
NASA Technical Memorandum 108517

Computer-Aided System Engineering
and Analysis (CASE/A)
Programmer's Manual, Version 5.0
J. Knox, Editor

September 1996

NASA Technical Memorandum 108517

Computer-Aided System Engineering
and Analysis (CASE/A)
Programmer's Manual, Version 5.0

J. Knox, Editor

Marshall Space Flight Center • MSFC, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

September 1996

CONTRIBUTORS

The original CASE/A User's Manual, Programmer's Manual, and program were created by Robert

E. Ferguson, Michal E. Bangham, J. L. (Louie) Clayton, Scott D. Gilley, Roy G. Davis, Jr., Allen S.
Bacskay, Brian Key, Tim C. Tripp, Robert C. DaLee, Thomas C. Lee, Terry W. Carroll, David A. Till,
and Dave Anderson of the Huntsville Division of McDonnell Douglas Space Systems Company for

Marshall Space Flight Center (MSFC) under contract NAS8-36407.

Revisions to the CASE/A program have been made by Scott D. Gilley and Sam Edwards of the

MSFC Group of Sverdrup Technology for Marshall Space Flight Center under contract NAS8-37814, and
by Harold E. Quinn and Lesa Naidenko of the Huntsville Division of Computer Sciences Corporation for
MSFC under contract NAS8-60000.

Revisions to the CASE/A User's Manual and Programmer's Manual have been made by Harold E.

Quinn and Lesa Naidenko of the Huntsville Division of Computer Sciences Corporation for MSFC under
contract NAS8-60000.

James C. Knox of MSFC has overall responsibility for changes to and maintenance of the CASE/A

manuals and program.

.°.

lU

TABLE OF CONTENTS

1. INTRODUCTION ...

1.1 Basic Concepts and History ..

1.2 Program Description ..
1.3 Manual Organization ..

2. SCHEMATIC MANAGEMENT ...

2.1 Model Creation, Loading, and Deletion ..
2.1.1 The Model (.MOD) File ..
2.1.2 Model Creation, Deletion, and Loading Routines

2.2 Schematic Manipulation ..

2.3 Component Manipulation ...
2.4 Connection/Icon Manipulation ...

2.5 Specialized Graphics Routines ...

3. COMPONENT DATA BASE MANAGEMENT ...

3.1 File Input/Output Management ...
3.2 Interactive Editing ...
3.3 Solution System I/O ...
3.4 Data Management Framework ...
3.5 Data Management System Library Routines ...

3.5.1 File Input/Output Routines ...
3.5.2 Screen Editing Routines ..
3.5.3 Specialized Data Management Routines ..

4. SIMULATION CONTROL AND EXECUTION ..

4.1 Execution Control Logic Description ...
4.1.1 Simulation Logic Segment Structure ..

4.1.2 Pseudo-Compute Sequence ..
4.1.3 User Operations Routines ..

4.2 Solution System Library Routines ..

5. MODEL OUTPUT MANAGEMENT ...

5.1 Schematic Output ..
5.2 Component Data Base Output ..
5.3 Simulation Summary ..

5.4 Integrated Plot Utility ...
5.5 Data Output Options ...

5.5.1 Output to the "USERCON" Array ..
5.5.2 Custom User Output ...

5.5.2.1 Writing Data to an ASCII Text File ..
5.5.2.2 Creating Custom Data Base for Storing Output Data

5.6 Schematic Connection and Hydraulic Maps ..
5.6.1 The .CMP File ...
5.6.2 The .FMP File ...

Page

1
2
4

6

6
7
7
8

13
16

17

21

21
21
21
21
25
25
27
27

33

33
33
36
36
37

41

41
41
41
42
43
43
44
44
45
47
47
49

TABLE OF CONTENTS

6. UTILITY COMMANDS AND MISCELLANEOUS SYSTEM ROUTINES

6.1 Terminal Settings ..
6.1.1 Terminal Setting Command ..

6.2 Miscellaneous Commands ..
6.2.1 Flags ..
6.2.2 On-Line Help Information ..
6.2.3 VAX/VMS Commands ...
6.2.4 Temporary Exit to VAX Editor ..

6.3 Simulation Control Commands ..

6.3.1 Subsystem Heat Load Assignment to CABINS ...
6.3.1.1 ASSIGN Command ..
6.3.1.2 UNASSIGN Command ...

6.3.2 MERGE Operation ..
6.4 System Utility Routines ..
6.5 Model Archive Routines ..

7. USER OPERATIONS LOGIC AND INTERNAL CASE/A DATA ACCESS

7.1
7.2
7.3

OPS Logic Description ...
Creation of User OPS Logic ...
CASE/A Internal Data Communication Arrays ..
7.3.1 The "CON" Array ...
7.3.2 The "C" Array ...
7.3.3 The "PRO" Array ..
7.3.4 The "USERCON" Array ...
7.3.5 The "D" Array ...
7.3.6 Storage and Retrieval Functions for CASE/A Arrays

8. ANALYTICAL TECHNIQUES ...

8.1 System Pressure Computations ..
8.1.1 Matrix Reduction Pressure Solution ..
8.1.2 Hydraulic Solution ..
8.1.3 Stream Classifications ..
8.1.4 Friction Losses Through Connections ..

8.1.5 Pressure Loss Through Components ...
8.2 Thermal Network Solution Routines ..
8.3 Mass Transfer ..
8.4 Thermodynamic Properties ...

9. COMPONENT ROUTINES ..

9.1 Component Routine Logic Structure ..
9.1.1 Initialization Segment ...
9.1.2 Iterative Solution Segment ...
9.1.3 Posttime-Step Wrap-Up Segment ...
9.1.4 Postsimulation Wrap-Up Segment ..
9.1.5 Internal Fatal Error Condition ..

9.2 Component Routines ..

Page

51

51
51
51
51
52
52
53
53
53
53
54
54
55
61

63

63
63
68
68
69
72
73
73
73

76

76
76
76
77
78
79
80
81
81

82

82
83
83
84
84
84
84

vi

TABLE OF CONTENTS

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

PREPARATION OF COMPATIBLE COMPONENT SUBROUTINES

1.0 Graphical Component Icon Construction ...
1.1 Step 1: Increase Number of Components
1.2 Step 2: Modify "Drawc" Routine ...
1.3 Step 3: Modify "Hit" Routine ...
1.4 Step 4: Modify "Locate" Routine ...
1.5 Step 5: Modify "Ssout" Routine ..
1.6 Step 6: Modify "Pinit" Routine ...
1.7 Step 7: Modify "Eqsolve" Routine ...
1.8 Step 8: Update CASE/A Object Library

2.0 Data Base Construction ...

2.1 Data Base File Description ..
2.1.1 Data Definition File ..

2.1.2 Binary Data File ..
2.1.3 Full Screen Editor Templates ...

2.1.4 Script File ...
2.2 Adding/Modifying Component Data Base Files

3.0 Component FORTRAN Routine ...
3.1 Data Initialization Segment ..
3.2 Iterative Solution Segment ..
3.3 Post-Time Step Wrap-Up Segment ..
3.4 Postsimulation Wrap-Up Segment ...
3.5 Example Component Subroutine-Heater

GLOSSARY OF LABELED COMMON BLOCK VARIABLES

THE MODEL (.MOD) FILE ...

INDEX OF CASE/A SUBROUTINES ..

Page

95

95
95

95
99

100
100
100
101
101
103
103
103
103
103
104
104
105
105
106
106
106
107

111

119

123

vii

LIST OF ILLUSTRATIONS

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A-1.

A-2.

A-3.

A-4.

A-5.

Title Page

CASE/A program sections ... 3

Hierarchy of graphics routines ... 6

SCREDT flow chart ... 22

EDIT flow chart ... 23

Example "DDF" file (CABIN data base) ... 24

SOLVE routine flow chart .. 34

Example connection map printout ... 37

Variable output to the USERCON array .. 44

Example PLOTSET definition for the USERCON array 44

Writing custom data to a text f'de .. 45

Example variable output using binary files ... 45

Example code to get values for pump "PI". ... 46

Example data definition f'de for custom output ... 46

Example subsystem schematic ... 47

Example connection map (.CMP file) ... 48

Example hydraulic flow map (.FMP file) .. 50

The "CON" array .. •.............................. 70

Stream properties and composition arrays .. 71

Component "ITYPES". ... 82

Component logic flow diagram .. 83

Example code for new routine in Drawc routine ... 96

MOLSIEV icon layout .. 96

Example icon graphics code (MOLSIEV icon) ... 97

Example hit box data initialization (MOLSIEV icon) .. 99

Example hit stream label declaration (MOLSIEV icon) ... 100

..o

VUl

Figure

A-6.

A-7.

A-8.

C-1.

C-2.

LIST OF ILLUSTRATIONS (Continued)

Title Page

Modified library list (LIB4LIST.COM) .. 103

Example data definition file .. 104

Example source code for an ideal heater component .. 107

Example subsystem schematic ... 119

Example model description file (.MOD) .. 120

Table

1.

2.

3.

B-1.

LIST OF TABLES

Title Page

Simulation control variables .. 35

"C" array default constituents .. 72

"PRO" array properties list ... 72

CASE/A common blocks and included variables .. 111

ix

TECHNICAL MEMORANDUM

COMPUTER-AIDED SYSTEM ENGINEERING AND ANALYSIS
PROGRAMMER'S MANUAL, VERSION 5.0

SECTION 1. INTRODUCTION

The Computer-Aided Systems Engineering and Analysis (CASE/A) modeling package was cre-
ated as a generalized system engineering program. CASE/A is a very versatile and useful analytical tool,

especially suited to the support of environmental control and life support system and active thermal
control system (ECLSS/ATCS) development beginning with the system requirements preliminary
design and proceeding through hardware development, integration, test, and operations. The basic archi-
tecture is very flexible and can be adapted to many other systems engineering problems in which the
primary forcing functions are individual components. CASE/A can be used to verify component designs,
examine critical operating conditions and parameters, establish system and subsystem performance, and
determine test conditions and perform failure modes and effects analyses.

The CASE/A system has evolved from the G 189A program I and shares much of the G I89A pro-

gram architecture. The CASE/A system is designed for applications in which G189A was used. Compo-
nent routines from the G 189A system have been used as models for many of the CASE/A components.
CASE/A does not develop the solution in a traditional continuum mechanics manner similar to systems
improve numerical differencing analyzer (SINDA) or finite element (FE) programs where the solution is
derived by solving a set of differential equations. The CASE/A system solves the problem as a set of
discrete point solutions, i.e., component by component. The approach is practical for systems where the
primary drivers are the upstream/down stream conditions. The CASE/A system is designed to minimize
the engineer/analyst's time and not necessarily the computer central processing unit (CPU) time.
Attempts have been made to optimize the solution system, but not at theexpense of the user. In today's
world of rapidly advancing computer hardware, CASE/A is a logical approach to optimizing the system
engineer's time.

It is recommended that both the User's Manual and the Programmer's Manual be kept readily

accessible to facilitate learning the CASE/A system. The User's Manual is intended to guide the user in
the operation of CASE/A, while the Programmer's Manual is intended to explain the program logic of
CASE/A. Advanced users will find this document a useful reference in understanding the CASE/A

system and in debugging CASE/A models. It is also highly recommended that experienced users locate
the program files on their VAX system and type them to the terminal screen and follow along as they are
discussed in this document.

1.1 Basic Concepts and History

The basic concepts fundamental to the CASE/A generalized ECLSS/ATCS analysis program
include:

A library of individual "component" subroutines, each of which is used to simulate a particu-

lar type of ECLSS/ATCS component or subsystem. The user specifies component per-
formance parameters to tailor the component to his specific application.

A data management framework that automatically manages all of the data associated with a

particular ECLSS/ATC component and allows components to be grouped together and easily
identified and manipulated.

A solutionsystemthatcontrolsthedatatransferbetweencomponents,providesanorderly

solution of a set of component subroutines used to simulate a system, and allows component
subroutines within the simulations to be easily replaced, modified, or interchanged.

• The capability of allowing the component subroutines to be interconnected with gas or liquid
flow streams consisting of identifiable constituents.

• The use of a set of default parameters to simplify data entry.

CASE/A development has been funded under the NASA Marshall Space Flight Center (MSFC)
contract NAS8-36407 and has been under continuous development since May 1985. The program
structure was based largely on the G 189A program with the addition of a graphical user interface for

model construction and an improved data management system. The basic operating shell and component
routine development work was completed in 1986. Overall program enhancements as well as additional
component routine development work continued through 1987. A thorough component routine verifica-
tion program was completed in early 1989, which consisted of validating and documenting atmosphere
revitalization (AR) component model results against core module integration facility (CMIF) phase II
comparative test results obtained from the MSFC space station technology test program. Recent
enhancements to the user interface commands and program initialization code have further increased the
engineer's productivity with CASE/A. The program currently contains approximately 70,000 lines of
FORTRAN code. Version 5.0 is under MSFC Environmental Control and Life Support Branch configu-
ration control.

1.2 Program Description

The CASE/A program provides a simulation tool for studying the transient performance of an
ECLSS and/or an ATCS. CASE/A performs heat transfer, chemical reaction, mass/energy balance, and
system pressure drop analysis based on user-specified operating conditions. A fluid system is simulated
by connecting individual "components" through gaseous or liquid flow streams. Each particular type of
component is simulated by an individual component subroutine. A component may represent a tee, a
heat exchanger, a cold plate, or a process such as CO2 removal or CO2 reduction. The component sub-
routines are contained in a library that is accessible to the user. Each component is represented by a
unique graphical icon. The user specifies the component interconnections by connecting the components
interactively on the terminal screen. The syntax and user operations are explained in the User's Manual.

The CASEIA program consists of a main command processor that calls upon four primary sec-
tions as shown in figure 1. The user interfaces with the system through the command processor. The
graphics management system enables the user to graphically create the system configuration to be
modeled. Component, solution, and system data bases are maintained by the data base management
system. The solution system controls the solution process and determines the calling order for the com-
ponents. The component library is where the component object code resides.

The command processor/graphical interface is described in the User's Manual. This is the top-
level executive of the system and is the primary interface to the user. Essentially, the command proces-
sor parses the input commands into commands that can be executed by the system. The format of a
command is:

Command;argument 1;argument 2.

Either a blank space or a semicolon can be used as a delimiter to separate the command and its
arguments. Summaries of the commands and their syntax are provided in the User's Manual. The details
of this system are described in section 2.

2

CASE/A

PROCES,._OR

GRAPHICS MANAGEMENT SYSTEM
ROLmNES SYSTEM

I I
II i i Itill I

LIBRARY

|| i
I

Figure 1. CASE/A program sections.

The data management system is based on the McDonnell Douglas Space Systems Company
(MDSSC) technical data management system (TDMS). The data are stored in direct access FORTRAN
files and are accessible only through the data management system or through FORTRAN programs. The

description of the data base management system is provided in section 3. The data management system
also provides the user with a data base management and plotting utility for manipulation and display of
transient data.

The solution system controls the order of solution and provides for the system flags needed to
determine the status of the system for the components. At present the solution order is sorted according

to component type. The solution system is described in section 4.

CASE/A is an open system in that the user can create their own components and add them to the

existing library. A generic blackbox component is provided for short-term applications where the user
does not want to add the component to the system permanently. The components are allowed to have up

to eight separate streams. The limitations are imposed by array dimensions, and some components (such
as the cabin and store components) allow multiple connections to a single stream. Individual streams
normally are expecting a specific constituent. For example, the Bosch component has a hydrogen inlet
that expects hydrogen gas. The system does not check for incompatible connections such as connecting
an air stream to a hydrogen stream. In such cases, diagnostic messages will be issued and the solution
will attempt to proceed, but will generally not converge or will give erroneous results. All connections
must be complete before requesting a solution or the system will terminate and provide error messages.
The details of the component libraries and structure are discussed in section 9.

The CASE/A program has evolved from the G 189A and SINDA programs. The architecture is

very similar to G 189A and the solution approach is similar to the approach used by SINDA. Thus, this

system should be easy for the experienced G 189A programmer to learn. Both CASE/A and G 189A use
component libraries and provide a component-by-component solution. The interface data for the compo-
nents are passed through common blocks in both programs, and the component data are stored in a large
array that is common blocked. A comparison of the primary arrays is presented below.

GI89A CASE/A PURPOSE

R

K/V

A, B

CON

C and PRO

None

Stores component data

The C array contains the constituent data and the

PRO array contains the property data. PRO array

replaces locations 2 to 9 in K/V. C array locations

are similar to location 1 and locations i0 to 19 in

the K/V array.

The C and Pro arrays are also used as the working

arrays, replacing the A and B arrays.

Because the model data are stored graphically, there is no direct comparison of the model data
with G189A models. These data, which includes all components, connections, labels, notes, etc., are
stored in the CASENAME.MOD file. A fundamental difference between CASE/A and G189 is the

mechanism used to store the properties data. GI89A uses the TABLE data which are input by the users
in the model definition deck for every problem. CASE/A uses a subroutine called PROPS to calculate

properties for the default constituents. This routine can be modified by the user to calculate properties
for any desired constituent up to a maximum of 41 user-defined constituents. The program must be
recompiled to incorporate the changes.

The solution system utilizes a pseudo-compute sequence (PCS) to control the solution order. The
PCS concept is very similar to the concept used by SINDA to generate a solution. In SINDA, the node
and conductor data are reduced to sequential ordered arrays that define the set of simultaneous equa-
tions. In CASE/A, the PCS is a map of the components and connections and is stored in the IPCS array.
The solution routines march down the IPCS array and solve for each component individually.

1.3 Manual Organization

This section of the Programmer's Manual has provided a brief evolution and concept outline of
the CASE/A system. Nine more sections, described below, are provided with the intent to familiarize the
experienced CASE/A analyst with the programming concepts of CASE/A and to provide a foundation
from which more detailed models can be developed. The basic structure of this document closely fol-
lows the structure of the CASE/A User's Manual. 2

Section 2 discusses schematic management routines in CASE/A. Specifically discussed are those
routines required to create, load, and delete models; those routines used to manipulate the graphic icons
and connections representing a system; and specialized routines that perform rudimentary tasks such as
drawing lines and circles.

Section 3 describes the data base management system used by CASE/A. Discussed here are rou-
tines that allow editing of data bases and routines used to transfer data between the data base files in cen-
tralized mass storage and CASE/A variables in memory.

Section 4 describes the routines used to control the simulation process. Discussed here are
CASE/A and user-written routines and the logic of the simulation process.

Section 5 describes those routines used to manage the data processed by CASE/A. Described
here are routines that output results in text or graphical form, and routines that output representations of
a system such as connection maps and flow maps.

Section 6 discusses some of the utility commands such as terminal setting routines, on-line help,
and interface routines to VMS, as well as those subroutines used by other routines to perform specific
functions. Such routines perform functions such as interpolation, convergence checking, calculation of
thermal properties, etc.

Section 7 discusses the user-supplied FORTRAN code referred to as OPS logic and how the user
can access data in CASE/A internal storage arrays. OPS logic provides seven entry points at specified
key simulation events where the user can intervene in the solution and customize the simulation. Stream

property/constituent data and component data are maintained in the array data structures described in
this section.

Section 8 provides details regarding the routines used to solve hydraulic, thermal, and mass
transfer networks.

Section 9 provides a description of each component routine available in CASE/A.

4

AppendixA containsadescriptionfor addingnewcomponentsto theCASE/A code.

AppendixB containsatableof theCASE/A globalvariablesthatarelocatedin commonblocks.

AppendixC containsa formatdescriptionof the .MODfile thatspecifiescomponents,connec-
tions,andotherinformationfor amodel.

AppendixD containsanindexof subroutinesto helpthereaderlocateaparticularroutine
descriptionin themanual.

References

1. "G-189A Generalized Environmental/Thermal Control and Life Support System Analysis Computer

Program," 1977.

2. "Computer-Aided System Engineering and Analysis (CASE/A) User's Manual--Version 5.0,"
NASA TM- 108514, June 1996.

VAX and VMS are trademarks of the Digital Corp. The names of other products and companies
mentioned in this book may be trademarks, trade names, registered trademarks, service marks, or
service names.

SECTION 2. SCHEMATIC MANAGEMENT

2.1 Model Creation, Loading, and Deletion

The graphical interface performs three major functions including:

1. Developing a graphical representation of the model under consideration

2. Interacting with a data base management system to store and manipulate equipment parame-
ters

3. Storing the graphical representation in a format that is compatible with the solution routines.

The majority of the code in the graphical interface program is used to perform the first function
listed above, developing the graphical representation. The data base management function relies heavily
on the TDMS, which is described in section 3 of this document.

The graphical user interface is a graphics-based, command-driven package developed on the
Digital Equipment Corporation (DEC) VAX minicomputer series and uses the Tektronix 4014-1TM
terminal (or compatible) as the primary user input/output device. The interface uses a central command
processor routine to accept user commands in text form and invoke the appropriate subroutines for
action. The command processor separates the user input line into the command and optional arguments
using the semicolon (;) or blank space as a general delimiter between fields.

The routines that comprise the graphical interface portion of CASE/A are broken down into dis-

tinct categories for discussion within this document. These categories include those routines pertaining
to (1) schematic manipulation, (2) component manipulation, (3) connection manipulation, and (4)
specialized graphics routines. These routines are shown hierarchically in figure 2. There are several
routines that combine elements of the graphics/data management and graphics/solution system, and
these routines will be discussed in this section of the document as well as their corresponding sections.

GRAPHICAL]
INTERFACE

I I

[! lMANIPULATION MANIPULATION

I I I
SCHEMA]3C

MANIPULATION
SPECIALIZED

ROUTINES

COPYAL BDN CONECT BCK GD CLR
CUTALL BDNSHT DELCN
DELEQ HIT COLOR
DELLAB BLF DIR

BLFSHT DIST
DELNOTE BLOCK FRAME1

DRLABL BRT HC
DRNOTE

BRTSHT HCALL
LABL BUP HCDMPSV

LOCATE BUPSHT RESET1
MOVALL
MOVEIT CIRCLE SOLICIT

MOVLAB DRAWC TEK_ADV
ELLIPSE TEK_HOM

MOVNOT LTSEMCIR TRANSBOD

NOTE RTSEMCIR TRANSCON
REDRAW

SEMIRECT TRANSLT
RENEQ HITBOX TRANSLT1
RNSS

ROTATE
SUBSYS

GRBUFR
GRCUSR

GRCHRZ

GRCOPY

GRDRAW

GRERAS
GRINIT

GRLBAB

GRLBCT

GRMOVE
GRSCREEN

GRTERM

Figure 2. Hierarchy of graphics routines.

6

The following sections describe the routines associated with the development of the graphical
representation of a given model. The actual model file CASENAME.MOD is discussed first. The sub-
routines that affect this file are presented next.

