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ABSTRACT

The METCAN (METal matrix Composite ANalyzer) computer code and
its underlining theory, including the Multi-Factor Interaction
(MFI) equation, were examined for time-dependent response of
metal matrix composites (MMC). This study concentrated on
modeling time effects for fiber and matrix material properties,
particularly for the modulus, and the respective creep response
due to thermomechanical loading. The four main concepts
addressed were, one, modeling of the three basic stages of creep,
two, implementation of the modified MFI equation, three,
characterization of in-situ material properties, and four,
numerical methods for simulating viscoelastic creep. The
difficulty of experimentally obtaining the numerous in-situ
material properties for use in METCAN is discussed and two
possible alternatives are presented.






INTRODUCTION

The METCAN computer program was developed at the NASA-Lewis
Research Center to simulate the response of metal matrix composites
(MMC) due to various effects such as temperature, stress, stress rate,
temperature rate, fiber/matrix reaction, mechanical cycling, thermal
cycling, and time. METCAN uses the MFI equation to model the in-situ
material properties of both the fiber and matrix, such as their
stiffness, coefficient of thermal expansion, and strength. The
constants in the MF] equation must be determined experimentally. These
models are then used in conjunction with various micromechanic equations
developed by Chamis, et al [1], to predict the stress and strain of any
general laminate constructed form the modeled fiber and matrix material.
The objective of the program is to be able to computationally simulate
the response of a product made from MMC by knowing just the basic fiber
and matrix in-situ material properties.

Up until now the program has not been used for time dependent
response even though the basic material model, the multi-factor
interaction (MFI) equation, does include a time term. METCAN has been
successful in simulating thermomechanical response for single load
applications. The purpose of this study is to further investigate time
effects in MMC and how to use METCAN to predict those effects. This
includes investigating the basic MFI equation, presenting modification

to the MFI equation, examining the numerical methods in METCAN and



developing new numerical procedures to incorporate time effects, such as
creep. It should be noted that plasticity is not included in this study
even through it is important to the general response of a MMC at high
temperatures. It was felt that time effects should first be studied
alone, and fully understood before a viscoplastic theory is introduced.

This study can be divided into four basic areas. The first area is
the examination of the basic MFI equation that is used in METCAN.
Currently the MFI equation, as proposed by Chamis, et al [1], has only
one time term which limits its ability to describe all three stages of
creep for a metal matrix composite material. An additional time term is
proposed to allow modeling of primary and secondary creep. Furthermore,
the new time term incorporates nonlinear temperature and stress effects
on the creep rate.

The second area covered in this report, is the actual
implementation of the new time term mentioned above into the METCAN
code. The modified program is tested on various laminates at several
stress and temperature levels. Numerical stability problems that
develop for various cases are examined and a new solution method, the
Newton-Raphson, is examined as a possible alternative.

The third area deals with the characterization difficulties of
in-situ material properties. The MF1 equation requires the fiber,
matrix and the interface between the fiber and matrix to be modeled and
characterized separately, and then used in micromechanics equations to
generate lamina properties. Difficulties in obtaining in-situ material

properties, such as experimental limitations and the large number of



constants, are discussed. Two possible alternatives, characterization
of the orthotropic unidirectional lamina and the use of bulk material
properties, are presented.

The last area of research in this study deals with the numerical
solution methods currently wused in METCAN to calculate the
time-dependent response, or creep, of a metal matrix composite. METCAN
uses the current values of properties to obtain the response of a metal
matrix composite under going thermomechanical loading. Classical
viscoelastic theory is presently not available in METCAN. As a direct
consequence, METCAN results deviate from the closed form solution of a
simple three parameter spring and dashpot model. A new numerical
solution method which wuses the hereditary concept of creep, i.e.
previous stress history effects the current creep strain, 1is presented
as a possible alternative METCAN. This method also uses the free creep
strains, similar to free thermal strains, to determine the correct load
shifting between the compliant matrix and the stiff fibers due to the

mismatch of creep strain.



THE MULTI-FACTOR INTERACTION EQUATION IN METCAN

The MFI equation was developed by Chamis, et al, [1] in an effort
to include all possible effects on all material properties. The current
form of the MFI equation models the effects of temperature, stress,
stress rate, temperature rate, fiber/matrix layer, mechanical cycling,
thermal cycling, and time for the matrix, fiber and interface material.

The general form of the MFI equation is
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where P = A particular material property

T = temperature

S,o0 = strength of stress

T = temperature rate

o = stress rate

R = interface layer reaction or growth
N = cycles

t = time

and subscripts, F final or maximum property

o = initial property
M = mechanical
T = thermal



The MF1 equation is used to model the changing material properties such
as stiffness, strength, thermal conductivity, coefficient of thermal
expansion, etc. Each material property modeled, does not necessarily
use all terms. For instance, the coefficlient of thermal expansion is
effected 1little, if any, by the cﬁrrent stress state, however, the
stiffness and strength properties are effected by all terms listed above
plus possible other effects.

The MFI equation has been used by Chamis, et al, [2,3] to model the
temperature and stress effects, and more recently, to model the cyclic
loading effects [4]. One of the advantages of the general MFI equation
is its modular form which allows adding or deleting terms that are
pertinent_to the material property under discussion.

In order to better understand the effects of time in the MFI
equation, the stiffness property, E, will be used exclusively due to its
high depéndence on time at elevated temperature. The MF] equation is
also simplified to include only temperature, stress and time effects
which allows easier presentation of new concepts and ideas.
Furthermore, only time, temperature and stress effects have been
examined in detail in the 1literature which limits the experimental
verification to only those effects. The simplified MFI equation for

stiffness becomes
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This basic equation models the stiffness of the fiber, matrix and
interface in each of the possible directions, such as radial,
transverse, shear or fiber directions. However, each direction (radial,
transverse,shear, etc) and material (fiber, matrix, etc) should have
different material constants, such as n, tr' s, c;. etc. Even in this
simplified form, the enormous number of material constants needed to
completely model a composite becomes evident. This section will look
primarily at the generic form of Eq. 2 for the stiffness, E, without
regard to the direction or material since this general case must be

understood and verified before being applied to specific directions and

materials.

Basic Form of the Time Term in the MFI Equation

Each of the three terms in Eq. 2 decay as the governing parameter,
T, c or t, gets larger. This type of function will be referred to as a
decay function. If each of the terms were plotted verses the their
respective governing parameter, i.e. stress, temperature, or time, the
form of the graphic would be identical. The general form of the decay
function, for an exponent between O and 1, reduces slowly at first and
then decreases rapidly towards the end, as shown in Fig. 1. The rate in
which the function decays is governed by the value of the exponent.
Many material properties do exhibit changes similar to decay function,
especially for exponent values between 0.5 and 0.1. A good example of
this 1s the effect temperature has on stiffness. At low and moderate

temperatures there is only a slight reduction in stiffness but at high
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temperatures there is a very strong reduction in stiffness, even for
small temperature changes, until the melting temperature is reached,
where the stiffness essentially becomes zero.

