown in Fig. 8, is also considered. The
total number of 300 basis functions was used to represent
the unknown charges, and nine exponentials were used to
approximate each coefficient function of the Green’s function.
Table I shows the computed results. The same structure is
considered in [3] using the free-space Green's function with
the basis functions which incorporate the edge singularities
of the charge near the comers of the conductors. In [3), data
are obtained using 160 and 190 basis functions for conductors
and dielectric interfaces, respectively. The methods used in
[2] and [4] are also employed to compute the same structure
in [3]). According to [3], the methods used in [2] and [4])
resulted in nonphysical values, for instance, negative self-
capacitance values. The method used in [4] took the CPU
times of 89611.19 s on an IBM RS-6000 station with 300
basis functions, whereas, the method in [3] took 458.67 s. On
the same machine, our method took only 85.7 s of CPU time.

For the final 2-D example, a multilayered stripline case,
shown in Fig. 9, is also analyzed. Fifty basis functions are
used to discretize each conductor. We have obtained the values

—-
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Fig. 9. Two conductors in a layered medium with two ground planes.
Dimensions of conductors are identical.

Y

2mm

T

Fig. 10. Geometry of the test microstrip bend.

Cu = 022 = 217.07 pF/m and Cl2 = Cgl = -107.76
pF/m. Data obtained from the Ansoft Maxwell software are
C11 = C'n =217.65 pF/m and C12 = C21 = ~108.24 pF/m.

B. Equivalent Capacitance for a Microstrip Bend

In this numerical example, we will use the 3-D Green's
function to calculate the equivalent capacitances for a right-
angle bend of a microstrip line. Although the equivalent
capacitance or excess capacitance due to the right-angle bend
discontinuities has been well-studied {20}, [21], it is consid-
ered here again to verify the present method. An accurate
characterization of a microstrip bend involves the semi-infinite
microstrip lines which, in turn, requires different expressions
for the Green’s function. However, since the effects of the
discontinuity are localized, it is expected that the equivalent
capacitances can still be accurately calculated by truncating
the semi-infinite lines with finite lengths.

Referring to Fig. 10, the excess capacitance Cex can be
defined by

Cex = lim [CT — Cunit(h + 12)] (20)

!
2=

2!

where Cr is the total lumped capacitance and Clp;s is the

capacitance per unit length for the uniform microstrip line.

Setting V to 1 in (18), (20) can be directly written in terms
of charges:

Cex = Qex = lim

() gmeo

’
2=l

[QT = Qunif(ll + 12)] 2D

Here, Qr is the total charge on the conductor, and Quaif S
the charge per unit length for the uniform line. The excess

TABLE 11
Computation Silvester et al. {20] Guptaetal [21)
Co (D) 65.3 72 67.65
Crormalized 0.359 0.386 0.363
(Cox / {Cuny * AN

—l W l—
[
[

— w)|
|<———-| {
N

Conductor |

|
I { Conducior 2
|

—— - ——  Center Lines

(a)

Free Space

€ hy

€ h)

AN 2 N
(b)

Fig. 11. (a) Planar and (b) cross-sectional views of the microstrip crossover.

capacitance was computed forw =1.5mm, h=3mmande, =
4.5, and [ o and [} 5 were 5 w and 20 w, respectively. A total
of 456 nonuniform cells were used to mesh the geometry, and
Cunit,» which was calculated using the 2-D Green’'s function,
was found to be 62.12 pF/m. Table III compares the program
results with those obtained from [20}, {21]. The result from
[21] contains a maximum error of 5%, while [20] contains 4%
according to their analysis. The graph reading error must also
be considered in [20].

C. Equivalent Capacitance for a Microstrip Crossover

In the following, we seek the equivalent capacitances for
a microstrip crossover. Fig. 11 shows the geometry of the
crossover considered, and Fig. 12 shows the equivalent circuit
representation. In Fig. 12, two lines are uncoupled except c™
at the location of the crossover. Here, instead of constructing
the integral equation in terms of the total charges, as we did
for a microstrip bend case, we will formulate the integral
equation in terms of the excess charges. The major drawback
of the prior approach is that since the excess charge due to the
discontinuities is usually much smaller than the total charge,
the final accuracy in terms of the excess charge is much worse
than the accuracy obtained for solving the total charge.

Based on the equivalent circuit representation in Fig. 12,
the integral equations after applying the boundary conditions
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T
Fig. 12. Equivalent circuit representation for the microstrip crossover shown
in Fig. 11.

on the surfaces of the conductors can be written as follows:
v] _ [(GIT.ahi) + (G, ey
[OJ (G2 1) +(G32.af; }
(G3P.atr*) + (G, at%) + (G3P.ai5)
| (6B at) + (GIP.att + (G a53) J
(22a)
[oJ [(GiP.a51) + (G3D, 03, J
|(Gi%, 95, ) + (G3%, 43
(G20, a33") + (GIP.a5t) + (G3P, 053
| (GB,a38") + (G, a5t + (G3P. o83 ) ]
(22b)

Here, the superscript T' denotes the total quantity on the line
while the superscript unif denotes the quantity per unit length
of an isolated line. The integrations over the Green's functions
are symbolically written by (-, -), and the excitation voltage is
assumed to be 1. The subscript 75 used in the Green'’s functions
Gi; denotes that the source is located at the ith conductor,
and the boundary condition is applied at the jth conductor.
The subscript ij used in the charge density functions g;
denotes that g;; is the charge density at the jth conductor with
excitation at the ith conductor. Now noting that (GZP, g¢nif)
is equal to V, we can rewrite (22) as follows:

0 _ (68, a13) + (G0, 33)
[-(G??’qi‘?"ﬂ B [(G??,qﬁ) + (688, 453 J .

(Gt ] (G?P,q§§>+<GSP=Q§’z‘>}
[ ( £ >] - [<G:132D,q§’1‘>+<G§?,q§’2‘ . (23b)

Since the excess charges are expected to be localized, we
can truncate the domain of the basis functions used to expand
the excess charge density over distances !; and [, from the
crossover junction (see Fig. 11(a)). Now using pulse basis
functions and the point matching technique, (23) can be put
into the following matrix form:

Vii. O 0 Q‘z'?"} - [Mu Mn} [Qﬂ‘ q§’1‘]
0 Vi lqigif 0 M2 Maz | (915 q53
(24a)

TABLE IV
E1=2andgy=2 | gy =4, andg2=2
o £9.17 (F) 59.748 (fF)
o -55.40 ({F) -48.580 (fF)
b -58.94 (fF) -53.968 (fF)
TABLE V
COMPARISON OF RESULTS FOR FIG. 11 WITH €7} = €9 = 2
Papalhecﬁgll'ou et al. Computation
cmoverhic 1.672 1.776
ﬁ“q -1.345 -1.321
ﬁ%; -1.296* -1.513

* This entry is incorrect. and it can be verified by considering [10, Fig. 4].

where
[Vl = - ; GIT (i | o)l
Va2 = - g Gi%(pi | ')l (24b)
M = [ [ GIP(ri | r)as 24c)
sJj
qj = [qf}‘,lf L qf}f.\rw.,]l
g™ = [q,-“f’,‘ff,qz".",‘z”, i ,9.”,-',‘_3,9‘,]'- (24d)

Here, [A];; is the jth element of the ith row of the matrix A,
and N3p ; and Nop ; are the number of patches and the number
of segments used to discretize the surface and the cross section
of the ith conductor, respectively. q;’i“" can be obtained by
solving the 2-D problems for each isolated microstrip with the
excitation voltage set equal to 1. Then (24) can be solved for
the excess charges. Finally the equivalent excess capacitance
can be found by

Niap.i
f= ) Areajy - ¢y (25)
k=1

where Area;y is the area of the kth patch in the ith conductor.

For a numerical example, the same structure used in [10] is
considered, where h; and h, were 4 mm and 6 mm, the widths
of both strips were 0.04 h;, respectively, {; and I, were 10
h2, and 800 nonuniform patches and 40 pulse basis functions
are used to solve the 2-D and 3-D problems, accordingly.
Two different dielectric configurations are considered and the
results are shown in Table IV. The maximum number of
exponentials used for each coefficient function was seven for
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(a) (d)

Fig. 13.
y denote the transverse and the longitudinal, respectively.

both cases. The result with €., = €. = 2 are compared
with the results from [10] in Table V. In Table V, ¢ and ¢}
are the capacitances per unit length of the isolated wire lines
with radii equal to 0.25 w and €} = €,2 = 1. In [10], [;
and [, were 10 h;; hence, their value of ¢™ is expected to
be smaller than ours as shown in Table V. The 3-D plots of
excess charges are shown in Fig. 13. The Green’s function used
in [10] is based on the image principle in the space domain
and involves an infinite summation. According to [10], only
ten terms were sufficient to evaluate the infinite summation
for this particular structure, where lines are extremely narrow.
However, for wider microstrip lines, the number of terms to
compute the infinite summation will be much larger; this can
be easily seen from the expression of the Green's function in
[10].

VI. CONCLUSION AND FUTURE WORK

In the design of VLSI circuits, the capacitance computation
plays an important role, and the present method can be
conveniently combined with CAD tools. Since the Green’s
function depends only on the processing parameters, such as
the thickness and number of dielectric layers, the dielectric
constants, and location of ground planes, the Green’s function
approximation has to be performed only when the processing
parameters are changed. Then, the approximation result can
be used to compute capacitance parameters throughout the
design period.

In the computation of parasitic or excess capacitances, semi-
infinite microstrip lines are often encountered, and to have
accurate results, as mentioned earlier, the integral equation
is often formulated in terms of the excessive charges which,
in tum, requires the Green's function due to the semi-infinite
lines. The authors are currently studying the generalization of
the present method for such a Green’s function in a layered
medium.

APPENDIX A

THE REAL-VALUED EXPONENTIAL APPROXIMATION
BASED ON THE RELAXATION OF CURVE FITTING

First, we will assume that a function y(z) to be approxi-
mated is real valued and nonoscillatory and, furthermore, that
its asymptotic value is zero. The latter assumption can easily
be satisfied if the function is limited at infinity. Our goal is to

Plots of the magnitudes of the excessive charge distributions for (a) g7, (b) g57. (c) ¢73. and (d) g3 with ¢y = 4, and €,0 = 2.

oxto !

SOxlU'”i
|
\

N
a3y
‘\\:‘“\\\\\\\\\\\\\\\

S

@

x and

find the right-hand side of
N N
y(2) = fo(z) =D file) =) _ Cie™®  (AD
i=1

Let w us for a moment assume that each first-order function f;
approximates the original function y at some interval around
one of the approximation points and is decreasing fast enough
so that its value is negligibly small at the approximation points
corresponding to larger values of the argument z. Then, we
can safely determine one of the first-order functions, say f), by
neglecting contributions due to the other first-order functions,
which are as yet unknowns to be determined. The parameters
of fi can be easily obtained by curve fitting two values of y
for some large value of z. In a similar manner, we can find
the parameters of the other first-order functions; however, this
time we have to take into account contributions due to the
previous ones which are already known.