2.1.1 The Model (.MOD) File

All information necessary to create the subsystem screens is contained in the ".MOD" file. The
first section contains model header data such as the number of components and connections in the
model. This section serves as a header to describe the number of items contained in the following sec-
tions. The second section contains data describing each component in the model and its location on the

schematic and assignment to a cabin. The third section contains information describing the connections
between the components. The last two sections contain data describing user-defined blackbox compo-
nents or notes data. The last two sections may not be present if the model does not contain these items.

Refer to appendix C for a more detailed description of the ".MOD" file.

Since this file contains graphical information, it is highly recommended that this file not be

modified through means other than the CASE/A interface (i.e., one should not use the VAX editor to
modify this file). The MOD file is strictly formatted and contains a considerable amount of unlabeled
data. As such, it is extremely difficult to debug a corrupted MOD file. Unlike other files associated with

CASE/A (e.g., .BAK, .CMP, .FMP, .LPP), the MOD file MUST be present to run a given CASE/A
model. All other files are created for the user by CASE/A. Unintentional editing errors introduced into a

MOD file will corrupt a CASE/A model even to the point of rendering it useless. Should the ".MOD"
file become corrupted, the user may be able to recover it from the ".BAK" file usually contained in the

same directory.

2.1.2 Model Creation, Deletion, and Loading Routines

The following section describes the routines that, in conjunction with the data in the MOD file
described above, are used to create or load a case into the CASE/A system.

Subroutine DELCAS

This routine invoked from CASEAMAIN. It deletes the current case from the data base records.
It does NOT delete the files CASENAME.MOD, CASENAME.LPP, CASENAME.CMP, etc.

After verifying the action, DELCAS opens each data base and finds a record with a case name
match. The record is then deleted.

Functions and subroutines referenced:

DELREC EQOPEN FRAME 1 RANDIN TEK_ADV

Subroutine DIR

This command routine allows the user to view a listing of all components in the case grouped

according to subsystem name. The listing is directed to the terminal screen.

Functions and subroutines referenced:

CLS DIR_ADV
TOGGLE_SCREEN

FRAME 1 PTMOD R JUSTIFY TEK_ADV

Subroutine CLOADCASE(NAME)

This routine reads the case data from the case definition file "CASENAME.MOD" and loads the

corresponding data storage arrays for each data segment.

Functions and subroutines referenced:

CTOLOWERC CTOUPPERC DUPLICATE EQOPEN
FRAME1 RANDIN RANDOU
TEK ADV

Subroutine CNEWCASE(NAME)

This routine is used to create a new case. It copies the default record for LABELS, CONTROL,
PLOTSET and USERCON data bases to a new record with the new case name. It also initializes
counters such as the number of cabins, connections, etc. Control is returned to the

CASEA$MAIN upon completion.

Functions and subroutines referenced:

DUPLICATE EQOPEN
SAVE TEK_ADV

FRAME1 RANDIN RANDOU

Subroutine SAVE

This command routine saves the current case configuration data in the case definition file
"CASENAME.MOD".

Functions and subroutines referenced:

CTOLOWERC PTMOD TEK ADV

Subroutine SAVEAS(NAME)

This routine creates a new case from the current case by duplicating all the data base entries with
the new case name NAME. It also creates a new MOD file. The new case becomes the active
Case.

Functions and subroutines referenced:

DUPLICATE EQOPEN
RANDOU SAVE

FRAME1 ISTAT MODBAK RANDIN
TEK_ADV

2.2 Schematic Manipulation

The routines classified under this heading include all of those that pertain to the graphics setup
on the working terminal screen. The functions provided by CASE/A to manage screen schematics

include locating equipment; deleting equipment; adding or deleting labels and notes to a subsystem
screen; moving equipment, notes, or labels to any location on a subsystem screen; and rotating equip-
ment to another orientation in 90* intervals in order to make schematics more presentable. The syntax of
the aforementioned operations are outlined in table 2.1-1 NASA TM-108514, "Computer-Aided System
Engineering and Analysis (CASE/A) User's Manual--Version 5.0." A brief discussion of subroutines

classified under this section, how they work, and the argument lists involved in their call statements
follows.

8

Subroutine COPYALL

This routine invoked by the COPYALL command copies a portion (or all) of a subsystem screen
to a new or existing subsystem by drawing a box around the components (500 maximum) to be
copied. It includes notes, connections, and labels as well as components. Note that the blackbox
component cannot be copied, and the copied items must be 30 pixels inside from the screen
frame.

Functions and subroutines referenced:

CDCODE CTOUPPERC CILLCHAR DUPLICATE

EQOPEN FRAME 1 GRALPH GRCUSR
GRDRAW GRMOVE ISTAT RANDIN
RANDOU REDRAW SAVE TEK_ADV

TOGGLE_SCREEN

Subroutine CUTALL

Deletes a portion (or all) of a subsystem screen by drawing a box around the components to be
deleted. Notes, labels, and connections are also deleted.

Functions and subroutines referenced:

DELEQ DELNOTE GRALPH GRCUSR
GRDRAW GRMOVE SAVE TEK_ADV

TOGGLE_SCREEN

Subroutine DELEQ(ICUT)

A command routine that allows the user to delete an existing component. The crosshairs are acti-
vated after the command is entered, and the component to be deleted is determined by locating
the intersection of the crosshairs to within a maximum radius of 60 pixels to the center of that

component. The equipment list (IEL) array, connection data (ICL) array, and component data
base files are updated accordingly. All connections to the component are deleted, and the total
number of connections (NCON) and total number of components (NEQ) are decremented.

Functions and subroutines referenced:

CDCODE CTOUPPERC DELREC DIST

EQOPEN GRCUSR GRALPH ISTAT
RANDIN TEK_ADV TOGGLE_SCREEN

Subroutine DELLAB(ICUT)

A command routine that allows the user to delete an existing label from the subsystem screen.
The crosshairs are activated after the command is entered, and the label to be deleted is deter-

mined by locating the crosshair coordinates to within a maximum radius of 60 pixels of the label
center. The label data (ILB) array is updated accordingly, and the total number of labels (NLAB)
is decremented.

Functions and subroutines referenced:

DIST GRCUSR TEK_ADV TOGGLE_SCREEN

9

SubroutineDELNOTE(ICUT)

A command routine that allows the user to delete an existing note from the subsystem screen.
The crosshairs are activated after the command is entered, and the note to be deleted is

determined by locating the crosshair coordinates to within a maximum radius of 60 pixels of the
note center. The note data (INOTE) array is updated accordingly, and the total number of notes
(NNOTE) is decremented.

Functions and subroutines referenced:

DIST GRCUSR

TOGGLE_SCREEN
TEK_ADV

Subroutine DRLABL (KLAB, MEQ)

A routine that draws the alphanumeric label and specified value for label number KLAB associ-

ated with relative equipment number MEQ. The labels data are contained within the array ILB.

Functions and subroutines referenced:

GRALPH GRCHRZ GRLBAB KAM2AS
KAS2AM SMVB1TS TEK_ADV

Subroutine DRNOTE (K)

A routine that draws the alphanumeric note for note number K. The notes data are contained
within the array INOTE.

Functions and subroutines referenced:

GRALPH GRCHRZ GRLBAB GRLBCT
TEK_ADV

Subroutine LABL

A command routine that allows the user to place an alphanumeric label that displays individual
data base of stream characteristics for a given component on the subsystem screen. The labels
data are contained in the array ILB, and the variable NLAB records the total number of labels in
the case.

Functions and subroutines referenced:

CDCODE DIST DRLABL HIT

GRALPH GRCUSR TEK_ADV
TOGGLE_SCREEN

Subroutine LOCATE

A command routine that allows the user to locate a new component in the active (currently dis-
played) subsystem. The equipment type and component name are command arguments. The
crosshairs are activated after the command is entered and the component location is determined
by the user. The component icon is then drawn on the screen at the indicated coordinates. The

case equipment list is updated, the total number of equipment pieces (NEQ) is updated, and a
new entry with default values is created in the component equipment data base file.

10

Functionsandsubroutinesreferenced:

CDCODE CLS CILLCHAR CTOUPPERC
DRAWC DUPLICATE EQOPEN GRALPH
GRCUSR RANDIN RANDOU SAVE
TEK_ADV TOGGLE_SCREEN

SubroutineMOVALL

Movesa portion(or all) of a subsystemscreenby drawingaboxaroundthecomponents(200
max) to bemoved.Notes,labels,andtheintermediateendpointsof connectionsinsidethebox (if
eitherendpointis onacomponentinsidethebox)arealsomoved.

Functionsandsubroutinesreferenced:

GRALPH GRCUSR
SAVE TEK_ADV

GRDRAW GRMOVE
TOGGLE_SCREEN

SubroutineMOVEIT

A commandroutinethatallowstheuserto moveanexistingcomponentto anewlocationon the
currentsubsystemscreen.Thecrosshairsareactivatedafterthecommandis enteredandthe
componentto bemovedis selectedby theuser.Thecrosshairsremainactive,andthenewloca-
tion on thescreenis designatedby theuser.Theredrawcommandshouldbeissuedto cleanthe
screenastheicon will notbeerasedfrom its previousposition.The(IEL) arrayis updatedto
reflectthenewcomponenticoncoordinates.

Functionsandsubroutinesreferenced:

DIST DRAWC GRALPH GRCUSR
TEK_ADV

SubroutineMOVLAB

A commandroutinethatallowstheuserto moveanexistinglabelto anewlocationon thecur-
rentsubsystemscreen.Thecrosshairsareactivatedwhenthecommandis enteredandthelabelto
bemovedis selectedby theuser.Thecrosshairsremainactive,andthenewlocationon the
screenis designatedby theuser.Theredrawcommandshouldbeissuedto cleanthescreenasthe
icon will notbeerasedfrom its previousposition.TheILB arrayisupdatedto reflect thenew
label coordinates.

Functionsandsubroutinesreferenced:

DIST DRLABL
TOGGLE_SCREEN

GRCUSR TEK_ADV

SubroutineMOVNOTE

A commandroutinethatallowstheuserto moveanexistingnotefrom thesubsystemscreen.The
crosshairsareactivatedafterthecommandisenteredandthenoteto bemovedis selectedby the
user.The crosshairsremainactive,andthenewlocationon thescreenis designatedby theuser.
Theredrawcommandshouldbe issuedto cleanthescreenastheicon will notbeerasedfrom its
previousposition.Thenotedata(INOTE)arrayisupdatedaccordingly.

11

Functions and subroutines referenced:

DIST DRNOTE
TOGGLE_SCREEN

GRCUSR TEK ADV

Subroutine NOTE

A command routine that allows the user to place an alphanumeric note on the active subsystem
screen. The note character size, justification code, and character string are the command argu-
ments. The crosshairs are activated when the command is entered and the note location is

selected by the user. The note is then displayed on the screen at the indicated coordinates. The
note data array (INOTE) is updated, and the total number of notes (NNOTE) is incremented.

Functions and subroutines referenced:

CDCODE DRNOTE

TOGGLE_SCREEN
GRCUSR TEK_ADV

Subroutine REDRAW(JFLAG)

This subroutine will redraw the current subsystem screen.

Functions and subroutines referenced:

CLS DRAWC DRLABL DRNOTE
FRAME 1 GRDRAW GRDRAWD GRMOVE
RESET 1 TRANSB OD TRANSCON TRANSLT 1
TEK_HOM

Subroutine RNSS

This subroutine allows the user to rename a subsystem.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC EQOPEN
RANDIN RANDOU TEK_ADV

Subroutine ROTATE

A command routine that allows the user to change the orientation of a component on the current
subsystem screen. The rotation angle is the command argument. The crosshairs are activated
when the command is entered and the component to be rotated is selected by the user. The orien-
tation of the component is then changed by "rotating" the component in a clockwise direction for
positive rotation angle values relative to the existing orientation. The screen should be refreshed
by the RD command since the previous orientation of the component will not be erased.

Functions and subroutines referenced:

CDCODE DIST DRAWC GRCUSR
TEK_ADV TOGGLE_SCREEN

12

SubroutineSUBSYS

A commandroutinethatallowstheuserto activateanexistingsubsystemor createanew subsys-
tem.Thesubsystemnameis inputasthecommandargument,andthesubsystemschematicis
automaticallydrawnon theterminalscreen.

Functionsandsubroutinesreferenced:

CDCODE CILLCHAR CTOUPPERC REDRAW
TEK_ADV

2.3 Component Manipulation

The routines classified under this heading include those that are used to draw component icons

(graphical representations of certain equipment types) on the subsystem screen. The CASE/A icon
combines the equipment graphical representation, equipment name and type labels, and "hit boxes" to

provide the complete component picture on the subsystem screen. The term "hit box" refers to a small
square box of 10 by 10 pixels that is attached to the CASE/A component (one box per component
stream) and allows the user to connect incoming and outgoing streams of successive components. Each

component also has a "HIT DOT", used for the connection of controllers or timers. The component
graphical representation and hit boxes are drawn with graphics routines from the TDMS library. At the
present time, all component icons are limited to geometric shapes that can be formed from the following
base structures; (1) circle, (2) left semicircle, (3) right semicircle, (4) square, and (5) straight line. The
main driver routine for component icon creation is subroutine DRAWC. The DRAWC routine takes data

points from the various component icon arrays (declared in DRAWC) and uses the graphics routines
from the TDMS library to create a graphical representation of the component. A complete listing and

description of these routines follows. Due to the complex nature of inserting a new component icon in
the existing FORTRAN code, a step-by-step guide to this operation is included in appendix A.

Subroutine BDN (IX, IY, K, IROT,ISTM)

A routine that draws a "hit box" 10 pixels square with the center located at an X-coordinate of IX
and Y-coordinate of IY-40. A line segment with a 35 pixel length is drawn from IY to IY-35 and

has an arrow symbol drawn according to the code variable K. A value of K = -1 causes the arrow
to point away from the box while a value of +1 causes the arrow to point toward the box. The
variable (IROT) indicates the orientation angle of the component, and ISTM indicates the
relative stream number of the component. This routine is used to draw the stream indicators on

the component icons.

Functions and subroutines referenced:

BLF BRT BUP CIRCLE

GRDRAW GRMOVE HITBOX

Subroutine BDNSHT (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the "hit box" is located 20 pixels instead of 40 pixels away

from the (IX, IY) point.

Functions and subroutines referenced:

BLFSHT B RTSHT BUPSHT CIRCLE
GRDRAW GRMOVE H1TBOX

13

SubroutineBLF (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the "hit box" is located 40 pixels to the left of (IX, IY) point.

Functions and subroutines referenced:

BDN BRT BUP CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BLFSHT (IX, IY, K, IROT,ISTM)

Same as the BLF routine except the "hit box" is located 20 pixels instead of 40 pixels away from
the (IX, IY) point.

Functions and subroutines referenced:

BDNSHT BRTSHT BUPSHT CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BLOCK (IXSIZ, IYSIZ, IX, IY, IROT)

A routine that draws a rectangle with X length of IXSIZ pixels and a Y length of IYSIZ pixels
located around the centroid of point (IX, IY). The variable IROT indicates the orientation angle
of the component.

Functions and subroutines referenced:

GRDRAW GRMOVE

Subroutine BRT (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the "hit box" is located 40 pixels to the right of the (IX, IY)
point.

Functions and subroutines referenced:

BDN BLF BUP CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BRTSHT (IX, IY, K, IROT,ISTM)

Same as the BRT routine except the "hit box" is located 20 pixels instead of 40 pixels away from
the (IX, IY) point.

Functions and subroutines referenced:

BDNSHT BLFSHT BUPSHT CIRCLE
GRDRAW GRMOVE HITBOX

Subroutine BUP (IX, IY, K, IROT,ISTM)

Same as the BDN routine except the "hit box" is located 40 pixels above the (IX, IY) point.

14

Functionsandsubroutinesreferenced:

BDN BLF BRT CIRCLE
GRDRAW GRMOVE H1TBOX

SubroutineBUPSHT(IX, IY, K, IROT,ISTM)

SameastheBUP routineexceptthe"hit box" is located20pixelsinsteadof 40 pixelsawayfrom
the(IX, IY) point.

Functionsandsubroutinesreferenced:

BDNSHT BLFSHT BRTSHT CIRCLE
GRDRAW GRMOVE HITBOX

SubroutineCIRCLE (IRAD, IX, IY)

This routinedrawsacircle with radiusIRAD centeredatpoint (IX, IY) on theterminalscreen.

Functionsandsubroutinesreferenced:

GRDRAW GRMOVE

SubroutineDRAWC (KEQ)

This routinedrawsthegraphicalicon for thecomponentwith relativeequipmentnumberKEQ.
Theorientationof the icon is determinedby therotationanglecontainedin arrayelementNROT
(KEQ).This routineservesasthedriver routinefor iconrepresentationand,hence,it usesmany
of theTDMS graphicslibraryroutinesin orderto drawthecomponentgraphically.A detailed
descriptionof howthisroutinemustbemodifiedin orderto addnewcomponenticonsto the
existinglist is foundin appendixA.

Functionsandsubroutinesreferenced:

BDN BLF BLOCK BRT
BUP CIRCLE COLOR GRALPH
GRCHRZ GRDRAW GRLBAB GRLBCT
GRMOVE LTSEMCIR RTSEMCIR
SEMIRECT TRANSLT

SubroutineHITBOX(IX,IY,IXOFF,IYOFF,ISTM)

This routinedrawsthecomponenticonhit boxat a locationof (IX+IXOFF, IY+IYOFF).

Functionsandsubroutinesreferenced:

BLOCK

SubroutineLTSEMCIR (IRAD, IX, IY, IOFF, IROT)

This routinedrawsa semicircleof radiusIRAD locatedIOFFpixelsalongtheX-axis from the
coordinates(IX, IY). Thepositiveclockwiserotationangleis specifiedby IROT.

15

Functionsandsubroutinesreferenced:

GRDRAW GRMOVE

SubroutineRTSEMCIR(IRAD, IX, IY, IOFF, IROT)

Thisroutinedrawsasemicircleof radiusIRAD locatedIOFFpixelsalongtheX-axis from the
coordinates(IX, IY). Thepositiveclockwiserotationangleis specifiedby IROT.

Functionsandsubroutinesreferenced:

GRDRAW GRMOVE

SubroutineSEMIRECT(IH,IW,IX,IY,IROT)

This routinedrawstwo parallellinesat IH/2 or IW/2 from (IX,IY) with a lengthof W or H
dependingonorientation.A rotationangleof 0 or 180wouldresultin horizontallines.

Functionsandsubroutinesreferenced:

GRDRAW GRMOVE

2.4 Connection/Icon Manipulation

The connection management routines include those that affect component icon stream connec-
tions. CASE/A provides the user capability to add or delete a connection within the subsystem screen.
The driver routines for the aforementioned commands are CONECT and DELCN, both of which call the

subroutine HIT in order to verify a valid connection or deletion argument. The HIT routine checks to
insure that the user has started and concluded the connect or delete process within the boundaries of a
component hit box, otherwise the routine will not accept the user prompt and return control to the com-
mand processor. Following is a description of each routine and its arguments.

Subroutine CONECT

This command routine allows the user to specify an interconnect path between connection
streams (a component such as a cabin must be connected to itself in the special case where heat
transfer between the cabin and the surroundings is needed but there is no net flow into or out of
the cabin). The crosshairs are activated when the command is entered and connections are

resolved by determining which "hit boxes" of the target component(s) are specified by the user.
The ICL array records, the connection data, and the total number of connections NCON are
updated.

Functions and subroutines referenced:

CDCODE GRALPH GRCUSR GRDRAW

GRDRAWD GRMOVE HIT TEK_ADV
TOGGLE_SCREEN

Subroutine DELCN

A command routine that allows the user to delete an existing interconnect path between compo-
nent(s). The crosshairs are activated as the command is entered and the connection to be deleted

is determined by locating the "hit boxes" indicated by the user. The (ICL) array is updated
accordingly along with the total number of connections NCON.

16

Functionsandsubroutinesreferenced:

GRALPH GRCUSR
TOGGLE_SCREEN

HIT TEK_ADV

Subroutine HIT (IX, IY, JEQ, NSTR,IXC,IYC)

This routine is used in the determination of interconnect paths between components. The routine

determines the relative equipment number JEQ and stream NSTR, if any, which correspond to a
"hit box" located at screen coordinates (IX, IY). A value of 0 for NSTR is returned if no "hit

box" is located at the given set of coordinates. The active subsystem screen is the basis for the hit
determination. The hit box data for each component is contained in arrays NST, IXD, and IYD.
IXC and IYC are absolute locations of the hit box centers and are used by CONECT to draw

connections on the subsystem screen.

Functions and subroutines referenced:

DIST RESET 1 TRANSBOD TRANSCON

TRANSLT 1

2.5 Specialized Graphics Routines

The routines listed as specialized graphics operations include those that can be invoked by the

user to change or enhance the current screen characteristics. Many of these routines are called by rou-
tines whose categories fall in the above sections. For example, if the user entered the subsystem com-
mand in order to display a given subsystem, the specialized routine GRERAS (which erases the graphics
window) would be called so that the new subsystem schematic would be drawn on a blank screen rather
than over the existing screen. A complete description of all the routines categorized under this section

heading follows. Low level graphics routines (with the prefix "GR") are part of TDMS and only their
function is listed here.

Subroutine BCK_GD_CLR(IBACKGD)

This routine will set the background color index in the graphics mode. This is for Tektronix TM

terminals only. Only solid colors are supported in this routine. The background color is specified
in the HLS system, i.e., H-hue, L-lightness, S-saturation. Blue is 0,50,100. Colors are based on

the factory defaults.

Functions and subroutines referenced:

KBIT

Subroutine COLOR(INDEX)

This routine will set the color index for the line in the graphics mode. This is for Tektronix TM

terminals only.

Functions and subroutines referenced:

KBIT GRALPH

Subroutine FRAME1

17

This routinedrawsthebordersandtitles for thesubsystemscreenpagelayout. It is invoked on a
redraw "RD", redraw plus "RD+", or subsystem "SS;name" command.

Functions and subroutines referenced:

CLDRAI CLDRIA GRALPH GRCHRZ
GRERAS GRLBAB GRLBCT GRMOVE
PTMOD SYSCLK TEK_HOM

Subroutine GRALPH

This routine dumps the output buffer.

Subroutine GRCUSR (ICHAR, IX, IY)

This routine activates the graphics crosshairs so the cursor can be positioned by the user. The
routine returns ICHAR, ADE (ASCII decimal equivalent) of the keyboard character depressed. It
also returns the screen coordinates (IX, IY).

Subroutine GRCHRZ (ISIZ)

This routine sets the character size to a value of ISIZ, which can take on the values 1, 2, 3, or 4
with 1 being the largest and 4 the smallest.

Subroutine GRCOPY

This library routine generates a hard copy of the screen contents.