Similar to temperature, most materials have a reduction in
stiffness with increasing stress, especially at high stress levels. The
decay function for stress in the MFI equation models this effect well if
the exponent is small (0.2 > m > 0.05). For a stiffening material, a
small negitive exponent could be used.

While the stress and temperature terms in the MFI equation are
important, the purpose of this study is to examine the time term and
thus, the remainder of this report will concentrate on the time effects.
Similar to the stress and temperature effects, the time term is also
modeled as a decay function. The time effects are evident in any
metallic materials at high temperature, and are generally referred to as
creep. Creep in metals has three phases; initial, primary and final.
The initial phase exhibits a rapid increase in strain but the strain
rate is actually decreasing. A strain verses time plot in log-log form
would be linear. In the primary or steady state phase the strain rate
is constant. This phase is generally the longest and has the largest
impact on the total stain of the material. The final phase shows a
increasing strain rate and occurs Jjust before failure.

The current form of the decay function for time,
[(t-t)/(t -t )]° can be simplified to [(t - t)/t )% If t, the
initial time, iIs assumed to be zero. The reduction in stiffness and the

assocliated change in strain is plotted for various exponent values in
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Fig. 2 (tF 1s assumed to be 100 in all cases). In examination of the
strain curves, It becomes evident that this function can model only the
final creep phase where the strain rate is increasing rapidly. A major
deficlency is the lack of a constant strain rate (or constant slope) at
any point of the strain curve.

It could be argued that if the exponent 1s small, then the curve
will be relatively flat and could model the constant strain rate or
secondary phase of creep. The drawback in using a small exponent is
that the slope or strain rate of the flat portion of the strain curve
will be very small or in other words, the curve is horizontal and thus
no creep. A small exponent can not accurately describe moderate or high
constant strain rates without changing the tF parameter. A large tF_
will allow the relatively flat portion to be nonhorizontal, but now the
meaning of tF has changed; it is no longer the time to failure. Even if
tr is used as a variable to model the stiffness reduction, a constant
creep rate can not be maintained for an indefinite period of time. This

problem is visually shown in Fig 3 where tF is allowed to vary when the

exponent 's’ 1s held constant.

Another example of the inability of the decay function to model
creep 1s the results of METCAN itself. Figure 4 shows the results of a
uniaxial lamina exposed to temperature and axial loading simultaneously.
The steady state creep is not present and the final phase is much larger

than actual metal matrix composite material response [5,6].
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Computer Simulation Using METCAN for Kevlar/Fpoxy

To illustrate the difficulties of the MFI equation of not being
able to model the primary creep region of a material, METCAN was used to
predict the creep strain of a composite constructed from Kevlar 48
fibers and Fiberite 7714A epoxy. These prediction are then compared to
actual creep data for a {0/0] laminate. The reason for using a
Kevlar/Epoxy system is that experimental data for both the fiber, matrix
and laminate are available [7] at various stress and temperature levels
to confirm METCAN results.

The normalized creep curve for the Kevlar fibers is shown in Fig. S
along with two fitted MFI equation curves. In an effort to keep the
modeling simple, the stress and temperature.effects were not included.
Note that the normalized compliance curve was used for curve fitting
since only the exponent, s and variable, t}_, need to be fitted. The
actual elastic properties of both the Kevlar fibers and matrix can be
obtained from handbooks. The best fit for tr was 22,000 when s = 0.25,
and tr = 40,000 when s = 0.5. Twoe curves were fitted, each with a
different exponent, to identify a possible exponent effect.

The MF] equation does not model the actual creep data for fibers
well because the basic form of the MFI equation requires the creep rate
to be always increasing which is the exact opposite for Kevlar fibers.
The actual data for creep compliance for Kevlar fibers follow a power
law, D(t) = a + bto'm, where a and b are material constants and 0.04 is

the time exponent. The exponent is the most critical variable in a
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power law equation and 0.04 for Kevlar fibers has been independently
confirmed by Ho, et al. [8].
Similar to the fibers, the creep compliance for the epoxy also

follows a power law, D(t) = a + bt% %!,

The MFI equation is fitted to
the epoxy creep curve in Fig. 6 with an exponent of s = 0.5 and
tF = 40,000. Like the fiber equation, the matrix does not fit the decay
function because of the basic differences of the MFI and power law
equations.

The fitted MFI equation material parameters were used in METCAN to
predict a [0/0] laminate creep response with a constant load. The
results are shown in Fig. 7. As would be expected, the agreement
between actual and METCAN predicted strain is poor since the decay
function can not model a decreasing creep rate. It is also interesting
to note that the change in exponent and tF for the fiber had little
effect on the to£a1 strain.

In conclusion, Kevlar/epoxy composites should not be modeled by the
current MFI equation. In order to accurately predict the creep of

polymer based composites, the basic material model needs to be able to

describe a decreasing creep rate.

Modification of the HFI Equation to Include Primary and Secondary Creep

The most common and simplest method to model creep of a metallic
material 1iIs to use a linear line to approximate the strain and time

relationship such as
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€ =¢ + at (3)
[

where £ = total stain
eo = elastic or initial strain

a = constant creep rate

t = time

This function is a linear line when plotting strain verses time, which
models the steady state or secondary creep stage exactly. The

associated stiffness reduction is

€
E _ o
E - evat (4)
o [«]

or if € is assumed to be unity then

= —_—— (5)

Both the stain and stiffness are plotted verses time in Fig. 8. The
disadvantage of this model is its inability to model the initial and
final phases. Equation 5 can alsoc be derived from the decay function.
The basic decay function, [(t - t)/trls, can be written as [1- t/tF]?
by substituting s = -1 and a = —lltr, the decay function becomes Eq. 5.

14 »

There is no physical meaning for a -1 exponent but the ’a’ constant
represents the steady state creep rate.
There have been extensions to Eq. § to include the initial creep

strain (the primary creep region) such as the Andrade's law [8] which
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can be written in modified form as

m

= 1 (6)

o 1+t + at

m

where B is an additional variable that is determined experimentally.
The t!73 term has its greatest effect at the initial time period which
allows it to model the primary creep phase accurately. The t term
becomes dominant at larger times, allowing it to model the secondary
creep phase. By using both time terms in the same equation, both the
first and secondary creep phases can be model.

The basic decay function, along with the constant creep model, Egq.
5, and the Andrade’s model, Eq. 6, are compared to a hypothetical creep
curve in Fig. 8. In fitting the decay function model, both the tr and s
parameters were allowed to vary to obtain the best fit. The a and B
parameters were fitted for the best constant creep model and for the
Andrade’s model. The Andrade’s model fits the hypothetical creep well
for the first and second creep stages but poorly for the third stage.
As expected, the linear region matches exactly for the constant creep
phase but can not model the first and third creep phases.

On the other hand, the decay model is low at the beginning but does
increase rapidly towards the fallure time to match the actual creep.
However, the decay model will blow up, i.e. increase without bound, if
the time is increased only slightly. Obtaining accurate experimental
results for the modeling of the final phase is extremely important, but

results in the final phases are the least predictable and reliable. In
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fact most models will not try to model the final phase because of the
unreliable and scatter of experimental results. Also note that the
decay model uses 2 parameters to fit the model whereas the linear model
requires only one, the steady state straln rate. Furthermore, most data
in the literature only reports the steady state rate and therefore
precludes using models that require knowledge of the initial or final
phases.