From the above argument, given 2N approximation points,
the equations used to determine the parameters for the ith
first-order function are then written by

27 In (yi(21‘2,‘-1)/yi(-’r2i))

Ai = (A2)
T2 — I2i-1
Ci = E_'\'I2"‘yg(l‘2i_1) (A3)
where
y.-(:z:j)=y.~_1(x,')—f,-_1(a:j); ji= 1,...,2N. (A4)

In the above, yo(z;) is equal to y(z;). Let us now consider
the case in which the value of a first-order function is not
negligible at the other approximation points. In this case, if we
perform the above procedure, there will be some difference
between the original and the approximated function since
we have ignored contributions due to some of the first-order
functions. In such a case, to reduce this difference, we can
iterate the above procedure including the contributions due to
all other first-order functions which were obtained from the
previous iteration. Thus, for the kth iteration, (A4) must be
modified as

i—-1 N
v (z) = y(z) = Y V) - Y SA(E
=1 I=i+1

j=1,...,2N. (AS)
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Fig. 14. (a) Comparison of approximated and exact values of (A6). (b)
Convergence of the location of the smallest pole (-1) with the number of
iterations.

It can easily be shown that if y(z) had N distinct eigen-
values, by iterating the above procedure, the approximated
function will converge to the original function. However, in
general, the approximating function will never be exact and
the iteration must be stopped at some point at which the
approximated function is optimal in the sense of curve fitting.
Since our curve-fitting algorithm, most likely, has the biggest
relative error for the values of r between zo5 -1 and zan, One
can check the approximated value with the exact value at any
point in this interval for the convergence criterion. In some
cases, if the desired accuracy can not be achieved, then one
should increase the number of exponentials. This case can be
determined by checking the difference between the computed
parameters of fi(k) and f,-(k_l).

The described method allows one to find the parameters of
an approximating function one-by-one directly without solving
a system of nonlinear or linear equations and does not require
an original function to be monotonic. Moreover, the limiting
values of the approximated function match exactly with the
original function.

Finally, to demonstrate the method. the following testing
function is approximated and the results are shown in Fig. 14:

6—2:

y(z) = iz

As illustrated in Fig. 14(b), to find the exact location of the
pole at —1, we need a large number of iterations; however,
since our goal is to approximate the overall function, only a
few iterations were needed to approximate the function. To
locate the poles exactly, one should use other methods such as
those based on pencil of functions or the Prony approximation.

+e % (A6)

APPENDIX B

STRIP TRANSMISSION LINE CASE

Solving Poisson’s equation with separation of variables,
the Green’s function for the strip transmission line case with
the distance h between two ground planes can be written as
follows (see [22]):

'
X sin (%)e"‘””"" YRY (A7)

The above expression for the Green's function can be easily
integrated analytically over the pulse basis function analyti-
cally. This summation is quickly converging, and only a few
first terms are needed; for instance, four digits of accuracy can
be obtained using less than five terms for |z — z’|/h > 0.5.
However, when |z — z’|/h is small, the summation converges
rather slowly, and the use of this Green's function expression
should be avoided. In such cases, we can use the following
closed-form Green's function:
1 sinh? [&2;:—1] + sin? [%}

Glz.y| .y )=—In

dme 1 sinh? [————2"(’2;" ] + sin? {—"—M i ]

This expression for the Green’s function can be obtained using
the conformal mapping and the method of images [18]. The
major disadvantage of this expression is that the closed-form
integration over the pulse basis function is unappealing; hence,
the numerical integration scheme is unavoidable. Therefore,
this form of the Green's function must be only used when
lz — z’|/h is small. As shown in (1], to integrate (A7)
numerically, it is convenient to rewrite this expression by
extracting the singularity as

1 1 4 4
Glz.y|o'y) = ;=In[(z -2V + (y - y')7]
+9(z.ylz'.y) (A9)

1 [le =20+ (v - )7 [sinh® [ 25522] + sin? [ 2050 ]]

oz, ylz'y) = mlﬂ

sinh? [ 25220 4 sin? [ 21|

(A10)

[4
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where (A10), shown at the bottom of the previous page.Now
the first term in (A8) can be analytically integrated using
(20(b)), and the second term can be integrated numerically.
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Computation of the Equivalent Capacitance
of a Via in a Multilavered Board Using
the Closed-Form Green’s Function

Kyvung S. Oh. Juse E. Schutt-Aine. Raj Mitra. and Bu Wang

Abstract— A method based on the quasi-static approximation for
computing the equivalent capacitance of a via is presented in this paper.
The geometry of a via consists of traces. pads and a perfectly conducting
cvlindrical rod: the via is buried in a multilayered dielectric medium with
optional reference (ground) planes. The total number of traces, pads. and
ground planes can be arbitrary, as well as the angles and cross sections.
The method is based on the excess cherge formulation of an integral
equation applied in conjunction with the recently developed closed-form
Green’s function.

1. INTRODUCTION

Although a via is one of the most common discontinuities en-
countered in high-speed integrated circuits, it has not received as
much attention as some of the other discontinuities. e.g.. open-
end terminations. bends. and junctions. This is due mainly to the
nonplanar and complex three-dimensional (3-D) geomerry of the via.
which has often been simplified in the works published previously
[1}-{3}. For instance. & via penetraung through a single reterence
(ground) plane with two wire traces has been considered in {1},
and without any traces in [2]. while a via above a reference plane
with two wire traces but without a through-hole reference plane
between these traces has been investigated in [3]. A novel equivalent
network model. which accounts for the frequency dependence. has
been proposed in |4] and has also been applied to the problem
of coupling between (wo adjacent vias in [5]. In {1] and [3]. an
integral equation has been formulated in terms of the excess charge
distribution to compute the equivalent (excess) capacitance. In this
paper. this excess charge formulation is further generalized for vias
with more complex geometries than has been analyzed hitherto and
is applied in conjunction with the closed-form Green's function to
analyze vias embedded in muitilayered dielectric media.

A closed-form Green's function for a multilayered dielectric
medium was first introduced in {6]. This Green's function utilizes
a tinite number of complex images and avoids the evaluation of a
nested infinite series expression required in the computation of the
exact Green's tunction for a layered medium. In [7]. a closed-form
Green's tunction based on weighted real images was proposed and
was used to compute the equivalent circuit of a strip crossover. In
(8]. this closed-form Green's function based on weighted real images
was further generalized to handle a semi-infinite line and then applied
1o compute various strip junction discontinuities. In this paper. the
closed-form Green's function discussed in (8] is employed to compute
the equivalent circuit for a via in a multilayered dielectric medium.

1. GENERAL STATEMENT OF THE PROBLEM

To illustrate the geometries of vias considered in this paper. a via
comprised of three traces and one reference ground plane is shown in
Fig. 1(a). In general, a via can pass through N, reference (ground)
planes and N, traces. and .V, pads can be attached to the via where
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Optional Reference Plane
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(a) The geometry of a via. and (b) its surrounding multilayered

Fig. 1.
medium.

N,. N, and .V, are all arbitrary. The vias are embedded in a multi-
layered medium consisting of N4 (arbitrary) dielectric layers. which
can be backed by two optional reference planes as shown in Fig. 1(b).
To distinguish between these optional reference planes and those
associated with the via. we will reserve the term “reference plane” to
designate an optional top or bottom reference plane, and use the term
“reference conductor” to denote other reference planes. It is evident
that the reference conductors must have perforations to avoid any
contact with the vias: however. the two optional reference planes are
assumed to be solid. To simplify the numerical computation. we as-
sume that all of the conductors are infinitely thin and that the shapes of
all the pads and perforations in the reference conductors are circular.

A quasi-static equivalent circuit representation of the via shown in
Fig. 1 is given in Fig. 2. This paper will only address the problem
of computing the total equivalent capacitance C.. The method to
compute the equivalent inductance of a via can be found in {9].

In Section IlI. an integral equation is formulated in terms of the
excess charge distribution using the closed-form Green's function,
and the method of moments (MoM) is subsequently employed to
determine the unknown charge distribution. A detail discussion of
the closed-form Green's function and the corresponding expression
can be found in [8]. In Section 1V, several numerical examples are
presented to verify the proposed method.

III. FORMULATION OF AN INTEGRAL EQUATION

An impressed potential on conductors results in free charge accu-
mulation on the surfaces of conductors, and the electrostatic potential

0018-9480/96305.00 © 1996 IEEE
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TABLE |
EQUIVALENT CAPACITANCES FOR VIAS SHOWN IN FIG. 3. UNITS ARE IN pF
Fig. 3(a) Fig. 3(b)
£,=€5=€, E=4E,, E3=E, £=6:24E, £/=4 5E,, €2=5.4¢€,
Computed Result 0.3841 1.233 9.952 12.31
Others 0.3701 [3} 1.28 [3} 6351} 7.85(1] !

Fig. 2. A equivalent circuit representation of the via shown in Fig. 1(a).
o{r) at any point except inside conductors is then related to this
surface charge density g(r) via the following integral equation

oir) = / G| P igirdr = (G q) (1)
113

where (2 denotes the surfaces of all conductors. including the via
and reference conductors. G*“(r | '} is the 3-D closed-form Green's
function for a multilayered medium. and it accounts for polarization
charges on dielectric interfaces and free charges on the surfaces of
reference planes [8]. The integration is symbolically written as {.0)
to simplify the notation. Next. the charge distribution over the whole
structure analyzed is decomposed into g.(r). ¢y (1) ¢¢(r). and ¢, (r)
where ¢.(r) is the charge density on the surface of a via hole. and
4ytr).qitr). and g, (r) are the charge densities on the /th pad. trace.
and reference conductor, respectively. Equation (1) can be rewritten
as

Ny
otr1 = (G )+ 3 (G )

AW Ng
+ 3 (G g+ 3 (G ). )

1= =1

Next. the charge density ¢; (r) is further decomposed into the uniform
l"l‘\‘.\s.l( r )

charge density 4" (r) and the excess charge density ¢,

uiil e

gy =g/ g T ) (3)

Here. '"'""(r) is the uniform charge density on the /th trace
under the assumptions that it is infinite in both directions. no other
traces are present. and the reference conductors have no perforations:
this charge density is computed by solving an appropriate two-
dimensional (2-D) problem. Since the reference conductors become
uniform planes without any perforations for this 2-D problem. the
potential distribution on the region above the reference conductor
is not affected by the region below it and vice versa. To solve
for 4" “(r). i is then expedient to introduce a new medium
surrounding the /th trace. As a consequence. the medium empioyed

in the 2-D problem is generally different from that of the 3-D via
problem, and couid. in fact. be different for each trace. Once the
appropriate medium has been chosen. ¢"™"“(r) can be obtained by
using the method described in [7]. The resulting q}""r “(r) yields
the capacitance per unit length for the /th transmission line in the
equivalent circuit representation shown in Fig. 2.

