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SUMMARY

A complete evaluation of the tribological characteristics of a given material/mechanical system is a
time-consuming operation since the friction and wear process is extremely systems sensitive. As a result,

experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce
the total number of experimental combinations needed to fully characterize a material/mechanical system, but

also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experi-
mental designs still require a great deal of experimental testing and the output does not always produce
meaningful information. In order to further reduce the amount of experimental testing required, this study
employs a computer neural network model to investigate different material/mechanical systems. The work
focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict
life data. The model is capable of defining which input variables will influence the tribological behavior of the
particular material/mechanical system being studied based on the specifications of the overall system.

INTRODUCTION

Recent advances in computer and electronics technology have greatly increased the reliability and

longevity of electronic systems, which have long been considered to be the limiting life factor for satellites. As
a result of these improvements, mechanical systems have now become a major life-limiting factor in current
satellite systems (refs. 1 to 7). Recently, a number of significant spacecraft anomalies have occurred from
problems with mechanically moving mechanisms such as bearings, gimbals, latches, and hinges (refs. 4 to 8).
It has become evident that as mission durations extend beyond 5 years, further advances in the reliability and

longevity of mechanical space systems will be required.
Verification testing is an important aspect of the design process for mechanical mechanisms. Full

scale, full length life testing is typically used to space qualify any new component. However, as the required
life specification is increased, full length life tests become more costly and also lengthen the development
time. In addition, this type of testing becomes prohibitive as the mission life exceeds 5 years, primarily
because of the high cost and the slow turnaround time for new technology. As a result, accelerated testing
techniques are needed to reduce the time required for testing mechanical components.

Current accelerated testing methods typically consist of increasing speeds, loads, or temperatures in
order to simulate a high cycle life in a short period of time. However, two significant drawbacks exist with this
technique. The first is that it is often not clear what the accelerated factor is when the operating conditions are
modified. Second, if the conditions are changed by a large degree, on a scale of an order of magnitude or

more, the mechanism is forced to operate out of its design regime. Operation in this condition can often
exceed material/mechanical systems parameters and renders the test meaningless.

It is theorized that neural network systems may be able to model the operation of a mechanical
mechanism. If so, these neural network models could then be used to simulate long term mechanical testing

using data from a short term test. This combination of computer modeling and short term mechanical testing
could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated

with long term testing. Neural network models could also enable designers to predict performance of

*Current Affiliation: NRC Fellow, Phillips Laboratory, Propulsion Directorate, Carbon Materials Research Group, Edwards
AFB, CA.



mechanisms at the conceptual design stage by entering the critical parameters as inputs and running the model

to predict performance.
The purpose of this study was to assess the potential of using neural networks for predicting the per-

formance and life of a mechanical system. To accomplish this, a neural network system was generated to
model previously taken data from (1) pin-on-disk, (2) line contact rub shoe, and (3) four-ball tribometers.
Critical parameters such as load, speed, oil viscosity, temperature, sliding distance, friction coefficient, wear,
and material properties were used to produce models for each tribometer. A methodology was then developed
in order to use each model to predict the results of tests under conditions which were different that those used

to predict the model.

BACKGROUND ON NEURALNETWORKS

Neural Network Overview

Artificial neural networks are not new to the scientific community. They have been utilized in many

applications since the late 1940's, when D.O. Hebb proposed a learning law that became the starting point of
artificial neural network training algorithms (ref. 9). Only recently, though, has the power of the neural network
model been realized and research into new application areas been started. Generally speaking, the artificial

neural network is a powerful computing algorithm that mimics the functionality (i.e., neuron cells) of the
human brain. They learn by trial and error directly from data in a manner analogous to the way a biological
brain learns from sensory input. Thus, neural networks can be taught to analyze and model complex, nonlinear

processes that are not well understood. Once these networks have "learned" the processes involved in the
application, they are able to identify, extract, and characterize hidden patterns within the data that are
difficult to observe by other analytical techniques. From this initial data, the network can then predict the
output of a trial based on a limited amount of input.

It should also be noted that one of the advantages to a neural network model is its insensitivity to
minor variations in its input. Essentially, the network is able to ignore noise and slight scatter in the data and
focus on the underlying relationships between variables. However, it should be noted that neural networks are
only as good as the input/output data used to train the model.