Subroutine GRDRAW (IX, IY)

This library routine draws a line from the present screen coordinates to the location of point (IX,
re).

Subroutine GRERAS

This routine erases the screen without changing the mode or current location of the cursor.

Subroutine GRINIT

This routine initializes the terminal and terminal status area.

Subroutine GRLBAB (IX, IY, ISTRING, LSTRING)

This routine displays an alphanumeric label string (ISTRING) of length (LSTRING) starting at
the screen coordinates (IX, IY).

Subroutine GRLBCT (IX, IY, ISTRING, LSTRING)

This routine displays an alphanumeric label string (ISTRING) of length (LSTRING) centered
about the screen coordinates (IX, IY).

Subroutine GRMOVE (IX, IY)

This routine moves the cursor from the current position to the screen coordinates (IX, IY).

18

SubroutineGRSCREEN(IWIDE)

This routinesetsthescreenwidthbasedon thevalueof IWIDE.

SubroutineRESET1(IREC)

This routinesetsthecorrectvaluesin thememoryarrayssothatthecomponentJEQof equip-
menttypeKEQ isdrawnin thedesiredorientation.

Functionsandsubroutinesreferenced: NONE

SubroutineTEK_ADV

Thisroutine is usedwhentheterminalis aTektronixTM. It is used to control the cursor location

for overstrike terminals. It prevents overwriting command lines and graphics.

Functions and subroutines referenced:

FRAME 1 GRALPH GRCHRZ GRERAS
GRMOVE KB1T REDRAW TEK_HOM

Subroutine TEK_HOM

This routine homes the cursor on the Tektronix TM terminal.

Functions and subroutines referenced:

GRALPH GRCHRZ GRMOVE

Subroutine TRANSBOD (JEQ, IXC, IYC)

This routine returns the coordinates (IXC, IYC) of the control hit dot on the main body of the

icon for equipment number JEQ based on an orientation angle of IRO that is held in the
NROT(JEQ) array location.

Functions and subroutines referenced: NONE

Subroutine TRANSCON(JEQ, NSTR, IXC, IYC)

This routine returns the coordinates (IXC, IYC) of the control hit dot on the stream NSTR of the

icon for equipment number JEQ based on an orientation angle.

Functions and subroutines referenced: NONE

Subroutine TRANSLT (IX, IY, IROT, IARRAY, JARRAY)

This routine adjusts the default orientation icon data contained in array IARRAY so the icon is
drawn in orientation specified by angle IROT. The adjusted data are returned in the array

JARRAY. The pivot coordinates are specified by (IX, IY).

Functions and subroutines referenced: NONE

19

Subroutine TRANSLT 1(YEQ,KEQ)

This routine adjusts the default orientation of the component hit boxes.

Functions and subroutines referenced: NONE

2O

SECTION 3. COMPONENT DATA BASE MANAGEMENT

The data management system is based on the McDonnell Douglas TDMS. This system is used to

manage all of the CASE/A files including the component and system control files. Output files can be
managed by the user within CASE/A in the integrated plot utility (IPU), both of which can be utilized
for plotting and tabulating the results. For a complete description of the IPU see section 5.4 of the user' s
manual.

3.1 File Input/Output Management

The file I/O is managed through the primary routines: CEDIT, EQOPEN, and EQLOAD. The
CEDIT routine is used in the interactive mode to display or modify the contents of the component, con-

trol, plot, label, or usercon data base parameters. The other routines are used to open a data base
(EQOPEN), and load all of the data from a data base to the CASE/A system (EQLOAD).

3.2 Interactive Editing

The user can modify a data base parameter through the "ED" or "E" commands. The command

processor will call the EDIT routine when either of the above commands is called. The "E" command
(4014 graphics mode) allows the user to designate the component to be modified with the crosshairs.
The "ED" command (VT 100 text mode) will list all of the components of the type requested and solicit a
choice from the user. If the user is working on a VT100 compatible terminal (determined by the variable

ITMNL), the SCREDT (screen edit) subroutine will display the data base parameters on an edit screen
and the user may change the data by simply typing over the old data. To advance to the next field, the
user should press the return or the TAB key. This routine is depicted in figure 3. A flow chart of the

EDIT routine is depicted in figure 4.

3.3 Solution System I/O

The solution system I/O is performed at the beginning and at the very end of the simulation to
minimize disk I/O. All of the data for a given component are loaded and unloaded during these periods.

Any modification to the CON array data must occur after the array is loaded. During simulation wrap-
up, the data for each component is saved to the component data base files. During the save operation, the
new component data will replace existing data for that component record.

3.4 Data Management Framework

The data for each component are stored in a direct access binary file by the name of
COMPONENTNAME.DAT (PUMP.DAT, MOLSIEV.DAT, etc.). This file contains data according to

the format specified by a "Data Definition File" COMPONENTNAME.DDF. These files typically reside
in the [CASEA.CASEA V5.DATA] centralized component data directory, which must be defined by
the VMS LOGICAL N,_ME CASEA$DATA. A typical "DDF" is shown in the example in figure 5. The

DDF begins with a data line (header record) that provides the following characteristics of the data base:

1. Record length in words

2. Number of items in each record (attributes)

3. Item location of the modification date item

4. Maximum number of records for this data base

21

5. Item location of the security password

6. Item location for the "point up" pointer for chained records (usually zero)

7. Item location for the "point down" pointer for chained records (usually zero).

$CREDT

I TURN ON I

GRAPHICS

SCREEN

OETERMINE] LOCATION

COMPONENT

I DETERMINE]

WHICH I
COMPONENT WA,¢ I

PICKED I

GET COMPONEN1

NAME

J,

I OPEN DATA BASE [
FILE]

FIND RECORD FOI [
THAT EQUIP. [

RECORD]

DRAW EDIT J
SCREEN

COMPONENT

FEILDS

UPDATE THIS

DATABASE
RECORD

FIND AND UPDAT|

ALL RECORDS
FOR THIS CASE

AND SUBSYSTEM

Figure 3. SCREDT flow chart.

22

l
,_ v_._ I

t
ADD O_EFALR.T

RECORD OR EXIT

pROMPT USER

FOR CHOICE)

I-ICOMMAND UNE

AND DETERMINE

_NT

APPROPRIATE

DATABASE FILE

I READ RECORD I

FOR CURRENT

CASE ._D

SUgSYSTEM

I DISPLAY DATA I
(ONE pAGE)

-___ I
DISPLAY NEXT J

PAGE OF DATA

t
CALL SCREDT I

DETERMINE I

COMPONENT

TYPE AND N/_IE

RECORD

,I,

I D_SPLAY I

CONTENTS ON
SCREEN

N

"r

STORE NEW I

I VALUE OF

I SELECTED

DISPlaY

PREVIOUS PAGE
OF DATA

t
I-IDATABASE

RECORD

STORED VALUES

I--IRECORD ON

SCREEN

Figure 4. EDIT flow chart.

23

60 57 56 500 57 0 0

002 002 001 CASE

IxF header rec_

! 2 w_rdalDha field starts inw_dl

002 002 003 S[BSYSI_4

OO2 002 O05 CU_C_mNr NN_

003 001 007 NO. CF

003 001 008 NO. OF aJTFJrs

003 001 009 NO. CF BE_H_m(S

003 001 010 _ RMOC

003 001 011 _ RXDC

003 001 012 PEEL

003 001 013 P0_,_

003 001 014 _EIGHT, LH_

003 001 015 %_UA_, FT3

003 001 016 CABIN Ia_KK_E, LSM/IIKY

003 001 017 EK_R V_T AIR LOSS, LSM/mtY

003 001 018 EVA AIR I/3SS, LRM/IAY

003 001 019 CABIN _ (C[I_5"Eq_),

003 001 020 _ VALVE SEn_]NT PRESS, PSIA

003 001 021 INITIAL C%BIN AIR TS_, ESC--F

003 001 022 INITIAL TO_L PRESS, PSIA

003 001 023]IqlTIAL C_ PART/AL PRESS, PSIA

003 001 024 INITIAL C0_ PARTIAL PRESS, MMH3

003 001 025 INITIAL RE., _, %

003 001 026 CABIN AIR I_K%T I/I%D,

003 001 027 INITIAL C_BIN ST_ET TEMP, D83-F

003 001 028 _VIRflq_NI_L SINK T_4P, I]83-F

003 001 029 INIERICR CEN_I_-_FICN, HIU/HR/F

003 001 030 _ _, BIU/}_/F

003 001 031 EEIE_q%L RAEK, B'IU/HR/R**4

003 001 032 _ R_.AXATION CCIK_FIUIENT

003 001 033 _ M_X IEOP (3[XIW_

003 001 034 _ M%SS, IBM

003 001 035]DfIERICR _ON, BIU/HR/F

003 001 036 FINAL CABIN T_4P, I383 F

003 001 037 _ _ PRESS, PSIA

003 001 038 FINAL C_ PARTIAL PRESS, PSIA

003 001 039 _ (3C_ PARTIAL PRESS, PSIA

003 001 040 _ H20 PARTIAL PRESS, PSIA

003 001 041 MAX %D]_L PRESS, PSIA

003 001 042 MIN _ PRESS, PSI

003 001 043 N_M _ PRESS, PSIA

003 001 044 14%X C_ PARTIAL PRESS, PSIA

003 001 045 MIN O_ PARTIAL PRESS, PSIA

003 001 046 N[]M f_ PI%RITAL PRESS, PSIA

003 001 047 MAX (3_ PAR173_ PRESS, H_I H_

003 001 048 MIN (3_2 PARTIAL PRESS, MM H_

003 001 049 NCM CO_ PARTIAL PRESS, MM H_

003 001 050 M_X RE_ HtMIDITY, %

003 001 051 MIN R_ H-MIDITY, %

003 001 052 N[]M REL HLMIDITY, %

003 001 053 M_X _ POINT, I]SG F

003 001 054 MIN EE_ DIN?, E_3 F

003 001 055 N[]M _ POIN?, E_G F

003 001 056 M_X TE_mRA."%RE, F

003 001 057 M_ TE_mm%_, F

003 001 058 N3M _, F

001 001 059 M_D

002 001 060

! 1 w_rd real field starts in w_rd 7

Sec_ity ID

Figure 5. Example "DDF" file (CABIN data base).

24

This headerrecordis followed by adataline for eachof the itemsin therecord.Theformat is as
shownin thefigure andcontainsthefollowing:

1. Item type (1=,integer,2 = alpha,3 = real,4 = bit flag,5 = list)

2. Field sizein words(Itemtypes1,3, 4 and5 are1word fields; itemtype2 field sizeis the
numberof characters/4roundedup to nearestwholeword)

3. Startingword positionin therecord

4. Descriptionof theitem (32charactersmax).

Thebit flag itemsaresupportedby TDMS for purposesnotrequiredby CASE/A and,therefore,
arebeyondthescopeof thismanual.TheDDF endswith a fourcharacter"security" ID thatcurrentlyis
designedto preventinadvertentmodificationof protectedrecordsasopposedto protectionagainstmali-
ciousmodification.At presentthesecurityfeatureof thecodehasbeendisabled.

The third file usedby thedatamanagementsystemis the"COMPONENTNAME.STT"file that
containsthestatusrecordsfor theactiveset.Thedatabasesarenotautomaticallycompressedwhena
recordis deleted.Thedeletedrecordlocationis flaggedasavailablefor enteringnewdata.Any newdata
will beenteredover theold recordandthatrecordwill be flaggedasapartof theactiveset.Theseflags
arein the.STT file, which is storedin binaryform.

3.5 Data Management System Library Routines

The data management system library routines consist of a large number of routines that work

together in order to maintain component, connection, and schematic data bases. The routines are

grouped into file input/output, screen editing, and specialized data management routines.

3.5.1 File Input/Output Routines

The following routines provide functions to store/load data from disk to/from random access
memory (RAM). The function of each routine is listed below along with the major arrays and variables

that are updated inside the routine.

Subroutine CLOADCASE(NAME)

This routine reads the case data from the case definition file "CASENAME.MOD" and loads the

corresponding data storage arrays for each data segment.

Functions and subroutines referenced:

CTOLOWERC CTOUPPERC DUPLICATE EQOPEN
FRAME 1 RANDIN TEK_ADV

Subroutine CMPOPEN

This routine writes a connection map of the pseudo-compute sequence of the current case into a
file named "CASENAME.CMP" after the solve command has been issued.

Functions and subroutines referenced:

CTOLOWERC SMVBrrs

25

SubroutineEQLOAD

This routine loadscomponentdatainto the"CON" arrayfrom appropriatedatabaserecords.

Functionsandsubroutinesreferenced:

DUPLICATE EQOPEN RANDIN RANDOU
TEK_ADV

SubroutineEQOPEN(ITYPE)

This routineopenstheactivedatabasefile for equipmenttypeITYPE for interactiveeditingor
listing to theterminalscreen.Control, labels,plot, andusercondatabaseshaveITYPESof 0, -1,
-2, and -3, respectively. Component ITYPES are listed in chapter 9.0.

Functions and subroutines referenced:

CDCODE CTOLOWERC FULL RANDIN
TEK_ADV

Subroutine ITMOUT(ITEM,IA,IOUT)

This subroutine determines the character format and writes specific items to the unit specified.

Functions and subroutines referenced:

CDCODE FORMAT KBIT SETPRIM
TEK ADV TYCON

Subroutine LISOPEN

This subroutine opens the case ".LPP" file.

Functions and subroutines referenced:

CTOLOWERC

Subroutine PTMOD

This subroutine loads the 12th column of the IEL array with assignment data if the component is
in a subsystem that is assigned to a cabin.

Functions and subroutines referenced:

SMVBITS

Subroutine RANDIN(ILOCK,IUNIT,IREC,IA,NWD)

This routine is used to retrieve data from the CASE/A data bases. It reads the record number

IREC from the file having logical file unit number IUNIT into the array IA with a record length
of NWD. If an error occurs the IA array is set equal to zero.

Functions and subroutines referenced:

BLANK TEK_ADV

26

Subroutine SAVE

This command routine saves the current case configuration data in the case definition file

"CASENAME.MOD".

Functions and subroutines referenced:

CTOLOWERC PTMOD TEK_ADV

3.5.2 Screen Editing Routines

The following routines can be invoked by the user to modify an existing component data base or

to edit any other file on the current disk storage device.

Subroutine CEDIT(IEDIT)

This command routine allows the user to modify or list the parameters for a desired component.

The type of component to be edited is specified in the command argument list along with the
optional component name. The data file COMPONENTYPE.DAT is opened and searched for the
desired component. Once found, the component parameters are displayed on the screen and the
user designates changes to be made. The contents are then updated, displayed to the screen again,
and the data are saved to disk.

The value of IEDIT determines what kind of editing is done. Values of 0, 1, 2, or 3 give the

possibility of a normal edit from command prompts, normal edit via cursor pick of component,
global edit (FASTED) via cursor pick, or display of data base values with no edit, respectively.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC DIST

DUPLICATE EQOPEN FRAME 1 GRCUSR
ISTAT ITMOUT RANDIN RANDOU
SAVE SCREDT TEK_ADV TYCON

Subroutine SCREDT(IEDIT)

SCREDT is called by EDIT if the terminal is a VT100 type text terminal. IEDIT determines the

kind of editing to be performed as above.

Functions and subroutines referenced:

CDCODE CILLCHAR
CTOUPPERC DIST
GRCUSR GRSCREEN
RANDIN RANDOU

SCREEN_MANAGER
SUB_EDITOR TEK_ADV

CLS CTOLOWERC

DUPLICATE EQOPEN
ISTAT LIST_EDITOR
RESTOR SAVE
SETPRIM

3.5.3 Specialized Data Management Routines

The specialized data management routines are those that are used by the other routines in order to
manipulate data into distinct formats. Some of the specialized routines correspond to the MDAC TDMS
and others are VAX specific routines. A function of each routine in this section is listed along with any

of the major arrays and variables that are affected inside the routine.

27

Subroutine CDCODE (CLINEJ, LOC, ITYP, IWORD, DATA, IERR)

This routine is equivalent to DCODE but used with CHARACTER array of arbitrary length,
CLINEJ. This routine is used to decode the alphanumeric text typed at the CASE/A prompt. It
decodes the alphanumeric argument array ICOM into various fields delimited by the semicolon
";" or blank character. The argument LOC specifies the field number, ITYP specifies the data
type to be returned, and IWORD specifies the length of the field in words. There are four possi-
ble values for ITYP; a value of 1 specifies an integer, a value of 2 specifies an alphanumeric, a
value of 3 specifies a real number, and a value of 4 specifies the binary representation of the
field. The decoded field value is returned in the argument DATA. The argument IERR returns a
value of 0 if an error occurred during the decode, otherwise a nonzero value is returned.

Functions and subroutines referenced:

CFIELD CREADAL CREADFL CREADIN

INDEX TEK_ADV

Subroutine CFIELD (CLINEJ, LOC, ICOLL, ICOLH, IERR)

This is equivalent to FIELD but with CHARACTER array of arbitrary length, CLINEJ. This is
an auxiliary routine to CDCODE. It finds the field number LOC delimited by semicolons or
blanks in the argument array ICOM. ICOLL and ICOLH are used to keep track of the current
position within the array ICOM. The argument IERR returns the error code 0 if no character in
field number LOC is found or 1 if the operation is successful.

Functions and subroutines referenced:

TEK ADV

Subroutine CLDRAI (NDATE, NYR, NMO, NDA)

This routine breaks the variable NDATE, which consists of a concatenated value for the date,
into the corresponding year (NYR), month (NMO), and day (NDA).

Functions and subroutines referenced: NONE

Subroutine CLDRIA (NYR, NMO, NDA, NDATE)

This routine takes the integer values for the current year (NYR), month (NMO), and day (NDA)
and returns the concatenated value (NDATE).

Functions and subroutines referenced: NONE

Subroutine CREADAL (CLINEJ, ICOLL, ICOLR, IDATA, IERR)

This routine returns the CHARACTER value in CLINEJ located between columns ICOLL (left)
and ICOLR (right) in the IDATA variable.

Functions and subroutines referenced: NONE

Subroutine CREADALC (CLINEJ, ICOLL, ICOLR, IWORD, CDATA, IERR)

This routine returns the CHARACTER value in CLINEJ located between columns ICOLL (left)
and ICOLR (right) in the CDATA variable.

28

Functionsandsubroutinesreferenced: NONE

SubroutineCREADFL (CLINEJ, ICOLL, ICOLR, DATA, IERR)

This routine returns the REAL value in CLINEJ located between columns ICOLL (left) and

ICOLR (right) in the DATA variable.

Functions and subroutines referenced: NONE

Subroutine CREADIN (CLINEJ, ICOLL, ICOLR, IDATA, IERR)

This routine returns the INTEGER value in CLINEJ located between columns ICOLL (left) and

ICOLR (right) in the IDATA variable.

Functions and subroutines referenced: NONE

Subroutine DELREC (IRECL, IRECH)

This routine deactivates the records IRECL through IRECH from the data base.

Functions and subroutines referenced:

DEL LB1T
RANDOU SETPRIM

OPENDB_X RANDIN
TEK_ADV

Subroutine FIELD (ICOM, LOC, ICOLL, ICOLH, IERR)

This is an auxiliary routine to DCODE. It finds the field number LOC delimited by semicolons
or blanks in the argument array ICOM. ICOLL and ICOLH are used to keep track of the current
position within the array ICOM. The argument IERR returns the error code 0 if no character in
field number LOC is found or 1 if the operation is successful.

Functions and subroutines referenced:

RBYTE

Subroutine FILREC (IA, IDATA)

This routine fills the array IA with the alphanumeric data located inside the variable IDATA.

Functions and subroutines referenced:

SBYTE SMVBITS

Subroutine FINDRM (IREC)

This routine returns the first open record IREC in the data base parameter file.

Functions and subroutines referenced:

RANDIN SETPRIM

29

Subroutine ITEMIO (ITEM, IA)

This routine outputs the individual value in location ITEM of array IA. It is used for displaying
the data base parameters for various components or control files when the editing routine is
invoked by the user.

Functions and subroutines referenced:

FORMAT SETPRIM TYCON

Subroutine KAM2AS (NCHAR, KA4, KADE)

This routine converts the first NCHAR characters of the alphanumeric array KA4 into ADE
(ASCII Decimal Equivalent) format in the array KADE.

Functions and subroutines referenced:

SMVBITS

Subroutine KAS2AM (NCHAR, KADE, KA4)

This routine converts the first NCHAR characters of array KADE originally in ADE format into
alphanumeric format inside the array KA4.

Functions and subroutines referenced:

SMVBITS

Subroutine LBIT (NS, NL, lW, IV)

This is a bit manipulation routine that copies the leftmost NL bits from argument variable IV into

the target variable IW starting at the NS bit location of IW.

Functions and subroutines referenced:

SMVB1TS

Subroutine MVBITS (ISORC, ISTRT1, ILEN, IDEST, ISTRT2)

An intrinsic VAX subroutine that moves data bits from one location to another. The arguments

are specified as follows.

ISORC - An integer variable or array element that contains the bits to be transferred.

ISTRT 1 - An integer expression that identifies the position of the first bit within ISORC to be
transferred.

ILEN - An integer expression that specifies the number of bits to be transferred.

IDEST - An integer variable or array element that identifies the location to where the bits are
to be transferred.

ISTRT2 - An integer expression that identifies the starting position within IDEST for the bits.

30

Thelow-orderbit in eitherintegeris zero(0). Thelastbit positionin eitherintegermustnot
exceed31.(Thelengthof anintegermustnotexceed32bits.)

SubroutineRBYTE (IBYTE, IVAL, IARY)

Thisroutinesetsthevalueof IVAL equalto thevaluecontainedin theelementIBYTE of array
IARY.

Functionsandsubroutinesreferenced: NONE

SubroutineREADAL (ICOM, ICOLL, ICOLH, IWORDS,IDATA, IERR)

This is anauxiliary routineto DCODEthatreturnsanalphanumericvalueIDATA from thearray
ICOM basedon thevariablesICOLL, ICOLH, andIWORDS,whichspecifythelocationand
sizeof thedatastring.An errorcodeof 0 isreturnedin IERRif theoperationis notsuccessful.

Functionsandsubroutinesreferenced:

RBYTE SBYTE TEK_ADV

SubroutineRESTOR(IRECL,IRECH)

This routinereactivatesthepreviouslydeletedrecordsfrom IRECL to IRECH into thecurrent
database.To reactivateasinglerecord,let IRECL= IRECH.

Functionsandsubroutinesreferenced:

LBIT RANDIN RANDOU SETPRIM

SubroutineSBYTE(IBYTE, IVAL, IARY)

This routinesetsthevalueof elementIBYTE in thearrayIARY equalto thevalueof IVAL.