In the process of determining '™ '(r). the 2-D closed-form
Green's function G*P'(p | po) is used to formulate an integral
equation for a 2-D problem {7]. However. in the integral {2) for
computing the equivalent capacitance problem. the uniform charge
density ¢)™"''(r) resides on the ith trace. which is only a semi-
infinite line. It is therefore necessary to employ G™"""“(r | ry.
to compute the potential due to ¢ “(r) [8). Using (3). (2) can be
rewritten as

N,

olr) — Z(Gﬂl‘lnl.l.q;lnlr.l>

=1

Np
=(GC°P.q)+ Y _(G*P.qp)

=1

Ny Ng
+Z<Glll).q:xrvns.:)+Z(G£}D.q;). (4)
=1 =1

If we set the via potential to be oo with respect to the reference
conductors and planes. o{r) becomes oy on the surfaces of the via
hole. pads. and traces. and is equal to 0 on the surfaces of reference
conductors. Hence. once ¢"'*"'(r) has been determined. all of the
quantities associated with the left-hand side of (4) can be considered
to be known at the surface of the conductors. and the method
of moments can be applied to solve (4). The various integrations
appearing in (4) can be evaluated analytically for pulse-type basis
functions using closed-form formulas given in (8].

Once the unknown charge distributions have been determined. the
equivalent (excess) capacitance C, can be obtained by using the
following expression which involves the integrals of these charge
distributions

Ny
Coo= / g (e’ + Z/ ap(rdr’
02, =185,
Ny N
+ / qmums ‘(I")III‘I + / ‘l: “_r )(/l" (5)

LI

where €1, is the surface of a via hole. €2,,,.£2, .. and {, , and are the
surfaces of the /th pad. trace, and reference conductor. respectively.

IV. NUMERICAL EXAMPLES

We will now present two numerical examples to illustrate the
application of the method presented above to the computation of the
equivalent capacitances of 1wo via structures, one with a reference
plane and the other with a reference conductor. The detailed geome-
tnes of the two via structures are shown in Fig. 3. The computed
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(a)

(b)

Fig. 3. (a) A two-trace via with a reference plane and (b) a two-trace via
with a reference conductor. All dimensions are in mm.

excess capacitances for Fig. 3(a) with 1) =1 = 2 = %y and 2)
s, = 47y and 7, = o, for Fig. 3(b) with 3) s, = £ = 49 and
4) 7, = 4.379 and 2 = 3.4z are listed in Table | along with data

obtained from {1} and (3]. In [!] and [3]. the strips were replaced
by the equivalent wires of radii which are one-tourth of the widths
of the strips. In our computation. the lengths of all traces have been
wruncated to 2.3k, whereas the width of the reference conductor has
been truncated to 1.5{. with h and [ being the height of a via hole
and the length of the traces. The truncation of traces and reference
conductors is valid since the excess charge distribution decays rapidly
as we move away from the center of a via. A total of 263 and
687 unknowns were used for the vias shown in Figs. 3(a) and (b).
respectively. As shown in Table I. the data for the via shown in
Fig. 3(a) agree well with the published results. However, the data
for the via shown in Fig. 3(b) are considerably different from the
results reported elsewhere. Unfortunately, no experimental result for
this structure is available to establish the relative accuracy of these
results associated with Fig. 3(b).

V. CONCLUSION

A method to compute the equivalent capacitance of a via, which
is based on an integral equation formulated in terms of the excess
charge formulation. has been presented in this paper. The method is

applicable 10 via geometries with or without through-hole reterence
conductors. The recently developed closed-torm Green's tunction was
employed to circumvent the time-consuming evaluation of a nested
infinite series. required in the evaluation [3].
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Analysis of Edge Coupled Strip Inset Dielectric Guide

Z. Fan and Y. M. M. Aptar

Abstract—The edge coupled strip inset dielectric guide is analyzed using
the extended spectral domain approach. This structure, as compared to
microstrip line, has several interesting features and can be very useful for
microwave and millimeter wave applications. Validity of the approach is
established by comparing numerical resuits with measured data. As many
structural and material parameters can be chosen. a wide fundamental
mode bandwidth and a broad range of characteristic impedances can be
achieved, leading to great flexibility. The dispersion in fundamental mode
propagation constants and impedances is found to be very low. With
suitable choice of different permittivities for two dielectric layers. the
same propagation constants for two fundamental modes can be obtained.
This property is desirable for directional coupler applications.

I. INTRODUCTION

Microstrip line has been the most popular transmission medium
used for constructing microwave and millimeter wave circuits {1]. It
is well known that one of the problems with open microstrip circuits
is the excitation of surface waves from discontinuities in the circuits
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I. Intr ction

The electrical performance of high-speed integrated circuits and digital networks
strongly depends on the behavior of interconnects between various components of these
systems. The prediction of such performance can only be achieved by the used of
computer-aided design and simulation tools. The simulation of high-speed digital circuits
has gained a significant role in the past few years since it is critical in the evaluation of noise
levels, signal corruption and signal delay in fast switching circuits. This paper explores the
various aspects and techniques for transmission line simulation; in particular, two different
methods are described: the scattering parameter method and the optimal method.

Two main aspects in the solution procedure must be distinguished, namely the line
model and the transient simulation scheme. In the transient simulation step, the time-
domain representation of the line model is obtained to yield the transient solution.

Two different classes of models can be employed: circuit models and non-circuit
models. Non circuit models cannot be directly implemented into a circuit simulator. Circuit
models can be directly incorporated into a circuit simulator; they relate voltages and currents
at the line terminals and are independent of the terminations.

Further, two types of line characterization can be identified, namely closed-loop and
open-loop characterizations. A closed-loop characterization such as Z- Y- H- and S-
parameter characterizations results in complex oscillating transfer functions and transient
characteristics. An open-loop characterization—in terms of the propagation functions—
separates forward and backward waves and results in simple transfer functions and transient

characteristics.

II. Scatterin rameter

Scattering parameters have been extensively used in microwave applications for the



measurement of high-frequency circuits as well as circuit analysis. The advantages of the
scattering parameter approach reside in the flexibility in the choice of the reference system
which can be adjusted to match certain characteristics of the network under study and
simplify the analysis and the computations [1]-[3]. A direct consequence of this property is
the greater computational stability and the simplicity of the closed-form solutions. More
specifically, lossless and lossy transmission lines can be analyzed in conjunction with

nonlinear terminations to yield solutions in which backward and forward waves are

separated (see Fig. 1).

Lossy

Arbitrary  Nonlinear and Dispersive Nonlinear  Arbitrary
Source Load Line Load Source
sO—fo Hz,0H—Oh

X= X —— x=] v
Port 1 Port 2
Fig. 1.

Consider a transmission line of length 1 with complex characteristic impedance Z. and
propagation velocity v. This transmission line is connected to two ideal lossless reference
lines as shown in Fig. 2, it can then be described in the frequency domain through its

scattering parameters using
B;=S811A1 +S12A2 (la)
By =821A1 +S2A2 (1b)

where A and Aj are the incident voltage waves in the reference line of characteristic
impedance Z,. B and B are the reflected waves due to A and Aj respectively. It can be

shown that
3 _ (1- e-2jml/v)9 _ _ (1- QZ)C-ju)l/v
St1=522="" e 20l 2 S12=S21="~ e2alvp2 @
where
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In the time domain this correlates to (lowercase characters for time-domain variables)
bi(t) = sy1(t)y*a (t) + s 2(t)*ax(t) (4a)
ba(t) = s21(D*a () + s2a(t)*as(t) (4b)

where sjj(t) is the time-domain Green's function associated with Sj;. These equations are

combined with the terminal conditions

a1(t) = Tygi(t) + L1(Hbi(t) (5a)
az(t) = T2()ga(t) + F2(Hb2(t) (5b)
Reference Test Reference
Line Line Line

I S —

—B;

Al x=0 x=]

B, —=—— - 42
Fig. 2.
where T(t), Ta(t) are the transmission coefficients, I"1(t) and T'7(t) are the reflection
coefficients and g(t) and ga(t) are the time-domain expressions for the voltage sources.
T1(t), Ta(t), T1(t) and T'2(t) are time-dependent and are related to the terminations Z(t) and

Z>(t) of Fig. 1 which may be the time-domain representations of reactive elements or

linearized active circuits. The convolution operation is defined as

t
s;5(0) *a;(t) = [s(t—1) *a;(1)dv
0 ©

When time is discretized the convolution becomes

si(t) *a;(t) = é}sij(t —T)a;(1)At (7
1=

where A7 is the time step.
we isolate the term containing a;j(t)



t—I
s;(0*a;(t) =s;(0)a;(t) + leij(t - T)a;(1)AT ®)
T=

we then define the history term as

t-1
H;(t)= Xs;;(t—1)aj(1)AT : History ©)
1=|
Define s'jj(0) =sj; (0)At we finally obtain

bi(t) = s'11(0)a(t) + s'12(0ax(t) + Hp(®) + Hiz) (10a)

ba(t) = s'21(0)ai(t) + s'22(0)ax(t) + Hay(t) + Hoa(t) (10b)

When combined with the termination conditions of (5), the solution for the independent
waves can be extracted to yield

ay(t) = [1-T2()s'22(0)] [Tllsﬁggl(tﬂﬁ(t)M‘(t)] + Tiv)s 12(0)[T2(tA)§§(t)+1"2(t)M2(t)] (112)

ay(t) = [1-Th(1)s'11(0)] TzA((tt))gz(tHFz(t)Mz(t)] 4 L2021 OOT 1A(2)gl(t)+rl(t)M1(t)] (11b)
A(t) = [1-T1(®)s'11(0)] [1-T2()s"22(0)] - " 1(1)s'12(0) I'2(t)s21(0) (11c)

with My (t) = Hyp (t) + Hyz (t) and M3 (t) = Hap (1) + Ha2 (). The total voltages and
currents at the ports can be recovered from the voltage waves using the relations

vi(t) = a;(t) + by (1) (12a)
va(t) = az(t) + ba(t) (12b)
=20 50 (126)
ia(t) = 3%% 5’% (12d)

In general, the frequency domain scattering parameters can be calculated from the line



parameters using equations (2); next an inverse Fourier transform permits to extract the
time-domain Green' s functions which can then be used to calculate the voltage waves.

Most of the computations reside in the evaluation of the convolution history terms as

expressed by (9).

III. The Optimal Method

In [4] the problem of distributed line simulation was analyzed to develop the optimal
method, resulting in the maximum efficiency, accuracy and practical applicability with
respect to the transient simulation of digital circuits. The method handles, in the same
straightforward manner, uniform and nonuniform multiconductor lines with constant and
frequency-depend parameters, including real lines characterized with frequency- or time-
domain data samples. Moreover, an excellent simulation accuracy in the full frequency/time
range, from zero to infinity, is attained with the minimal number of the data samples. The
resulting line model can be directly used in a circuit simulator; the method supports variable
time stepping and has linear computational complexity. The efficiency of the optimal
method allows for an accurate simulation of realistic circuits, containing thousands of
multiconductor nonuniform frequency-depend lines and nonlinear active devices, with
virtually no increase in the simulation time compared to the simple replacement of
interconnects with lumped resistors.

As shown in [4] and [5], to achieve the maximum efficiency, accuracy and practical
applicability, transient simulation of distributed lines should be based on:

« atime-only formulation;

« the open-loop characterization;

o adevice model which does not require to introduce current variables;
 indirect numerical integration,

« the difference approximation based on interpolation.