In order to model all three phases it is recommended that both the
decay function and Andrade’s model be used together by multiplying the

two functions together. The modified MFI equation would become

n m s
E ) TF T Sr— o tF- t 1 )
Eo TF- To SF- 05 tF_ to 1+ Bt1/3+ at

Figure 10 demonstrates the ability of the modified MFI equation to model

all three creep phases by varying the variables tr’ s, B, and a.
Furthermore, if one of the creep phases is nonexistent for a particular
materials, the appropriate variable can simply be set to =zero. For
instance, if there is no primary creep phase, B is simply set to zero.
The flexibility of Eq. 7 does require four variables to be determined
experimentally verses the original two in the decay function.

The following section will develop the temperature and stress
dependency on creep rate and how it can be modeled. Actual
implementation of the the modified MFI equation into METCAN will not be

presented until later sections.
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Stress_and Temperature Dependency on the Creep Rate

It is well known that stress and temperature greatly effect the
creep and creep rate of materials, especially metals. Furthermore, the
interaction between these effects can be highly nonlinear. The original
equation attempts to model this Iinteraction by multiplying the
respective decay functions together, Eq. 2. The MFI equation does not
allow any of the constants, such as tF, or exponents to vary with time,
stress, or temperature. Certain nonlinear characteristics can be model
by multiplication of the terms but not all. To illustrate this point
an example will be presented and discussed. For simplicity, only the
stress and time parameters will be used in this example. The MFI

equat ion becomes

S-oc 1™ [t-t1]°
I d (8)
E S - o t
[ F 0 F

where to is assumed zero. Also, assume that o; = 0, SF = 100 MSI, tF =

100 min, E°= 1 MSI, m = 0.5, and s = 0.5. Since this is Just a
numerical experiment, any acceptable value could be used. Substituting

these assumed values into Eq. 8 gives

0.5 0.5
_ [100 -¢ 100 - t
E= [ 100 ] [ 100 ] (9)

This equatlion requires the stiffness to go to zero in 100 min regardless

of stress level or stress history (except when o = 100 MSI since the
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stiffness is already zero). This 1is not reasonable since a material
exposed to a stress of 20 MSI for 20 minutes and then no stress for 80
minutes will not have the same stiffness reduction if it had be exposed
to a stress of S0 MSI the full 100 minutes. This implies that the time
rate of change of stiffness must be a function of stress. The
difficulty with Eq. 9 is that it does not address or model the stiffness
reduction rate or creep rate nonlinearity, but only the magnitude of the
stiffness. Both the creep rate and stiffness magnitude are function of
stress level and must be modeled.

The same numerical experiment could be performed for the
temperature effects by looking at only the time and temperature terms of
Eq. 2. The results would be similar to the first numerical experiment
showing the time term must be a direct function of the temperature
level. This implies that tF, or any other variable that is used to
model creep rate such és B or a2 in the médified MFI equation, will not
be a constant but nonlinear function of both stress and temperature.

A computer simulation was also performed using Eq. 1 (METCAN) where
tF was set at 24 hours and the effect of various temperature levels on
the stiffness was observed. Figure 11 shows the effect of 1200 F, 600 F
and 100 F on the stiffness of a material over time. It is important to
note that the failure time, i.e. when stiffness becomes zero, is nearly
the same for all temperatures, which is not realistic. The lower
temperature simulations should give a much higher stiffness at 24 hours

then the other two temperatures. This difficulty can be over come by
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making one or more of the variables in the time term a function of
stress and temperature.

The nonlinear effect of stress and temperature on creep has been
investigated for both bulk metallic materials [9,10] and for metal
matrix composite materials [5,6]. In both cases, the constant creep
rate or the secondary creep phase was modeled successfully by Dorn’s
equation that wuses a Arrhenius relationship for the nonlinear

temperature effects and the Norton's egaution for the nonlinear stress

effects

. _ _Q o n
e_ = exp{ RT ] {T;J (10)

where és= steady state creep rate

fl

Temperature

Stress

universal gas constant, 8.314 joule/mole K°

creep activation energy, a material constant

Q O x® 9
L}

o= material constants

The effect of temperature and stress on the primary and final creep
stage is much harder.to determine and is generally not modeled. This
study will only model the constant creep rate variable ’a’' in the
modified MFI equation, Eq. 7, as function of temperature and stress, ana
will use the form of Eq. 10. The other variables, tF, s and B should
also be function of temperature and stress but due to the numerical

difficulties and the lack of experimental data, they will remain
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constants at this time. Substituting Eq. 10 into Eq. 7 gives

n m s
E ) TF T SF o tr- t
E T-T S-o
F o F 0

(]

(11)

Equation 10 allows the material to be nonlinear for the creep rate and
nonlinear for the stiffness magnitude. Figures 12 and 13 show
graphically the effect of temperature and stress for the time terms in
Eq. 11.

It is recommended that the modified MFI equation be used to model
the time, temperature, and stress effects on the material response of
metal matrix composites. éince this equation has two levels of
nonlinearity, as compared to only one level for the original MFI
equation, the current algorithm used in METCAN might not be stable or
converge to the correct answer. Implementation of the modified MFI
equation and further investigation in the solution methodology of the

METCAN code is done in the following sections.
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IMPLEMENTATION OF THE MODIFIED MFI EQUATION

Implementation of the modified MFI equation into the METCAN
computer code involved setting up three separate subroutines, one for
each of the three materials, fiber, matrix, and interface. Each
subroutine used the modified MFI equation, Eq. 7, to model the time,
stress, and temperature effects on the stiffness. These three routines,
called MECF, MECM, and MECD are used by MECHF, MECHM, and MECHD
subroutines, respectively, to calculate the stiffness . The thermal
parameters, such as the coefficient of thermal expansion, or the
strength parameters were not effected by the program modifications and
these material properties continued to use the original MFI equation for
modeling stress, temperature, and time effects.

The user must set the equation constants, such as tF, s, and B,
within the subroutine for each material. Also, the user can modify the
nonlinear function that models the temperature and stress dependency on
the creep rate if required. After the variables and functions are set,

the code is compiled and then executed.

METCAN Results Using the Modified MFI Equation

The first set of computer simulation using the modified MFI
equation in METCAN were done using SiC/TilS material in the METCAN
database. The load and temperature were increased linearly form Nx =0

1b/inand T = 0° F to Nx = 250 lb/in and T = 1000° F, respectively using
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10 steps. This was done In the first one second and then held constant
for 80 seconds. 1In Case 1, both B and a were equal to zero so that only
the decay function would be present (i.e. restore the original MFI
equation). The decay function variables were t}_ = 100, and s = O0.5.
This served as a benchmark for the next two cases. 1In Case 2, B and a
were set to constants, 1.0 and 0.01, respectively, to see the effect of
a constant Andrade’s equation. And in case 3, the complete modified MFI
equation, Eq. 11, was used, with- 8 = 1, n = 5, crc = 25,000 PSI, Q =
50,000 J/Mole. The strain results of all three cases are plotted in
Fig. 14 for a [0/0] laminate with a total thickness of 0.01 inch.