Basic Structure and Operation

Although many types of neural networks exist, they all have three things in comfiaon. The network can
be described in terms of its individual neurons, the connections between them (topology), and its learning rule
(ref. 10). The following section discusses the fundamental structure and operation of neural networks.

The Artificial Neuron

As the concept of neural networks was evolving, the artificial neuron was designed to mimic the first

order characteristics of the biological neuron. Each input to a neuron represents the output of a neuron from a

previous layer. The initial input values must be scaled from their numeric range into a range that the neural

network deals with efficiently. Two ranges are commonly used in network design--[0,1] and [-1,1]. Generally,

linear, logistic, and hyperbolic tangent functions are used to scale the input data. The input is then multiplied

by a weight factor (analogous to a synaptic strength in biology), and the weights are then summed to deter-

mine an activation level of the neuron. The activation levels are then further manipulated by an activation, or
transfer, function to obtain the neuron's output signal. In many instances, this transfer function is the logistic, or

sigmoid, function, which has the form f(x) = l/(l+e-x), although the transfer function can be any function
simulating the nonlinear characteristics of the system. A schematic of this process is shown in figure 1. By

utilizing multiple layers of neurons, with multiple neurons in each layer, more complex relationships can be
modeled.

With this type of architecture, though, the output is solely dependent on the current input variables
and the values of their weights. However, recurrent architectures, which are also investigated in this study,
recirculate previous outputs back to neurons in the same or previous layer. Hence, their output is generated
from current inputs/weights, as well as from previous outputs. For this reason, recurrent networks are said to
have characteristics very similar to short-term memory in humans.
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Evenwiththeorganization of neurons into various architectures, the network cannot function unless it
has the ability to learn from the given inputs and outputs. This concept is the premise behind the training
algorithms used in neural network development. Training is accomplished by sequentially applying inputs and
adjusting the corresponding weights according to a specified procedure until the desired output value is
obtained. During the course of training, the network weights for each input will converge to a specific value,
such that values approximately equal to the desired output are obtained. Network training is completed when
further modifications of the input weights do not produce closer approximations of the output values (i.e., the
error between actual and approximate output values is minimized). The weights for each input can then be
analyzed to determine the impact that variable has on producing the correct output. Larger weights on specific
input variables mean that those variables have a stronger influence on the output parameter. This is referred to
as determining the contribution strength of the input variable.

The training algorithm used in the designs studied in this work is known as backpropagation. Back-
propagation, which had its beginning in 1974 with the work of Werbos (ref. 11), is a systematic method for
training multilayer networks. The development of this training algorithm is directly responsible for the
advancement of the field of artificial neural networks over the last 20 years. However, the topic of back-

propagation is too complex for this paper, so the reader is referred elsewhere (ref. 12).

EXPERIMENTAL PROCEDURE

Data Sets Used

The data sets used in the three models developed in this work were obtained from various researchers,

projects, and test rigs at the NASA Lewis Research Center. Each model was developed according to the
material systems and test variables associated with the individual test rigs. The following sections will define
the data sets and test variables used for each model developed in this work. The data for each model is given

in Appendixes A to F.
The first network developed modeled data from a line contact rub shoe rig. A schematic diagram of

this rig is shown in figure 2(a). The data set used for the training and testing of this model was accumulated
from unpublished NASA data. All of the tests used in this data set were run using 440C stainless steel speci-
mens at a constant speed of 100 rpm (0.1833 m/s). Table I lists the parameters that were varied in these tests
as well as their ranges. The output variable for this model was the cumulative wear volume. This was used
instead of a calculated wear rate parameter, since the calculation of accurate wear rates from the available

data would have significantly reduced the number of data points available to train the model. By using this
output variable, however, the amount of scatter in the model is increased, because wear volume is not
constant from sample to sample.

The second model generated in this work utilized data from several early NASA Technical
Memorandums (refs. 13 to 17), which investigated the tribological properties of various materials using a pin-
on-disk apparatus, shown schematically in figure 2(b). Table I defines the parameters, materials, and ranges
used in this model. Various materials, including polymers and steel, were used for the pins, while M50 steel
was used as the disk material.