The detailed description of the optimal method and its application to uniform and
nonuniform coupled lines can be found in [5]-[9]. Here, we shall confine ourselves to a

single uniform line case.
For single uniform lines, the open-loop element characteristic is given by

I1=Yc(0)V1-Gi, (13a)
D=Yc(w)V2-G2, (13b)
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Fig. 3. Conventions for the voltages and currents at the line terminals.
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o= <5
+ +
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Fig. 4. A circuit-diagram interpretation of the line element characteristic.

where

Gl =eM[202+G2], (142)
Go=eM[211 + Gy, (14b)

Y. =1/Z. is the complex characteristic admittance of the line, and e is the propagation
function. Conventions for the terminal voltages and currents are shown in Fig. 3. Figure 4
shows a circuit-diagram interpretation of the element characteristic (13).

The difference approximation [6] is a general method for applying numerical integration
to systems whose differential equations are not available (such as systems characterized
with discrete samples of their time- or frequency-domain responses, or transcendental
transfer functions). The first step of the difference approximation consists of approximating
the responses with the corresponding responses of a system with known differential
equations. For instance, for the scalar frequency-domain difference approximation in the
parallel canonic form, we express the propagation function in terms of rational function as



L .
E[A] +3 fl—}e"lm, (15)

o1 I+ jo/0;

where T is the propagation delay, A is the final value, the a;’s and ®;’s are the cut-off
frequencies and partial-expansion coefficients respectively. We also approximate Yc() as

a
Y A 2i
(@)= { 2+|2]‘ 1+j(1)/(1)c21} (16)

Note that there is no delay term since the transfer relationship of the impedance is

instantaneous.
We use interpolation-based methods [6], [9] to perform the approximation. One of the
methods—the relaxation interpolation method in the parallel form—approximates the

original function in terms of a sum of basis functions

L
g(®) =Y ¢;(0), (17

i=1

where g() is the function to be approximated and ¢;(w) are the basis functions. It is
assumed that the finite values of the basis functions and the finite value the original function
are zero. Let each basis function approximate the original function at some interval around
one of the approximation points and be decreasing so fast that its value is negligibly small at
the approximation points corresponding to larger values of the argument. For the first basis

function this assumes

¢1(w) = g(wy). (18)

Now, we can write for the next basis function

d,(05) = g(W,) — 91(03), (19)

and more generally

i-1
0;(@;) = g(0;) = Y, 0;(c0;). (20)

j=1

After the first pass, we can repeat the above procedure, taking into account all the basis

functions obtained from the first pass:



L
0;(0;) = g(w;) - 3, ¢;(e;). @0
j=!

J#i
After this second pass, the difference between the original and approximating functions
will be reduced, because an influence of all the terms was accounted more accurately during
the calculation of the approximation parameters. The procedure may be repeated to achieve

a desired accuracy.
The following summarizes the steps involved in applying the real-part parallel relaxation
interpolation method to Yc(w). In this case, Y () is being approximated as

Y (o) = [A + 2

o1 1+j(D/(0C]} 22)
Let g be the real part of Y¢, then

g(w) = [ i

1. Choose approximation interval: 2L+1 frequency points.

1+ m? /co ' 23)

- 7
2. Sample original function at the frequencies ®, = ©_,, %:l ,k=0,1,...,2L.

3. Reverse the order of the samples.
4. Initialize aj=0, wj=1,i=1,2,...,L.
REPEAT until a desired accuracy tolerance is attained

-

a .

A=go —_—, 24
& max 2 (‘)max/(’)q -

FOR

irunsasl,2,...,L

2 _ 8,(05)00%; —8;(y; 03y
l 0;(0y;-1) = 6i(0g;) 25)

Wy
. =8. 14+ ==L |,
q; el((’)b)[ + wz ) (26)
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Fig. 5. Comparison of the original (thin continuous curves) and approximate (thick dashed
curves) functions.
L a.
8; (0 ) =ge)-A-Y, 3 (27)

P 1+ /0y
j#i

End of FOR loop,

End of REPEAT loop.

Figure 5 shows a typical 5th-order approximation of the dynamic part of the propagation
function.

The indirect numerical integration [7] is a class of numerical integration methods based
on the analytical relationship between the continuous and discrete domains. It has ideal
accuracy, convergence and stability properties. The approximate rational polynomial
transfer functions represent systems described with finite-order ordinary differential
equations, and can be discretized, and simulated recursively in the time-domain using
numerical integration. For instance, for a system with the transfer function of the form

ol biak
(f) = A+Z—¢—fe , (28)



the step-response invariant indirect numerical integration formulas in the parallel canonic

form are given by

L
y[nT]= Ax[(n - K)T]+ Y y,[nT], (29)

i=1
where
yulnTI=2;(1—e < T)x[(n -k = DT]+e Ty, [(n - DT, (30)

X is the excitation, y is the system response, T is the time step and k is the discrete-time
delay.

After the characteristic admittances and propagation functions have been discretized, the
frequency-domain element characteristic (13) turns into the discrete-time element
characteristic—the companion model—which is used by a circuit simulator to represent
distributed lines, and is recursively updated at each time iteration via numerical integration
formulas.

Figure 6 presents the comparison of the simulation results obtained with the optimal
method and segmentation method (separating delays and losses). The network and line
parameters are: R1=50 Q, R2=1 kQ, C=39 pF/m, L=539 nH/m, R=125 {¥m, G=0, 1=0.675
m. The following voltage pulse with linear rise and fall was taken for the excitation: E1=4
V (start time t,=5 ns, rise time t,=1 ns, pulse width t,=20 ns, fall time t=1 ns), E2=0. The

time-step T=0.5 ns. As can be observed, the results are in excellent agreement.

IV. clusion

Two methods of distributed line simulation were discussed—the scattering-parameter
method and the optimal method. The scattering-parameter method permits a straightforward
implementation of voltage wave solutions but is computationally expensive as a result of
convolution calculations. The optimal method results in the maximum efficiency, accuracy
and practical applicability with respect to the transient analysis of digital circuits. The
optimal line model can be directly used in a circuit simulator, and lines can be characterized
with frequency or time-domain data samples. The efficiency of the optimal method allows
for an accurate simulation of real circuits, containing thousands of multiconductor
nonuniform frequency-depend lines and nonlinear active devices, with virtually no increase
in the simulation time compared to the replacement of interconnects with Jumped resistors.
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Fig. 6. Network configuration and comparison of the simulated waveforms obtained using the
segmentation method (thin continuous curves) and the optimal method (thick dashed curves).
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Difference Model Approach for the Transient Simulation of Transmission Lines
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Abstract—An optimal technique (in terms of computational
efficiency, accuracy, and practical applicability) for the tran-
sient simulation of distributed multiconductor RLGC lines was
developed by applying the indirect numerical integration
method (the most efficient and accurate transient simulation
method) to the device model for a distributed line (the most ef-
ficient and practically applicable model). The technique can be
directly used in a circuit simulator. The computational
complexity Is linearly proportional to the number of time-steps.
Nonuniform lines, lines with frequency-dependent parameters,
and real lines, characterized with a few samples of time- or fre-
quency-domain measurements or electromagnetic simulations,
can be accurately and efficiently simulated.

1. INTRODUCTION

The transient simulation of distributed lines has gained
special importance with the development of high-speed digi-
tal electronics. Previously developed techniques are quite di-
verse, but not always computationally efficient and applicable
to real circuits in which distributed lines are surrounded by
thousands of active devices. In [1] an attempt was made to
develop a technique that would be optimal in computational
efficiency, accuracy, and applicability to real problems. The
results obtained in [1] are summarized in this paper.

II. SYSTEM MODEL FOR A DISTRIBUTED LINE

The system-diagram representation of a single line is
shown in Fig. 1. Wys and Wy, represent the forward and
backward voltage propagation functions, respectively; Ty, T;
and T}, Ty are the near- and far-end transmission and reflec-
tion coefficients, respectively.

The system-diagram representation of a multiconductor
line is given in Fig. 2. Wymgrand Wypy, are the diagonal
forward and backward modal voltage propagation function
matrices; Ty, Tz and Ty, I'; represent the near- and far-end
transmission and reflection coefficient matrices; and My,
Myy, are the forward and backward modal voltage transfor-
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Fig. 1. System model for a single linc.
0-7803-1254-6/93503.00 © 1993 [EEE

N+1- conductor line

K RL,G,C
7 : :

Q] fw | sew | w] _ [O%
Elz g— . ¢ gg %
Q 2% ||% : SRS ©
| ES conductors =2 |
g o — =3

E e ave
'L@ ¥M_Refereace ¥om @Em
| __conductor |

b.——l——-l

T L

Myo[Wyms M}

Fig. 2. System model for a multiconductor line.

mation matrices.

The models reproduce the general relationship between the
physical processes of wave propagation, reflection, and:
coupling in a distributed system and can represent arbitrary
distributed systems such as uniform and nonuniform trans-
mission lines, waveguides, and plane-wave propagation. For
distributed RLGC lines, the mathematical justification of the
models was obtained [1]. The models can be used for system
analysis of distributed networks. They aiso allow one to ob-
tain the solution for a distributed system without complex
mathematical derivations.

From Figs. | and 2, it can be observed that a distributed
line along with the terminations forms a feedback system.
This explains why a global-parameter characterization (such
as Z-, Y-, H-, or S-parameter characterization) results in com-
plex, non-monotonous functions for the parameters. A direct
characterization in terms of open-loop transfer functions (the
propagation functions) leads to simpler transfer functions and
transient characteristics and should be used for the transient
simulation.

fII. DEVICE MODEL FOR A DISTRIBUTED LINE

Distributed line models can be divided into circuit and
non-circuit models. Non-circuit models cannot be directly
inserted into a circuit simulator, and, consequently, can not be
applied with efficiency for the transient analysis of real cir-
cuits. The system models described in the preceding section
may serve as an example of non-circuit models.

Circuit models can be directly placed into a circuit simula-
tor, and, therefore, are of prime practical interest. They relate
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tion. The resulting difference equation is called the differ-
ence model of the continuous system [4]). Depending on the
discretization technique, one recognizes the direct and indi-
rect numerical integration methods.

For the direct methods, the differential equation is dis-
cretized using approximations for integrals or derivatives.
Indirect numerical integration methods are based on the ana-
Iytical relationship between discrete samples of the system
excitation and response (analytical relationship between the
continuous and discrete time domains). The relationship is
obtained using the time-response invariance method. For this
method the excitation is assumed to be piecewise of a certain
form, for instance, staircase, piecewise linear, piecewise
quadratic, cubic, etc. Then, the general solution of the system
differential equation can be found and expressed in terms of
the discrete samples of the excitation and response (by using
the samples as boundary conditions). The resulting differ-
ence model is then used to recursively compute the response
in the time domain [4).