Functionsandsubroutinesreferenced:

LBIT

SubroutineSMVBITS (IVAL1, ISTART, ILEN, IVAL2 ITO)

This routinewasdesignedto duplicatetheVAX-specific subroutinethatmovesdatabits from
onelocationto another.Theargumentsarespecifiedasfollows.

IVAL1 - An integer variable or array element that contains the bits to be transferred.

ISTART - An integer expression that identifies the position of the first bit within IVAL 1 to be
transferred.

ILEN - An integer expression that specifies the number of bits to be transferred.

IVAL2 - An integer variable or array element that identifies the location to that the bits are to
be transferred.

ITO - An integer expression that identifies the starting position within ISTART for the bits.

31

Thelow-orderbit in eitherintegeris zero(0). Thelastbit positionin eitherintegermustnot
exceed31.(Thelengthof anintegermustnotexceed32bits.)

SubroutineSYSCLK (NDATE, NTIME)

This routinereturnsthedatein YMD (year,month,day)formatin thevariableNDATE. Thepre-
senttimein HMS (hour,minute,second)formatis returnedin thevariableNTIME.

Functionsandsubroutinesreferenced:

IDATE TIME

Subroutine TYCON (IA, BI)

This routine converts the integer variable IA into a real number and the results are returned in the
argument BI.

Functions and subroutines referenced: NONE

32

SECTION 4. SIMULATION CONTROL AND EXECUTION

The CASE/A solution system consists of several routines that work as a group to accomplish the
simulation of an ECLS configuration. The functional grouping of the routines is as follows: (1) the exe-
cution control logic, (2) individual component routines, (3) component interface routines, and (4)

specialized routines.

To obtain a system simulation, the system components and interconnects are first defined by the
use of the graphical interface. After the system has been defined, the CASE/A solution system is
invoked by the SOLVE command. The solution system performs a quasi-steady-state iterative solution
at each time interval according to the control parameters specified in the CONTROL data file for the

selected case.

The solution algorithm operates on an iterative component level basis to achieve convergence of
the mass flows, temperatures, and pressures of each component stream to within the relaxation criteria

specified in the CONTROL data. The user may disable the temperature or pressure convergence checks
in the SOLVE command argument list if they are not of interest in the simulation. When the conver-

gence checks are disabled, the properties are calculated for the component streams based on standard
temperature and pressure. The mass flows are always checked for convergence within the component
routines.

4.1 Execution Control Logic Description

When the SOLVE command is entered by the user, the main program command processor calls
the routine named SOLVE. The SOLVE routine is then in control of program execution until the system

simulation is complete or a fatal error condition is generated. The SOLVE routine manages the library of
component routines that are called sequentially as the solution progresses in a specified "PCS." The
SOLVE routine is arranged in distinct logic segments to accomplish the simulation. A flow chart for the
solve routine is shown in figure 6.

4.1.1 Simulation Logic Segment Structure

The SOLVE routine first calls the routine SORTIEQ, that performs a sort on the list of compo-

nents and connections data to order the components in descending priority. The assignment of subsystem

components to cabins is then performed by calling the routine PTMOD. This feature allows heat transfer
exchange to occur between the cabin environment and each component located in a subsystem schematic
assigned to it. The PTMOD routine sets up pointers to various arrays that track the heat transfer between
components and their assigned cabin environment. If a subsystem has not been assigned to a cabin, the
thermal environment for that subsystem is set to 75 °F. Next, the CONTROL data base file is opened

and the control parameters are read into memory. The control parameters include the simulation initial
time, termination time, time step, output time interval, relaxation criteria, maximum number of solution

iterations per time step, number of constituents to track, and the system damping factor. The values for
these parameters are loaded from the data base file into the system variables described in table 1. The
property and constituent arrays, summary arrays (routine SUMINIT), and hydraulic stream codes
(routine PINIT) are then initialized. The component performance data initialization is then performed by
the routine EQLOAD called for each component by SOLVE. The routine PSEUDO sets up the PCS and

is called by the SOLVE routine just after the component data initialization has been performed. Any
specialized initialization calculations required for the component solutions are then performed by the
individual component routines at the direction of the SOLVE routine via the solution common block
variable MFLAG. The value of MFLAG directs each component routine to perform one of four discrete

functions listed below and described in chapter 9.

33

SOLVE)

FOR UTILIZATION

DATA INTO "CON"

ARRAY

EQLOAO

I]

COMPUTE SEQ.
FOR COMPONENT

_lp PSEUDO

INITIALIZE "HYDRA" I

& _E FI._
CONDUCTORS AN[

PRESS. NODE MAP.

_ PIMT

i-c-]CON ARRAYS

INITIALIZE
VARIABLESTO BE

OUTPUT AT pc_-_r
SM

_ LOGIC PRIOR
"TOSM

EXECUTE 100

Bt.OCX OF

ROUTINES

EO_. VE

1- 1 !"OPS-I" LOGIC EXECUTE USER

PRIOR TO 1ST "RME "OPS-4" LOGIC

GPS1 OPS4

INCREMENT

TIME

I EXECUTE USER I
"OPS-2" LOGIC

I_.L NOOE I_N"I'_

EXECUTE USER

EXECUTE 200

R_fn_S

TIME<END?

Y

I EXECUTEUSER I
"OPS--6" LOGIC

I-I_T_

EXECUTE 400

COMPONENT

ROUTINES

EQSOLVE ; EQSOI.VE

I-]SUMMARIES

J WRITCON,

BLOCK _ RETURN TO MAI

I EXECUTE USER J
"OPS-5" LOGIC

I
_5

Figure 6. SOLVE routine flow chart.

34

NAME

TIME

STRT

END

STEP

RELX

IEQ

LPCS

MFLAG

RXCC

IPTFLG

NEQ

NCON

NCOMP

NTRACK

NSYSLOOP

SYSDAMP

Table 1. Simulation control variables.

 E&ClglgiJ£

The current simulation time in hours.

The simulation starting time in hours (defaults to 0.0).

The simulation termination time in hours (defaults to 24.0).

The simulation time step interval in hours (defaults to 1.0).

The relaxation criteria to be met on a percent change basis from the previous iteration

value. All component streams must meet this criteria for their mass flows, temperatures,

and pressures.

The current relative equipment number in the PCS. This variable is updated in the

SOLVE routine.

A variable that is used to step through the connection map data according to the PCS.

Indicates the simulation code segment to execute in the component routines.

Tracks the maximum percent change of all component streams up to the current point in
the PCS. This value must be below RELX for advancement to the next time step after

a complete system iteration.

Indicates whether the user wishes the system to perform relaxation checks on tempera-

tures and/or pressures. The default value indicates checks are to be made for both in
addition to the mass flow checks that are always made.

The number of components in the case to be simulated.

The number of fluid streams in the case to be simulated.

The number of component types currently supported (54).

The number of constituents to be tracked (up to 50).

The current number of system iterations performed during the present time step.

A dampin_ factor used by a few specialized hydraulic routines.

MFLAG = 1

MFLAG = 2

MFLAG = 3

MFLAG = 4

MFLAG = 5

Component data initialization

Iterative component level solution

Post time step wrap-up

Post simulation wrap-up

Error occurred, wrap-up and return.

35

The iterative solution process begins after the component data initialization at the simulation start
time and is continued until the termination time is reached. At each time interval, the SOLVE routine

invokes the component routines sequentially according to the PCS until all of the components in the sys-
tem have been processed. The routine EQSOLVE is responsible for calling the correct component rou-
tine based on the type of the component being solved for. After each complete system iteration, the con-
vergence flag indicators are checked for compliance with the desired relaxation criteria. The iteration

process is repeated until convergence is obtained for each and every component or until the maximum
number of iterations is reached. The post time step wrap-up is performed after the iteration process is
completed. The time is then incremented and the whole process is repeated until the simulation termina-
tion time is reached or a termination error condition occurs on the component level (indicated when a

component routine sets MFLAG to 5). The progress of the simulation is indicated on the display termi-
nal at the completion of each time step. A detailed report of the stream compositions and conditions for
each component is written into a file CASENAME.LPP at each output time interval by the routine
SSOUT. The simulation wrap-up is performed when the termination time has been reached. The final

operations are performed by the routines SUMMARY and PWVSUM, that provide summaries of mass
balance calculations and power usage, as well as weight and volume tabulations at the end of the LPP
file. Execution control is then returned to the main command processor.

4.1.2 Pseudo-Compute Sequence

The PCS defines the order of the invocation of the component subroutines and may be modified
by the user during the solution process. The PCS is initially set by the order in which the components are
located in the system schematic in the case construction phase. The PCS is then resequenced in the

SORTIEQ routine to order the components from highest to lowest priority. A priority code array inside
the SORTIEQ routine sets the priority of each component type based on the characteristics of its opera-
tion. Components of equal priority are kept in the same relative order as when they were located in the

system schematic. As the sorting process is executed, the component connection data are also updated to
reflect the sorting of the relative equipment list. The user may change the PCS by the invocation of the

SEQUENCE routine from the user operations blocks, which are discussed in section 4.1.3 and chapter 7.

After the relative equipment list has been sorted, the connection mapping is then performed by
the PSEUDO routine. The PSEUDO routine translates the component connection data into an ordered

map of the connections between the components based on the PCS. Pointers for the constituent array
locations are established for all component streams. These pointers are used by all component routines to
properly track the constituent mass flows of the system (see figure 7.3.2-1). A summary printout of the
PCS and connection map is written to a file named CASENAME.CMP for use in debugging if required.
An example printout is shown in figure 7.

4.1.3 User Operations Routines

The ability to incorporate user-defined logical and computational operations into the solution

flow is provided by seven entry points in the SOLVE routine. The entry points permit the user to per-
form initialization and wrap-up functions on a per-simulation basis, to perform time varying operations
on a per-time-step basis, to perform operations within the solution of each time step, and to write out
plot data. The relationship of the seven user-defined operations blocks to the overall solution flow is
illustrated in figure 6. The seven blocks are discussed in chapter 7.

36

CONNECTION MAP FOR CASE ATC_7

NUMBER OF COMPONENTS 4 NUMBER OF CONNECTIONS 5

LENGTH OF PSEUDO 6

REL

IEQ SUBSYS ID NAME

.....................

1 ATC 27 P-I

2 ATC 32 LOAD-I

3 ATC 33 PAYLOAD

4 ATC 50 C-I

COMPONENT LISTING

CENTROID CONNECTION OF EACH CC_PON]_]T STREAM

X Y 1 2 3 4 5 6 7 8

..

301 426 5 1 0 0 0 0 0 0

651 206 1 4 14 0 0 0 0 0

650 554 4 5 0 0 0 0 0 0

607 420 0 0 0 0 0 0 0 0

CONNECTION LISTING

REL REL

CONN IEQ STREAM TO IEQ STREAM NAME OF COMPONENTS

..

1 1 2 ==> 2 1 P-I : LOAD- 1

2 2 -2 ==> 4 2 LOAD- 1 : C-I

3 4 1 ==> 1 99 C-i : P-I

4 2 2 ==> 3 1 LOAD- 1 : PAYLOAD

5 3 2 ==> 1 1 PAYLOAD • P-I

PSEUDO COMPUTE SEQUENCE

SEQUENCE CONN REL REL

NUMBER (NCPT) IEQ STREAM TO IEQ STREAM

....................................

1 5 1 1 ==> 3 2

2 1 1 2 ==> 2 1

3 1 2 1 ==> 1 2

4 4 2 2 ==> 3 1

5 4 3 1 ==> 2 2

6 5 3 2 ==> 1 1

Figure 7. Example connection map printout.

4.2 Solution System Library Routines

CASEAMAIN

The main program serves as the command processor/user interface for the CASE/A sys-
tem. Commands and their arguments are typed after a command line prompt by the user and pro-

cessed by CASEAMAIN. Upon completion of the command control is returned to
CASEAMAIN and a new prompt issued. The variable NCODE, a two-dimensional four-byte

inte ger, contains a "list" of possible commands. The first four characters are referenced by the
first index of NCODE and the second four characters are referenced by the second index. Thus, a

command can be a maximum of eight characters long. Notice also that the command is text but
stored as an integer. The command and its arguments are read from the input line with a read
statement into the character variable ICOM. This character string is passed to DCODE to deter-
mine the first "word" on the command line and returned in the variable ITEXT. The NCODE list
of commands is searched for a match to ITEXT and the variable I is set equal to the relative

position of the command in this list. Control is passed to a statement label using a computed

37

GOTO on the value of I. For instance a value of I = 1 would transfer control to statement label

201, 1=2 goes to 202, etc. up to I= 134. Upon completion, control is returned to statement label 20
where a new prompt is issued. This process is repeated until the user issues the "EXIT" com-

mand or presses CONTROL-Y. Notice also that commands are recognized only if they are type
exactly as stored in the NCODE array. They are, however, translated from lower to upper case
using the TOUPPER routine.

Functions and subroutines referenced:

ALARM ASSIGN ARCHIVE AUTOPLOT
AVRAGE BCK GD_CLR BLDREC CALC
CASEREAD CDCODE CEDIT CHANGE

CHKREC CILLCHAR CLCALC CLOADCAS E
CLONE CLS CONECT

COPYALL CNEWCASE CREATE_KEYBD CTOUPPERC
CUTALL DBOPEN DCALC DCLFOR

DCODE DELCAS DEI..L-Tq DELEQ
DELETE DELLAB DELNOTE DELREC
DIR D1TFO DTABLE EDITOR

EDT ELIMINAT ENTRY EQOPEN
EXPORT FAST FDUMP FILE
FILEREC FIND FIT FLAG
FRAME 1 FULL GRALPH GRCHRZ
GRCOPY GRERAS GRINIT GRLBCT
GRMOVE HELP IMPORT INPUT
INTERSEC JOIN KB1T LABL LB1T
LIB$SYS_TRNLOG LIST LISTAB LOAD

LOCATE MASKER MERGE MERGE_IN
MERGE_OUT MODB AK MOVALL MOVEIT
MOVLAB MOVNOTE NEWCASE NOTE
OPENDB_X PLTOVR POINT POLYSIM

PRELIM PREPORT PREPRO PRIMDB
PRNTSS RAMDISK RANDIN RANDOU
RANGE RANK RBYTE

READCOMM REDRAW RENAME RENEQ
REPORT RESTOR RETRIEVE RNSS
ROTATE SAMFST SAMPLE SAVE

SAVEAS SCREDT SECURE SELECT
SETPRIM SIGMA

SMG$CREATE_COMPOSED_LINE
SMG$CREATE_VIRTUAL _KEYBOARD
STATS SUBSYS
TABLE TALLY

TECREPORT TEK_ADV
UNASSIGN UNION

SMG$CREATE_KEY_TABLE
SOLVE

SUBTrL SYSCLK
TARGET TDPLOT
TOGGLE_SCREEN TYPE
UPDPLT WRITCON

Subroutine DPCS (IEQA,ISTA,IEQB,ISTB,NCPT)

Used to unload the IPCS array PCS.

Functions and subroutines referenced:

SMVBITS

38

SubroutineEQSOLVE

EQSOLVEcalls theCOMPONENTroutinesusingacomputedGOTObasedon thevalueof
ITYPE. ITYPE is determinedfor eachcomponentfrom theEQL array.This routineis called
from SOLVEinsideaDO LOOP,whichexecutesoncefor eachcomponentin thesystem.

Functionsandsubroutinesreferenced:

ADSORPTN AFSPE BMR BOSCH
CABIN CAP CFR CHX
CNHX CNTRLLR CO2LIQ CP
CREW DEFLOW DEHUM EDC EVAP
FCELL FILTER FINDC FOODPROC
H2OSEP HATCH HEATER HX
HYDISS IONEXCH LIOH MODULE
MOLSIEV MSPLT NODE O2N2 OPS7
PIPE PLANT POINTCON PREWAST
PUMP RACK RAD RO
SABAT SAWD SFWE SINK
SOURCE SUM TANK TBUS
TIMESC TIMER VALVE VCD
WASH WQM

SubroutinePSEUDO

Theprimary interfaceroutinebetweenthegraphicandsolutionsystem.

Functionsandsubroutinesreferenced:

CMPOPEN POINTCON SORTIEQ SMVBITS
TEK_ADV

SubroutineSEQUENCE(NAME)

This routinecanbe invokedby theuserin OPSlogic to resequencethesolutionorder.

Functionsandsubroutinesreferenced:

TEK_ADV

SubroutineSOLVE

The primarydriverfor thesolutionsystem.

Functionsandsubroutinesreferenced:

CASEREAD CASEWRIT CNTRLLR DUPLICATE
EADSAVE EQLOAD EQOPEN EQSOLVE
FINDC FOR$CLOSE FRAME1 GRERAS
HEADER LISOPEN OPS0 OPS1 OPS2
OPS3 OPS4 OPS5 OPS6 PINIT
PLTDATA PLTFILE PIONTCON PSEUDO
PWVSUM RANDIN RANDOU SORTIEQ
SSOUT SUMIN1T SUMMARY SYSBAL
TEK_ADV TIMER WR1TCON

39

SubroutineSORTIEQ

Usedto sortthePCSto put theactivecomponentsfirst.

Functions and subroutines referenced:

PTMOD SAVE

40

SECTION 5. MODEL OUTPUT MANAGEMENT

The following sections discuss the routines involved in the forms of output supported by
CASE/A.

5.1 Schematic Output

There are several routines available to the user regarding schematic output. These include screen

refreshing, generating hard copies of subsystem layouts, and locating stream data on the schematic. The
commands are discussed in section 5.1 of the User's Manual and the subroutines that support them are

detailed in section 2 of this manual.

5.2 Component Data Base Output

It is sometimes useful to obtain a hard copy of the data base contents for components. CASE/A

provides the PRINTSS command, which prints a copy of the data base contents for each component of a
specified subsystem. The routine to support this function is discussed below.

Subroutine PRNTSS

This routine is used to print the component data for a subsystem.

Functions and subroutines referenced:

CDCODE CILLCHAR CTOUPPERC EQOPEN ITMOUT

RANDIN TEK_ADV

5.3 Simulation Summary

The solution routine (SOLVE) generates the system summary file CASENAME.LPP. This file is

generated by calling HEADER and SSOUT at each output interval. The routines WRITCON,
SUMMARY, and PWVSUM are called after the simulation has ended. Each of these routines is dis-

cussed below. See chapter 5.3 of the User's Manual for an example .LPP file.

Subroutine HEADER

This routine writes the ".LPP" file header. This is done at each output interval. This section con-
sists of the values of TIME, STEP, RELXX, RELCC, LOOPS. and the subsystem name in the
form:

......................... SUBSYSTEM: NAME ..

Functions and subroutines referenced: NONE

Subroutine PWVSUM

This routine develops the power and weight summaries during simulation wrap-up. This sum-

mary is at the end of the .LPP file and begins with

41

It follows with total P, W, V for each subsystem and the total for the case.

Functions and subroutines referenced:

SMVBITS

Subroutine SSOUT(NA)

SSOUT is used to output the individual component data to the .LPP file. NA is the subsystem
name. This section of the LPP file comes directly after the header and prints the case name, com-
ponent name, type, IEQ number, and subsystem name, along with the values from the C and

PRO array for each of the component streams. This section begins with a row of equal signs for
each component.

Functions and subroutines referenced:

SMVBITS PROPS

Subroutine SUMMARY

Performs the summary logic for a simulation wrap-up and print out. This routine prints summary
data for components that accumulate mass, for example tanks and cabins. The list of data to be
summarized is contained in the variable descriptions located in appendix A of this manual. This

section comes prior to the PWV summary at the end of the simulation. It is easily found in the
file as it is delimited with a row of #'s.

Functions and subroutines referenced:

SMVBITS

Subroutine WRITCON

This routine updates the CON array with output and benchmark values for each component. It
then writes the values to the .LPP file. This appears below the last SSOUT entry and before the
first SUMMARY entry. This section is delimited with a row of +'s.

Functions and subroutines referenced.

EQOPEN ISTAT RANDIN RANDOU TEK_ADV

5.4 Integrated Plot Utility

The integrated plot utility (IPU) provides the capability to save specified data for analysis and
plotting. Details for creating "PLOTSETS" and using IPU commands are given in section 5.4 of the
User's Manual. To create the data for the IPU, the SOLVE routine calls two subroutines. It calls

PLTFILE before loading the component data and just after loading the PLOT data base into an array
(IA). After each OPS call, SOLVE calls PLTDATA if the plotset is active for that OPS logic block (see
section 4.3 of the User's Manual). PLTDATA writes out, in binary form, the data requested by the user
in the PLOTSET. To use the IPU to generate plots on the screen or printer copies of the plots, the IPU

42

commandis givenattheCASE/Aprompt.ThisactionsetsthelogicalvariableTDMS_FLAG to true.
WhenTDMS_FLAG is true,theIPU commandsdiscussedin section5.4of theUser'sManualbecome
active.Thisalsocausesothercommands,suchas"SOLVE" to bedisabled.TheseIPU commandsare
documentedin appendixB.2of theUser'sManual.Followingis abrief descriptionof PLTFILE and
PLTDATA. Variablesusedby theIPU aretabulatedin appendixA of thismanual.

SubroutinePLTDATA(NUM,PLD_ERR)

Thisroutineexecutesa loopfrom 1to KOUNT(NUM) (Numberof itemsin thePLOTSET)and
loadstheDATA arraywith thedataspecifiedin thevariableIPLT. Whenthedataareextracted,
therecordiswrittento the.DAT file.

Functionsandsubroutinesreferenced:

FINDC GETPP
SETPRIM

OPENDB_X RANDOU RESTOR

SubroutinePLTFILE(IA,PLF_ERR)

This routineinitializesthePLOTSETarrays,pointers,andcreatesthe.DAT, .STT, .SCRand
.DDFfiles. PLF_ERRis setto 1 if anerroroccurs.

Functionsandsubroutinesreferenced:

CDCODE CTOLOWERC
SETPRIM TEK_ADV

GETI OPENDB_X RANDIN

5.5 Data Output Options

When using OPS logic, the need may arise to store user-defined variables for later analysis.
These variables, however, may not be accessible to the IPU through any of the system data arrays (CON,

C, PRO, etc.). In such cases, the user has two primary methods to save this data for use with TDMS:

(1) Output to the USERCON array and

(2) Custom user output (e.g. with FORTRAN write statements).