The final model generated in this work used published and unpublished NASA data which utilized a
four-ball test rig, shown schematically in figure 2(c) (ref. 18). The specimen material for the balls was 440C
stainless steel, and three perfluoropolyether (PFPE) fluids (Type K, Type F, and Type D) were used as lubri-
cants. All specimens were run at a uniform speed of 0.0288 m/s. Since there was little variation in the ranges
of the test variables, the focus of the model was on determining the tribological properties of various lubricants

from extensive materials properties and limited test properties. Table I lists the properties and variables used
for this model. Several of the material properties, the transient friction and initial _, ratio, were utilized in this

work to provide general information on the lubricants behavior under the test rig conditions (i.e., sliding con-
ditions). This information was acquired from previous researchers (ref. 19) who investigated the tribological
behavior of these three lubricants. The transient friction (high initial friction sometimes observed in these

materials) was listed as high, medium, and low for the three lubricants. These "levels" were given arbitrary
numerical values of (2) for high, (1) for medium, and (0) for low. Also, the initial _, ratio, the film thickness to

composite surface roughness ratio, was calculated for these materials using average values for each parameter.
These ratios ranged between 1 and 2 for the three lubricant materials. The output variable for this model was
the wear rate, which was determined from a linear regression analysis of wear volume versus sliding distance.
It should be noted that all of the data sets used in this work were sorted numerically according to the output

variable. This was done in an attempt to minimize the effects of scatter in the data.



Software Program

The neural network models developed in this work were created using a commercially available
software package. This package, allows for modification of the network design architecture (i.e., back-
propagation, kohonen, probabilistic, and general regression, etc.), as well as some of the design parameters
(i.e., number of neurons per layer, scaling functions, activation (transfer) functions, learning rate, momentum,
and initial weights, etc.). Although this package did offer a comprehensive assortment of possible modifica-
tions to network design, every modification was not investigated. Thus, this work mainly shows the feasibility
of developing neural network models for wear data, rather than addressing optimum network designs.

Determination of the Optimum Architecture

The commercial software package used allows for a total of 15 different architectures to be investi-

gated. Thus, the first step was to see which architecture design approximated the prescribed data with the
highest degree of accuracy. The criteria for selection was the statistical indicator R2 obtained from a multiple
regression analysis. This coefficient describes the fit of the network's output variable approximation curve with
the actual training data output variable curve. Higher R 2 coefficients indicate a model with better output
approximation capabilities. The default settings in terms of weights, bias, momentum, scaling functions, and
activation functions were used in these initial trials. Several of the architectures were not investigated, namely
the kohonen and probabilistic architectures, since they do not work well with valued outputs. Once the proper
architecture was determined, the various network parameters were systematically modified to determine the
optimum parameters for each layer, as well as each link between layers.

RESULTS AND DISCUSSION

Rub Shoe Model

The first model investigated was the rub shoe model. The input variables used in the network included
the following: load (lb), test time (min), sliding distance (m), viscosity (cSt), friction coefficient, and temper-
ature (°C). The defined output variable was the cumulative wear volume (mm3X 10-5). The values for wear
volume were reduced from their actual values to make them more manageable. By using only these input and
output variables, a data set containing 55 data points was accumulated. Also, a separate data set, with 26 data
points, was developed and used as an unknown test set for the trained model.

By means of the neural network software, the training data set was broken up further into a training set
(43 points) and a test set (12 points). This was done because the software trains the network on the training
set, and, after each iteration through the data, tests itself on the test set. Thus, the network is exposed to all 55
data points during the training procedure. When the errors (actual output valuennetwork approximation output
value) from the test set were minimized, the network was instructed to stop training.

The default settings for the network design parameters were used, and the various architecture designs
were studied to determine which design best suited this tribological data. The results from this analysis are
shown in table II. The architectural design column represents the different designs available in the commercial

software package. The R2-coefficient values presented illustrate each model's ability to approximate the
outputs using only the default parameters.

The general regression architecture led to a model with the least amount of error in the training data,
but the network did not have adequate generalized approximation abilities. This was due to the fact that this
particular architecture (given the small number of data points available) may have been memorizing the data
rather than learning it. This occurred with each of the three models developed in this study. Thus, unless large
data sets can be developed, the general regression architecture does not appear to be a viable model. As a
result, the input layer dampened recurrent network architectural design was selected as the architecture that
best approximated the rub shoe data. Figure 3 schematically illustrates this architecture.