The indirect numerical integration provides the exact sys-
tem response to an excitation which is piecewise of the same
form as the difference model invariance. For instance, the
ramp-invariant difference model provides the exact system
response to a piecewise linear excitation such as a pulse with
linear rise and fall. The indirect numerical integration has
ideal stability and convergence properties, because, in the ab-
sence of an excitation, it always provides the exact system re-
sponse, irrespective of the value of time step and form of in-
variance. It is also more accurate than the direct method.

From the foregoing discussion one can conclude that an
optimal technique (in terms of computational efficiency, ac-
curacy, and practical applicability) for transient analysis of
distributed lines should be based on the device model and the
indirect numerical integration. This combination was first
proposed by A. J. Gruodis and C. S. Chang {5], but using the
direct numerical integration method.

Due to the distributed nature, modules of a transmission
line model can not be exactly described with finite-order or-
dinary differential equations. Consequently, an approximate
ordinary differential equation representation has to be found
before numerical integration can be applied. This can be
achieved by approximating a frequency- or time-domain re-
sponse with the corresponding response of a system described
with ordinary differential equations. The following differ-
ence approximation procedure was developed that allows one
to apply indirect numerical integration to an arbitrary system.
In general, a system may contain an attenuation component
A, a delay component T, and a dynamic part. The difference
approximation procedure consists of one step: represent the
transfer function in the form

a;

e~/ (3)
1+ jo/w, :

L
W(io)=| A+ Y,
i=l
or the transient characteristic in the form

L
h(t)=|B - Zai e~9eilt=%) lur-1) . )

i={

Then, the step-invariant difference model is given by

L
Yin) = Ax(ty=T) + 3 3i(tn) » (52)

i=]

where
yitn) = a; (1‘°-m“r" )X(‘n—l ~1)+ e %Tn y0,1) . (5b)
and the ramp-invariant difference model is

L
¥(tn) = Bx(ty =T) = 3 ¥i(tn) «

(6a)

where
a; (l—e'“’“r")

ol [x(th = 1) = x(tyy = )]

yi(‘n) =

+e9lny (1 ). (6b)

A and B are the final and initial values of the transfer func-
tion, x(r) and y(?) are the excitation and response, Tp=fn—ty.} is
the value of the time-step at n-th iteration, and u(z) is the unit-
step function. Further increase in the order of the time-re-
sponse invariance results in a difference model of higher or-
det than the system differential equation without a significant
increase in the difference model accuracy. Eqs. (3)H6) cor-
respond to the parallel canonic form of the difference model.
Other forms (including direct and cascade canonic ones) can
be found in {1].

In general, second-order terms representing complex-con-
jugate poles of the transfer function have to be added to the
sum in (3) and the corresponding harmonic terms to the sum
in (4). These terms were omitted here, because the elements
of the device model for a distributed line represent aperiodic
systems, and, therefore, have to be approximated using only
real poles.

The frequency-domain difference approximation procedure
is more general, because it can directly handle lines with arbi-
trary frequency-dependent parameters or lines characterized
with frequency-domain measured data. The time-domain dif-
ference approximation procedure should be employed only if
transient characteristics are available. For a single RLGC
line, the analytical expressions were obtained for the transient
characteristics and limiting values (A and B) for ail the
modules of the system and device models [1].

The difference approximation procedure is applied to the
characteristic admittances and propagation functions. In the
case of a multiconductor line, all entries of the characteristic
admittance and propagation function matrices need to be ap-
proximated. The resulting time-domain device models have
the same form as the frequency-domain models shown in
Figs. 3 and 4. At each time iteration the instantaneous values
of the conductances and current sources are recursively com-
puted from the old values using the corresponding difference
models. If the step-invariant difference model (5) is em-
ployed, the conductances are constant throughout the simula-
tion (because the first-order difference models (Sb) do not
contain the current value of the excitation), and only the cur-
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the SIBC. it is represented by a convolution integral in the
time domain. Tesche [6] has formulated a time-domain integral
equation based on this convolution integral and pointed out
that the direct computation of this convolution integral is
impractical due to the large computation time and storage
requirements. On the other hand, Maloney and Smith 7] have
applied the SIBC to the finite-difference time-domain method.
To overcome the computational difficulties associated with the
convolution integral, they use an approximate recursive for-
mula. Their implementation, however, requires the exponential
approximation to be performed prior to the FDTD simulation.
Beggs er al. [8] have eliminated this preprocessing time by
performing the exponential approximation based on the high
conductivity surface impedance approximation. It should be
noted that when the SIBC is applied to the finite-difference
time-domain (FDTD) method, in addition to the reduction of
discretization space, further computational saving is achieved
due to the larger discretization step compared to that for the
nonreduced original problem. A detailed discussion of this
computational saving is given in (7] and [8).

In this paper, the implementation of the SIBC in the FDTD
method is considered for a lossy dielectric half-space and
a thin lossy dielectric medium. For a lossy dielectric half-
space, the normalized impedance function for a lossy medium
is approximated in the frequency domain using a series of
first-order rational functions. Since the normalized impedance
function used in this paper is independent of medium proper-
ties, the rational approximation has to be performed only once.
The results of this approximation are tabulated for rational
functions of various orders. Then, using the approximate
normalized impedance function and assuming the waves to be
piecewise linear in time, 3 closed-form expression is derived
to evaluate the time-domain convolution integral recursively.
Thus, the presented formulation is numerically more efficient
than that in [7] because the preprocessing time for the expo-
nential approximation is climinated and more accurate than
that in [8) since the high conductivity approximation is not
utilized.

Although several methods have been proposed to model a
thin lossless dielectric shell for the FDTD method [9]-{12],
little work has been performed for a perfect electric conductor-
(PEC-)backed P lossy dielectric shell in spite of its frequent
occurrence in practical problems. A full time-domain imple-
mentation of the SIBC, which accounts for the frequency
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Computation of Excess Capacitances of Various Strip
Discontinuities Using Closed-Form Green’s Functions

Kyung S. Oh, Jose E. Schutt-Aine, and Raj Mittra

Abstract— An efficient quasi-static method to compute excess (equivalent)
capacitances of various strip discontinuities in a multilayered dielectric medium is
presented. The excess charge distribution on the surface of a conductor is
obtained by solving an integral equation in conjunction with closed-form Green’s
functions. A complete list of expressions of the closed-form Green’s functions
for a point charge, a line charge, and a semi-infinite line charge is presented. An
open end, a bend, a step junction and a T junction are considered as numerical
examples.

I. INTRODUCTION

Quasi-static analysis is often performed to characterize strip discontinuities when the
dimensions of the discontinuities are much smaller than the wavelength. Under the quasi-
static analysis, the dominant effect of strip discontinuities is fringing fields due to the physical
irregularities of discontinuity geometries. The modeling of these fringing fields in terms of an

excess capacitance is discussed in this paper.

Numerous papers have been published to compute excess capacitances of various microstrip
discontinuities, and a summary of popular methods can be found in [1]. The most successful
approach is one based on the formulation of an integral equation in terms of the excess charge
distribution, which was first proposed by Silvester and Benedek [2] and has been applied to
analyze various microstrip discontinuities [2]-[S]. The Green’s function for a layered medium is
employed in this approach. For N dielectric layers, the expression for this Green’s function would
consist of an N-1 nested infinite series [6]; hence, in practice, this form of the Green’s function
may not be applied to a multilayered medium. Recently, Sarkar et al. [7] solved discontinuity
problems for a multilayered medium using the free-space Green’s function, but additional
unknown charges (over unknown charges on the surface of a conductor) had to be placed on the
dielectric interfaces and the top ground plane to model the polarization charge and the free charge.
Although such inclusion of unknowns may be tolerable for 2-D problems, it is computationally too

burdensome for 3-D problems.

In this paper, the closed-form Green'’s function discussed in [8] is employed to formulate an
integral equation in terms of the excess charge distribution. A complete list of expressions of the
closed-form Green’s functions for a point charge, a line charge, and a semi-infinite line charge



to

with or without a top ground plane is presented in this paper. The presented method requires
neither additional unknowns to model dielectric interfaces and the top ground plane nor evaluations
of any infinite series except for cases where the top ground plane is present. When the top ground
plane is present, using the closed-form Green’s function is still numerically advantageous since the
nested infinite series in the expression of the usual Green’s function becomes a simple infinite

series without nesting.
II. CLOSED-FORM GREEN’S FUNCTIONS

Closed-form expressions of the electrostatic Green’s functions for a point charge, a line
charge, and a semi-infinite line charge are derived in this section based on the approach used in [8].
Consider N dielectric layers which are backed by a ground plane as depicted in Fig. 1. The Nth
layer is either a half-space or terminated by an optional top ground plane. All dielectric layers and
ground planes are assumed to be planar and infinite in the xz-plane. The electrostatic Green’s

function in the spectral domain is described by the following closed-form formula [8}:

- 1 , — — -
G('}/’ylro) = —2-8—-):(1('?. ('}/’m’n)ey()"'yn 2dn) + K;(y’m,n)e}l() )’o+2(dm—] dn ))
m

+K3 (y,m,n)e? T+ 4 K (y,mn)e? (Y Yo¥2dm- )) yey, (1)
- 1 _ _ ~ _
G(7.¥ry) = - y(Kl (7,m,n)e? O+Yo™2n) 4 K3 (y,m,n)e?OY0)
m

+K§'(}/’m’n)e}’(_}'+)'o+2(dn—l""dm ) + K;(y,m’n)e)’(—y_yo'*'zdn—l )) y < Yo (lb)

where G is the spectral-domain Green’s function, and r and r, are the observation and source

points located in the nth and mth layers, respectively. The superscripts + and - are used to denote
the cases for y>y, and y<y,. The expressions for the four coefficient functions K - can be
found in [8]. A closed-form expression of the Green’s function in the space domain is obtained by
approximating these four coefficient functions K,-:t using exponential functions. It is important to
mention that although K,-i is dependent on m and n, it is not a function of y and y,; hence, the
approximation can be performed without any prior knowledge of the junction geometry. The
following two subsections detail the derivation of the closed-form Green’s functions due to a point

charge, a line charge, and a semi-infinite line charge with or without the top ground plane.

A. Closed-Form Green’s Functions for Geometries Without the Top Ground Plane



When there is no top ground plane, the four coefficient functions K;'r in (la) or (1b) are
nonoscillatory and smooth functions of ¥ ; hence, each coefficient function can be sufficiently

approximated with real-valued exponential functions as follows [8]:

Nrfxnl + i
TR
Kimny)= Y, Culetmnit, i=123,4 (2)
=

+ . . . . .
where N, ,; denotes the number of exponential functions used in the approximation of Kii,

which typically ranges from 5 to 10. The exponential functions used in the spectral-domain
approximation can be physically interpreted as weighted images in the space domain [8].
Compared to the exact Green’s function in the space domain, which consists of an infinite number
of images, the expression for the closed-form Green'’s function consists of only a finite number of

weighted images.