5.5.1 Output to the "USERCON" Array

The USERCON array is the preferred method of making user-defined variables available to the

IPU. The USERCON array is a one-dimensional array of 100 elements. This array is declared in a
COMMON BLOCK in all of the appropriate "INCLUDE" files (see appendix) and is therefore auto-

matically available to the user in all OPS subroutines. Additionally, any other user-provided subroutine
may access this array by adding the following statement to its variable declaration code:

INCLUDE 'CASEA$CODE:COMPCOM.INC'

Locations 1 to 60 of USERCON are available in the USERCON data base (accessed while

running CASE/A by giving the command "ED;USERCON"). Values may be entered through the
CASE/A editor and used directly in OPS logic. Similarly, output values may be stored in the USERCON

array and viewed in the data base after a simulation is complete. For real-time data storage, the desired
parameters should be stored in the USERCON array and accessed by the IPU (CODE=USER). See sec-
tion 4.3 of the User's Manual for a description of this process. Locations 61 to 100 are accessible by the

43

IPU but are not displayed as part of the USERCON data base when viewed in the full-screen mode (due
to screen size limitations only).

As an example, suppose the temperature of the fluid stream at the outlet of a PIPE, named
"PIPENAME", in a given model is to be tracked in Celcius rather than Fahrenheit. The conversion

should be performed in OPS4 (post time step). The code in figure 8 converts the temperature and stores
the value in location 3 of USERCON.

Subroutine OPS4

• • •

CALL GETT ('PIPENAME', 2, TEMPF)

TEMPC = 5.0/9.0 * (TEMPF - 32.0)
USERCON (3) = TEMPC

• . •

RETURN

END

Figure 8. Variable output to the USERCON array.

The plotset definition screen (ED;PLOT) entries necessary to output this value to a file is shown
in figure 9.

PLOTSET DEFINITION

CODE COMPONENT NAME LOCATION STREAM#

USER 0003 0

TITLE

........................

Pipe Outlet Temp, C

Figure 9. Example PLOTSET definition for the USERCON array.

5.5.2 Custom User Output

If a particular output situation does not lend itself to the IPU, the user has two options for writing
output directly to data files. The data may be written to an ASCII text file or written in binary form so
that a data base is created that can be accessed with TDMS as described below.

5.5.2.1 Writing Data to an ASCII Text File

The simplest method of saving user-defined data is through standard FORTRAN formatted

WRITE statements. Using this method, the data could be written to the file in such a way as to be recog-
nizable to some commercial data analysis package. If no postprocessing is desired, the output could
simply be formatted for direct incorporation into a presentation or report. For the temperature conversion
example above, the process might be as simple as shown in figure 10.

44

I00

Subroutine OPS0

OPEN (UNIT=60, FILE= 'MYOUTPU. DAT' ,STATUS= 'NEW')

RETURN

END

Subroutine OPS4

CALL GETT('PIPENAME',2,TEMPF)

TEMPC = 5.0/9.0 * (TEMPF - 32.0)

WRITE(60,100) TEMPC

FORMAT (IX, 'EXIT TEMPERATURE OF PIPENAME =

RETURN

END

' F7.2, ' F')t

Figure 10. Writing custom data to a text file.

5.5.2.2 Creating a Custom Data Base for Storing Output Data

There are two steps in creating a custom data base. The first step is to write the desired parame-
ters to a binary file. The second step is to create a data definition file (.DDF) that specifies how the data
are stored. The following example illustrates these procedures.

Consider a PUMP-STORE connection that is part of some larger model. The PUMP (named P 1)

is pumping a fluid composed of oxygen, nitrogen, carbon dioxide, and water vapor (of unknown concen-
trations) and directing it into the STORE (named S 1). For this example, the components upstream of the

pump and downstream of the storage tank are unimportant. Suppose the user wishes to determine the
flow rate and stream composition at the pump outlet, and the storage tank temperature and pressure as a
function of time. These parameters, the associated CASE/A arrays, and the locally defined user variables

are shown in figure 11.

Parameter CASE/A Location Stream Variable

time TIME - - TIME

flow rate C 1 2 MDOT

02 mass frac C 2 2 F02

N2 mass frac C 3 2 FN2

CO2 mass frac C 4 2 FCO2

H20 mass frac C 8 2 FH20

tank temp PRO 2 1 SIT

tank press PRO 1 1 SIP

Figure 11. Example variable output using binary files.

Recall that the components are named P1 (PUMP) and S 1 (STORE) and that the data are to be
saved as a function of time. Thus, the code in figure 12 would be placed in OPS4 of the users supplied

operations logic. See section 7.0 of the user' s manual for a description of the utility routines.

45

Subroutine OPS4

CALL GETC('PI

CALL GETC('PI

CALL GETC('PI

CALL GETC('PI

CALL GETC('PI

CALL GETC('PI

CALL GETC('PI

RETURN

END

,2, I,MDOT)

,2,2, FO2)

,2,3,FN2)

,2,4, FCO2)

,2,8, FH20)

I, SIT)

l,SiP)

Figure 12. Example code to get values for pump "P 1."

Now that the data are available in local variables, it can be written to a binary file as shown
below.

WRITE (99) TIME, MDOT, FO2, FN2, FCO2, FH20, SIT, SIP

This WRITE statement outputs the data to a binary file named FOR099.DAT. Although the use
of logical unit number 99 is arbitrary, it is recommended that only values above 60 be used to prevent
conflict with CASE/A file access routines.

The second step of creating the data base is the development of the data definition file. Figure 13
presents the .DDF, named EXAMPLE.DDF, for the problem at hand.

010 010 009

003 001 001

003 001 002

003 001 003

003 001 004

003 001 005

003 001 006

003 001 007

001 001 008

003 001 O09

002 001 010

15000 010 0 0

TIME, HRS

PUMP OUTLET FLOW RATE LB/HR

PUMP OUTLET 02 FRACT

PUMP OUTLET N2 FRACT

PUMP OUTLET CO2 FRACT

PUMP OUTLET H20 FRACT

TANK TEMPERATURE, F

TANK PRESSURE, PSIA

MODIFICATION DATE

SECURITY

Figure 13. Example data definition file for custom output.

After the simulation is completed, the data base may be activated by entering the IPU, or by
running TDMS as a standalone package. TDMS will ask the user to enter a data base name. This is the

same as the .DDF name, i.e., EXAMPLE (with no extension). Next, the data must be pulled from the
FOR099.DAT file and stored in the data base. To do this, use the SELECT command (see the on-line
help for assistance).

SELECT; 99 ; 8

The first parameter is the FORTRAN logical unit number, and the second number reflects the

number of items in the WRITE statement. Note that the .DDF may be longer than necessary (i.e., sup-
port more items than actually contained in the WRITE statement) to allow room for expansion. If the

.DDF is shorter, however, the data will wrap from record to record and the data base will be corrupted.

46

OncetheSELECTcommandhasbeenexecuted,thedatabaseis complete.Thenext timethe
databaseis accessed,theSELECTfunctionis notneeded.If thesimulationis run again,however,the
SELECTprocessmustbe repeatedto loadthenewdatainto thedatabase.

5.6 Schematic Connection and Hydraulic Maps

The CASE/A solution routine automatically generates two output files containing schematic

connection and hydraulic flow conductor information to assist the user in debugging new or existing
cases. The .CMP and .FMP files for the case schematic shown in figure 14 will be discussed in the fol-

lowing two sections.

I

E
CMTMLLM

-'-_.... ._...... _

Figure 14. Example zubsystem schematic.

5.6.1 The .CMP File

The schematic connection map is created in the user's default directory and named
CASENAME.CMP. An example .CMP file is shown in figure 15. The first line identifies the case name.
The next two lines list the total number of components and connections located in the case along with

the length of the PCS, which is discussed here and in section 4.1.2. The next section in the .CMP file
lists all of the components in the case by relative equipment number (IEQ) as determined in the
SORTIEQ routine (see section 4.1.2). Component listing information consists of the relative IEQ num-
ber, subsystem name, component type (ITYPE), component name, (x,y) coordinates (in pixels) of the
component icon body centroid relative to the lower left hand comer of the terminal screen, and the con-
nection numbers of the component streams (maximum of 8). Notice that the inlet connection (stream 1)
to the PUMP named P- 1 has the same connection number (1) as the outlet connection (stream 2) of the

TBUS named PAYLOAD.

47

COMPONENT LISTING

REL CENTROID

IEQ SUBSYS ID NAME X Y

.............................

1 ArC 27 P-I 301 426

2 ATC 32 IXIAD-I 651 206

3 ATC 33 PAYLOAD 650 554

4 ATC 50 C-I 607 420

CONNECTION OF EACH COMPONEZqT STREAM

1 2 3 4 5 6 7 8

................................

5 1 0 0 0 0 0 0

1 4 14 0 0 0 0 0

4 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

CONNECTION LISTING

REL REL

CONN IEQ STREAM TO IEQ STREAM NAME OF COMPON-_%_S

..

1 1 2 ==> 2 1 P-i : I_0AD- 1

2 2 -2 ==> 4 2 LOAD- 1 : C-I

3 4 1 ==> 1 99 C-I : P-I

4 2 2 ==> 3 1 LOAD- 1 : PAYLOAD

5 3 2 ==> 1 1 PAYI_AD : P-I

PSEUDO COMPUTE SEQUm_CE

SEQUENCE CONN REL REL

NUMBER (NCPT) IEQ STREAM TO IEQ STREAM

....................................

1 5 1 1 ==> 3 2

2 1 1 2 ==> 2 1

3 1 2 1 ==> 1 2

4 4 2 2 ==> 3 1

5 4 3 1 ==> 2 2

6 5 3 2 ==> 1 1

Figure 15. Example connection map (.CMP file).

The connection listing of the .CMP file simply shows each connection located in the case. In the

first column is the absolute connection number followed by the relative IEQ numbers and stream num-

bers of the two components that are connected. The names of the components being connected are given
!n the last column. Notice for the controller (CNTRLLR) that a "data" connection to a component stream
Is assigned the negative of the stream number (-2 in this case) and a "data" connection to a component
body (controller to pump) results in a stream number of 99. This results in CASE/A not tracking these
"data" connections in the PCS. The last data block in the .CMP file is the PCS. The first column is the

PCS number followed by the connection number (NCPT = the number of the connection pointer) and

the component streams that are connected. The PCS is determined by the equipment sort performed by
SORTIEQ and by the number of connections made to that component. For example, a CABIN compo-
nent located in a case would receive the highest ranking in SORTIEQ. Then all of the connections made

to that CABIN would appear next in the PCS in ascending order of the relative IEQ of the connecting
component. The PCS, then, is a list, in order of their relative equipment number, of all the components
connected to streams of a component. In the example, for instance, the first component in the PCS is

48

IEQ 1. It hastwo entriesin thePCS,sequencenumbers1and2. This component,apumpwith priority
2, hastwo streams.Stream1,theinlet, isconnectedto IEQ 3, theexit of theTBUS (stream2).Theexit
stream(2)of thepumpisconnectedto theinlet stream(1) of thecold plate,whoseIEQ is2. Generally,
thePCShasalengthequalto twice thenumberof connections.Thus,it is seenthatthePCSis an
orderedlist of componentsthatshowshow thestreamsof acomponentareconnectedto othercompo-
nents.ThearrayNPCSstoresthecomponentIEQ numbersin theordertheyappearin thePCS.This is
theSOLUTIONORDERandcanbechangedwith theSEQUENCEsubroutine.This arrayis usedby
SOLVE to determinethenextIEQ in thesolutionprocess.The"SEQUENCENUMBER" of thePCS
shouldnotbeconfusedwith theSOLUTIONORDERcontainedin theNPCSarray.Notethatcontroller
(CNTRLLR) andtime(TIMER) componentsdonotappearin thePCS.For a BUBBLE connection,the
connectionnumberon the"B" sideof theBUBBLE isusedin thePCSandtheBUBBLE isremoved.In
summary,thePCSis simplyanorderly listing of all connectionsthateachcomponent(excluding
CNTRLLR, TIMER andbetweenBUBBLE's) "sees"bothupstreamanddownstream,sortedby relative
IEQ number.

5.6.2 The .FMP File

The flow conductor map is created in the user's directory and named CASENAME.FMP. An

example .FMP file is shown in figure 16. The first line identifies the case name. The next seven lines
give the total number of components, pressure nodes, flow conductors, flow subnetworks, controllers,
timers, and bubbles located in that particular case. Pressure nodes correspond to the fluid stream hit
boxes of each component in the case. CNTRLLR and TIMER hit boxes, of course, are not included in

the hydraulic solution since they represent the flow of data. A BUBBLE component simply represents a
flow connection across subsystem screen boundaries and, thus, is not included as a pressure node. The

pressure node information given in the .FMP file includes the system node number, component number,
component relative equipment number (IEQ), subsystem name, component type (both ITYPE and the

alphanumeric name), component name, component stream number, and connection number (NCPT)
attached to that stream. The flow conductor information list contains the system conductor number, the

two system nodes attached to that conductor, and the component names and stream numbers that corre-
spond to those two nodes. The entire hydraulic layout of the case (nodes and connectors) are subdivided
into separate subnetworks that are terminated by boundary pressure nodes as described in section 8.1.1
of this manual and also in section 8.2.1 of the User's Manual. The flow subnetwork information in the
.FMP file is broken into separate sections for each subnetwork. In this example, there is only one net-
work. The first line contains the subnetwork number and the number of nodes and conductors that it

contains. A mapping is then provided that shows how the network specific node and conductor numbers
correspond to the actual system node and conductor numbers. It is highly advisable to have the case
schematic(s) close at hand when following the information provided in the .FMP file. The user is

encouraged to mark the node and conductor numbers on the schematic(s) to help visualize the hydraulic
subnetworks that CASE/A is attempting to solve. The .FMP file is an extremely valuable debugging tool

to aid in solving pressure convergence problems.

49

FLOW MAP FOR CASE ATC_7

NUMBER OF EQUIPMENT ITEMS: 4

NUMBER OF PRESSURE NODES: 6

NUMBER OF FLOW CONDUCTORS: 5

NUMBER OF FLOW SUBNETWORKS: 1

NUMBER OF CNTRLLR COMPONENTS: 1

NUMBER OF TIMER COMPONENTS: 0

NUMBER OF BUBBLE COMPONENTS: 0

*** NOTE: CNTRLLRs, TIMERs, AND BUBBLEs DO NOT ***

*** APPEAR IN THE NODE INFORMATION LIST BELOW ***

PRESSURE NODE INFORMATION

SYSTEM REL CONN

NODE IEQ SUBSYS COMPONENT TYPE NAME STREAM (NCPT)

...

1 1 ATC 27 PUMP P- 1 1 5

2 1 ATC 27 PUMP P-I 2 i

3 2 ATC 32 CP LOAD-I 1 1

4 2 ATC 32 CP LOAD-I 2 4

5 3 ATC 33 TBUS PAYLOAD 1 4

6 3 ATC 33 TBUS PAYLOAD 2 5

FLOW CONDUCTOR INFORMATION

SYSTEM SYSTEM SYSTEM

CONDUCTOR NODE A TO NODE B COMPONENT A STREAM TO COMPONENT B STREAM

...

1 1 ==> 6 P-I 1 ==> PAYLOAD 2

2 2 ==> 3 P-I 2 ==> LOAD-I 1

3 3 ==> 4 LOAD-I 1 ==> LOAD-I 2

4 4 ==> 5 LOAD-I 2 ==> PAYLOAD 1

5 5 ==> 6 PAYLOAD 1 ==> PAYLOAD 2

FLOW SUBNETWORK INFORMATION

===

NETWORK NUMBER I CONTAINS 6 NODES AND

NETWORK CORRESPONDS SYSTEM

NODE NUMBER TO NODE NUMBER

.................................

1 ==> 1

2 ==> 6

3 ::> 5

4 ==> 4

5 ==> 3

6 ==> 2

NETWORK CORRESPONDS SYSTEM

CONDUCTOR TO CONDUCTOR

.................................

1 ==> 1

2 ==> 5

3 ==> 4

4 ==> 3

5 ==> 2

5 CONDUCTORS

Figure 16. Example hydraulic flow map (.FMP file).

50

SECTION 6. UTILITY COMMANDS AND MISCELLANEOUS SYSTEM ROUTINES

This section describes the commands available within the CASE/A environment that are

designed to make system use more efficient, and those utility routines that are used by other subroutines.
These commands are not always required for normal simulation execution, but perform useful functions

such as providing an interface to VMS or examining various data.

6.1 Terminal Settings

The CASE/A modeling package is designed to operate on terminals capable of emulating

Tektronix 4014 graphics terminals and/or DEC VT100 text terminals. The preferred configuration would
be an advanced graphics terminal capable of emulating both (such as the composite terminal). The
default terminal type is a GraphOn composite terminal. The terminal type may be changed by the user to

match a particular system. The user may examine the status of a variety of terminal-related settings
using the FLAGS command. Complete descriptions of these commands are provided below.

6.1.1 Terminal Se[ting Command

The TERM command defines the type of terminal used in a given CASE/A work session to

permit the proper interpretation of editing and output commands. The following is a summary of the
terminal types currently supported.

TERM 1
TERM 2
TERM 3

- Tektronix 4014
- VT100
- DUAL VT100/4014

When the TERM command is issued, the main program decodes the command line and sets the

terminal characteristics according to the argument as listed above at statement label 246. The variable
ITMNL, which is used by other routines as well, is set equal to the argument of the command (e.g.,

TERM;2 gives a value of 2 to ITMNL). The screen is initialized and cleared based on the value of
ITMNL. There is no "TERM" subroutine such as is the usual case for most commands. The following

routines are called, however, by CASEA_MAIN to set the terminal type:

CLS CDCODE LBIT FRAME1

TEK_ADV TOGGLE_SCREEN

6.2 Miscellaneous Commands

The following describes some useful miscellaneous commands.

6.2.1

This command invokes the subroutine FLAG to display a list of 15 system flags. The list

displays the status of the flag-----either ON or OFF. The following flags are displayed:

LOGO, INVERSE FLAG,
AUTO HARD COPY, PLOT TIME,
VECTOR GRAPHICS, X AXIS LOG SCALE,
OVER-WRITE PROTECT BOLD PLOT
NASA LOGO COLOR FLAG
TASK COMPLETION ESTIMATE

COMMAND ECHO,
DUAL Y AXES,
Y AXIS LOG SCALE
PAUSE FOR COPY

PLOT LEGEND

51

Theseflags are discussed in the User's Manual in appendix B.1 and B.2.

Subroutine FLAG

The FLAG subroutine displays a list of system flags.

Functions and subroutines referenced: NONE

6.2.2 On-Line Help Information

The help routine is called by CASEA_MAIN and gives an explanation of all CASE/A commands
including IPU unique commands. Included under each HELP topic is an explanation of the command's
FUNCTION, the command syntax (FORMAT), and any helpful notes. Help is invoked by the command

CASEA> HELP;topic

If the topic is left blank, HELP will provide a list of available topics.

HELP opens an ASCII text file with the name TOPIC.HLP. These files are located in the
CASEA$CODE directory.

Subroutine HELP

The HELP subroutine displays the contents of the file TOPIC.HLP.

Functions and subroutines referenced:

CDCODE CLOSE CLS CTOLOWERC
CURSOR FRAME 1 GRALPH GRMOVE
INDEX OPEN TEK_ADV

6.2.3 VAX/VMS Commands

The user may temporarily exit the CASE/A environment and enter the VAX operating system by
executing the DCL command. The subroutine DCLFOR, called by CASEA_MAIN, prompts for a DCL
command and passes it, unchanged, to LIB$SPAWN. The command is executed and, upon completion,
control is returned to DCLFOR. The user remains in DCLFOR until the command "LOGOUT" or "LO"
is given.

The user should have a subprocess quota limit that allows a process to be spawned. If this quota
is exceeded, the command will not be executed. Normal VMS diagnostic messages are displayed for
errors, etc., however, no message is given if the process cannot spawn.

It should also be noted that commands that affect only a process, such as SET DEFAULT, will

serve no purpose as they are only valid for the current process that is terminated upon completion.

Subroutine DCLFOR

This routine establishes the call to the VAX library function to allow execution of DCL
commands.

Functions and subroutines referenced:

FRAMEI TEK_ADV

52

6.2.4 Temporary. Exit to VAX Editor

The user may temporarily exit the CASE/A environment and directly enter the VAX/VMS text
editor EDT. This is done by invoking the EDT editor from the subroutine EDT with the function
EDT$EDIT(filename). This command allows the user to examine the output file CASENAME.LPP or

modify the operations file CASENAME.FOR. Any other text file that is available to the user may be
edited by supplying the appropriate path and filename. Since this is an invocation of the EDT editor, all
normal EDT functions exist. When the user enters "EXIT" or "QUIT" after a CTRL-Z in the editor,

control is returned to CASEA_MAIN.

Subroutine EDT

This command routine allows the user to edit any file on VAX mass storage. The file name is

specified in the command argumen t list.

Functions and subroutines referenced:

CDCODE EDT$EDIT FRAME 1 INDEX

TEK_ADV

6.3 Simulation Control Commands

There are several commands that assist in model development and simulation control. These

commands involve individual components such as CABINS and entire cases.

6.3.1 Subsystem Heat Load Assignment to CABINS

The CABIN component is used to simulate a cabin, compartment, or otherwise isolated

environment by tracking the respirable atmospheric compositions, mass additions/losses, and heat
transfer between equipment, other cabins, and the external orbital environment. For the CABIN to

recognize the equipment contained in it, the equipment must be assigned to the CABIN using the
ASSIGN command, as described below. For a complete description of the interactions between cabins

and the associated equipment, see section 10.0 of the User's Manual.

6.3.1.1 ASSIGN Command

This command assigns a subsystem to a cabin. This provides the capability to address multiple
cabins with different configurations and/or environments. The ASSIGN command must be issued before

executing SOLVE. If the user fails to make a cabin assignment, the cabin air, structure, and mean radiant
environment will default to 75 °F from a component standpoint. The user should zero out the
environmental conductances for the components that are assumed to operate adiabatically. If the
interaction with the environment is disabled, then the ASSIGN command is not required.

Subroutine ASSIGN

This subroutine loads the NSSCAB array with the appropriate subsystem name, cabin name, and
relative cabin number of cabins that have at least one subsystem assigned to them. This

information is used to determine which subsystems will interact thermally with a given cabin.
NUMSS is the number of subsystems that have been assigned to a cabin. NUMCAB is number
of cabins that have at least one subsystem assigned to them.

53

Functionsandsubroutinesreferenced:

CDCODE CILLCHAR CTOUPPER SAVE TEK_ADV

6.3.1.2UNASSIGNCommand

This commandunassignsa subsystemfrom a cabin.It is functionally oppositeof theASSIGN
command.

SubroutineUNASSIGN

This subroutineis functionallyoppositeof subroutineASSIGN.

Functionsandsubroutinesreferenced:

CDCODE CILLCHAR CTOUPPER SAVE TEK_ADV

6.3.2 MERGE Operation

The MERGE command is particularly useful when developing large and complicated models.
Complete subsystems are constructed and verified as small, manageable cases. The individual

subsystems are then merged into the larger model. The smaller case may reside in the same directory, a
different directory, or in a directory on a different VAX host than where the larger destination model
exists. This command allows the user to include a complete subsystem (or the entire model) from a
different case in the current case. Complete subsystems can be built and verified as separate cases and
then the subsystem merged into the larger model. Development time is reduced since the models are

developed as smaller, more manageable problems and then assembled into a single model. The routine
will check for duplicate component names and solicit a new name from the user if necessary. If the user
does not want to change the name, a carriage return is entered and execution continues.

