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Abstract

This report presents multigrid methods for solving the 3-D incompressible viscous rotating

flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical for-

mulations are given in both the rotating reference frame and the absolute frame. Comparisons are

made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-ac-

curate scheme for simulating viscous rotating flows for complex internal and external flow applica-

tions. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computa-

tions are discussed.
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I. Introduction

Computation of unsteady rotating flows can be applied in many practical areas such as in turbo-

machinery cascade flow, helicopter rotor flow, and marine propulsor flow predictions [1] [2] [3 ]. Two

numerical approaches are typically used in the simulation of unsteady flows in rotating machinery.

A common way is to solve the governing equations in a rotating reference frame by computing either

the relative velocity [4] or the absolute velocity [2][5]. The advantage of this approach is that it uses

a steady-state formulation, if the flow field can be viewed as a steady state in the rotating frame.

Thus, many efficient acceleration techniques, such as local time stepping and multigrid method, can

be used. An alternative to the steady-state approach is to establish the governing equations in a fixed

absolute frame, and solve the equations using a time-accurate formulation. However, the demand

on accuracy and efficiency for time-accurate solutions is much higher than that for steady-state

solutions. For the reason of accuracy, time step is restricted, and it has to be chosen smaller than

the smallest characteristic scale length to be resolved. The restriction on the time step reduces the

efficiency of implicit schemes, but it is the most straightforward way to deal with the general un-

steady flows that can not be viewed as a steady state in the rotating reference frame, such as the un-

steady rotor/stator interaction.

This report describes and compares both numerical formulations of solving the governing equa-

tions in the rotating reference frame with a steady-state method and in the absolute frame with an

unsteady time-accurate method. In the rotating frame, a steady relative velocity flow field is pur-

sued. In order to fully use the original code which is written in the absolute velocity components,

a dependent variable transformation is first performed to change the relative velocity components

into the absolute velocity components in the governing equations, and the computation is performed

based on absolute velocity instead of relative velocity in the rotating frame [2][5]. Two practical

applications are presented for solving viscous rotating flows in a NASA low-speed centrifugal com-

pressor and in a marine propeller 4119. The purpose here is to evaluate and validate the accuracy,





efficiencyandrobustnessof thecurrentmethodto predictcomplexflow fieldsfor both internaland

externalflow applications.

In thefollowing,the3-D incompressibleNavier-Stokesequationsingeneralcurvilinearcoordi-

natesarefirst given,followedbythenumericalmethodsusedtosolvetheequationsin boththerotat-

ing referenceframeandabsoluteframe. Thedifferencebetweenthetwo approachesis addressed.

Thenthemultigrid implementation[6][7] is illustratedtoacceleratethesolutionsinboththerotating

andabsoluteframes.Computationalresultsof viscousrotatingflows inbothimpellerandpropeller

casesarepresented.In the lastsection,someconclusionsaregiven.





II. Governing Equations

The artificial compressibility form of the 3-D incompressible Navier-Stokes equations in a gen-

eral curvilinear coordinate system (_, r/, _, v), which rotates about the x-axis at a constant speed of

g2, can be written as follows

OQ OF OG OH _ S (1)
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Here J, p, u, v, and w denote the Jacobian transformation, pressure, and the Cartesian velocity com-

ponents in the absolute frame, respectively, fl is the artificial compressibility coefficient, and terms

1"k_,irk,, I"k_, where k=_, r/, and _, are the viscous flux components in curvilinear coordinates. The