The first two cases predicted constantly increasing but stable
creep strains, as expgcted. However, the third case become unstable
after the total load was applied. There were no fiber or matrix
failures predicted by METCAN. The instabilities were assumed to be a
result of the highly nonlinear Andrade’s equation that models stress and
temperature effects on the creep rate.

A second set of computer simulations were performed to help isolate
the stability problems. These simulations used a creep rate function of

the form

n T
a=0.002[g] [1+ ] (12)

for both the fibers and matrix, where o= 50,000 PSI. This form
reduced the degree of nonlinearity of temperature, as compared to Eq.

10, which allowed the nonlinear stress effects to be better examined.
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Three different cases were simulated, n equal to 1, 3 and 5. The
results are shown in Fig. 15. When is n = 1 and 3 the solution stays
stable but when n = 5, the solution becomes unstable. Furthermore, the
stralns In each of the two plys, which are identical, vary form one to
another on the same time step. This indicates the numerical solution
process does not check strain compatibility when checking for
convergence. The strain should be physically possible as well as
converged before the next time step is taken.

An additional difficulty with the sclution process is that when
METCAN redistributes the load (see SOLUTION METHODOLOGY FOR TIME
DEPENDENT MATERIALS) due to creep, the program does not iterate or check
for convergence even though the stresses have changed. It is
recommended that the METCAN solution process be modified to check strain
compatibility and stress equilibrium at each time step before and after

the load redistribution.

The numerical stability problems can be minimized by changing all
variables in the METCAN code to double precision. When the previous
test case where n = § is run at double precision (or single precision on
a Cray computer, which 1is equivalent to double precision) the
instabilities disappear as shown in Fig. 15.

However, if the matrix and fiber materials have different creep
rate functions, which is generally the case, the stablility difficulties
return, regardless of double or single precision. For example, let the

creep rate function be
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-]
= 0.002 ["—] [1+ T ] (12a)

flber 50, 000 2000
3
o T
matrix - 002 [30,000 ] [ 1 * 5000 ] (12b)

for a SiC/Ti15, [0/80]) laminate. With a moderate load of only Nx= 250
1b/in the prediction become unstable after loading and diverge, as shown
in Fig. 17. Instabilities, therefore are not only a function of
computer precision but also degree of nonlinearity and laminate layup.
The following section will look more closely at the wunderlying
assumption in the solution process used in METCAN and examines other

solution methods in an effort to solve the stability difficulties.

One Dimensional Test Case

A simple two layer, one dimensional test case can be use to examine
the solution method of METCAN and understand the numerical stability
problens. Currently, METCAN uses successive substitution method to
determine the stresses in a MMC composite. At each time step, the
stiffness is determined from the nonlinear MFI equation and then the
stress is calculated. This new stress is then substituted back intoc the
MFI equation to determine a new stiffness and finally a new stress.
This cycle continues until the stresses or composite strains converge.
This successive substitution method will experience difficulties for
moderately to severely nonlinear equation {[11,12]) and will only converge

for a system of equations that are positive definite.
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By looking at a simple one dimensional case, the solution method
can be isolated from the complexities of the a highly nonlinear two
dimensional laminate composite. The one dimensional model consists of
two layers, both of which are viscoelastic. The stiffness in both

layers are modeled by the following equation

where i is the layer number, t is time and 'a’ is a stress nonlinear
function (temperature is not included for simplicity). The two layers
are in series, as shown in Fig. 18, and are required to have identical

strain at all times, similar to lamina layers in laminated composites.

layer 1
1 o
E = 1
€ 1 1+at >
1
=1 ——— — o =1
[ [+]
1
< E = >
2 1+at o
2
layer 2

Fig. 18. One Dimensional Two Layer Material.

The ’a' function for the two layers for the particular case to be

examined are
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a = 0.002 [ ‘J (14a)

(14b)
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where o, and o, are the stresses in layer theilr respective layers.

This one dimensional problem was solved using the METCAN algorithm
of successive substitution with a time step of 2 and 1. The solution
diverges when time is equal to 6 for both time step sizes, as shown in
Fig. 19 and 20. The problem was solved using 17 significant places
(slightly better than double precision) to greatly minimize any possible
numerical induced errors. The same example was then solved using the
Newton-Raphson Method [13] to identify if the solution method or the
problem formulation was causing the diverging solution. The time step
size was 1 for the Newton-Raphson method. The results shown in Fig 21
converge for all solutions steps, and the number of iterations needed
for convergence are only two or three, which is substantially less than
for the simple substitution method. Furthermore; Newton-Raphson Method
will converge for a nonlinear set of equations even if they are not
positive definite.

To help eliminate numerical stability problems, and for faster
convergence, the Newton-Raphson solution method should be used instead
of the successive substitution method currently wused in METCAN.
Implementation of a Newton-Raphson method will involve reformulating
large parts of the current METCAN code, but the final code will be more

efficient and more robust.
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CHARACTERIZATION OF THE BASIC MATERIAL PROPERTIES

Until now, all discussion has been on the validity of MFI equation
from an analytical view point. The MFl equation must also be compared
to actual material response tests for the fiber, matrix and interface to
verify that this equation can adequately model those material.

One possible method to check the MFI equation is to test a bulk
metallic material, such as aluminum or titanium, in uniaxial tests.
Uniaxial tests are relatively easy to perform and allow the temperature,
time, and stress parameters to be controlled and measured accurately.
Through these uniaxial tests each of the material constants can be
obtained through a curve fitting process. Statistical methods should
also be used to insure the fitting process is -within acceptable limits.
In this manner, one dimension tests can be accomplished and the results
checked in the MFI equation model for stiffness.

The testing method described above assumes two important conditions
that may not be true. First, material properties obtained from uniaxial
tests are assumed to accurately represent in-situ properties of the
fiber, matrix and interface. The material in-situ can experience
geometry, boundary constraints, and chemical interaction effects that
might not be detected with uniaxial tests on bulk material. There is
evidence in the literature [5,6] that the bulk stiffness property (as a
function of stress, temperature, and time) of the fiber and matrix can

be used to predict the stiffness properties of a undirectional lamina.

- 28



If the in-situ material properties were radically different than the
bulk properties, then such a prediction of the ply properties would not
have been possible.

The second assumption is that the material can be obtained in bulk.
For the interface material this is not be possible and thus would
prevents uniaxial testing. Furthermore, some material properties might
not be obtainable, such as shear and radial stiffness of the fibers due
to the limitation of current testing procedures.

These two conditions present a serious problem. The current MFI
equation requires the use of only in-situ properties, but they are
impossible to obtain if uniaxial tests can not be performed on the
material in bulk. Furthermore, even if uniaxial tests are assumed to be
accurate tests for in-situ properties, some tests are still not
possible, such radial strength, or tests on the interface material.
Theoretically, all material properties for the fiber, matrix and can be
found by testing only unidirectional plys and then backing out the
properties. This is not experimentally feasible due to the large number
of material constants (10 for each material and direction, 3 materials,
4 directions-orthotropic, giving 120 total constants for the modified
MFI equation) that must be backed out. It is very difficult to back out
3 or 4 variables and still satisfy acceptable statistical confidence
levels. The number of tests required for 120 variables would be on the
order of millions, and a large number of these would be creep testis

lasting days or even months. For the complete MFI equation with stress

29



and temperature rates effects, and cyclic loading effects, the
complexity becomes unimaginable.