The MERGE routine queries the user if the source case is from an older version. Then the routine
prompts the user to enter the location of the source CASENAME.MOD file and the source data base
files. These locations must be of the following form:

Host "usemame password"::Device: [Directory]

If the user presses RETURN at this point, the current default directory is searched for the file. The user
has the option to abort the process by entering a "-1".

Subroutine MERGE

This is a command routine that allow the user to merge an existing subsystem in a different case
into the present case. The case name and subsystem name are input by the user as command
arguments. The source case definition file is opened and all pertinent data are loaded into the

present case data. Component names between the source components and the present case
components are checked for duplication and the appropriate action is taken. The equipment data
base files are updated by creating new data base entries for the merged components.

Functions and subroutines referenced:

CDCODE CLOSE CTOLOWERC CTOUPPERC
DELREC DUPLICATE EQOPEN FINDRM
FRAME 1 FULL INDEX ISTAT
OPEN OPENDB_X RANDIN RANDOU

RESTOR SAVE SETPRIM TEK_ADV

54

6.4 System Utility Routines

There are many system utility routines invoked by component routines to accomplish common
tasks. These routines perform duties such as computing property values, interpolate data, check
convergence on iteration loops, update output files and internal array values, etc. These routines are
described below.

Subroutine BENCH(M,X)

This routine updates the component benchmark data in the CON array.

Functions and subroutines referenced: NONE

Subroutine BIVAR(X,Y,A,Z)

Performs an interpolation on a bivariate array (A).

Functions and subroutines referenced: INTER

Subroutine CDEL(NEA,NEB,ISTR)

This routine is used to check convergence for the mass.

Functions and subroutines referenced: ABS DPCS

Subroutine CDELA(NEA,NEB,ISTR)

This routine records the stream and constituent with the highest change from the last iteration
value for each accumulator (TANKS, CABINS, SUMS, and NODES only).

Functions and subroutines referenced: ABS

Subroutine CILLCHAR(CISC,LEN,CHRFLG)

This routine parses names such as component names, filenames, case names, etc., to find illegal
characters in the names.

Functions and subroutines referenced:

CHAR ICHAR TEK_ADV

Subroutine CONINIT

This routine is used at the beginnng of the solution to initialize the output CON location.

Functions and subroutines referenced: NONE

Subroutine CONV(X,Y,NC,CRELAX,XLAST,YLAST)

This routine is a convergence iteration routine used for implicit solutions.

Functions and subroutines referenced: NONE

55

SubroutineCORRECT(NC)

This routineadjuststhemassfractionof a connectionto sumto 1.0.Correctsroundoff errors.

Functions and subroutines referenced: NONE

Subroutine CTOLOWERC(CCHAR,NCHAR)

This subroutine converts the character array CCHAR of NCHAR characters from uppercase
characters to lowercase.

Functions and subroutines referenced: ICHAR

Subroutine CTOUPPERC(CCHAR,NCHAR)

This subroutine converts the character array CCHAR of NCHAR characters from lowercase
characters to uppercase.

Functions and subroutines referenced: ICHAR

Subroutine DEL(IREC)

This routine is used to delete the last record written to the data base.

Functions and subroutines referenced:

ABS LBIT RANDIN RANDOU
SETPRIM

Subroutine DENVIS(NEA,NSA,NEB,NSB,DEN,VIS)

This routine returns the average density (DEN) and viscosity (VIS) for a flow between
components NEA and NEB in the stream connected by NSA and NSB.

Functions and subroutines referenced: NONE

Function DEWPT(PARTIAL_PRESS)

This routine is used to determine the dewpoint of air based on the water vapor partial pressure.

Functions and subroutines referenced:

INTER TEK_ADV

Subroutine DINTER(X,A,Y)

This routine performs an interpolation of single arrays with all of the arguments in double
precision.

Functions and subroutines referenced: NONE

Subroutine DIST (IX 1, IY 1, IX2, IY2, XD)

56

This routine returns the sum of the squares, XD, of the horizontal and vertical distances between
the coordinates (IX1, IY1) and (IX2, IY2).

Functionsandsubroutinesreferenced: NONE

SubroutineDUPLICATE(IREC,JREC)

This routineis usedto duplicatearecordin thedatabase.

Functionsandsubroutinesreferenced:

FINDRM INDEX
RANDOU RESTOR

SubroutineERRDUMP(ITEST)

This routinedisplayserrormessageson thescreen.

Functionsandsubroutinesreferenced: DPCS

SubroutineFINDC(IEQ)

OPENDB_X
SETPRIM

RANDIN

TEK_ADV

Thisroutine is usedto loadtheNPTarraywith pointersto thecorrect"C" arraylocationfor the
componentbeingsolved.

Functionsandsubroutinesreferenced: SMVBITS

SubroutineFLOLEG(XM,DEN,VIS,XL,XD,XK,PDEL,MAX)

This routineis usedto calculateflow conductancefor resistanceandflow informationby
iterationuponpressdrop"PDEL".

Functionsandsubroutinesreferenced: FRICTDP

SubroutineGIMAG(IEQB,ISTB,NCPT,PDEL,MAX,GIX)

This routinecalculatestheflow conductance"GI" for stream"ISTRM" for agivenpressuredrop
"PDEL" andmassflow rate.It is utilized in severalflow balancingcomponents.

Functionsandsubroutinesreferenced:

CONV DENVIS FRICTDP LOG10

SubroutineINTER(X,A,Y)

This routineperformsaninterpolationof singlearrays.

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineKHECK(NUSTM)

This subroutinecallstheconvergencecheckroutinesfor all of acomponent'sstreams.

Functionsandsubroutinesreferenced:

CDEL CORRECT PDEL TDEL

57

SubroutineKHECKA(NUSTM)

ThisroutineperformsthesamefunctionasKHECKbutdoesnot incrementtheLPCScount.

Functionsandsubroutinesreferenced:

CDELA CORRECT PDEL TDELA

SubroutineLOADCOND(IEQA,ISTA,IEQB,ISTB,XM,DP)

Thisroutine loadspressuredrop(DP)andflow rate(XM) into the"FLOCOND" array.

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineMASSFRAC(NUM,YI,XMWI,XI)

This subroutineacceptsaninput numberof constituents(NUM), anarrayof constituentmole
fractions(YI) andanarrayof constituentmolecularweights(XMWI) andcalculatesa
correspondingarrayof massfractions(XI).

Functionsandsubroutinesreferenced: NONE

SubroutineMODBAK

This routinescreatesabackupmodelfile CASENAME.BAK.

Functionsandsubroutinesreferenced:

CLOSE CTOLOWERC INDEX OPEN
TEK_ADV

Subroutine MOLEFRAC(NUM,PRESSI,YI)

This subroutine accepts an input number of constituents (NUM) and an array of constituent
pressures (PRESSI) and calculates a corresponding array of mole fractions (YI).

Functions and subroutines referenced: NONE

Subroutine PASSIVE(NSTM,NSI,NSO)

This routine checks to see if a passive outlet stream, NSO, is connected to an active inlet stream,
NSI.

Functions and subroutines referenced: DPCS SCALER

Subroutine PDEL(NS)

This routine determines component relaxation of the pressure calculations.

Functions and subroutines referenced: ABS DPCS

Subroutine POINTCON

This routine determines the pointers (NINP,NOUT,NBEN) for the CON array locations for each
component.

58

Functionsandsubroutinesreferenced: NONE

SubroutinePREPRO

This subroutineis usedto convertOPSfiles from usingtheinterfaceroutinesto usingdirect
references.

Functionsandsubroutinesreferenced:

CDCODE CILLCHAR CTOUPPERC EQLOAD
FINDC LIB$INDEX PSEUDO TEK_ADV

FunctionROWATER(TEMP)

This functiondeterminesthedensityof watervaporat agiventemperatureTEMP.This routineis
locatedin PROPS.FOR.

Functionsandsubroutinesreferenced: NONE

SubroutinePULLSTX

Thisroutine is usedby thecontrollerroutineto pull thememorystackdownonelocation.It is
locatedin CNTRLLR.FOR.

Functionsandsubroutinesreferenced: NONE

SubroutinePUSHSTX

This routine isusedby thecontrollerroutineto pushthememorystackuponelocation.It is
locatedin CNTRLLR.FOR.

Functionsandsubroutinesreferenced: NONE

SubroutineQEXCHG(IQ,FAE,GCONV,GCOND,TRAD,TCONV,TCOND)

This subroutinecalculatestheheatexchangebetweencomponentsandtheassignedcabin
environment.

Functionsandsubroutinesreferenced: TBOUND

SubroutineRBIVAR(X,Y,A,Z)

This routineis abivariateinterpolationroutinethatworksin reverseto BIVAR.

Functionsandsubroutinesreferenced: INTER

SubroutineRINTER(Y,A,X)

This subroutineallows interpolationfrom asinglearrayin reverseorderof subroutine"INTER".

Functionsandsubroutinesreferenced: TEK_ADV

59

Subroutine SAVEAS(NAME)

This routine creates a new case from the current case by duplicating all the data base entries with
the new casename NAME. It also creates a new MOD file. The new case becomes the default.

Functions and subroutines referenced:

DUPLICATE EQOPEN FRAME 1 ISTAT
MODBAK RANDIN RANDOU SAVE
TEK_ADV

Subroutine SCALE(IST)

This routine is used to convert the mass fractions in the C array to mass flow rate and back to
fractions. The routine has two ENTRY points:

ABS SCALEUP(IST) SCALEDN(IST)

It is called first during a component routine as SCALEUP(IST) so that computations can be done
by mass flow rate. At the end of the routine it is called as SCALEDN(IST) to convert back to
mass fractions. IST is the stream number to be "scaled."

Functions and subroutines referenced: NONE

Subroutine SCALER(ISTRM,NSTRM,DESFLW,ALWFLOW)

This routine is used to scale the requested flowrate from a store device to the available quantity
for that iteration.

Functions and subroutines referenced:

ABS DPCS FINDC

Subroutine SUMINIT

This routine initializes the summary arrays for the simulation wrap up.

Functions and subroutines referenced: NONE

Subroutine TB OUND(IQ,TRAD,TCONV,TCOND)

This subroutine retrieves the environmental temperatures for the components.

Functions and subroutines referenced: NONE

Subroutine TDEL(NS)

This routine determines the relaxation values for temperature for a given component.

Functions and subroutines referenced: ABS DPCS

Subroutine TDELA(NS)

This routine is the same as TDEL but used for a given stream (used in the STORE and CABIN
logic).

60

Functionsandsubroutinesreferenced: ABS

SubroutineTIMESTEP(TSTEP,N,GSUM,CAPAC,TAU,MINILPS)

Thisroutinedeterminesa timeconstantTAU andnumberof subtimesteps(MINILPS) for a
systemof N diffusion nodes(N=10 max).

Functionsandsubroutinesreferenced: NONE

SubroutineTSTEP(A,B,C,D)

Thisroutineis usedto calculatethelargestdifferencebetweenA-C andB-C.

Functionsandsubroutinesreferenced: NONE

6.5 Model Archive Routines

The archive process (new in version 5.0) provides the user with the ability to store CASE/A
simulation solution files to a specified directory. These files can be retrieved for later use. There are two
steps to archiving a model: (1) edit the archive data base to describe general information about the
archived models, (2) initiate the archive process to save the data to an archive file. Routines called to

support step 1 are described in section 3.2, Interactive Editing, of this manual. Routines that support step
2 are described next.

Subroutine ARCHIVE

This routine stores the currently loaded CASEA model data to an ASCII file and is called
directly from CASEAMAIN upon entry of the ARCHIVE command. The routine prompts the
user for the name of the model that is to be archived and other pertinent information. If the user

continues, the archive directory is determined and plotsets, ops code, .MOD file, or whatever is
selected by the user to be archived is copied to this directory. If the archive process succeeds, a
message stating "ARCHIVE OPERATION FINISHED" is written to the terminal and control is
returned to CASEAMAIN.

Functions and subroutines referenced:

ARCHFILE CTOLOWERC EQOPEN
RANDIN TEK_ADV

MERGE_OUT

Subroutine ARCHFILE

This routine is called by ARCHIVE to check for active archive sets in the IA array. If more than
one is active, the user is warned and only the first set is used. If none are found, a warning
prompt is given to the user and the routine returns.

Functions and subroutines referenced: TEK_ADV

Subroutine RETRIEVE

This routine is invoked when the user enters the RETRIEVE command. It provides the user with

a method to retrieve a previously archived file. This routine first prompts the user for the
directory and file containing the archive file, then calls MERGE_IN to read the archive file data
into the currently loaded model.

61

Functionsandsubroutinesreferenced:

ANSWER CTOLOWERC
GET_SET_DDIR(containedin RETRIEVE) MERGE_IN

62

SECTION 7. USER OPERATIONS LOGIC AND INTERNAL CASE/A DATA ACCESS

CASE/A provides for user-written computational logic at strategic points during the simulation.

This capability is similar to that of programs like SINDA (VARIABLES1, VARIABLES2) and G189A
(GPOLYI, GPOLY2). CASE/A provides seven such opportunities in the subroutines OPS0 to OPS6.
Additionally the subroutine OPS7 is provided during component simulation as a "BLACKBOX". These

program modules, referred to as "OPS LOGIC", provide for such things as custom variable initializa-
tion, time-dependent forcing functions, specialized output, etc. The use of OPS logic is presented in
detail in chapter 7 and examples of use are provided in models WCM and MB6 in appendix A of the
CASE/A User's Manual. This section provides a brief introduction to OPS logic and a guide to link user

OPS logic with the CASE/A library.

7.10PS Logic Description

OPS0, PREINITIALIZATION--This routine is called prior to execution of the component
100 block (data initialization). It is useful for initializing custom output variables, opening

output files, and changing values contained in the data base prior to their use in the 100 block.

OPS 1, PRESIMULATION_This routine is similar in nature to OPS0, however, it executes

just after the component 100 block. Thus, this routine is useful for initializing data that
depends on initial conditions of the components.

OPS2, PRETIME STEP--This subroutine is especially useful for doing time-dependant

computations to impose time-variant conditions on the system. OPS2 is called every time step
just prior to iteration.

OPS3, INTERNAL SYSTEM ITERATION--The OPS3 logic executes every system
iteration. It proves most useful in debugging when the user wishes to examine data or print

diagnostic messages during the simulation. It is also used as a tool for performing conditional
tests for feedback control.

OPS4, POSTI'IME STEP--Executed just after convergence of the system is obtained, but

prior to incrementing the time, this block is useful for updating output files and performing
integration functions.

OPS5, OUTPUT INTERVAL--This routine is executed after OPS4 but only at the specified

output interval. It is useful for performing operations that should coincide with the system
output interval.

• OPS6, SIMULATION END---This routine is called after the simulation end time is reached. It

is used to perform post sim output user wrap-up operations such as closing files.

7.2 Creation of User OPS Logic

OPS logic should be created in the user's directory (in the current working subdirectory). A
logical approach to this is to first copy the file OPS.FOR from the CASEA$CODE directory to the
user's directory under the name of the current case:

$copy casea$code:ops.for disk: [user. directory]casename.for

The next step is to edit this file with a text editor and code the logic required. Even if no code is

placed into a subroutine, it is important that each subroutine be left intact, since the subroutines are

63

calledregardlessof whether they perform any function or not. An example of this completed OPS logic
might look as follows:

C

SUBROTINE OPS0

PRE-SIMULATION USER-DEFINED CODE

REFdRN

END

Subroutine OPSI

INCLUDE 'SYS$CASEA: COMPCC_4. INC'

OPSI LOGIC - PRE SIMULATION. The OPSI subroutine for this case

is used for initialization of data parameters and resequencing

of the solution procedure.

COMMON /ONE/ THW, TSHWR,TDWSH,TLDRY

COMMON /_a'O/ NHW,NSHWR,NDWSH,NLDRY

COMMON /THREE/ DTI, DT2, DT3, DT4

COMMON /FOUR/ IFLG,JFLG,KFLG, LFI_

CC_aW*ON /FIVE/ TSTRTI, TSTRT2, TSTRT3, TSTRT4

_N /SIX/ TSTOPI,TSTOP2, TSTOP3,TSTOP4

CC[_ION /S_/ NCREW, TFLGI, II, ICTRH, ICTRS, ICTRD, ICTRL

_N /TEST/ SRCFLO,KFLAG

CC_KMDN /FLORATS/ FISET,F2SET,F3SET, F4SET

CALL GETU (1, THW)

CALL GETU (2, TSHWR)

CALL GETU (3, TDWSH)

CALL GETU (4, TLDRY)

CALL GETU (5, XNHW)

CALL GEFO (6, XNSHWR)

CALL GETU (7, XNDWSH)

CALL GETU (8, XNLDRY)

CALL GETU (9, DTI)

CALL GETU (i0, DT2)

CALL GETU (ii, DT3)

CALL GETU (12, DT4)

CALL GETU (13, XIFLG)

CALL GETU (14, XJFLG)

CALL GETU (15, XKFI_)

CALL GETU (16, XLFI_)

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

SEQUENCE (' PS3

SEQtmmCE ('S4

SEQUENCE ('PR4

SEQUENCE ('DSHWSH

SEQUm_CE ('PR5

SEQUENCE ('LDRY

SEQUENCE ('SEQSTOP

SETK('Sl ', ii

SETK('Sl

SETK('S2

SETK('S2

SETK ('S3

SETK('S3

CALL SETK('S4

RETURN

_WD

,)

,)

,)

,)

,)

,)

,)

,0.5)

,12,0.5)

,11,0.5)

,12,0.5)

,11,0.5)

,12,0.5)

,11,0.5)

Subroutine OPS2

INCLUDE 'SYS$CASEdk:COMPCOM. INC'

OPS2 LOGIC - BEFORE EACH TIME STEP. The OPS2 subroutine will be

64

C used to control the flow of hot water at the handwash, shower,

C dishwash and laundry facilities according to the timeline described

C in section A.3.1.

C

C

COMMON /ONE/ THW,TSHWR,TDWSH,TLDRY

COMMON /TWO/ NHW,NSHWR,NDWSH,NLDRY

COMMON /THREE/ DTI,DT2,DT3,DT4

COMMON /FOUR/ IFLG,JFLG,KFLG,LFLG

COMMON /FIVE/ TSTRTI,TSTRT2,TSTRT3,TSTRT4

COMMON /SIX/ TSTOPI,TSTOP2,TSTOP3,TSTOP4

COMMON /SEVEN/ NCREW,TFLGI,II,ICTRH,ICTRS,ICTRD, ICTRL

COMMON /TEST/ SRCFLO,KFLAG

COMMON /FLORATS/ FISET,F2SET,F3SET,F4SET

IF (ICTRH .NE. 4) THEN

IF (TIME .GE. TSTRTI .AND. IFLG .EQ. I) THEN

IFLG = 0

ENDIF

IF (TIME .GE. TSTOPI .AND. IFLG .EQ. 0) THEN

IFLG = 1

TSTRTI = TIME + DTI

TSTOPI = TSTRTI + THW

II = II + 1

IF (II .EQ. NCREW) THEN

TSTRTI = TFLGI + 4.0

TSTOPI = TSTRTI + THW

TFLGI = TFLGI + 4.0

II = 0

ICTRH = ICTRH + 1

H_qDIF

ENDIF

ENDIF

set start time for next

crew members handwash

during the present cycle

begin the next handwash cycle

4 hours after the beginning

of the previous cycle

C

C

SPLT2L2 = FLOI2/_

CALL SETK('S2 ',II,SPLT2LI)

CALL SETK('S2 ',I2,SPLT2L2)

SPLT4LI = FLO4/FLO34

SPLT4L2 = FLO3/FLO34

CALL SETK('S4 ',II,SPLT2LI)

CALL SEI"K('S4 ',I2,SPLT2L2)

SPLTILI = FLOI/FLOI2

SPLTIL2 = FLO2/FLOI2

CALL SETK('S2 ',II,SPLT2LI)

CALL SETK('S2 ',I2,SPLT2L2)

ENDIF

RETURN

END

split frac of leg 2 of $2

split frac of leg 1 of S4

split frac of leg 2 of $4

split frac of leg 1 of S1

split frac of leg 2 of S1

Subroutine OPS3

OPS3 LOGIC - EACH ITrERATION

c *** hK>TE THAT THIS Subroutine SHOULD BE INCLUDED IN CASEANAME.FOR

c *** EVEN THOUGH IT DOESNT DO ANYTHING

C

3O RETURN

END

C

65

C

C

Subroutine OPS4

INCLUDE 'SYS$CASEA: COMPCOM. INC'

OPS4 LOGIC - AFTER EACH TIME STEP. The OPS4 subroutine will be

used for adjustment of certain parameters associated with the

STORE component (WTRTNK). Output parameters of interest for this

case are evaluated graphically using the Integrated Plot Utility.

COMMON /TEST/ SRCFLO,KFLAG

CALL GETK ('WTRTNK ', 19,WMASI)

CALL GETK ('WTRTNK ',73,WMAS)

! initial tank contents mass

! current tank contents mass

C

C

C

C

C

c

TL = SV'4.0/3.14159

(_ALL = 0.3996"TL + 0.157

AO = 5.3668"TL + 1.704

GCONV = 0.2"AO

GRAD = 0.1714E-8*AO*0.05*0.9

CALL SETK ('WTRTNK

CALL SETK ('WTRTNK

CALL SETK('WTRTNK

', 12, GCONV)

•, 13 ,GRAD)

', 15, G_ALL)

RETURN

_D

! reset tank convection, radiation

! and wall conductor conductance

! values

Subroutine OPS5

OPS5 LOGIC - EACH OL_PDT INTERVAL

c *** NOTE THAT THIS Subroutine SHOULD BE INCLUDED IN CASF-ANAME.FOR

c *** EVEN THOUGH IT DOESNT DO ANYTHING

C

RETURN

END

C

C

C

C

C

c

Subroutine OPS6

OPS6 LOGIC - POST SIMULATION

c *** NOTE THAT THIS Subroutine SHOULD BE INCLUDED IN CASEANAME.FOR

c *** EVEN THOUGH IT DOESNT DO ANYTHING

C

C

C

C

RETURN

END

Subroutine OPS7

C

C OPS7 LOGIC - BLACKBOX SIMULATION

C

RETURN

END

66

A complete description of this problem is in appendix A of the User's Manual.