Baldwin-Lomax algebraic turbulence model is adopted in this work. The relative contravariant ve-

locity components U j, V _, and W Fare defined as

U' = _x u' + _y v' + _z W' + _,

V' = _]x u' + ?]y i)' + _]z w' + tit

U' : Cx iz' q-Cy v' -t- Cz w' -t- ¢,

where u', V, and w' are the relative velocity components in the rotating reference frame, and are writ-

ten in terms of absolute velocity components u, v, and w as

u' = u v' = v - g2z w' = w +12y

To solve the governing equations in an absolute frame, one can simply set the rotating speed

g2 to zero in the above equations and evaluate _t, r/t, and _t as a result of grid rotation, which reduces

to the normal conservative form of 3-D incompressible Navier-Stokes equations in general curvili-

near coordinates based on the fixed absolute frame. Grid speeds have been included in the above

formulation to allow grid motion relative to both the rotating and the absolute frame. In this work,

however, only steady state solutions with stationary grids are pursued in the rotating frame. These

steady state solutions of the absolute velocity on stationary grids in the rotating frame are carried

out by setting I2 to the rotational speed and _t = rh = _t = 0 in Eq. (1). These absolute velocity solu-

tions, which are viewed as steady state in the rotating frame, correspond to a particular time and posi-

tion of the rotating grid in the absolute frame. The unsteady computations with dynamic grids are

performed in the absolute frame.





IH. Numerical Solution Method

In both the steady-state and unsteady formulations, the governing equations (1) are discretized

by a cell centered finite-volume scheme. The time derivative is differenced using the Euler back-

ward formula. For the one-dimensional case in both the rotating and the absolute frames (in the

absolute frame, with the source term S equal to zero), it may be written as

Q_+I _ Qn [=n+l ---_n+l\ n+l

Ar + _1"i+ i/2- t%1/2) = Si (2)

where the index i corresponds to a cell center and indices i 4- 112 correspond to cell faces. The spatial

discretization of the Euler fluxes at cell faces are approximated by using the third-order MUSCL

approach in the Roe scheme. Details about this method can be found in [8].

The nonlinear system of equations (2) is solved by the discretized Newton-relaxation (DNR)

method described in [9]. Note that Eq. (2) can be written in a simple form as

N (Qn+l) = Sn+l

Applying Newton's method to Eq. (3) yields

(3)

N,(On+l,m)(Qn+l,m+l _ Qn+l,m) = _ (N(Qn+l,m) _ sn+l,m) (4)

where m= 1, 2, 3 .... is the number of Newton iterations implemented at each time step, with Qn+l,1

=Qn. These sub-iterations at each time level serve to eliminate linearization error, and thereby

insure temporal accuracy. N _ is the Jacobian matrix of the nonlinear equation (3) where the con-

tribution of the source term is not included. The resulting formulation of Eq. (2) by Newton's

method is





AOn+l,m + ( I "_, _ n+l,m Afln+l,m-ff_i-1/2, i-1 _i-1 -_ q- Fri+l/2,/- F i-l/2, i ai + F_i+l/2,i+l _i+1

-A'-_ + Fi+I/2(Q n+l' - F'__I/2 - (5)

where _l is the Jacobian matrix of the numerical flux vector F, with the first subscript representing

the position of the cell face of the numerical flux vector, and the second subscript representing the

position of the dependent variable vector that the numerical flux vector is differentiated with re-

spect to. Ia is an identity matrix except the first diagonal element is zero in order to satisfy the true

incompressible continuity equation. In the rotating frame where the flow field is a steady state,

continued iteration of Eq. (5) would presumably lead to Qn+l __+Qn. For unsteady computation in

the absolute frame, time-dependent results can be achieved when a converged solution is obtained

at each time step through Newton iterations. Gauss-Seidel relaxations are used to solve the linear

system of equations, which results from Newton's method, approximately at each Newton itera-

tion.





IV. Multigrid Method

In this work, the multigrid method [6] [7] is used to accelerate both the steady-state and time-ac-

curate computations. The difference between the steady and unsteady multigrid methods is that in

the former, time is advanced in the fine grid as well as the coarse grid to achieve full efficiency.

While in the la_er, both the fine grid and coarse grid equations must be solved at the same time level

to ensure temporal consistency [10]. The two-level multigrid method for Eq. (3) can be briefly de-

scribed as follows:

1. Iterate Nh(Qh)=sh J_ times on the fine grid h by Newton's method.

2. Restrict the residual and solution to the coarser grid 2h, and iterate N2h(Q 2h) = S 2h ,.IT

times, where S 2h = N2h(12hhQh ) + R2hh(S h- NhQ h) is the source term on the coarse grid 2h.