Since all material properties can not be obtained at the micro
level, i.e. matrix, fiber, interface, it is proposed that the testing be
done at the unidirectional lamina or macro level. This will greatly
reduce the number of experimental tests needed to characterize the metal
matrix material. Furthermore, because a lamina is a bulk material all
tests can be performed. This will also eliminate one 1level of
uncertainty in the design process.

The ultimate goal of characterizing a material at the micro or
macro level is to give the design engineer the information needed to
design and construct a usable product. If a material is characterized
at the micro level, then the engineer must first predict the lamina
.properties, then predict laminate properties, and finally the product.
This entails three levels of prediction which is currently not accepted
as prudent engineering practice. One level of prediction is common and
necessary in every engineering discipline. Buildings are design with a
macro level understanding of steel and concrete. The design engineer of
a building does not use the strength allowable of rocks, cement, and
sand to predict the strength of concrete and then use these calculated
concrete values to design a building.

An understanding of the micro level is very important to the
material scientist or engineer of new materials to improve properties of
materials. But once a new material is proposed, a comprehensive test

program is needed to provide macro level design allowables for use in
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designing the final product. Even for the well understood elastic
properties of polymer based composites only macro material properties
are used in the design of products such as rocket motor cases, tennis
rackets or control surfaces of alrcraft.

It is recommended that the computer simulation program for metal
matrix composites, METCAN, use lamina material properties for designing
laminates and final products (in conjunction with a finite element

code).
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SOLUTION METHODOLOGY FOR TIME DEPENDENT MATERIALS

Unlike elastic material response, time-dependent response (also
known as creep or viscoelasticity) depends on the overall stress and
strain history. Because of this, numerical solution methods must store
all previous stress and creep strains for use in calculating future
stress and strain.

One of the simplest examples to illustrate this hereditary nature
of creep is a simple linear spring and dashpot in series, commonly
referred to as a Maxwell element. A typical Maxwell element is shown in
Fig. 22. If the spring stiffness is E and the dashpot strain rate

coefficient is p then

£ = —2— and e = <2 (15)
s E d i
where o is the total applied load (same in both the spring and dashpot),
e is the strain of the spring and éd is the strain rate in the dashpot.
Since the total strain of the system, £, is the sum of e and £, it can

be shown that

(16)

q
+

g~

Q-
]
B

which describes the time-dependent response of the Maxwell element.

Solving Eq. 16 for a constant load, o gives
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_ 1t
e_¢°[§+a] (17)
o
with boundary condition, & = E—° at t = 0

Thus for a Maxwell element under constant load, the creep strain
increases linearly. This response is as shown in Fig. 22, where
E=p=1, for two different constant loads, o and o, (=20;).

Now suppose that the Maxwell element is loaded at the lower stress,
o until t1 and then increased to o,- If the hereditary nature of the
element is ignored, then only the current stiffness of the element,
E = 1/(1+t), would be needed to calculate the current total strain. The
total strain after t1 would then be ¢ = c1(1+t) vwhich is equivalent to
the response of the element under the higher load for the entire time.
This scenario is shown in Fig. 22 as the non-hereditary strain curve.
This 1is not physically possible since a viscoelastic material that
experiences a lower stress as well as a higher stress must have a lower
total strain then if the higher load was held constant for the same
total time (assuming the higher load in both cases were the same).
Furthermore, the non-hereditary strain path in this example requires the
instantaneous stiffness at t1 to be less than at to. Instantaneous
stiffness should not change as a result of creep.

A more realistic approach is to account for the creep strain caused
by each of the stress levels and then add the 1individual effects
together as required by linear and nonlinear viscoelastic theory [14].

Using this concept, the total strain for t =z t1 in the above example
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would be the sum of the creep strain due to o, for the total time and
the creep strain due to Ac (=¢1-¢°) for the time after tx' This can be

written in equation form as

t-t
_ 1t 1 1
€ = oo[ g+ u ] + Ac[ E* ] (18)

In terms of the compliance function S, Eq. 18 is simply
€ =0 S(t) + Ac S(t—tl) (19)

This is also plotted in Fig. 22 and gives a realistic total strain for
the Maxwell element after the second, higher load, 02 is applied. This
method is commonly called ’'strain-hardening’. Also the elastic strains
at both t° and t1 are the same, and thus the instantaneous stiffness did
not change as theory requires. Equation 19 can be generalized for an

infinite number of stress steps as

n
£ =0 5(t) +121Aais(t-ti) (20)

where n is equal to the total number of load steps and Aal =0 -0 ..

For a continuous changing load condition, Eq. 20 can be written in

integral form as

t
€ =0 S(t) + I S(t-1) do (21)
° (-]

or in the more common form
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d

o
= dr (22)

¢
e =0 S(t)+ j S(t-t)
o]

Equation 22 is referred to as the hereditary integral and is a type of

integral equation.

METCAN and the Hereditary Effect of Stress History

Currently METCAN does not separate the creep strain and total
strain, nor does it use the stress and stain history or the hereditary
integral to calculate the current stress and strain state. Instead
METCAN uses the Multi-Factor Interaction (MFI) to model the change 1in
stiffness, E, due to various effects [2,4] at each point in time,
independent of previous history. This MFI equation for only

temperature, stress and time is

T-T 1" [sS- ¢ "Te-t )
E - | T-T S- o t -t (23)
F [} F [ F o

m

(-]

The solution process in METCAN will iterate at each time step until
the laminate strains converge using the assumption that a changing
instantaneous stiffness <correctly models creep strains. The
instantaneous stiffness should not vary with time, and the creep strailns
should be kept separate from the elastic strains.

Figures 23, 24 and 25 show the predicted strain results using
METCAN for [0/0], [45/-45] and [S0/0] laminates made from SiC/Ti15

subjected to constant stress. Each laminate had three different loading
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patterns; Case 1: Nx = 1, Case 2: Nx = 2, and Case 3: Nx = 1 untl}
t = 10 hours and then increased to Nx = 2. The total strain in the load
direction (xx-direction) of the laminate is shown in the figures. All
three laminates show the total strain for case 3 type loading equal to
the case 2 type loading after 10 hours. As discussed previously, this
is a result of not using the stress history when calculating the current
total strain. One of the main concepts of viscoelasticity is that the
instantaneous stiffness will not vary directly with time (possibly
indirectly through damage or aging) which is violated with METCAN and
thus cases 2 and 3 are equal after 10 hours. Similar problems will
develop if the temperature was varied instead of the stress parameter.
The inadequacies of the non-hereditary solution method in METCAN is
also evident when a constant load is applied to a composite for a length
of time and then completely removed. The METCAN predicts that the
strain will return to zero after the load is removed (Fig. 26) which is
contrary to the known response of MMC [15]). Generally, the strain for
MMC, which has under gone creep, will decrease an amount equal to the
initial instantaneous response when unloaded and then slightly recover a
small portion of the creep strain over an extended period of time.
However, the total strain will not be totally recovered and there will
be a permanent deformation. The differences between observed creep
strain behavior and METCAN predicted results can be partially accounted
for by METCAN’s neglecting the hereditary effects of past stress states.
To confirm that MMC do behave in the classical viscoelastic manner,