By using this architecture, with the default design parameters as a baseline, variations to the design
parameters were investigated. These variations included the scaling function, the activation function, and the
link parameters. Each parameter was systematically modified and the effect of each modification was again
determined from the R2-coefficient of the networks approximation of the actual data. When all of the possible
modifications were made to the architecture, the R2-coefficients were reviewed and the parameters yielding
the highest R 2 values were deemed "optimum."
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Fortherubshoemodel,an"optimum"designconsistingofa linear[0,1]scalingfunction,10neurons
in thehiddenlayer,andahyperbolictangentactivation(transfer)functionfor boththehiddenlayerandthe
outputlayerwasdetermined.Modificationstolearningrate,momentum,andinitialweightsdidnotsignifi-
cantlyimpacttheabilityof themodelto approximatedata.Thus,thesevariableswerekeptattheirdefault
levels.Theparametersforthe"optimum"architecturewereusedtotrainthenetworkonthegiveninputdata.
Bygoingthroughaniterationprocess(backpropagationtrainingalgorithm),theweightof eachneuronwas
modifieduntilthenetworkapproximationerrorof theoutputvaluewasminimized.

Theresultof trainingthenetworkisshowngraphicallyin figure4,whichillustratestheabilityof the
networkto predictanoutputvaluewhenthatvalueis includedin thedataset.Oncethe"optimum"designwas
trained,themodelwasappliedto theunknowndatasetandtoldto approximatetheoutputvalue.Thisanalysis
isshowngraphicallyin figure5,whichillustratestheabilityof thenetworktoapproximatetheoutputwhenno
outputvaluesweregivenin thedatasetandwhenthemodelhadneverseentheinputvalues.The
x-axisin thesefiguresrepresentsthenumberof thedatapointfromthedatasetusedtoapproximatethewear
volume(y-axis).In other words, the range of the x-axis is the size of the data set used to test or train the
model. The scatter observed in this model is indicative of the problems associated with using wear volume as

the output parameter, namely the lack of repeatability from sample to sample. However, further nonlinear
curve-fitting of the network approximation curve will generate a better approximation of the data being
modeled.

Pin-on-Disk Model

The next data set investigated was that taken from pin-on-disk testing. These tests used several fluids
as lubricants and various materials as pin/disk specimens. The inputs used for this model were similar to those

in the previous model (i.e., load (N), speed (m/s), viscosity (cSt), sliding distance (m), friction coefficient,
and temperature (°C)), but the output variable was the wear rate (in units of m3/m (x 109)). The wear rate
values were increased to a value greater than 1 was so that accurate R2-coefficients could be obtained to

classify the architecture designs.
A similar procedure to the one discussed earlier in determining the proper design was followed for the

pin-on-disk data. Table II presents the results from this analysis. As was the case with model 1, the input layer
dampened feedback network resulted in the best approximation of the training and test data. Using this basic

design, the various design parameters were systematically modified to fully "optimize" the model. This
optimum network consisted of a linear [-1,1] scaling function, 10 neurons in the hidden layer, and a logistical
activation (transfer) function for the hidden and output layers. The default settings for learning rate (0.1),
momentum (0.1), and initial weight (0.3) were used since modifications to these parameters tended to
deteriorate the models ability to approximate outputs. Figures 6 and 7 illustrate graphically the networks
ability to approximate wear rate for the training data set and test data set, respectively. An explanation for
these figures is similar to that given for the rub shoe model.

As mentioned previously, this commercial software package allows the contribution strengths for each
input variable to be determined. Table III lists the contribution strengths for the input variables used in the pin-
on-disk model. This indicates that of the six input variables used to develop this model, the sliding speed and
the sliding distance are the most important inputs, while the friction coefficient and the temperature of the

system are the least influential. The remaining variables, load and viscosity, are intermediate in value. For the
sake of this study, though, these variables will be considered to be important.

Since it was known which variables were influential in predicting the desired output, the pin-on-disk

model was then used to study the feasibility of using neural networks to extrapolate variables and determine
their overall impact on wear rate. For this work, a new data set was generated "hypothetically." Constant
values were used for the least influential variables, while the other input variables were allowed to vary over a

large range of potential values. This means that the model has to interpolate or extrapolate between known
inputs in order to obtain an approximated wear rate. The test matrix for this data set is shown in Table IV. No
output variable was associated with these input values. The data set was then exposed to the network model so
that wear rates could be approximated. The results of this analysis, shown in terms of three-dimensional

surface plots in figures 8 and 9, illustrate the power of the neural network. As can be seen, the impact of each
variable on the wear rate is clearly evident. As the sliding distance and load increase, the expected wear rate
also increases. Simultaneously, as the speed of the system decreases, the expected wear rate will increase.