3. Interpolate the correction from the coarser grid to the fine grid and update the solution

Qh¢:= Qh + Ph2h(O2h_ i2hhah )

4. Repeat steps 1-3 for ,Ab times at the same time level, using Qh as the new approximation

to Qn+ l.

In the above procedure, J_ is the number of Newton iterations for the fine grid and coarser grids,

and _ is the number of multigrid cycles implemented at each time step. Choosing different values

of .N" and _ may form different multigrid strategies and result in different effects. In this work,

the number of Newton iterations Jg" is chosen as one for all computations. The number of multigrid

cycles .Ab used at each time step varies according to different cases. Note that if no coarser grids

exist, both parameters _ and X have the same meanings in regard to the implementation of the

code.





V. Results

Two applications involving both internal and external viscous flows are presented here. One is

a turbulent flow in a NASA low-speed centrifugal compressor (LSCC) [1]. Another case is a turbu-

lent flow about a marine propeller 4119 [3]. In each case, computations were first performed by a

steady numerical approach in the rotating frame, then compared with the unsteady time-accurate

approach in the absolute frame. Computations were carried out on a single processor of an SGI

75MHz R8000 workstation.

A NASA Low--Speed Centrifugal Compressor

The study of the LSCC is sponsored by the NASA Lewis Research Center to evaluate the capa-

bility of the computational method to predict the flow field in the complex geometric channels of

centrifugal compressors. The complex phenomena to be considered include secondary flows in the

impeller passage, tip clearance flows, etc. The experimental investigation of the LSCC was con-

ducted by Hathaway et al. in [ 1], which gives detail measurements of the velocity components Vr,

Vt (Vo in Ref.[ 1]), and Vx in the blade passage. These experimental data are used to verify the accura-

cy of computed results.

Two computational meshes for the LSCC geometry were built with about 300K and 200K grid

points on the fine and coarse grids, respectively. The grid spacing on the fine grid surfaces is 4.x 10 -6,

and has 73 points on the blade, 13 points on the tip clearance, 37 points spanwise, and 41 points pitch-

wise (Figure 1). The Reynolds number is 4.3x106, based on the velocity of the inlet flow and the

diameter of the blade tip. The grid y÷ value on surfaces is about 1. The inflow boundary condition

is given by specifying the three velocity components u, v, and w. The back pressure is specified at

the exit of the computational domain. Figure 2 shows the convergence history of the steady-state

solution in the rotating frame, based on the fine grid. A 3-level full coarsening multigrid strategy

was employed to accelerate the convergence. A local time stepping was used with a maximum CFL

number of 20. At each time step, only one multigrid cycle (,Al_= 1), with 5 Gauss-Seidel relaxations





wasimplemented.Theresidualwasreducedby 2ordersof magnitudein200multigridcycles,and

thenbecamefiat. The reasonfor thatmaybedueto theextremelysmallvolumein this fine grid

(minimumvolumeis lessthan1.x10-14).Thecomputerrequirementfor this solutionis 336MB

internalmemory,and27hoursof CPUtime for 500multigrid cycleson themachinementioned

above.

Thefollowing Figures3(a)through3(d)showcomputedandmeasuredrelativevelocitycompo-

nentsat 4 locations(m/ms=0.149,0.475,0.644,and0.941,wherere�ms is the non-dimensional

shroud meridional distance) along the blade passage. The results in each plot are shown at every

5% of span, with the results nearest the shroud located at 95% of blade span from the hub, where

100% span denotes the blade tip. Agreement between the numerical prediction and the measurement

is considered reasonably good. Figures 4(a) through (d) show computed particle traces on the suc-

tion and pressure surfaces, and the top and hub surfaces of the LSCC channels, based on the relative

velocity. The plots indicate a continuing migration of fluid outward toward the tip near the blade

surface (Figures 4 (a) and (b)).