an incremental loading test was performed on an unidirectional laminate
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composite by D. Bartolotta [16] (the specimen was supplied by D.
Petrasek and H. Gray of the Advanced Metallics Branch, NASA Lewis
Research Center). The test specimen, Tungsten/Kanthal (FeCrAlY) [0]‘.
was loaded to 45 KSI, held for 100 minutes, increased to 60 KSI, held
100 minutes, increased to 75 KSI, held 100 minutes, and then unload to O
KSI. The results are shown on Fig. 27. The two main conclusion from
the experiment are, first, the instantaneous stiffness is nearly the
same for all loading increments, including the unloading, and second,
the strain does not return to zero after unloading. Currently neither
of these characteristics can be predicted by METCAN. Methods to

correctly predict creep strain are presented in the following sections.

Numerical Methods to Calculate Creep for Stable Materials

One method to calculate the correct total strain is to use the
hereditﬁry integral directly. Equation 20 gives the integral in
summation form which is most useful for numerical methods. The total
strain at any point in time is equal to each stress increment multiplied
by the compliance for the length of time the load was applied. Written

out for a linear material, this becomes

e(t) = o St) + (c-c ) S(t -t )+ .....
o 1 ) 1

+ (cl- 61_1) S(t - tl) (24)

This represents an exact solution for a discrete load history of
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o(t) = o H(t) + (oa- c;) H(t - tx)

+ (o~ o ) H(t - t) (25)

where H(t) is the heavyside function and t is the final time. In order
to evaluate Eq. 24, the stress and the compliance function, S, must be
known at all previous time steps. Furthermore, each new time requires
the recalculation of the total strain from t°= 0 to the current time.
This means, increasing the number of time steps will geometrically
increases the solution time. This effectively places a upper limit on
the total number of time steps that can be taken.

Equation 24 modified to incorporate nonlinear effects, such as
stress. Findley and Khosla ([17] have proposed use of a modified

superposition principle of the form

e(t) = o S(t.cro)

+ o, S(t - t,l,crl) -0 S(t - tl,cro)

+ ...
+ o S(t - tl,o'i) -0, S(t - t1’61-1) (25)
They successfully used this equation on isotropic materials. Also,

Dillard, et al [18], é.nd Gramoll, et al [7], have successfully used this
equation on orthotropic materials such as graphite/epoxy and
Kevlar/epoxy.

A natural extension to Eq. 25 1is the 1inclusion of nonlinear

temperature effects which gives
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e(t) = o S(t,oc ,T)
o [ -]
+ o S(t - "1"’1'T1) -0 S(t - tx"’o'To)

+

+ o S(t - tl,vi,Ti) -0, S(t - t1’¢1-1'T1-1) (26)
In order to correctly predict creep strain in METCAN, Eq 26 could be
incorporated into the computer code. The nonlinear effects of
temperature and stress are accounted for and the hereditary nature of
viscoelastic material is not ignored. However, there is one limitation
to this method, the material must not have an increasing strain rate.
Such a material is considered unstable and does not have a fading
memory. The basic decay function in the MFI equation, Eq. 2 or 7, does
result in an increasing creep rate. The following section address such

materials and proposes a modification to deal with this difficulty.

Numerical Methods to Calculate Creep for Unstable Materials

One of the main conclusions in the previous section was that METCAN
should use past stress history in calculating current creep strains as
prescribed by classical viscoelastic theory. Numerical methods were
outlined for stable materials but they could not be applied to unstable
material with increasing creep rates. This section will present a new
numerical solution method for unstable materlals.

The three parameter spring and dashpot model (maxwell element in

parallel with a single spring) that was previously introduced, 1is a

39



stable materlal since the creep rate always decreases for a constant
load. However, the MFI equation produces an ever increasing creep rate
under a constant load, which is considered an unstable material (Fig.
3). If Eq 26 is used to evaluate the hereditary integral for an
unstable material the results could oscillate or diverge rapidly from
the correct answer.

A good example of the difficulties encountered in trying to use
Eq. 26 to evaluate the hereditary integral for unstable materials is a
two layer one dimension model, with one material elastic and the other
following the decay function, E = (1-t/tF)s. The solution for tF = 100
and s = 1, diverges quickly from the approximate solution, as shown in
Fig. 28. The @otal strain can not physically exceed 1, yet the standard
hereditary solution method based on Eq. 24 exceeded this and eventually
blows up.

A second example illustrating the limitations of the hereditary
integral for unstable materials is once again a two layer, one
dimensional material. The first material is elastic, E1 =1, and the
second material follows a time dependent stiffness relationship of

E
2

1/(1+0.01t"). This form for E, is convenient since both an
unstable and stable material can be obtained by simply changing the
exponent, n. If n =1 then the basic Maxwell element is recovered and
the strain rate is constant for a constant 1load. If n< 1 the strain
rate will be constantly decreasing and for n > 1 it will be constantly

increasing which is an unstable material.
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The total strain for this two layer material was solved using Eq.
26 for various n values, If n is larger than one, the total strain
exceeds the physical strain limit of 1 and oscillates about the correct
answer, as shown in Fig. 2s. For n equal to or less than one, the
correct answer is obtained. The basic difficulty‘in using Eq. 26 for
unstable materials is that the hereditary integral assumes the material
has a fading memory, which is not the case for unstable materials,

If the MFI equation uses the decay function for time, (l-t/tr)s,
then a new numerical solution process must be developed to solve for the
total strain. One possible method, to be called the Additive Creep
Method (ACM), is to calculate the creep strain, Ae: for each time
segment, Atl, using a simple Euler forward approximation. The creep
strain for each segment can then be added together to give the total
creep strain. This method neglects past stress history sinqe the
material is unstable, but if small enough steps are used the results
will converge to the correct answer for the decay function. This method
still separates the elastic and creep strains, which becomes important
for load shifting, as will be explained in the following section.
Furthermore, the instantaneous stiffness does not change with time so
the elastic strains due to changing loads (especially unloading) can be
computed without including creep strains.

The Additive Creep Method (ACM), can be written in equation form

for time and stress asg
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e(t) = ot }:S(e ,0) + o(t )-|S(c ,t -t ) - S(o .0)]
n-1 n-1 [ o 1 o o

+ c(ti)- S(cl.tz- tx) - S(cl,O)]

+ tr(t')- S(cr‘.thi- tl) - S(o-l.o)]

+ olt )-[sw t-t ) -Se .0)] (27)
n-1 n-1 n n-1 n-1
where S is the compliance function and n is the total number of time
steps. Including temperature, T, and rewriting Eq. 27 in summation form

glves

e(t)

v(tn_l)'S(an_l,Tn_l,O)

+ G(tl).FS(Ui'Tl’tl+1— tx) - S(Gl.T!,O)] (28)

- =]
lll\/]!
[ [

The ACM procedure to calculate creep strains was applied to the
previous two layer example, with one layer elastic and the other
described by the original MFI equation with only the decay function.
The numerical results in Fig. 30 show converging solutions for
decreasing time steps for two different exponent values. The solution
is stable and does not diverge or blow up but caution does need to be
taken in choosing a small enough time step. Furthermore, it should be
noted that this solution method is not robust and should not be applied

to other unstable material models. Figure 31 shows the difficulties in
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using the ACM procedure for a two layer material with one layer
described by E2 = 1/(1+0.01t2). The solution is highly dependent on the
step size and does not converge to a single answer with decreasing step
size.