This type of information would be extremely beneficial to the design engineer developing new bearing
systems. Knowing what the needed specifications are, the design engineer could customize the materials, and



so forth to fit the system. This type of analysis could also steer the research engineer away from testing
conditions which would be expected to lead to results outside of design specifications.

Four-Ball Data Model

A similar procedure to the one discussed earlier for the rub shoe data (for determining the proper
design) was followed for the four-ball data. Table II presents the results from this analysis. Again, the input
dampened feedback layer led to the most accurate model for this data set. The design specifications used to
optimize the model included a linear [-1,1] scaling function, 20 neurons in the hidden layer, and a hyperbolic
tangent activation (transfer) function in the hidden and output layers. Default values for learning rate,
momentum, and initial weight were used. Figures 10 and 11 illustrate graphically the networks ability to
approximate wear rates for the four-ball training data set and the test data set, respectively. Again it is seen
that the neural network generated data can be made to very closely approximate the training data set, and then
once trained the network can be used to predict data that it had not previously seen (the unknown test data). It
is believed that an even better data fit could have been obtained if more data had been available to train the
network.

CONCLUSIONS

The following results were obtained from this study:
I. Neural networks have been shown to model simple mechanical systems illustrating the feasibility of

using neural networks to perform accelerated life testing on more complicated mechanical systems (i.e.,
bearings, etc.).

2. Although at an early stage of research, models have been successfully developed for three different
test rigs (1) a rub shoe rig, (2) a pin-on-disk rig, and (3) a four-ball rig.

3. The models discussed have been shown to be capable of predicting wear rates regardless of the
lubricants (materials) used in the system. This indicates that these models are able to generalize over a large
range of variables.

4. The models have been shown to extrapolate/interpolate input variables to approximate wear rate
values for conditions that have not been run experimentally.

5. An input layer dampened recurrent network architecture appeared to be the best architecture
available (of those studied) to model wear data. Linear scaling functions and either hyperbolic tangent or
logistic activation functions were beneficial.
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TABLE I.--DESIGN PARAMETERS AND VALUES USED IN NEURAL NETWORK MODELS

Rub shoe rig I Pin-on-disk ri

Variable [ Value l Variable
I Four-ball rigValue Variable I Value

Lubricants

PFPE (Type K)

PFPE (Type F)

Super-refined mineral oil

Ester-based fluids

n-Hexadecane .......

Synthetic paraffinic oil

Load, lb 50 to 100

50 to 800Viscosity. cSt

Sliding distance,

m

Friction

coefficient

Temperature, °C

50 to 25 000

0.05 to 0.20

25to 115

Wear volume I

Glycol derivative

Modified polyphenyl ether

Inputs

Load, kg

Speed, m/min

Sliding distance, m

Temperature, °C

Friction coefficient

Kinematic viscosity, cSt

Out

Wear rate

PFPE (Type K)

PFPE (Type F)

PFPE (Type D)

0.5 to 1.5 ......