Once the exponential approximation is performed in the spectral domain, the closed-form
Green’s functions for 2-D and 3-D can be obtained in the space domain by using the inverse

Fourier transformation formulas (14a) and (14b) in [8], and the resulting expressions are given by

1 4
G2P - 2D+ 3
(plpo) . Zlf (plPo) (3a)
3D I < 3Dt
G (rr,) = e E 2% ) (3b)

For i=1 and y 2 y,, the expressions of fiZD * and ffD * are given by

Nrtl.n.l . :
flzD,‘f’(plpo) —_ 2 C;:il,] . ln(\/(; -x, )2 + (y + Yo = 2dn + a;"{zyl )2 ) (43)
-
3D N Cri
'+ = mﬁn’
£ = X - 2 “>

j=1 \/(jc - x0)2 +(y+y,—2d, + a;”{l‘l)z +(z—2,)
Similar expressions can be obtained for fiZD * and fiw % for other values of i.

To derive the Green’s function for a semi-infinite uniform line charge, the auxiliary Green’s

function for a line charge with polarity reversal is employed [2]. Consider a uniform line charge,



which starts from z=¢ and is infinitely extended in the positive z-direction; then the Green’s

Gsemi

function for a semi-infinite line charge can be expressed as

mi 1
G ol &)= 3[6*P(plpo)+ G700 (5)

where G%¢™ is the Green’s function for a line charge with an abrupt polarity reversed from minus
to plus at z=¢. The expression for GP is obtained by integrating the potential due to a point

charge [2]:

3 o0 4
1
Gp(rlro’g) = __J;OG3D(r‘ro)+ £G3D(r|ro) = 47r£m Eﬂp'i(r|ro,§) (6)

Again, for i=1 and y 2 y,, £P% is given by

1

+

P | £) Ng‘lcwj In \ﬁt_xo)z+(y+)’o"2dn+a,-;"{1v])2+(z—-§)2 +(z=&)
r Uox6) = mont’ .
oA NG =% + 04 o =2y ] )+ (2 =8 == )

N

B. Closed-Form Green’s Functions for Geometries with the Top Ground Plane

When the top ground plane is present, all of the four coefficient functions K,-i are still
nonoscillatory but contain a pole at ¥ =0; as a consequence, K,-i can no longer be accurately
approximated with exponential functions [8]. To overcome this difficulty, let us rewrite G in the

following manner:
G(%)’I’o) = Rm,néh(}'v )’|ro) +G (Y’YI"O) (8)

where G" is the spectral-domain Green’s function for a homogeneous medium, i.e., all dielectric
layers are replaced by the source layer. Ry , is a constant which is determined such that G"

contains a pole at ¥ =0 and G is a well-behaved function without any poles. R,,, can be
obtained either numerically or analytically by taking limits of G and G" as y — 0. Now the
technique used in the previous section can be applied to obtain the closed-form expression for G
in the space domain, and the space-domain expressions of G are obtained once the corresponding

expressions of G" are determined.

Expressions of G" in the space domain can be easily obtained using the image theory approach

and are given by



1 - -y, —2kh
6P plpy=-— 3 In \/(x xo)2+(y Yo ) %)
2 | = x0)? + (3 + v, — 2k
G3D,h(r|r0)=_1_ i : 1
4\ Jx—xp P (3= yo = 2k +(2-2,)°
1
B 2 2 2 (9b)
\[(x—xo) +(y+y,=2kh)" +(z2-2,)
67 =L S I V(x ot 4 ymyom Wh 438 +izod)
am o\ Jxmxg P+ (y =y, = 2k +(2- &) = (2=8)
= x )P+ (vt Y = 2k (28 —(2=8) 90)
S = xg P+ (y+ 30 =2k + (2= &P +(2=£)
Unfortunately, all expressions are written in terms of infinite series. Although G*P" can be

alternatively expressed using a closed-form formula [8], such closed-form formulas cannot be been
found for G*P* and GP % Since the closed-form formula for G*D4 requires numerical
integration when the moment matrix is computed, we will simply use (10a) to evaluate G*P+.
Therefore, an infinite-series expression, in general, cannot be avoided for GZD , G3D , and GP
when the top ground plane is present. However, the expressions for G*P, G*P, and G? given in
this paper are still numerically more efficient than the ones obtained from the conventional image
method since a nested infinite series of the conventional method is reduced to a simple infinite
series without nesting as shown in the above equations.! For this reason we shall still refer to
G*P , G3D ,and G? given by (9), (10a), (10b), and (10c) as closed-form Green’s functions.

IV. FORMULATION OF AN INTEGRAL EQUATION

In this section, an integral equation is formulated in terms of the excess charge distribution
using the closed-form Green’s functions derived in the previous section. Figure 2 shows the planar
view of the general geometry of a discontinuity, which consists of traces and a junction region.
This general geometry represents most of the common strip discontinuities, e.g., an open-end, a
nonothogonal bend, and various junctions. Although the present approach can handle conductors
with finite thicknesses, the conductor thicknesses are assumed to be infinitely thin in this paper.
The discontinuity structure is embedded in a layered dielectric medium, which is shown in Fig. 1.

! Alternatively, infinite series can be avoided by modeling the top ground plane as an additional conductor and
using the Green’s functions in the previous section.



The integral equation relating the electrostatic potential ¢ and the charge density g on the

surface of a conductor is given by

o= [G*P0lr gt dr =(G*P.q) (10)
Q

where €2 are the surfaces of a conductor: traces and a junction region. To simplify the notation the
integration is symbolically written as {~-). Now let us rewrite the charge density g in the following

manner:
qy(r), if r is on the junction region
qry=y . . (11)
qr(r), if r is on the ith trace
Then, (10) becomes
3D 3 il
0 =(60.q)=(G*".q,)+ 2.(6*".af) (12)
i=1

unif i

Decomposing the charge densities qT into the uniform charge density g7~ * and the excess charge

density qe’“ess' for each trace:

T(’) qunfl(r)+qexcesm(r) (13)

Here, the uniform charge density q“’”f is obtained by solving a 2-D problem, in which it is

assumed that only the ith trace is present in the medium and that the ith trace is infinitely long in
both directions. A detailed discussion for solving 2-D problems is given in [8]. The uniform
charge density g7 unif.i oyists only on the ith trace, which is a semi-infinite line; hence, Gem

should be used to compute the potential due to q“”'f ' Using (13), (12) can be written as follows:

¢(r)_§<Gsemz’q?_mf 1> <G3D’q1>+%<G3D,q;xcess.i> (14)
i=1 i=1

The integral equation (14) can now be solved by using the method of moments. The collocation
method is used in this paper. The closed-form formula for the integration involving G3P is given
discussed in [8], whereas the integration involving Gsemi can be analytically integrated using the

following formula:



2 2
jl a” +b2 +1° +a dl = 2Jb| tan”~! al) —an”! al,
Jab + b2+ 1% - blya? +b% +12 Ibha® + b2 + 1,2

b ++/a® +b° + 1) Jat+b% +b? + 2ip2+02
+2aln[2 z 2 P 2 74 2 L7210 (s)

ll+\/a2+b2+l|2 a?+b*+5h% -a a®+b*+142 —a

Now once (15) is solved, the excess (equivalent) capacitance c€ can be obtained by

Nt
=g, + 2 Q;'_xcess,z d, (16)
i=1

where Q; is the total charge on the junction region, and Qexce”' is the total excess charge on the

ith trace. Throughout the formulation, we have assumed that the junction region exists between

traces. The formulation for cases without the junction region, such as an open end and step
junctions, can be easily obtained simply by removing terms corresponding to q;.

IV. NUMERICAL EXAMPLES

A computer program is written based on the technique discussed in the previous sections. The
program assumes that the shape of the junction region, (see Fig. 2), if it exists, is polygonal, and it

can handle an arbitrary number of dielectric layers as well as traces.

Excess capacitances for four common strip discontinuities, an open end, a step junction, a
bend, and a T junction, are computed using the program. The geometries of discontinuities with
their corresponding equivalent circuits are shown in Fig. 3. The following parameters are used: 1)
an open end: w=0.5 mm, 2) a step junction: wy =0.1 mm and wy =0.2 mm, 3) a right-angle
bend: wy =w, =0.15mm, and 4) a T junction: wy =w, =w3 = 0.15 mm. Three different types
of media are considered for each discontinuity with the following parameters (see Fig. 5): 1) an
openend: £ =4.2, £,=2.5, y=1.0mm, y; = 1.5 mm, and y; =2.0 mm, 2) a step junction:
£1=60, £=42, y =0.1mm, y,=02mm, and y; =03 mm, 3) a bend: g =25,
& =42, yy=0.15mm, y; =0.3mm, and y3 =0.5mm, 4) a T junction: & =2.5, & =4.2,

=0.15mm, y, =03 mm, and y3 = 0.5 mm. All discontinuities are assumed to be embedded
at y=y,. To place 3-D unknowns for the excess charge distribution, the length of each trace is
truncated at ! = 8w . The total numbers of unknowns per each trace were 50 for a 2-D problem and
160 for a 3-D problem, whereas 100 unknowns were used for the junction region. The maximum
number of exponentials used to approximate each coefficient function K; £ was 5.



The computed results are shown in Table I with the comparison data for a microstrip case (Fig.
4(a)). A good agreement was found overall as shown in the table. It is interesting to note that for
some cases the value of an excess capacitance turns out to be negative. Although a physical
capacitance must be positive, an excess (equivalent) capacitance is hypothetical and can be

negative.
V. CONCLUSIONS AND FUTURE WORK

An efficient method to compute excess capacitances of strip discontinuities was discussed in
this paper. Complete expressions of closed-form Green'’s functions for a point charge, a line
charge, and a semi-infinite line charge have been derived. Unlike other approaches, only one
integral equation is employed in this paper to handie various strip discontinuities instead of
formulating an integral equation for each discontinuity type. The numerical results for a microstrip

case agreed well with other published results.
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Table I. The numerical results (Units are in femtofarad).

Medium 1 Medium 2 Medium 3
Computation Others Computation Computation
Open End 17.33 17.0 (1] 23.52 19.62
Step Junction 1.120 1.05 [1], 0.74 [7] 1.352 0.609
Bend 6.210 6.75 [11, 5.8 [7] 7.006 9.184
T Junction 1.385 1.9 [7] -4.917 -0.818
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Abstract—This paper presents a method for the circuit simulation of uniform
multiconductor lossy frequency-dependent lines characterized by sampled
frequency-domain responses. The implementation includes ac, dc and transient
analyses. The method combines element characteristics which do not require
introduction of current variables, open-loop characterization which results in the
simplest transfer functions, novel frequency-domain matrix rational
approximation method, novel matrix delay separation technique, and matrix
indirect numerical integration formulas. The method is reliable, accurate and as

efficient as the simple replacement of interconnects by lumped resistors.

. INTRODUCTION

HE PROBLEM of the transmission line simulation gained special importance with the
Tdevelopmem of high-speed digital electronics. As transient times become faster, the
transmission line behavior of electronic interconnects starts to significantly affect transient
waveforms, and accurate modeling of on-board and even on-chip interconnects becomes an

essential part of the design process. The complexity of contemporary digital circuits calls for



accurate transmission line models efficient enough to perform the simultaneous circuit simulation
of thousands of lossy coupled frequency-dependent lines surrounded by thousands of nonlinear
active devices. Lines to be simulated may be characterized by measured or electromagneticly
simulated samples of their responses.