In summary, the new Additive Creep Method can be used to calculate
the creep in a metal matrix composite when using the MFI equation for a
changing stress and temperature. This method also eliminates the need

to re-evaluate the complete hereditary integral at each new time step.

Internal load Shifting

In a composite structure where two different materials are bound
together there will material property mismatching. This is especially
evident for wunidirectional composites where the long fibers will
generally have a diffgrent thermal expansion coefficient then the matrix
material. This mismatch will cause stresses to develop without any
externally applied load. Similar to thermal expansion, viscoelastic
properties are generally different for each component in a composite
structure. Furthermore, each direction (transverse, fiber and shear
direction), can have different viscoelastic properties then the
adjoining layer, especially if the layers are rotated.

This mismatch in viscoelastic properties will cause load shifting
from the more compliant components of the composite, such as matrix,
which relax quickly, to the stiffer components, such as the fibers. The
overall applied load may not change, but internally there can be large

changes in stress, affecting both micro level stresses and ply stresses.
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The concept of load shifting can best be represented by a simple
example of a hypothetical one dimensional, two layer material. One
layer is composed of a linear elastic material modeled by a spring with
a stiffness of El. The second material is a linear viscoelastic
material modeled by a Maxwell element, where the spring constant is E2
and the dashpot constant is u. This two layer material is shown in Fig.
32 along with the exact solution for the strain and stress response to a
constant load. Layer 2, which is viscoelastic, will lose load as it
creeps, and the elastic layer 1, will pick up this load loss.
Eventually, all the load will be carried by the layer 1.

The results shown in Fig. 32 for the three parameter sclid is one
of the few closed form solution avallable in viscoelasticity that model
a two layer material. The solution can be derived by first expressing
the Maxwell element that models layer 2, as a differential equation
which was was done earlier in Eq. 16. Using E2 and for E in Eq. 16 and

rearranging gives

Nq.

o
2

: = _2,_2
u

= (29)

2 E2

where cz and 0'2 are the strain and stress, respectively, in layer 2.
The strain equilibrium requires ¢ = € =g, or € = éz = éz and the
stress equilibrium requires o = o + o, or o= 6-1 + 6-2, where € and o

are the overall strain and stress. Substituting these equilibrium

equations into Eq. 29 gives
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€ = + (30)

o = cE1 or o = éE1 (31)
Substituting Eq. 31 into Egq. 30 and rearranging gives

e = o 30

(E2 + El)pc + EzEzs Mo + Eza (30)

If the overall stress is constant, o = o;, then ¢ = O and Eq. 32 becomes

a first order, ordinary differential equation
(E2 + Ei)uc + E1E2€ = E2°Q (33)

Solving Eq. 33 gives

-t/b
coe 0‘0 -t/b
1 T2 2
where b = _.(E:Ell_
EE
12
o
with boundary condition ¢ = -E—+‘3E— at t =0
1 2
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This closed form solution is exact if the load, o is constant. This
solution can be used to verify the solution techniques used in any
numerical method.

The solution technique currently used in METCAN calculates the
stiffness at each point in time using the MFI equation and then uses
that stiffness to determine the overall strain by applying stress and
strain equilibrium. After the total strain is obtained, each individual
layer stress is back calculated since their current stiffness is known.
It should be noted that all discussions in this report about METCAN
assume the "redistribution" option is set to true. If false, there will
be no creep strain for a constant load problem since the increment of
load will be zero. However, currently there is no convergence test in
METCAN after the loads have been redistributed. Further investigation
of the convergence criterion of the redistribution option should be
done.

There are two ways to compare the METCAN code and its solution
technique to the exact solution of the three parameter example developed
earlier. The first is to use the actual program but use new fictitious
materials that respond like a spring and Maxwell element, and set all
Poisson’s ratios to zero to decouple the transverse direction from the
fiber directions. The three parameter model can be simulated by METCAN
if the fiber material is assumed to be elastic and the matrix material
to be viscoelastic. By setting all exponents for the fiber material
model in the MFI equation to be zero, the fiber will response

elastically. Likewise, when all exponents, except for the time, for the
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matrix material are zero, the matrix will response viscoelastically. To
decouple the fiber direction and transverse direction in a standard two
dimensional composite, all Poisson’s ratios were also set to zero. In
this manner, METCAN was able to simulate a one-dimensional, two layer,
viscoelastic material.

The second method is to write a simple program using the METCAN
solution algorithm and apply it to the current example. The first few
steps in the METCAN solution process will be outlined below. The
numerical example is based on the two layer, one dimensional problem
introduced previously with E1 = E2 =0 = 1 and g = 100. The stiffness

function of 1layers 1 and 2 are E'(t) =1 and E%(t) = 1/(1+.01t),

respectively, as shown in Fig. 33.

layer 1
y [+
1 1
€ E =1 >
=1 —— L =1
o o
2 1
< E = >
(1+.01t) 0'2
layer 2

Fig. 33. Simplified Two Layer, One Dimensional Laminate.

For the first step, t = 0, the stiffness of each layer is 1. The total

stiffness, E, will then be 2. For a constant load, a;, of 1, the total
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strain will be 0.5 which is correct since no creep strain has taken

place at t = 0. The next S steps are detalled in Table 1 below.

t E1 E2 E =E1+Ez €=00/E c'1=eE1 c?=eE2
0 1 1.0000 2.0000 0.5000 0.5000 0.5000
1 1 0.9901 1.9901 0.5024 0.5025 0.4975
2 1 0.9804 1.9804 0.5048 0.5050 0.4950
3 1 0.9708 1.9709 0.5074 0.5074 0.4826
4 1 0.9615 1.9615 0.5098 0.5088 0. 48302
S 1 0.8524 1.9524 0.5122 0.5122 0. 4878

Table 1. METCAN Solution of a Spring and Maxwell
Element in Parallel.

The total strain calculated from both the acfual METCAN code and
the METCAN solution method is shown in Fig. 34 along with the exact
solution. Both the METCAN solution method and the METCAN program
predictions diverge from the closed form solution as time increases. It
is important to note that only the numerical method is verified and not
the correctness of the material model, i.e. springs and dashpots, or the
MFI equation. The spring and Maxwell models are used only because there
is a closed form solution available. Furthermore, if a numerical can
not converge to the correct answer for a one dimensional case, then it
will not converge for a more complex two dimensional case.