2.6 to ! 8.2

100 to 1200

25 to 400

-0.1 to 0.2

0.5 to 40

Pressure-viscosity
coefficient

Transient friction

Initial X ratio

Kinematic viscosity,
cSt

Molecular weight

Vapor pressure, torr

Surface tension,

dynesdcm

Viscosity index

Load, N

Sliding distance, m

I Wear rate

250 to 800

5600 to 10 000

3 to 500 000x10-12

18 to 25

134 to 355

200 to 600

350 to 525



TABLE II.--R2 COEFFICIENTS FOR VARIOUS DESIGN ARCHITECTURES FOR VARIOUS

MODELS DEVELOPED

Architectural design

3 Layer hackpropagntion

4 Layer backpmpasation

5 Layer backpropasation

Input layer dampened recurrent

network

Rub shoe model Pin-on-disk model Four-ball model

0.76 0.89 0.67

0.78 0.89 0.69

N/A 0.88 0.66

0.930.84 O.92

Hidden layer dampened recurrent 0.82 0.91 0.82
network

Output layer dampened recurrent 0.77 0.89 0.60
network

2 Hidden layers with different 0.63 0.90 0.69
activation function

3 Hidden layers with different 0.74 0.89 0.67
activation function

2 Hidden layers with different 0.76 0.90 0.67

activation function and jump
connection

0.77 0.84 0.613 Layers with jump connections

4 Layers with jump connections

5 Layers with jump connections

General regression

0.76 0.84 0.54

0.77 0.84 0.54

0.97 0.90 0.71

TABLE Ill.----CONTRIBUTION STRENGTHS FOR

INPUT VARIABLES IN PIN-ON-DISK MODEL

Input variable

Load

Contributionstrength

5.4

Speed 7.1

Viscosity

Slidinl[distance

Frictioncoefficient

Temperature

53

6.O

5.0

43

TABLE IV.--TEST MATRIX USED FOR VARIABLE

EXTRAPOLATION STUDY

Input variable Values

Speed, m/s 0.07, 0.11, 0.16, 0.21, 0.27

Sliding distance, m 130, 380, 630, 880, i 100,
1215

0.6, I0, 20, 30, 40, 55Viscosity, cSt

Load, N 4.9,7.5,i0, 12.4,14.7

Frictioncoefficient 0.I0

Temperature, °C 25



Test

SM-5

SM-5

SM-5

SM-4

SM-4

SM-3

SM-13

SM-I1

SM-4

SM-12

SM-I!

SM-I 1

SM-6

SM-5

SM-6

SM-4

SM-6

SM-3

SM-13

D2

SM-5

SM-12

SM-4

SM-6

SM-4

SM-12
D5

SM4

D5

SM-12

I)2

SM-12

D5

D3

D2

D3

SM-12

D3
SM-12

SM-12

SM-12

SM-12

SM-12

SM-12

SM-12

SM-12

D2

D3

D5

D3

D3

D3

D3

D3

D3

APPENDIX A

DATA SET FOR THE FALEX RUB SHOE MODEL

L°ad'lIb

50

100

100

50

100
100

100

50

'r

100

100

50

100

50

50

50

100

100

50

100

,r

Speed, Viscosity, [ Sliding Friction I
rpm cSt distance, coefficient

m

100 800 330

660

1 320
110

330

i 330
i

440

550

660

110

11 768

40 583

330
3 299

660

1 320

1 320

660

'r 880

50 220

800 47 841
330

1 980

! 1 980
5 279

660

255 330

800 21 886

255 1 320

8O0 I 980

50 3 189
800 2 640

255 1 980

50 1 210

50 6 709

50 2 420

800 6 379

! 50 4619

800 7 809
9 238

II 218

; 12 978
23 756

25 625

42012

100 852

50 17 047

50 8 798

255 58 509

50 19 247

22 436

86

83

114

,, 97

0.056
.059

.057

.044

.047

.062

.117

.11

.047

.I1

.I

.11

.076

.059

.079

.05

.058

.063

.119

.047

.129

.12

.055

.072

.05

.12

.039

.044

.026

.11

.043

.I
.022

.094

.033

.084

.07

.075

.08

.075

.085

.075

.06

.085

.065

.07

.06

.063

.006

.015

.034

.028

.009

0
.012

Temperature, [ Wear
"C Volume, Ixm3

30 2 .9x105

30 3.32

33 3.5
26 3.54

29 3.56

30 5.94

34 6.74

33 8

31 8.02

27 8.16

36 9.46

36 IO

30 10.3
34 i0.6

32 13.7

33 13.8

32 15.1

32 15.4

38 16.1

114 16.7

31 18.2

31 18.4

33 19.5

31 23.6

34 34.5

33 36.1

29 37.1
34 47

29 113

34 124

112 139

33 140

29 143

114 146

111 242

113 248

32 302

113 318

34 328

34 343
34 348

35 350
33 437

35 439

36 449

32 451

112 507

113 533

28 579

108 754

Ill 849

113 1690

109 1720

II0 1740

III 1760



APPENDIX B

DATA SET FOR THE PIN-ON-DISK MODEL

Test Load, Speed, Viscosity, Sliding Friction
N m/s cSt distance, coefficient

m

NASA "IND-6251 9.8 0.272 0.685 980 0.12
NASA TN D-6251 6 .12
NASA TiND-6251 6 .12

NASA TN D-6251 .94 .13
NASA "IND-6251 1.75 .I
NASA TN D-6251 !.38 .14
NASA "IND-6251 !.7 .14
NASA "IN D-6251 1.225 ,, .08
NASA TN D-6915 .2702 40 425 .12
NASA TN D-6251 .272 .935 980 .07