A substantial amount of study has been devoted to the transient simulation of transmission
lines in recent years [1]-[19]). This paper presents a method for circuit simulation of uniform
multiconductor lossy frequency-dependent transmission lines characterized by sampled frequency-
domain responses. The method is based on the approach described in {20]. The method supports
variable time stepping and has linear computational complexity. The method has been adopted in
several industrial and commercial circuit simulators. and, in numerous real-life simulation
exercises, proved to be reliable, accurate and as efficient as the simple replacement of interconnects
with lumped resistors.

The method employs element characteristics which do not require the introduction of
current variables. As a result, the method increases neither the number of nodes nor the number of
circuit variables, and the lines are incorporated into the circuit simulation without any increase in
the circuit solution time. Element characteristics for the ac and dc analyses are based on the Y
parameters.

For the transient analysis, the method uses open-loop transfer function characterization
(direct characterization in terms of the propagation functions and characteristic admittances), which
opens the feedback loop formed by the reflections from the terminations, and results in the simplest
characteristic responses. It is shown that the open-loop characterization is equivalent to the
generalized method characteristic .

The transient analysis is carried out by matrix indirect numerical integration. It has linear
computational complexity, and ideal convergence, accuracy and stability properties.

To apply numerical integration to the propagation functions and characteristic admittances
given as a set of frequency-domain samples, the method employs difference approximations. It

fits the samples with a rational polynomial function and expresses the numerical integration



formulas in terms of the approximation parameters. Because of the simplicity and aperiodicity of
the open-loop transfer functions, excellent approximation accuracy is attained with low-order real-
pole approximation and a few original samples.

The approximation is performed by novel matrix direct constrained method. The method
fits arbitrary number of arbitrary-spaced complex samples of a matrix transfer function with the
matrix rational polynomial functions with poles constrained to the left half of the complex plane to
insure stability. The method employs no iterative or relaxation techniques, only direct linear
solutions and a polynomial factoring, and is computationally efficient and free from convergence
problems.

Before the approximation, the delay 1s separated from the matrix propagation functions by a
novel matrix delay separation technique. The technique eliminates the problems associated with the
delay separation based on the diagonalization with the frequency-dependent modal transformation
matrices, which are nonminimum-phase functions of frequency with unstable time-domain
responses.

Throughout the paper, capital boldface, small boldface and normal italic symbols will be
used to denote matrices, vectors and scalars, respectively. Since only multiconductor lines will be

considered, the modifier “matrix” for the transfer functions will be omitted in the future for brevity.

Il. FREQUENCY-DOMAIN LINE MODEL FOR TRANSIENT
ANALYSIS
The frequency-domain element characteristic (for the transient analysis) which does not require the
introduction of current variables and is suitable for the line modeling is given by

{i‘(m)= Y, (o) v,(®0) - j(©) W

iz(a)) = Yz(w) Vz((l)) - jz(w)
The conventions for the terminal voltages and currents are shown in Fig. 1. The expressions

relating the matrix admittances Y, and Y, and vector current sources j, and j, to the

transmission line characteristics are derived directly from the continuity conditions for the voltages



and currents at the line terminals. To separate forward and backward waves and open the feedback

loop, the current source j, must depend only on the backward wave, and j, only on the forward
wave. This condition uniquely defines Y,, Y, and j,, j, as follows:

Y, (0)=Y,(0)=Y (0) (2)
and

Ji () =2i, (w)
(3)

jy(w)=2ip,(w),
where Y, stands for the characteristic admittance, and the forward and backward current waves,

i, if, and iy,, i,, are related as:

{ib,(m) = W, (0) [iy,(0) = i,(0) + i, (0)] “

i, (@) = W, () iy (@) = i, (@) + i, (@)]:

The propagation functions for the forward and backward current waves are equal,

W, = W,, = W,. The open-loop device model (1)-(4) is equivalent to the generalized method of

characteristics [14], [11], [12].

The propagation function and characteristic admittance can be computed from the insertion

loss data [14], scattering parameters [19], or distributed RLGC parameters:

W (w)= e !
Y (0)=K,(0) Z7 (@),
where [ is the length of the line,

K, (@) = (Y(0) Z@))

is the propagation constant for current waves,

Y(0) = G(w)+ joC(w)

Z(w) = R(w) + joL(w)

are the admittance and impedance per unit length, and R, L, G and C are the resistance,
1

inductance, conductance and capacitance per unit length. Boldface (.)E and e’ denote matrix



square root and matrix exponential, respectively.

IIl. DIFFERENCE APPROXIMATION

To perform the transient analysis, indirect numerical integration is applied to the propagation
functions and characteristic admittances in the frequency-domain line model (1)-(4) by using the
difference approximation method.

For the difference approximation in the parallel canonic form, samples of the frequency-

domain transfer function are approximated with the rational polynomial function

M
~ -~ 1
H(jo)=H_+ ) — A, 5
jo) Z{,Hjm/wcm )

or samples of the time-domain unit-step response are approximated with the exponential series
M
h(n=H,- Y e “"A,,
m=1
where ﬁo and H_ denote the initial and final values of the approximating transfer function
H(jw).
Once the approximation has been performed, indirect numerical integration formulas

(discrete-time difference equations) are readily given in terms of the approximation parameters.

For the step invariance the formulas are

~ M
y(t)=H_x(1,)+ D, 2,(8,)
e (6)

—wrmrn -mran
2,(t,) = (1= )AL XU, )+ €7 20 (1,0,
where x,y and z, stand for the excitation, response and state variables, respectively, and
T, =t —t,, is the time step at the nth transient iteration.

For the ramp invarance

M
y(t,) = Hyox(1,)— D2, (1,)
’ mzi )

2, (1,) = D (T,)(x(1,) = x(1,.)) + ez (1, ),



where

1 _ e-wrm T,
D, (T)=———An
cm n
An alternative form of the ramp-invariant indirect numerical integration formula has the coefficients
of the present-time sample of the excitation lumped together

_ M M
y(rn>=(H.,-ZD".m)]x(m—sz(rn)
m=}

m=1

(8)
2,(1,) = (DT, )e """ - D, (T,))x(1,_ )+ € """ 2, (1,..):

This form is especially suitable for discretization of characteristic admittance, because, for
admittances, the present- and past-time terms of the numerical integration formulas have different
physical meaning.

Before the approximation, the delay is separated from the matrix propagation function
using the matrix delay separation technique. It represents the matrix propagation function in the
following form:

W, (@) = W, (@) M, e ™™ M;',
where T, and M, are the constant eigenvalue and eigenvector matrices of the propagation delay
matrix
T, = (Cleo) L)t 1=Ky (o) |
Difference approximation is applied to the delayless propagation function
W, (0) = W, (@) e
The delays in the diagonal modal-delay matrix T, are modeled using a low-order spline of the

simulated time points.
The difference approximation is applied to the delayless propagation function and
characteristic admittance. For the characteristic admittances in (1), the excitations are the terminal

voltages and the responses are the terminal currents. For the propagation functions in (4), the

excitations and responses are the current waves.



Since the open-loop functions are aperiodic, they have to be approximated with only real
poles, —,, . In addition, the poles have to be negative to assure stability.

To represent the original functions accurately with the minimum number of samples, the
variation of the original function from sample to sample should be about the same. The following

empirical formula for the sampling frequencies was found to provide good results
®, = mx(l-cos“—kj, k=0,1....K.
2K

The end of the approximation interval, @, should be chosen so that the original function would
closely approach its final value. This assures that the resulting indirect numerical integration

formulas will be accurate in the full frequency and time ranges from zero to infinity.

IV. MATRIX COMPLEX RATIONAL APPROXIMATION
MEeTHOD FOR FREQUENCY-DOMAIN DIFFERENCE
APPROXIMATION

The method fits samples of an N X N complex matrix transfer function H(w) with the rational

polynomial function (5) at the set of arbitrary spaced frequencies {O, ®,, Oy,..s CDK} . The method

proceeds in three steps.

First, the real part of the sum of the elements of the original matrix function,

N N
Hy(w)= Y, Y [H(w)],,
i=l j=1
is fit with the real part of the complex rational polynomial function, which is a real rational

polynomial function of squared frequency

¢y + 0 0 +6, (@) +...+ ¢y (@)
1+ P, 0 +B, (@) +o Py (@)Y

Re(f!z( jm)) = 9)

The following linear system of equations results from matching the real part of the original function

with (9) at the set of frequencies and premultiplying both sides of each equation with the

denomuinator



o]
1 0 0 : 0 0 : Re(H,(0))
1 o 0™ | —0? Re(Hy(®,)) ... -0 Re(Hy(w))) u | _ Re(H;(w))) 10
| f B | P
1 o) ¥ | -0} Re(Hy(0y)) ... —0F Re(Hg(@y))] Re(Hg(wy))
LBM_

For interpolation, K =2M and solving (10) produces a rational polynomial function which
coincides with the real part of the original function at all of the sampling points. For a set of
samples larger than 2M +1, the least square solution of the system (10) can be obtained.
However, it minimizes the approximation error premultiplied with the denominator, which can lead
to inaccurate approximation. Better results are achieved with the method of averages [21], which
partitions the larger number of equations into 2M +1 subsets in order of the increasing of w. The
equations within each subset are added up, which makes the system consistent. The method 1s
effective in averaging out the noise in measured data.

After the real part has been approximated, the denominator of (9) is factored yielding the
squared poles, -®?,. Consequently, no unstable right-half-plane poles can be produced.
However, there still can be spurious complex conjugate and purely imaginary poles, which are
removed. The remaining real negative poles are used to formulate the equations for the partial
expansion coefficients, A_,of (5). Asa result, the order M of (5) is less or equal to that of (9).

Matching the real and imaginary parts of each element of the original matrix transfer

function H(w) with the corresponding parts of elements of (5) at the set of frequencies

{0,0,,0,,..,0 ¢} leads to the following linear systems of equations



1 1 1
! 1+m1/w3 1+m21/u)' HO),
1 cl ! M —[Hoo].j- Re([H((.O,)]U)

1 21 1 [Al]lj

sl TFeirel T Treilel, || x=|[A.] ||=b=| Re(H@)))],)
-, /O‘)c] —, /(‘DCM ol Tl B ) . 11
0 1+ 0} /o, 1+ 0] /o Im([H@')]"’) b
c ] M L[AM]IJ‘_ :
o SO0y 00y | Im([H(o,)],)
| 1o/ Tt ey /o)) ]

For interpolation M = 2K . and both real and imaginary parts of the original transfer function are
matched exactly at all of the K frequency points and dc. For an arbitrary larger number of points,
the least square solution of (11) is obtained from

ATAx=A"b.

The total computational complexity of the approximation method is that of N *+1 real
linear solutions and one polynomial factoring. The orders of the polynomial and linear systems
depend only on the order of the approximation and not on the number of the original function
samples. Since no iterative or relaxation techniques are involved, the method is free from
convergence problems.