The next step is to compile the program and link with the rest of the CASE/A object library. It is

important to note that compilation and linking must be done every time the OPS Logic file is modified
to effect a change in the simulation. This procedure is accomplished as follows:

$ fortran/nooptimize/nodebug/check--bounds/continue--45 casename.for
$ @casea$code:linkcas casename

$ run/nodebug casename

This procedure will compile the code and give the option to use the debugger if required.
LINKCAS.COM links with the object code located in the directory CASEA$CODE and creates an
executable CASENAME.EXE. The nodebug qualifier should be left out of the RUN statement if the
user wishes to use the VMS debugger. It is beyond the scope of this manual to present the use of the

debugger. LINKCAS is described in the User's Manual.

Subroutine OPS0

OPS0 logic is called by the SOLVE routine prior to the component 100 block.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS 1

OPS1 logic is called by SOLVE prior to simulation but after the component 100 block.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS2

OPS2 logic is called prior to each time step by SOLVE.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS3

OPS3 logic is called by SOLVE each iteration until convergence.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

Subroutine OPS4

OPS4 logic is called by SOLVE after convergence but before time is incremented.

Functions and subroutines referenced:

Any CASE/A or user-written subroutine can be called.

67

SubroutineOPS5

OPS5Logic iscalledby SOLVEafterOPS4butonly whenthetimeis amultipleof theoutput
intervalSYSOUTPT.

Functionsandsubroutinesreferenced:

Any CASE/A or user-writtensubroutinecanbecalled.

SubroutineOPS6

OPS6Logic iscalledby SOLVEaftertheendof asimulationto allow for postsimulation
wrap-up.

Functionsandsubroutinesreferenced:

Any CASE/A or user-writtensubroutinecanbecalled.

SubroutineOPS7

OPS7Logic iscalledby SOLVEto simulatea blackboxcomponentdefinedby theuser.

Functionsandsubroutinesreferenced:

Any CASE/A or user-writtensubroutinecanbecalled.

Normally theuserwill createasubroutinefor theblackboxcomponentandcall thisroutinein
OPS7logic whenOPS7iscalledby SOLVE (for example,seeexample2- MB6 in theCASE/A
User'sManualsection1).

7.3 Case/A Internal Data Communication Arrays

It may be useful for the user to check or vary the value of "internal" data associated with the
simulation. There are five main arrays that CASE/A uses to communicate data to and from the different
routines in the program. These arrays, and the subroutines used to manipulate them, are described here
and in chapter 7 of the User's Manual. These very important data structures, which are used extensively
in modeling systems with CASE/A, are the CON, C, PRO, USERCON, and D arrays. The subroutines
used to store and retrieve data are described in section 7.3.6.

7.3.1 The "CON"Array

The CON array can be thought of as a "LIST" of component data for every component in the
simulation (fig. 17). This "LIST" is comprised of 75,000 "CELLS" grouped into SEGMENTS. Each
SEGMENT contains all of the data for a component. For each simulation, there are NEQ (number of
active pieces of equipment) SEGMENTS. The remaining portion of the array is unused. The relative

equipment number IEQ is used throughout the simulation to refer to a SEGMENT in this array for a
component.

Each segment is divided into four contiguous BLOCKS:

(1) Fixed Block contains nine fixed parameters that exist for every component. LFXD in the
lower part of figure 16 is a constant set to nine, which refers to the length of this block.

The next three blocks are variable in length for every component type:

68

(2) Input Block contains the INPUT data for the component, and its length is determined by the
variable LINP.

(3) Output Block contains the OUTPUT data and its length is determined by the variable
LOUT.

(4) Benchmark Block contains the BENCHMARK data, and its length is determined by the
variable LBEN.

Thus, the total length of each segment would be LFXD+LINP+LOUT+LBEN.

The beginning of each block of data is determined by an integer pointer to the first cell of the
block. These pointers are NFXD, NINP, NOUT, and NBEN, which point to the absolute location in the
CON array for the FIXED, INPUTS, OUTPUTS, and BENCHMARKS blocks, respectively. These

pointers are calculated in the POINTCON routine as follows:

NFXD = ICP(IEQ) 1
NINP = NFXD + LFXD

NOUT = NINP + LINP
NBEN = NOUT + LOUT

when: ICP is an array of pointers to the beginning

array for each component segment
LFXD = 9

LINP = CON(NFXD+I)

LOUT = CON(NFXD+2)

LBEN = CON(NFXD+3).

location in CON

Figure 17 shows the arrangement of the CON array. Also, refer to chapter 7 of the User's Manual.

7.3.2 The "C" Array

The C array, or composition array, is used to track the fluid mass flow rate and composition for
each of the component fluid streams. This 54 by 1,500 array can track up to 49 constituents for 1,500
connecting streams. The first index of the C array is for flow rate and composition and the second is for
the stream connection number. The C array is graphically shown in figure 18.

Location (1, "stream number") of the C array is always mass flow rate in lbm/h. The next 49
locations are for mass fractions of the fluid constituents in the stream of interest (these fractions should

sum to 1.0). The first eight of these constituents are defaults shown in table 2. The variable NTRACK
(not contained in the C array) is equal to the index location of the last constituent tracked. Thus, if the
defaults only are used, NTRACK would be equal to nine. The next four locations, NTRACK+I,
NTRACK+2, NTRACK+3, and NTRACK+4, have special meanings for several routines and should not

be used arbitrarily.

If the user needs to track compounds other than the eight default, several steps are required. First,
the PROPS routine should be modified to obtain the properties of that compound. This new PROPS
routine would then be linked with the rest of the CASE/A library in the same manner as OPS logic. The
CONTROLS data base should be edited next and the value of NTRACK changed from 9 to the total
constituents to be tracked (plus one for mass flow rate). Finally, the LABELS data base can be edited to
associate a name with that location of the C array.

Most components require a number of C locations equal to the number of inlet and outlet
streams. For example, a PUMP requires two C locations, one for the inlet and one for the outlet (as
shown for IEQB in fig. 18). Other components, however, require additional C locations to account for

69

massaccumulationandotherprocesses.For instance, the FILTER component uses four C locations--
one for the inlet, one for the outlet, and two to keep track of matter accumulating on the filter media. In
general, a component may have up to 8 streams (refer to components in section l0 of the User's

Manual). Each stream is referenced in the component routine by the array NPT. For example, NPT(3)
refers to stream 3 of the component currently being processed. The value contained in NPT(3) is the
index into the C array for that stream.

The next 1st input
"LINP" 2rid input
locations * • •
containthe
INPUT data
for the
current IEQ.

The starting
locationfor
each IEQ's
first INPUT
datum is at

NINP + 1 last input

The next 1st bench
"LBEN" 2nd bench
locations . • °
containthe
BENCHMARK
datafor the
current IEQ.
The starting
locationfor
each IEQ's first
BENCHMARK
datum is at
NBEN+ 1 lastbench

NINP + 1

NINP + 2
coo

NINP ÷ LINP

NBEN + 1
NBEN+ 2

lee

NBEN + LBEN

CONARRAY
FIRSTSEGMENT(COMPONENT#1)

FIXED

INPUTS

OUTPUTS

BENCHMARKS

SEGMENT'IEQ'

of INPUTS

of OUTPUTS

of BENCHMARK

CDEL RXCC

TDEL RXCC

POELRXCC

POWER

WEIGHT

VOLUME

FIXED
1st output

INPUTS 2nd output

OUTPUTS

BENCHMARKS

last ouput

#cells= LFXD = 9 ,_

#cells = LINP J

/ #cells = LOUT ,,
#cells = LBEN

These9
'FIXED'
locationsare
samefor each

component
(words 7-15 in
database)
First location
for each IEQ

begins at
NFXD + 1

or

ICP (IEQ)

The next "LOUT"
locationscontain
the OUTPUTdata
for the current
IEQ The

starting location
for each IEQ's
first OUTPUT datum
is at

NOUT + 1

ICP (lEO) or NFXD+ t
NFXD+ 2

tee

NFXD + 9

NOUT + 1

NOUT + 2
eel

NOUT + LOUT

Figure 17. The "CON" array.

70

C and PRO array layout

{C (row, column)}
rows contain
mass flow rate

constituent
mass fractions
& other information

constituents in component streams are referenced
using NPT(1) for inlet stream and NPT(2) for outlet stream
of component

columns contain

connections

withinmodel_ _ _, ,_

_# _,'_ _ ... _
Mass Flow Rate (1)

Oxygen (2)

Nitrogen (3)

Carbon Dioxide (4)

Hydrogen (5)

Carbon (6)

Methane (7)

Water (8)

Freon-11 (9)

user -defined constituent (1O)

user -defined constituent (50)

(NTRACK+ 1) Leq

(NTRACK+ 2) Deq

(NTRACK+ 3) Pressure Code

(NTRACK+ 4) Scale Factor

Stream 1

IEQA I
component

Stream 2 Stream I

t-
IEQB

component
Stream 2

PRO(i,IEQA,1),i=1,8 PRO(i,IEQA,2),i=1,8 PRO(i,IEQB,1),i=1,8

i-designates propertyof the stream _... J(reler to table 3)
Stream Numbers:

t
PRO(i,IEQ8,2),i=1,8

Figure 18. Stream properties and composition arrays.

?l

Table 2. "C" array default constituents.

LOCATION CONTENT Um_

1 Total Mass Flow Rate Lbm/Hr
2 Oxygen Mass Fraction
3 Nitrogen Mass Fraction
4 Carbon Dioxide Mass Fraction

5 Hydrogen Mass Fraction
6 Solid Carbon Mass Fraction
7 Methane Mass Fraction
8 Water Mass Fraction
9 Freon - 11 Mass Fraction
10 Constituent 10 Mass Fraction
11 Constituent 11 Mass Fraction
12 Constituent 12 Mass Fraction

50 Constituent 50 Mass Fraction

NTRACK+I Equivalent Length Feet
NTRACK+2 Equivalent Diameter Inches * 100
NTRACK+3 Pressure Feedback Code
NTRACK+4 Scale Factor

The subroutine PSEUDO is used to keep track of the pointers that give access to the C array. The
subroutines GETC and SETC are available to store and retrieve data in this array.

7.3.3 The "PRO" Array

The PRO array stores the thermodynamic properties for each component stream (refer to the

bottom of figure 18). This three-dimensional array can track up to 12 properties for 1,000 components
with up to 8 streams each using the first, second, and third indexes, respectively. The properties

represented by the first index value are shown in table 3. Note that there is room for future expansion or
user-defined properties since the array is dimensioned to 12 and only 8 properties are tracked. The
routines SETP and GETT are used to store and retrieve data from this array.

Table 3. "PRO" array properties list.

LOCATIQN

1
2
3

4

5
6
7
8

CONTENT

Pressure, lb/in 2 absolute

Temperature, Fahrenheit
Specific Heat (Cp), Btu/(lbm°F)

Density, lbm/ft 3

Viscosity, lbrrd(h.ft)

Specific Heat (C v), Btu/(lbm°F)
Molecular Weight, lbm/lb-mole
Enthalpy, Btu/lbm

72

7.3.4 The "USERCON" Array

CASE/A provides an additional array that is carried in the common block/USERCON/in
CASEA$CODE:GRAPHCOM.INC. This one-dimensional array can be used to store data and
communicate it throughout the simulation. Up to 100 different parameters can be tracked with this array.
Each location can be associated with a label by editing the USERCON data base.

This array is a one-dimensional single precision real array and can be accessed directly or with
the GETU and SETU routines. Upon completion of the simulation, the final values of each location are
stored in the data base. Thus, this array should be initialized by the user in OPS0 logic for each new
simulation unless data accumulation is the desired result.

7.3.5 The"D" Array

The D array dimensioned to D(1000,50) is a system level array used in the component
subroutines. The first index is the relative equipment number (IEQ) for a component in a given case. The
second index represents 50 available locations for "random" use. Many components use the D array.
Each routine should be examined to determine what if anything is stored in locations 1 to 50. The

purpose of this array is to provide access to variables internal to a component routine that are not
otherwise available to the user (i.e., through the component edit screen). After careful checking that an
array location is free, an experienced user is encouraged to exploit this array to access internal
calculations of a component. Note that to reference the array one should use the form D(IEQ,i) where i is
the desired location and IEQ is set by the system in the SOLVE routine.

7.3.6 Storage and Retrieval Functions for CASE/A Arrays

The subroutines used to store data into and retrieve data from the CON, C, PRO, and USERCON

arrays are described below.

Subroutine GETC(NAME,ISTR,ICONST,VALUE)

This routine retrieves a value from the C array. It returns the VALUE of the ICONST constituent
number of the ISTR stream for the component NAME.

Functions and subroutines referenced: TEK_ADV FINDC

Subroutine GETI(NAME,IEQVAL)

This routine returns the relative equipment number (IEQVAL) for the component NAME. It can
be used in conjunction with the GETK routine to get the value of ICON.

Functions and subroutines referenced: TEK_ADV

Subroutine GETK(NAME,ICON,VALUE)

This routine is used to retrieve data from the CON array. NAME is a CHARACTER*8 variable
(INTEGER*4(2)). The routine returns the VALUE of the ICON relative location for the

component NAME.

Functions and subroutines referenced: TEK_ADV

Subroutine GETP(NAME,ISTR,VALUE)

This routine returns the VALUE from the PRO array of the pressure of stream ISTR for the

component NAME.

73

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineGETPP(NAME,ISTR,ICONST,PP)

This routinereturnsthepartialpressurefor theequipmentnameandstreamanduser-specified
constituentICONST.

Functionsandsubroutinesreferenced: TEK_ADV FINDC

SubroutineGETT(NAME,ISTR,VALUE)

Thisroutine is similar to GETPbutreturnstemperature.

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineGETU(ILOC,VALUE)

This is usedto getavaluefrom theUSERCONarray.It returnstheVALUE of theILOC
location.

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineSETC(NAME,ISTR,ICONST,VALUE)

This routine is functionallyoppositeto GETCin thatit storesa valuein theC array.

Functionsandsubroutinesreferenced: TEK_ADV FINDC

SubroutineSETK(NAME,ICON,VALUE)

This routineis theoppositeof GETK in that it storesaVALUE in theCON array.

Functionsandsubroutinesreferenced: TEK_ADV POINTCON

SubroutineSETP(NAME,ISTR,VALUE)

This routineis functionally oppositeto SETPin thatit storesavaluein thePROarray.

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineSETr(NAME,ISTR,VALUE)

Thisroutine is functionallyoppositeGETT.It storesatemperaturein thePROarray.

Functionsandsubroutinesreferenced: TEK_ADV

SubroutineSETU(ILOC,VALUE)

This routineis usedto settheILOC locationof theUSERCONarrayto VALUE.

Functionsandsubroutinesreferenced: TEK_ADV

74

SubroutinePREPRO

This routineis theOPSlogicpreprocessordiscussedin section7.5of theUser'sManual.The
preprocessorhelpsspeedexecutionby eliminatingdependenceon theGETandSETroutines
discussedabove.GETandSETroutinessearchfrom 1to NCOMPuntil finding thecorrect
equipmentnamebeforeretrievingor depositingdata.Thepreprocessoroptimizesthisprocessby
writing OPScodeto accessthecorrectarray(C,PRO,CON) locationdirectly.

Functionsandsubroutinesreferenced:

CDCODE CILLCHAR CTOLOWERC CTOUPPERC
FINDC FOR$CLOSE FOR$OPEN LIB$INDEX
PSEUDO TEK_ADV

75

SECTION 8. ANALYTICAL TECHNIQUES

This section discusses the techniques used to perform hydraulic and thermal computation. The
major subroutines used in these computations are described briefly along with the functions and sub-
routines called by them.

8.1 System Pressure Computations

CASE/A provides two methods of computing pressure at key points in the system. These two
methods are toggled by the variable MATRXFLG from the CONTROL data base.

8.1.1 Matrix Reduction Pressure Solution

The default method of determining the system pressures is the solution of a set of simultaneous

equations by matrix reduction. This set of equations, discussed in section 8.2.1 of the User's Manual, is

obtained by conservation of mass at each pressure node. The mass flows and compositions are set by the
component routines, while the pressures are calculated by the system using the routine SYSBAL.

The overall hydraulic balance usually requires several iterations in that the components make
successive "guesses" at the flow rates based on the system calculated pressures. The linearized flow

conductor between two nodes is thus a function of the flow rate and pressure difference occurring
between them.

The system solution methodology is based on the concept of the subdivision of the entire

hydraulic layout of the case into separate subnetworks that are terminated by boundary pressure nodes or
sources and sinks. These subnetworks may be connected by shared boundary pressure nodes (i.e.,
STORE's and CABIN's). A set of simultaneous equations is set up and solved for each of these subnet-

works individually. This is done in order to decrease the computational resources that would be required
to solve a large set of equations for all nodes in the case. The matrix solution used is the symmetric
Cholesky method derived from SINDA/SINFLO. Each of the subnetworks should have at least one

boundary pressure or a singular matrix condition occurs in that no solution is possible. In this case, an
arbitrary node in the network will be taken as a boundary node and the rest of the pressures calculated
accordingly. The user is notified with a run-time warning if this situation occurs.

Subroutine SYSBAL

This routine is responsible for solving for the system pressures given flow rates and conductor

values as described above and in the User's Manual. The routines used by this routine are not
discussed here, but are documented in the file SYSBAL.FOR.

Functions and subroutines referenced:

CONCALC DPOFA DPOSL GFINIT

PSPCFD SETFLO TEK_ADV

8.1.2 Hydraulic Solution

The hydraulic solution system is responsible for the pressure drop and mass flow balance versus
flow resistance calculations on both the component and system levels. The hydraulic solution is based

on an implicit solution method that relies on feedback of the downstream pressures to the upstream
components through the flow path connections. This feedback approach allows the characteristics of a

76

closedflow pathto besensedby thecomponent,which initiatesthemassflow while it is in directcom-
municationonly with the immediatelyadjacentcomponents.Thus,noknowledgeof thecompleteflow
layoutis needed,andthemasspressurebalancecalculationsaremadeby thecomponentsthatinitiate the
massflowsor thatsplit theflow basedon thedownstreamflow resistances.A few systemiterationsare
usuallyrequiredto achievethecorrectpressurebalance,but theflow configurationandPCSarethe
determiningfactorsasto howfast thesystemconverges.An optimizedPCScausesavery significant
increasein executionspeed,sincefeweriterationsarerequiredif thecomponentsarecalled in a head-to-
tail sequence.Theusermayalter thePCSthroughtheuseof theSEQUENCEroutine in theuseropera-
tionsblocks.Thisroutineallowstheuserto specifyagroupof componentsin asequentiallist asthey
areto becalled in thatrelativeorder.Therestof thePCSis not affected.Of course,theusermay
rearrangethewholePCSif necessaryby listing all of thecomponentsin thecasein thedesiredorder.
TheusershouldplacetheSEQUENCEcallsin theOPS1block if aninitial sequenceis desiredor in the
OPS2block if timedependentresequencingis desired.

The hydraulicsolutionsystemconsistsof component-levelroutinesthatcalculateinternalcom-
ponentpressurelosses,aswell assystem-levelroutinesthatperformtheinterfaceoperationsbetweenthe
componentstreamsthroughtheflow pathconnections.Theinterfaceroutinesbasetheir operationson
thestreamclassificationcodesdiscussedin thenextsection.Two of theroutinesthatperformtheinter-
faceoperationsareCOPYandCOPYA,whicharediscussedbelow.

SubroutineCOPY(NUMSTM,CFLAG)

This routineupdatesstreamcompositionandflow rate(C Array)datato eachcomponent.It is
calledat thebeginningof the200block in thecomponentsubroutines.Properties(PROArray)
arealsoupdatedfor all inlet streamto thegivencomponent.

Functionsandsubroutinesreferenced:

CONDP CORRECT DPCS FINDC
PROPS

SubroutineCOPYA(NUMSTM)

This routineis similar to COPY.

Functionsandsubroutinesreferenced:

CORRECT FINDC PROPS

8.1.3 Stream Classifications

The component streams are classified as one of six general types of flow "devices" according to
their mass flow characteristics. There are four general categories of stream types: inlet, outlet, condi-

tional, and stagnant. There are two types of input streams, two types of output streams, and one each of
the conditional and stagnant types:

1. Passive inlet: Indicates that the stream accepts whatever mass flow is passed to it by the

upstream component. An example of this type is the inlet stream of a filter.
Its pressure is determined by adding the pressure drop of that component's
internal flow path to the corresponding outlet stream pressure of the same

component. Thus, a feedback loop is established between the inlet stream
and its corresponding outlet stream.

2. Active inlet: Indicates that the stream generates a flow rate by pulling mass from the

upstream component. An example of this type is the inlet stream of a

77

pumpor fan.Its pressure is set equal to the upstream pressure minus the
pressure drop through the flow connection.

3. Passive outlet: Indicates that the component passes the flow from a passive inlet stream
through to the outlet side with the establishment of a feedback loop
between the inlet side and the outlet side. Therefore, its pressure is set

equal to the downstream component's inlet pressure plus the pressure drop
through the flow connection. An example of this type is the outlet stream
of a filter.

4. Specified outlet: Indicates that the component contains some type of flow generation device
internal to the component that drives the outlet flow without a direct
relationship to any of the inlet streams. Its pressure may be set to a

constant value to simulate a regulated process, or a feedback loop may be
estabished by passing the PSPEC routine an argument value of zero. In the
latter instance, the pressure will be adjusted to match the downstream flow

configuration. An example of the regulated type is the oxygen outlet
stream of the static feed water electrolysis (SFWE), which relies on a

high-pressure nitrogen source to regulate the reaction chamber pressure.
An example of the feedback type is a component that contains an integral
positive displacement pump.

5. Conditional: Indicates that the stream may either accept flow or pass flow depending on
(1) what is hooked to it or (2) on the pressure balance of the system. The
component routine is responsible for any interface operations or feedback
loop establishment and the calculation of the stream pressure. Examples of
this type are tanks and cabins.

6. Stagnant: Indicates that no flow can occur to or from the stream no matter what the

flow conditions are. This type usually indicates a deactivated component
or perhaps a closed valve.

These stream classifications are contained in the system level data array named HYDRA and
may be changed dynamically during the solution process as conditions dictate by the component rou-
tines. These stream codes are initialized to the component default values at the beginning of the simula-
tion in the routine PINIT. They are checked for compatibility in the CONDP interface routine, that is

responsible for calculating the pressure drops in the flow connections and performing feedback opera-
tions, so that the connections make sense from a hydraulic standpoint. For instance, the connection of

two input streams to each other is an obvious error and a warning message is printed to the display. In
this case, the simulation is continued, but the pressure drop for the flow connection is not calculated and
the pressures are left at their previous values. The user may encounter a situation where dynamic condi-

tions cause a few solution iterations in that the stream codes are incompatible, but that eventually sort
themselves out. However, a repetitive series of the warning messages indicates an erroneous connection
that the solution system cannot resolve.