NASA TN D-6251 [ .73 / .06

NASA TN D-6251 _ 1.38 _ . 14NASA TN D-6251 3.5 .12
NASA TN D-6915 " .2702 .69 425 .12
NASA TN D-6353 14.7 .17 .56 250 .16
NASA TN D-6251 9.8 .272 1.38 980 . 14
NASA TN D-6251 .272 4.9 980 . I
NASA TN I)-6915 .2702 1.27 425 .2
NASA TN I)-6915 .2702 1.27 425 .18
NASA TN D-6915 .2702 4.5 425 . 16
NASA TN D-6251 .272 1.7 980 .14
NASA TN D-6915 .2702 4.5 425 .14

NASA "IN D-69 ! 5 [ 4.5 [ .16
NASA TN D-6915 4.5 .15
NASA TN D-6915 40 .1
NASA TIN1)-6251 .272 2.8 980 . 11
NASA T1ND-6915 .2702 40 425 . 1
NASA "IN D-6915 , r .2702 40 425 .09
NASA TM-82839 4.9 .075 4.31 145 .15
NASA TN D-6915 9.8 .2702 .69 425 .16
NASA TM-82839 4.9 .073 4.31 142 .15

NASATM-82839 _ "069 l 144 l
NASA TM-82839 .073 141
NASA TM-82839 .075 155
NASA TN D-6251 9.8 .272 3.5 980 .12
NASA TM-82839 4.9 .071 4.31 138 .15
NASA TM-82839 4.9 .078 4.31 149 .16
NASA TIND-6251 9.8 .272 1.3 980 .12
NASA TM-82839 4.9 .07 4.31 138 .15
NASA TN I)-6915 9.8 .2702 .69 425 .2
NASA TM-82839 4.9 .074 4.31 143 .15
NASA TN D-6251 9.8 .272 2.38 980 .13
NASA TM-82839 4.9 .071 4.31 134 .14
NASA TM-82839 4.9 .067 4.31 134 .15
NASA "IN D-6915 9.8 .2702 55 425 .I
NASA TN D-6915 9.8 .2702 .68 425 .12
NASA "IN D-6915 9.8 .2702 1.33 425 .16
NASA TN D-6353 14.7 .17 .56 250 .13
NASA TM-82839 4.9 .071 4.31 141 .15
NASA TM-82839 .078 4.3097 152 .15
NASA TM-82839 .075 4.3097 146 .16
NASA TP-1658 .2702 39.6 1125 .09
NASA TM-82839 .072 4.3097 151 .14
NASA TM-82839 .077 4.3097 154 .14
NASA TP-1658 .202739.6 1100 .09