The LSCC flow field was also solved based on the coarse mesh, using both the steady approach

in the rotating frame and the unsteady time-accurate approach in the absolute frame. For the steady

computation, the same multigrid strategy and parameters were employed as in the previous case.

Figure 5 shows the convergence history in the coarse grid. A convergent solution was obtained in

500 multigrid cycles by reducing the residual for 4 orders of magnitude. The comparison of relative

velocity components between the computation and experiment is very similar to the fine grid case

(shown in Figures 3(a)-(d)), and therefore are not presented here. The unsteady calculation was

started using local time stepping, and moving the entire grid at a rate of 300 time steps per revolution

of the impeller. A 3-level multigrid procedure was also used to accelerate the convergence of the

unsteady solution at each time step. After the solution marched for two revolutions, the calculation

was switched to minimum time stepping, with 3000 time steps per revolution (A t=-0.00029). The

final solution was obtained after about 4000 time iterations, due to the very small time step used in





theunsteadycomputation.Theaccuracyof thetime--dependentsolutionwill bediscussedbelow.

Anothereffort madeby Taylor [11] usingtheRoeflux formulation(non-MUSCL type [12]) and

a singlegrid approachshowedsimilarresultsafterabout6000time stepiterationsof theunsteady

computation.Thecostof CPUtimein theseunsteadysolutionsisabout6-10 timesthatof thesteady

solutionin therotatingframe.

The accuracyof time--dependentsolutionsis assessedwith different time stepsandmultigrid

cyclesateachtimestep,bycomparingwith theresultsobtainedusingasteadyapproachin therotat-

ing frame.Theunsteadycalculationcanbeperformedatalargertimestepof 300cyclesperrevolu-

tion (At=-0.0029), but the results differ from those obtained using the steady method, see Figure 6(a).

Applying more multigrid iterations (_1o) at each time step seemed not to improve the solution very

much, as shown in Figure 6(b). The accuracy of the unsteady solution is significantly improved only

after reducing the time step to 0.00029, which is 3000 time steps per revolution (Figure 6). The

above numerical results reveal the following characters of the code. First, the current unsteady code

is robust, since the allowed time step is not bounded by numerics (stability), but by physics (resolu-

tion). Therefore, a largest possible time step can be selected in the computation to achieve best effi-

ciency while maintaining desired accuracy. Second, one multigrid cycle is sufficient to provide a

convergent solution at each time step in this case, since more iterations do not change the solution

significantly. Third, the accuracy of time-accurate solutions is critically dependent on the time step

used in the calculation, which suggests that higher order time accuracy may be preferred in unsteady

computations, especially in complex internal flows. Though using a very large time step (or local

time stepping) does not provide sufficient accuracy for the time--dependent solution, it is an efficient

way to obtain an initial approximation to start with, or to quickly predict the flow field qualitatively.

This strategy is also adopted in the computation of the next case.

A Marine Propeller 4119

There is reported computational result for the marine propeller 4119 [ 13]. The purpose here is

to further assess the accuracy and efficiency of the current method for simulating external rotating

10





flows in a complex geometry. The computational grid consists of three blocks with a total of 280K

points (Fig.7). There are 41 points in the streamwise and spanwise direction on the blade. The Re-

ynolds number is 5.76x 105, based on the freestream velocity and the diameter of the blade. Figure

8 shows the convergence history of the steady solution obtained in the rotating frame, where the cal-

culation was performed by using a 4-level multigrid full coarsening. At each time step, one multi-

grid iteration (_4t_= 1), with 5 Gauss-Seidel relaxations was implemented. Local time stepping was

used at a CFL number of 5. It is seen that the residual is reduced by about 3 orders of magnitude

in 400 multigrid cycles. The CPU time of this calculation is about 20.6 hours on the SGI R8000

workstation.

The pressure coefficient distributions on the blade surface are show in Figures 9(a)-(c), where

r is the radial distance from the measured point on the blade to the hull axis, and R is the radius of

blade tip. Favorable agreement was obtained between the computation and experiment, except for

the pressure side at location r/R=0.3.