Fig. 2 shows an example of the fourth-order approximation of an open-loop transmission-
line transfer function. As can be observed, although only nine samples of the original function
were used, the approximation exhibits an excellent match in the full frequency range. In general,

due to their simplicity, the open-loop functions can be accurately fit with the 3rd-9th-order

approximation.

V. ComMmPANION MODEL

By applying the difference approximation to the propagation function and characteristic admittance,

the frequency-domain element characteristic (1) is transformed into the following discrete-time

element characteristic, or companion model
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() =Y,0,)v,(1,) - J,(t,) -
iy (1) = ¥,0,) v,0,) - 5,0, )

The circuit-diagram interpretation of the companion model is shown in Fig. 3.

The admittances Y, and Y, represent present-time coefficients in the indirect numerical

integration formulas for the admittances Y, and Y. The current sources j, and jz combine the

currents jy, and Jy, corresponding to the remaining parts of the numerical integration formulas for

the admittances, and j, and j, which are given by the discretized Egs. (3) and (4)

Jh(,) = =Jy, (1) + 3, ()

N ) (13)
jZ(In) = —J\'Z(In)+j2(tn )

Egs. (3) and (4) do not contribute to the admittance part of the companion model because the

propagation functions contain a delay.

The Modified Nodal Approach (MNA) stamp corresponding to the companion model (12)

1s:

KCLar v oy vo v

node: _L_l_ o __U'__ I_h_'_ o ]__ . :’ I - .
11 A {"2:‘[?1]1, Il I Vi [5:]

: Y1 L | ;
LN |"2[Y1]M | l Vi [-H]N
—_—— _—_—— I — —-| ———————— +—_—‘F‘_‘"—'_T—"
I _Z[Y l _Z[Yllw |§2’[Y1]U | | Vi = -Zﬂ[iu].
R S TR [
: I : Y2 | : :

s =
2.N =21Yzy || Van 2
sl D S _ T | | R
2 i ! ! ,,,[YZ] - ‘§[Y21,~ ||, I[Yz],,» V2 —'23;[12]

(14)
In the circuit simulator during the transient analysis, the lines are represented by the tables of
numbers (14) which are recursively updated at each time iteration using numerical integration. The

left-hand side of the stamp (14) has to be updated only when the value of the time step changes. If
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the step-invariant indirect numerical integration formulas (6) are used, the left-hand side of the

stamp becomes independent of the time step, and only the right-hand side vector has to be updated.

Since the terminal currents are not introduced as variables, the values of i, and i, in (4) are

computed from (12).

V]. LiNE MoDEL FOR AC AND DC ANALYSES

For ac and dc analyses, the complexity of the transfer functions is not important, and the element
characteristic which does not require the introduction of current variables and is suitable for the
ac/dc modeling of transmission lines is the Y-parameter characteristic

{il(m) =Y, (0) v,(0)+ Y, (®) v,(w) 0s)

i,(0) =Y, (0) v,(0)+ Y, (0) v, ().

The Y-parameters are related to the open-loop functions as follows

Y, () = Yu() = Y () +2[1- Wio)] WH@)Y (@),
_ (16)
Y, (@)= Yy (@) = -2[I- Wi@)] W (@)Y (),
where I is the identity matrix. The expressions were derived by eliminating j, and j, from Egs.

(1)-(4), and transforming them to the form of (15).
The dc model is merely the ac model at zero frequency. For the limiting case of lines with

zero distributed conductance, G =0, the dc values of the Y-parameters are

Y, (0)=Y,,(0)=-Y,(0)=-Y,,(0)= %R" .

The MNA stamp corresponding to (15) is
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KCL ar S B A R : vee | ow
N A T T B
L1 ‘ —Z[YII]U | | -E{Y'Z]l, Vu1 OW
Ty, v,
LN 11 | _i[Yn]NJ | 12 | —i[le]N, Vin 0
—_——t ey ———— = — T+ 77 = — —— === 11
N T O 3 i T T N P20 I
2.1 szvj‘,l_[-yn].j —{ —gyzz],/ _V-Z.l—-.— E
[ DA _L;_%,[_Y"]”’_l_h _____ I i A
2 "'_zl[Yn] . ‘;[YH],N ‘l _Z];[Y“]u || ';[Yn ],, 'Z[Yn] || Zl ,1[ ]U LV:' LO

(16)

VIl. INITIAL CONDITIONS FOR TRANSIENT ANALYSIS

The dc model is used to perform the operating-point (op) analysis before the transient simulation.
The op solution is then used as initial conditions for the transient analysis. The initial conditions
for the indirect numerical integration are the dc values of the state variables, which are related to the
dc value of the excitation, x,, as follows: z,(1,) = a,X, for the step-invariant case (6), z,,(1,) = 0
for the ramp-invariant case (7), and z,(t,) = —d,(T))x, for the ramp-invariant case (8). The dc

values of i,, and i,,, which serve as excitations for the propagation functions in (4), have to be
expressed in terms of the terminal voltages obtained from the op analysis. Resolving Egs. (1)-(4)

leads to

i, (0)=[I- W2(0)] " [Y. (0, (0)- W, (0)Y.(0)v,(0)]
iy, (0) = [1- W2(0)]” [Y.(0)v,(0) - W, ()Y (O, )]

For the limiting case of G =0, the expressions become

i,,(0)= .,,,(0)_ R"[v (0)-v,(0)].
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VIll. SIMULATION ALGORITHM

For an MNA-based simulator, the line simulation algorithm is as follows.

1. Before the transient analysis:
a) Perform op analysis of the circuit to find the initial conditions for the transient analysis.
Use the ac/dc model (15)-(16).
b) For each line in the circuit, perform the difference approximation of each element of the
propagation function and characteristic admittance matrices.
2. Ateach time iteration:
Recursively update the line stamps using the indirect numerical integration formulas

obtained at step 1(b) and companion model (12)-(14).

Since the method introduces neither additional nodes nor current variables, the line
modeling does not increase at all the circuit solution time. The only additional time is required to
perform a low-order interpolation once in the beginning of the simulation, and for a low-order
numerical integration. As shown in the next section, this time is negligibly small compared to the

circuit solution time.

IX. NUMERICAL RESULTS

The method has been adopted in several industrial and commercial circuit simulators, and, in
numerous real-life simulation exercises, proved to be reliable, accurate and efficient. Table II
presents relative runtime data for circuits of various types and sizes. As can be observed, even for
the worst case of a small circuit consisting of lines only, the model is virtually as efficient as the
simple replacement of interconnects with lumped resistors. The resistive model was chosen for the
comparison because it represents the limiting case in the simplicity and computational efficiency of
the interconnect modeling.

Fig. 4 verifies the method’s accuracy with Spice3e2 lossy multiconductor line model [8].

A simple network was chosen as an example to reduce the influence of factors other than the line
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model on the simulation accuracy. A variable, third- to fifth-order frequency-domain difference
approximation was applied. Ascan be observed, the compared waveforms are indistinguishable.
The runtime for the presented method was three orders of magnitude shorter than that for the Spice
model, which is, in turn, an order of magnitude faster than segmentation models.

The presented line model has been implemented in a commercial CAD product DFSignoise
from Cadence. The following examples show results for real circuits analyzed with tisim, the
simulator deployed by Cadence's DFSignoise. The examples compare the suggested line model
with segmentation models. The suggested model included frequency-dependent loss, whereas the
segmentation models included no frequency dependence.

The first example is a long cable driven by an ECL buffer at a high, 400 MHz, speed. The
nonlinear characteristics of the driver and receiver were described in the /O Buffer Information
Standard (IBIS) data format [22]. Fig. 5 shows the circuit schematic and the IBIS data. and
compares the simulation results obtained with the lumped RLGC and pseudo-lumped (distributed-
LCNumped-RG) segmentation models and the suggested line model. The number of segments for
the segmentation models was over 400. The automatic algorithms used to determine the number of
segments took into account the rise and fall times and the expected attenuation.

The waveform simulated with the suggested line model shows considerable attenuation due
to the frequency-dependent dielectric loss and conductor loss with the skin effect. As can be
observed, the segmentation models without the frequency-dependent loss consistently underpredict
the attenuation and resulting loss of the noise margin, accurate prediction of which is important at
these speeds. The lumped segmentation model also shows spurious peaks which are artifacts of
that method.

Fig. 6 shows a similar comparison between the pseudo-lumped segmentation model and
suggested line model for a circuit driven by IBIS CMOS buffers at 200 MHz. This network is
complicated and contains 45 two-conductor, 8 three-conductor and 5 four-conductor lines. The
longest transmission line in this case was a two-conductor line of 0.5 m. The longest

multiconductor line was a four-conductor line of 0.26 m. The largest delay was 7.8 ns. In this
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case, the two models produced comparable results, since the rise time of the driver was 0.9 ns as

opposed to the 0.3 ns of the ECL driver. The figure also shows the crosstalk waveform V,. The

crosstalk waveforms for the suggested and segmentation models were very close.

X. CONCLUSIONS

This paper presented a method for circuit simulation of uniform multiconductor lossy frequency-
dependent lines characterized by sampled frequency-domain responses. The method uses element
characteristics which do not require the introduction of current variables, simple open-loop
transmission line characterization, matrix indirect numerical integration formulas, novel direct
matrix rational approximation method. and novel matrix delay separation technigue. The complete
step-by-step implementation of the method was presented, including ac, dc and transient analyses.
extraction of initial conditions from the op analysis, and MNA stamps.

The method is compatible with recursive time-domain solvers employed by circuit
simulators and supports variable time-stepping. The method has been adopted in several industrial
and commercial circuit simulators, and, in numerous real-life simulation exercises, proved to be
reliable and accurate. It was shown on an extensive set of runtime data that the method is as

efficient as simple replacement of interconnects with lumped resistors.
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FiIGURE CAPTIONS

Fig. 1. Conventions for the voltages and currents at the line terminals.

Fig. 2. An example of the 4th-order complex rational approximation. The original function is
shown by the thin continuous curves and the approximating function by the thick dashed

curves.
Fig. 3. Companion model for a transmission line.

Fig. 4. (a) the network configuration and (b) comparison of the transient waveforms generated
using the line model installed in an MNA-based circuit simulator (thick broken curves)
and Spice3e2 (thin continuous curves). R,=R=50 Q, R,=R=1 kQ, R=R,=10 MQ;
self-inductance L.=418 nH/m, self-capacitance C.=94 pF/m, mutual inductance L,=125
nH/m, mutual capacitance C,=22 pF/m, R=15 Q/m, G=0, 1=0.677 m (all signal

conductors are the same).

Fig. 5. (a) the circuit schematic, (b) IBIS model for the ECL buffers, and (c¢) the transient
waveforms simulated with the segmentation and suggested line models. The line
parameters are: L=502 nH/m, C=67.9 pF/m, R={3.25 Q/m at dc, 87.7 Q/m at 10

GHz}, G={430 fS/m at dc, 4.3 mS/m at 10 GHz}, {=0.88 m.

Fig. 6. (a) the circuit block schematic, (b) IBIS model for the CMOS buffers, and (c) the

transient waveforms simulated with the segmentation and suggested line models.

TABLE CAPTIONS

Table I.  Relative runtimes.
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