An alternate method to numerically simulate load shifting is to

treat creep strain as one would thermal strains. Just 1like thermal
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strains and stress are not determined by a change in the instantaneous
modulus, creep straln should also be calculated separate from elastic
strains. Similar to free thermal strain, the free creep strain, fe:. of
each ply, k, is first calculated at each time increment, i. From these
free creep stralns, an equivalent creep load cNi (similar to equivalent
thermal load) can be derived. This equivalent load is then applied to
the total laminate using the Iinstantaneous elastic stiffness. The
resulting global creep strain,ce‘ is the actual creep strain for the
laminate and each ply, cer. For the current problem, °el = cer, since
there is only one dimension, and both layers must have the same strain.
This process requires additional work in calculating the free creep
strain but the results more closely represen? the actual load shifting.
This method will be referred to as the Free Creep Strain (FCS) method in
this report.

The FCS method was used to solve the sgme three parameter example
previous investigated with METCAN. A flowchart 1illustrating the
numerical solution method is given in Fig. 35. The results for the
first few steps are shown in Table 2. The total strain for time steps
up to t = 99 is plotted in Fig. 34 along with the exact solution and the
METCAN results. The FCS solution method agrees well with the closed
form solution for the time step, At=1. This solution also incorporates

the hereditary integral to evaluate the free creep strain in each ply as

discussed in the previous section.
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1 1 2 .5 .5124

. 4876

t E E o o € € N €
. 1 | 1 1 | 1 | 1 i i |
0 1 1 2 .5 .5000 .5000 .S5000
0.0 .0050 .0050 .0025
1 1 2 .S .5025 .5025 .4975
2 0.0 .0088 .0098 .0050
1 1 2 .5 .5050 .S5050 .4950
3 0.0 .0148 .0148 .0075
1 1 2 .5 .5075 .5075 .4825
4 0.0 .0198 .0188 .0089
1 1 2 .85 .5098 .5098 .4901
5 0.0 .0248 .0248 .0124
.5124

Table 2. FCS Solution of a Spring and Maxwell Element in Parallel.

It is recommended that the solution technique in METCAN be modified
so that the load shifting between the composite components can be
properly calculated. This will help METCAN converge to the .correct
total strain. One possible method is the FCS method which converges
quickly to the correct strain.

for load shifting should also incorporate the hereditary integral to

calculate the creep strain.

Furthermore,
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CONCLUSIONS AND RECOMMENDATIONS

This study examined the METCAN program code for use in simulating
time dependent effects in metal matrix composites, and developed new
numerical methods for solving creep strains, and proposed modification
to the MFI equation to correctly model all phases of creep. Both the
findings and modifications implemented are summarized below, along

recommendations for further work.

1) The MFI equation, as currently implemented in METCAN with the decay
function for time, can not model the primary and secondary creep stages.
A new time term, derived from the Andrade’s creep law, was introduced to
model all three phases of creep when used in conjunction with the

original decay function.

2) The creep rate is not a direct function of stress and temperature in
the original MFI equation. The constant creep rate, modeled in the new
time term, was made a function of both stress and temperature using the

standard Arrhenius equation.

3) The modified MFI equation with stress and temperature dependency was
implemented into METCAN. The results indicate a sensitivity to the
degree of nonlinearity and the laminate layup. Severely nonlinear
models and cross-ply laminates did not converge even at double
precision. Convergence problems also developed when the solution method
in METCAN, successive substitution, was used on a simple two layer, one
dimensional hypothetical composite with moderately nonlinear material
properties. When a Newton-Raphson solution method was used, their were

no convergence difficulties, and converge was very rapid. It 1is
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recommended that the Newton-Raphson method be implemented into METCAN as

the main solution method.

4) The use of in-situ material properties for the fiber, matrix and
interface was determined impractical because of the current inability of
experimental methods to determine such properties. Furthermore, the
number of material properties that must be determined are too numerous
to be effectively obtained and still stay within accepted statistical
bounds. It is recommended that the lamina level be characterized which
will reduce the number of material variables and alleviate the need to
find in-situ properties. An alternative method would be to use bulk
material properties for the fiber, matrix and interface, and relate

those properties to the in-situ properties.

5) The hereditary effects of previous stress on the current strain are
not taken in to account in the current solution -method in METCAN.
Experimental results on unidirectional composites do not agree with
METCAN predictions for time dependent response. Basic viscoelastic
principles were reviewed and two new numerical procedures were
introduced for use on stable and unstable materials. An unstable
material is material that has an increasing creep rate with time. These
numerical techniques have not been implemented into METCAN but it is

recommend to be done in the future.

B8) The current method of shifting load from the more compliant matrix
to the stiffer fibers due to the time-dependency of the materials in
METCAN will cause the total strain to deviate from the true total
strain. This was demonstrated by comparing METCAN results with the
closed form solution of a three parameter dashpot and spring model. A
new solution technique was introduced as a possible method to correctly
model the load shifting and applied successful to the three parameter
model. Thls numerical method was not implemented into METCAN due to the
time constraints. It is recommended that the method be used in METCAN
in the future.
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Strain

Strain

0.61

0.6 +
0.59 - dt =5
0.58 - dt = 0.5
0.57 -
0.56 -~
0.55 A
Two Layer Material
0.54 -~
E1 =1
053 4 E2 = (1 - 0.01t)°
Time Increments
0.52 1 dt =5 2 1,05
0.51 -~
0.5 ¥ ] Ll ] ] i 1 T T
0 20 40 60 80 100
Time
0.7
0.68
0.66 - dt = 5
R dt = 0.5
0.64 A
0.62 +
0.6
0.58 Two Layer Material
T E1 =1
0.56: E2 =1 - 0.01¢t
0.54 - Time Increments
i dt = 5, 2, 1, 0.5
0.52 1
0-5 T ¥ ] T 1 i T 11 RS
0 20 40 60 80 100
Time

Fig. 30. Additive Solution Method for Two Layer
Material at Different Time Increments.
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Initialize Time & Counter

1 =0, t =0, dt=1

Iinitialize Creep Straln

c f k
€ =0, € =20
1 1

Ply Elastic Stiffness Total Laminate Creep Strn
e 1 [
E =1 &~ ¢ . § /
i £ = i e
1 E
e£2 _ 1 _ 1-1
1~ (1+.01t)
Equivalent Creep Load
c e 1 f 1
Laminate Elastic Stiffness N l= E1 1 Ci
e e 1 e 2
E= E + E e 2 f 2
i i 1 + E 4
1-1 1

Elastic Strain
Calc Free Creep Strains

e [
€= o e using Hereditar Integer
R / Ex 9. y 9

fek - o* [Sk(t )- sk(o)]
i ° i

i-1
Total Straln . k k k
T +JZO(¢TJ-0"1 1) s (t-tj)
< Cc - -
€= € + €
1 i 1 X
-5 (o)]
Ply Stresses
1 e 1,T £ 1
o = e (€e- "€ )
1 1 i i increment time & Counter
2 e 2.7 £ 2 1 =1 ¢+ 1, t =+t + dt
o-= (e~ "€) i
i 1 i 1
Store and Print stress No

and Strain for t.l

Fig. 35 Flowchart of FCS Method for Linear Three Parameters Example.
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