A computation was also performed using the unsteady time-accurate approach in the absolute

frame. The initial solution was obtained by running the unsteady code in the absolute flame using

local time stepping, while the computational grid was rotated at a rate of 200 cycles per revolution

of the propulsor. After 200 time steps, the time-accurate calculation was started using a minimum

time step of 0.004165, which is equivalent to 200 time steps per revolution. The multigrid cycles

are employed to insure the convergence of the solution at each time step. It was found that the final

solution with one multigrid cycle (.Ab= 1) at each time step is close to that with two multigrid cycles

(.hb=2) at each time step. The unsteady solution became periodic after seven revolutions of the grid

motion, or 1400 time steps. The cost of the CPU time of this unsteady solution is 3.5 times and 7

times that of the previous steady solution, with one and two multigrid cycles at each time step, re-

spectively. Figures 10(a)-(c) show computed u-velocity contours obtained in the rotating frame and

in the absolute frame with different multigrid cycles. Again, results obtained in the two different

frames are similar. Figures 11 (a)- 11 (c) show the computed and measured pressure coefficient dis-

11





tributions on the blade surface, where computed results were obtained in the absolute frame using

2 multigrid iterations at each time step. Computational results about thrust and torque coefficients

are given in the Table 1. A desired accuracy is achieved in both computations.

12





VI. Conclusions

The computational results are presented for both internal and external viscous turbulent flows

in complex geometries, a NASA low-speed centrifugal compressor and a marine propeller 4119.

Computations are performed and compared in both the rotating reference frame using a steady-state

formulation and the absolute frame using a time-accurate approach. A multigrid strategy is applied

in both the steady-state and time-accurate computations to improve the efficiency and robustness

of the algorithm. Results show that solving the unsteady rotating flow in a rotating frame costs much

less CPU time than solving the flow in the absolute frame, in both internal and external flow cases.

Comparison between the computed results and the experimental data is considered satisfactory for

the current turbulence model and grid resolution.

Although the current multigrid algorithms are relatively efficient and robust, there are some un-

resolved issues which require further investigation. These include the use of a larger CFL number

in the steady flow computations with a source term, and selection of the optimal time step for the

best output regarding both accuracy and efficiency in time--dependent solutions. Finally, the second

or higher order time difference scheme should be incorporated into the code to improve the accuracy

and efficiency for time-accurate computations.

13
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Figure 1 3-block grid of the NASA low-speed centrifugal compressor
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Figure 3 (c) Comparison of computed (in rotating frame) and measured relative

velocity magnitude at station 135 (m/ms=0.644)
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Figure 3 (d) Comparison of computed (in rotating frame) and measured relative
velocity magnitude at station 165 (m/ms=0.941)
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Figure 4 Particle traces on the surfaces of LSCC channel based on computed
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Figure 5 Coarse grid convergence history of 3-level multigrid
solution of the LSCC in rotating frame at CFL=20
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Figure 6 Comparison of computed velocity components at station 118 at
95% span at different multigrid cycles (.A_) and time steps
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Figure 8 Convergence history of 4-1eve1 multigrid solution of a
marine propeller 4119 in rotating frame at CFL=5
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Figure 9 Computed (in rotating frame) and measured pressure coefficients
on the blade surfaces at (a) r/R=0.3, (b) r/R=0.7, (c) r/R=0.9
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Figure 10 Computed u-velocity contours (a) in rotating frame,
(b) in absolute frame with 1 multigrid cycle,
(c) in absolute frame with 2 multigrid cycles
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Figure 11 Computed (in absolute frame) and measured pressure coefficients
on the blade surfaces at (a) r/R=0.3, (b) r/R=0.7, (c) r/R=0.9
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Experimental Data

Computation
in Rotating Frame

Computation
in Absolute Frame

Thrust Coefficient

0.146

0.1497

0.1498

Torque Coefficient

0.028

0.0254

0.0256

Table 1. Measured and computed thrust coefficient and torque coefficient
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