NASA TP-1658 .1352 [ 920NASA TP-1658 9.8.2702 1125
NASA TP-1658 9.8.2027 1215

300
200
200
250
250
4OO
350
300

25
350
4OO
4OO
250
300
260
200

l
100
350
100
100
100
25

250
25
25
20

300
20

250
20
20

350
20

300
20

300
20
20
25

300
200
26t)
20
25
25

20
25
25
20

1.02 xl09

1.02
2.04
3.07
3.07
3.07
4.09
4.09
4.4
5.11
6.13
6.13
9.2
9.41

10
10.2
12
12.3
14.7
18.2
20.5
21.2
22.4
22.9
29.4
30.6
32.3
35.3
37
37
40

44
49
50
51.1
53
57
61.3
62
64.7
66
71.6
75
80
82.4
82.4
82.4

100
ll0
137.2
367.5

453
485.1
490
597
927
964

1421

10
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APPENDIX D

UNKNOWN DATA SET FOR TESTING THE FALEX RUB

SHOE MODEL

Test Load, Speed, Viscosity, Sliding Friction

Ib _n cSt distance, coefficient

SM7 50 I00 800 330 0.063

SM7 50 660 .062
! 110 .1SMI! 100

SMI3 100 110 .115
SM7 50 1 320 .061

SM5 1 980 .06

SM3 110 .063

SM7 1 980 .064

SM7 3 299 .066

SM7 16 717 .069
SM3 1 980 .065

SM3 3 299 .063
SM3 ', ', 3 959 .063

132 I00 50 1 430 .062

135 255 660 .037

SM12 800 1 320 .11

SMI3 800 12 758 .082

132 50 4 839 .028

SMI2 800 3 959 .1

135 255 13 528 .009

SM12 800 27 275 .078
SM12 800 38 163 .08

D3 _ 50 68 518 .04

D3 i 50 lI0 530 .004
i

I)3 b, ', 50 156 392 .003

Tempera- Wear volume,

ture, "C Ixm 3

31 2.32x10 -5

3 ! 3.28

28 3.88

28 4.46

33 5.12

34 5.14

27 5.28

32 5.84
33 9.60

29 14.50

30 27.10

31 28.10
31 30.30

113 57.60

30 63.40

34 85.10

34 173.00

I13 191.00

35 222.00

29 408.00

34 442.00

33 443.00
111 1600.00

1 ! 1 1790.00

1 i 0 1830.00

12



APPENDIXE

UNKNOWN DATA SET FOR TESTING THE PIN-ON-DISK MODEL

Test

NASA TN D-6251
NASA TN D-6251

NASA "IN D-6251

NASA TN D-6915

NASA TN D-6915

NASA TN D-6915

NASA TM-82839

NASA TN D-6251
NASA TN D-6915
NASA TM-82839

NASA TP-1658

Load, Speed, Viscosity,
N m/s cSt

9.8 0.272 2.75
.272 2.38

.272 .99

.2702 1.27

.2702 .69
2702 127

4.9 .078 4.31

9.8 .272 1.8

9.8 22702 5.1
4.9 .078 4.3097

9.8 22702 39.6

Sliding
distance,

m

980
980

980

425

425

425

153

980

425
150

1125

Friction

coefficient

0.12
.13

.13

.18

.16

.18

.14

.12

.16

.16

.09

Temperature,
"C

200
300

400

200

300

200

20

300

100
25

20

Weal" late,

m3/m

2.04x109
6.13

1022

12.4

23.5

29.4

47
61.3

82.4
264.6

964

13



APPENDIX F

UNKNOWN DATA SET FOR TESTING THE FOUR-BALL MODEL

Test Lubricant Pressure-

viscosity
coefficient,

ct

IC_ox 143 AC 4.50E-08

Krytox 143 AC 4.50E-08

Krytox 143 AC 4.50E-08

Transient Initial

friction X

ratios

0 2

0 2

0 2

Kinetic Molecular

viscosity, weight
cSt

800 6250

800 6250

800 6250

Test

1

2

3

Vapor

pressure,
ton"

8.00E-_

8.00E-08

8.00E-08

Surface Viscosity
tension, index

dynes/cm

18 134

18 134

18 134

Load, Sliding Sliding Wear

N speed, distance, rate,

m/s nun mm 31ram

200 0.0288 489 024 57x10 It

200 0.0288 468 288 67

600 0.0288 483 840 737

14



Inouts _ _ Outouts

Out = F(NET)]

I Artificial neuron I

Figure 1 .EArtificial neuron with activation function (Ref.5).

I ,nputsI --

I Recurrentinput

Figure 3._Schematic illustration of the input layer
dampened recurrent feedback design architecture.

I- Rotating

/r Stationary
balls

Wear track -_

(b)

Figure 2._chematic diagrams of rub shoe slidingspecimens, pin-on-disk slidingspecimens, four-ballslidingspecimens.

(a)Rub shoe. Co)Pin-on-disk. (c)Four-ball.
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Figure 4.--Comparison of actual rub shoe data (used for

training network) to that of network approximation data.
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Figure 6.--Comparison of actual pin-on-disk data (used for

training network) to that of network approximation data.
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Figure 5.---Comparison of previously unknown rub shoe
data (actual data) to that of network approximation data.
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Figure 7.--Comparison of previously unknown pin-on-disk
data (actual data) to that of network approximation data.
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Figure 8.--Three-dimensional plots illustrating relationship
between speed, sliding distance, and wear rate using

pin-on-disk neural network model.

.30

E
E

E

q)

1400

1200 f ---O--- Actual---EF--- Network

1000

8OO

600

400

200

0 5 10 15 20 25 30

Data point number

Figure 10._Comparison of actual four-ball data (used for
training network) to that of network approximation data.
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Figure 9.--Three-dimensional plots illustrating relationship
between speed, load, and wear rate using pin-on-disk

neural network model.
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Figure 11 .--Comparison of previously unknown four-ball
data (actual data) to that of network approximation data.
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