8.1.4 Friction Losses Through (_9nn¢ctions

The pressure drop through each of the flow connections is calculated by the routine FRICTDP,
which is called by the routine CONDP mentioned in the previous section. The FRICTDP routine calcu-
lates the pressure drop based on the assumption of an incompressible fluid flowing through a smooth
circular conduit in the laminar, transitional, and turbulent regimes. The Darcy formula is used in com-
bination with the hydraulic equivalent length and diameter, the fluid density, and the fluid viscosity to
calculate the pressure drop. Note that the dynamic pressure losses due to geometric considerations must
be accounted for by the correct calculation of the equivalent length for the specified equivalent diameter.
These values are stored in the constituent "C" array and are loaded at the beginning of the simulation

78

from theCASENAME.MODfile, thatcontainsthegraphicalinformationof thesystemlayout.Theuser
mustspecifytheequivalentlengthanddiameterwhentheCoNectcommandis issuedin thebuildupof
thesystemlayout (CN;Leq;Deq).Thelength,Leq,is enteredin feetandthediameter,Deq,is enteredin
hundredthsof aninch (100= 1inch).For instance,aconnectionthatis 25-feetlongand6 inchesin
diametershouldbeenteredasCN;25;600.Bothvaluesmustbeenteredonly asintegers,sincetheinter-
nal storagearraymaycontainonly integers.If noargumentsareincludedfor theCN command,thesys-
temautomaticallysetstheequivalentlengthanddiameterto their defaultvaluesof 1foot and6 inches,
respectively.

SubroutineCONDP(NEA,NSA,NEB,NSB,NC)

This routinedeterminesthepressuredropbetweencomponentsNEA andNEB connectedby
streamsNSA andNSBwhoseconnectionnumberis NC.

Functionsandsubroutinesreferenced:

DENVIS FRICTDP LOADCOND TEK_ADV

SubroutineFRICTDP(SDEN,SVIS,SXL,SXD,XMDOT,DPX)

This routinecalculatesthepressuredrop,DPX, througha smoothpipeof adiameter,SXD, and
equivalentlength,SXL, for aflow with thepropertiesof density= SDENandviscosity= SVIS
atarateof XMDOT.

Functionsandsubroutinesreferenced: NONE

8.1.5 Pressure Loss Through Components

The component routines are responsible for the calculation of the pressure losses for any internal
flow paths. The system-level routines in turn use these values to establish the feedback loops when
required. The routine PIPEDP is called by most of the components that have simple flow-through fluid
paths. It calls the routine FRICTDP, described in the previous section, with the appropriate equivalent
length and diameter, which are usually contained in the component performance data in the CON array.

The routine COMPDP is called by those components that make specialized pressure drop calcu-
lations, but also need to establish feedback loops with the rest of the system. This routine accepts the
intemally calculated pressure drop as an argument and sets the component stream pressures accordingly.
For example, the FILTER routine must adjust the pressure drop across the filter as it gets clogged with
debris, and this calculation is specific only to the filtration process. However, a feedback loop is still

required with the rest of the system to obtain the correct pressure balance. Therefore, the FILTER rou-
tine calculates the pressure drop across the filter element and then calls the COMPDP routine to carry
out the feedback function.

The routines that simulate the components that redirect or split the flow contain specialized logic

to carry out these functions. They are responsible for their own interface operations as well as maintain-
ing the feedback loops. An example of this type is the NODE component routine. It is the most compli-
cated routine from a hydraulic standpoint, since it must determine the flow directions as well as the flow
rates of a variable number of connecting streams. It relies on the connecting stream pressures, connec-

tion flow path resistances, and connecting stream classifications to arrive at the correct flow balance.

The components that have "specified outlet" streams call the routine PSPEC to set their outlet
pressures or establish feedback loops as appropriate. This routine is used for those outlet streams that are
regulated to a set pressure or that correspond to the outlet side of an internal positive displacement flow
device (constant flow rate with variable pressure differential). A nonzero value for the pressure

79

establishesthestreamasaregulatedpressurestream,while avalueof zeroestablishesafeedbackloopto
matchthestream'spressureto thedownstreamconditions.

SubroutineCOMPDP(NSTM,NSI,NSO,DP)

Thisroutinesetstheoutlet pressureof thestreamNSObasedon theinlet pressureof streamNSI
andthepressuredropDP.

Functionsandsubroutinesreferenced: LOADCOND

SubroutinePIPEDP(NSTM,NSI,NSO,XL,D)

Thesubroutine,similar to COMPDP,computestheoutletpressureof streamNSObasedon the
inlet streampressureNSI usingtheequivalentlengthXL andequivalentdiameterD.

Functionsandsubroutinesreferenced:

FRICTDP LOADCOND PROPS

SubroutinePSPEC(NSTR,PRESS)

This routinesetstheoutletpressurefor streamNSTRof componentIEQ to its specifiedvalueof
PRESS.

Functionsandsubroutinesreferenced: NONE

8.2 Thermal Network Solution Routines

The solution methodology used to solve for unknown system temperatures is discussed in section
8.3 of the User's Manual. Many components use the generic thermal network discussed below.

Subroutine TNETWK(MAX, RELAX, TSTEP, G 1, G2, G3, G4, G5, FAE, G7, G8, CAP,QMASS,
QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL, TMAS, TSHEL, IC)

This routine solves a generic thermal network discussed in section 8.3 of the User's Manual and
is used by many of the components for the thermal solutions.

Functions and subroutines referenced: MTH$EXP

Subroutine TNETWK2(MAX, RELAX, TSTEP, G1, G2, G3, G4, G5, FAE, G7, G8, CAP,QMASS,
QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL, TMAS, TSHEL, IC)

This routine is the same as TNETWK except the PT term that approximates the mass average
temperature is not used.

Functions and subroutines referenced: MTH$EXP

80

8.3 Mass Transfer

Subroutine MNETWK

MNETWK performs mass transfer network calculations for components modeling a fluid stream
in contact with a sorbent bed (SAWD, MOLSIEV, DEFLOW, etc.) The delta network technique

is used as described in section 8.5 of the User's Manual.

Functions and subroutines referenced:

BIVAR RBIVAR SUBR SUBR2

8.4 Thermodynamic Properties

Thermodynamic properties, such as enthalpy, specific heat, etc., are calculated for each fluid
stream by the PROPS routine. PROPS is set up for the eight default constituents discussed in section
7.2.2. These properties are stored in the PRO array as discussed in section 7.2.3. Constituents other than
the eight defaults are assumed to have the properties of water unless the PROPS routine is modified to
reflect the new constituent (see section 7.2.2).

Subroutine PROPS(NE,NS,NC)

Calculates the properties of a mixture based on the mass weighted average values of the con-

stituents' properties at the specified pressure (lb/in 2 absolute) and temperature (°F), given in the
PRO array, and composition (mass fractions contained in the "C" array).

Functions and subroutines referenced:

INTER SATPR TEK_ADV VISC

USERPROPS

Function SATPR(TEMP)

Returns the saturation pressure of air at specified temperature.

Functions and subroutines referenced:

MTH$ALOG MTH$EXP RINTER

Subroutine VISC(C,W,T0,XMU0,T,XMU)

Used to determine the viscosity of a fluid.

Functions and subroutines referenced: NONE

81

SECTION 9. COMPONENT ROUTINES

CASE/A presently supports 53 components. From the predefined components and the additional

"BLACKBOX" component (OPS7), the user may construct a system to simulate many life support sys-
tem configurations. Additionally, an experienced programmer can develop custom models to add to the
CASE/A component library. Each type of component is associated with a type number, usually referred
to by the variable ITYPE. ITYPE is contained in the third location of the IEL array for each component
in the model (i.e., ITYPE = IEL(IEQ,3)). These type numbers are shown in figure 19.

COMPONENT I

TYPE
NUMBERS

(ITYPE)

I I I I I I
I' II _ II _ II [_]['It _]B_C SABAT _ BOSCH VCO TIMES

I I I I I I
i_ls_ _,oI o.-i I _,.jl ,_i_ _.vl_l

I I I
,,11 TM 1_1SPIES SFWE RD

I I I
i _ 11 - i[_OF:IBN CABIN PUMP

I I I
io1_ _x_l[_]_x

_ll II 5

AFSPE

I Illi,_ I ,_I"BOSEP (_N2

I I
SPLIT RACK

I I

I FllCINHX CAP

44 45
RAD HATCH

22
CFR

I I

I I I

I I I
MSPLT HEATER DB'IJIM

I I I
VALVE

! I !
II ° l o][-jl_ I8OLIRCE PIPE SINK TIMER

'** = Not Supported in Version 5.0 of CASE/A

Figure 19. Component "ITYPES".

9.1 Component Routine Logic Structure

The CASE/A system presently supports 53 component types from which the user may construct
a life support system model. A subroutine exists for each of these component types that is called from
the SOLVE routine. Several unique components of the same type may be located in a configuration,

82

eachwith its own operatingparameters,but thesamesubroutineis calledfor each.All component
subroutinesperformfour discretefunctionsat thedirectionof theSOLVEroutinevia thesystem
commonblock variableMFLAG (fig. 20).Thesefunctionscorrespondto thefour segmentsof the
simulationexecutionlogic. Thefour functionsarediscussedbelow.

I I

ZTIfl_TZVE
ZNZTY.XLZUTZON 80LUTZOH

L 1

Z_-I,NZQ

CONI_mmT

_LECTZOQi
ROUTZI_

(BQSOLWe)

I

I--I
I

80LUTZON

STAGE FLAG
(XFLa_)

I
POST TZII_
STEP

8OLVZ

I

HF.XT
CCIfl_ONImT

ZN PC8

I

"g:t

I I

1_ 1

Figure 20. Component logic flow diagram.

9.1.1 Initialization Segment

When MFLAG is set equal to one, each component routine performs an initialization function

that loads the component performance data into active memory from mass storage and performs any
other operation required to initialize the component. This segment is executed only once during the
course of the simulation for each component.

9.1.2 Iterative Solution Segment

When MFLAG is set equal to two, each component routine performs the operations associated
with the simulation of that component type's physical behavior. The mass flow, thermal, and hydraulic
calculations are performed according to the operating characteristics for each component in the case.

Component types can be classified as active or passive devices relative to mass flow considera-
tions. Active devices will generate a flow rate: for example, a PUMP generates flow according to the

rate specified by the user or by its characteristic curve. The mass flow of an active device is usually

83

Passivedevicesaccepttheflow from theupstream component and operate appropriately on that mass
flow. The output of a passive device is a function of the input flow plus or minus the internal losses or
redirection of flow. A FILTER component is an example of a passive device. In some instances, a com-
ponent can have a combination of both passive and active behavior. For example, the BOSCH routine,
that simulates the BOSCH carbon dioxide reduction process, accepts concentrated carbon dioxide from

an upstream component that may or may not be mixed with the required quantity of hydrogen. If the
incoming mixture is deficient in hydrogen, the component will attempt to draw the makeup hydrogen
from the component connected to the BOSCH hydrogen makeup stream.

Each component inlet stream "accepts" the flow conditions from the upstream component's
outlet stream. The component routine performs its calculations based on these inlet flow conditions
existing as fixed boundary values. The component routine then sets the outlet stream conditions

according to the performance parameters and operating characteristics of that particular type of
equipment. A convergence check on the mass flows, temperatures, and pressures of all streams is then
performed and execution control is then returned back to the SOLVE routine. This segment is the main
body of the component logic and is executed several times during the solution of each time interval until
system convergence is obtained.

9.1.3 Posttime-Step Wrap-Up Segment

When the system has obtained convergence for the present time step, MFLAG is set equal to
three and each component routine performs a post time step wrap-up where mass accumulation devices

perform specialized calculations, and benchmark data, if tracked, are updated for all components. This
segment is executed once for each time interval of the simulation.

9.1.4 Postsimulation Wrap-Up Segment

When the simulation has been completed, MFLAG is set equal to four and each component
performs a post simulation wrap-up where the benchmark data are written back to the mass storage file
for that component. This segment is executed only once at the end of the simulation.

9.1.5 Internal Fatal Error Condition

A mechanism for terminating the simulation from within a component routine has been incorpo-
rated into the solution system for those circumstances when a fatal error condition has been generated
within a component routine. This is accomplished by setting the value of MFLAG to five in the compo-
nent routine itself. There are conditional test statements in the SOLVE routine that check for this flag
after each component routine returns control back to SOLVE. The SOLVE routine then returns control

directly back to the main command processor without performing the simulation wrap-up. A description
of the error condition will be written to the display device by the component routine.

9.2 Component Routines

The following is a brief description of each component subroutine including functions and sub-

routines referenced by each. A complete description of the component and its modeling assumptions is
contained in chapter 10 of the User's Manual.

Subroutine ADSORPTN

This routine is used to simulate the ADSORPTioN units used in water recovery systems.

84

Functionsandsubroutinesreferenced:

BENCH COMPDP CONINIT COPY
CORRECT EQWRIT EXP KHECK
PASSIVE QEXCHG TBOUND TEK_ADV
TNETWK

SubroutineAFSPE

This routineis usedto simulatetheprocessof hydrogenandoxygengenerationthroughthe
electrolysisof waterby asolidpolymerelectrolysisunit.

Functionsandsubroutinesreferenced:

AFPSATW AFSPEHX BENCH CONINIT
COPY EQWRIT PSPEC SPE1
SPE2

SubroutineBMR

This routineis usedto simulatethebodymountedradiator.

Functionsandsubroutinesreferenced:

BENCH CONINIT COPY EQWRIT
EXP KHECK PASSIVE PIPEDP
TEK_ADV

SubroutineBOSCH

This routinesimulatestheBOSCHCO2reductionreactor.

Functionsandsubroutinesreferenced:

ALOG BENCH B_CHX CONINIT
COPY DEWPT EQWRIT KHECK
PASSIVE PIPEDP PSPEC SQRT
TEK ADV

SubroutineCABIN .

This subroutineis theprimaryroutineto simulateCABIN moduleenvironments.

Functionsandsubroutinesreferenced:

BENCH CONIN1T COPYA CORRECT
DEWPT DPCS EXP FINDC
EQWRIT KHECKA PROPS SATPR
TEK_ADV

Subroutine CAP

This routine simulates the thermal behavior of a phase-change thermal capacitor.

Functions and subroutines referenced:

85

BENCH CONINIT COPY EQWRIT
EXP KHECK PASSIVE PIPEDP
TEK_ADV

Subroutine CFR

This routine is the primary routine used to simulate the carbon formation reactor. Used in con-
junction with a Sabatier CO 2 reduction reactor, the carbon formation reactor converts methane
from the Sabatier into solid carbon.

Functions and subroutines referenced:

BENCH CONINIT COPY EQWR1T
FINDC KHECK PASSIVE P1PEDP
PSPEC TEK_ADV

Subroutine CHX

This subroutine is the primary routine used to simulate the condensing heat exchanger. It is
modeled after the condensing heat exchanger used on Spacelab and the shuttle.

Functions and subroutines referenced:

ABS ALOG BENCH CONINIT
COPY DEWPT EQWRIT EXP
KHECK PASSIVE P1PEDP PSPEC
SATPR TEK_ADV

Subroutine CNHX

This subroutine is the primary routine used to simulate the contact heat exchanger.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY
EQWR1T KHECK PASSIVE PIPEDP

Subroutine CNTRLLR

This routine is the driver for simulating the controller component. The controller provides the

user a means of changing system variables without using OPS logic. It is useful for providing
feedback control loops for components and to simulate time varying component performance.

Functions and subroutines referenced:

ABS ACOS ALOG ALOG10
ASIN BENCH CDCODE CONINIT
COS COSH EQWR1T EXP
GETC GETI GETK GETP GETI"
POINTCON PULLSTX PUSHSTX SETC SETK
SETP SETI" SIN

SINH SQRT TAN TANH
TEK_ADV

86

Subroutine CP

This subroutine is the primary routine to simulate a cold plate heat exchanger.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY

EQWRIT KHECK PASSIVE PIPEDP
QEXCHG TBOUND TEK_ADV TNETWK

Subroutine CREW

This is the primary routine used to simulate the metabolic functions such as respiration, perspira-
tion, food and water consumption, heat rejection, and waste production of a crewperson.

Functions and subroutines referenced:

ABS COPY EQWRIT KHECK
PSPEC SCALER TEK_ADV

Subroutine DEFLOW

This is the primary routine for simulating a desicant bed used in the molecular sieve for water

vapor removal.

Functions and subroutines referenced:

ABS BEDLOAD_DEFLOW BENCH
COPY DCONV DINTER
DTNETWK2 ETA_DEFLOW EQWRIT
KHECK LOOPWARN_DEFLOW NUM_STEP_DEFLOW
PIPEDP PSPEC SQRT

TEK_ADV TIMESTEP WARN_DEFLOW

CONINIT
DMNETWK
GETU
PASSIVE
TBOUND

Subroutine DEHUM

This is the primary routine for simulating water vapor removal of a zeolite or silica gel dehumid-
ifier for the molecular sieve.

Functions and subroutines referenced:

ABS BENCH BIVAR CONINIT
COPY EQWR1T EXP KHECK
PASSIVE PIPEDP PSPEC SCALE

TEK_ADV TSTEP

Subroutine EDC

This is the primary routine used to simulate an electrochemical depolarized CO2 concentrator
(EDC) component. The EDC separates the metabolic carbon dioxide from the inlet air stream for

delivery to a reduction unit such as the Bosch reactor.

87

Functionsandsubroutinesreferenced:

ABS BENCH CONINIT COPY
DPCS EQWR1T FINDC KHECK
PASSIVE PIPEDP PSPEC SCALE
TEK_ADV

Subroutine EVAP

This is the primary routine used to simulate a flash evaporator for removal of heat from a control
fluid.

Functions and subroutines referenced:

BENCH BIVAR CONINIT CONV

COPY EQWR1T FINDC INTER
KHECK PASSIVE PIPEDP TEK_ADV

Subroutine FILTER

This routine simulates the performance of a porous media filter.

Functions and subroutines referenced:

ABS BENCH COMPDP CONINIT

COPY CORRECT EQWRIT KHECK
PASSIVE QEXCHG TBOUND TEK_ADV
TNETWK

Subroutine H2OSEP

This routine is designed to simulate the H20 separators used on board spacecraft and is modeled
after the Spacelab version used in the Spacelab ECLS models. This component is used to remove
the water from the condensing heat exchanger.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY

EQWRIT KHECK PIPEDP PROPS
PSPEC SATPR TEK_ADV

Subroutine HATCH

This is the primary routine to simulate the pressure equalization and air exchange functions of a
hatch connecting two cabins.

Functions and subroutines referenced:

ABS BENCH CONINIT COPYA

DPCS EQWRIT FINDC LOADCOND
PROPS SCALER TEK_ADV

Subroutine HEATER

This routine simulates an ideal heater to elevate the temperature of a fluid stream.

88

Functionsandsubroutinesreferenced:

ABS BENCH CONINIT COPY
EQWRIT KHECK PASSIVE PIPEDP
TEK_ADV

SubroutineHX

This routine is usedby all of theheatexchangercomponentsto simulatetwo fluid heat
exchanges.

Functionsandsubroutinesreferenced:

ABS BENCH CONIN1T COPY
EQWRIT EXP KHECK PASSIVE
PIPEDP TEK_ADV

SubroutineIONEXCH

This routinesimulatestheperformanceof acylindrical ion exchangeunit.

Functionsandsubroutinesreferenced:

ABS BENCH COMPDP CONINIT
COPY CORRECT EQWRIT EXP
KHECK PASSIVE QEXCHG TBOUND

TEK_ADV TNETWK

Subroutine LIOH

This routine simulates a lithium hydroxide (LiOH) cartridge. The LiOH cartridge is used to
remove CO 2 from an air stream.

Functions and subroutines referenced:

ABS BENCH CONINIT COPY

EQWRIT EXP KHECK PASSIVE
PIPEDP TBOUND TEK_ADV TNETWK

Subroutine MODULE

Simulates a module that acts as a volume of containment to track atmospheric composition, mass

addition/losses, and heat transfer to/from other modules or the external environment.

Functions and subroutines referenced:

ABS BENCH CONIN1T COPYA
CORRECT DCONV DPCS EQWR1T
EXP KHECKA PROPS TEK_ADV

Subroutine MOLSIEV

Simulates a MOLecular SEIVE CO2 adsorption/desorption.

Functions and subroutines referenced:

89

BENCH CONINIT CONV
EQWRIT FLOWSPACE GET_CONTINUUM
ISODAT KHECK MNETWK
PASSIVE PIPEDP PSPEC
SCALE TBOUND TEK_ADV
TNETWK2

SubroutineMSPLT

SimulatestheMulti-SPLiT or SPLITcomponent.

Functionsandsubroutinesreferenced:

BENCH CONINIT
DPCS EQWRIT
KHECK LOADCOND

SubroutineNODE

COPY
FRICTDP
SCALER

COPY

MOL_ETA
RISODAT
TIMESTEP

DENVIS
FLOWLEG
TEK_ADV

SimulatestheNODE component.This routineis locatedin thefile NODE1.FOR.

Functionsandsubroutinesreferenced:

COPYA DENVIS DPCS EQWRIT
FINDC FRICTDP KHECKA LOADCOND
PROPS SCALE SCALER TEK_ADV

SubroutineO2N2

Simulatesthenitrogenandoxygen partial pressure controllers.

COPY EQWR1T
KHECK PSPEC

Functions and subroutines referenced:

BENCH CONINIT
FINDC SMVBITS
TEK_ADV

Subroutine OPS7

OPS7 logic blackbox component code.

Functions and subroutines referenced:

COPY FINDC
SCALER

Subroutine PIPE

Simulates the PIPE component.

Functions and subroutines referenced:

BENCH COMPDP

DPCS EQWRIT

KHECK PDEL

CONIN1T COPY
FRICTDP KHECK

90

TBOUNDPASSIVE
QEXCHG

SubroutinePREWAST

SimulatesaWASTE PREtreatmentcomponent.

Functionsandsubroutinesreferenced:

BENCH CONINIT
EQWR1T KHECK
QEXCHG SCALER
TNETWK

SubroutinePUMP

SimulatesthePUMPcomponent.

Functionsandsubroutinesreferenced:

TEK_ADV

COPY
PROPS
TBOUND

TNETWK

CORRECT
PSPEC

TEK_ADV

BENCH CONINIT CONV COPY

DPCS EQWRIT FINDC KHECK
PSPEC QEXCHG SCALER TBOUND

TEK_ADV TNETWK

Subroutine RACK

Simulates the RACK component.

Functions and subroutines referenced:

BENCH CONINIT
KHECK MTHSEXP

TEK_ADV

Subroutine RAD

Simulates a RADiator component.

Functions and subroutines referenced:

BENCH CONINIT
KHECK MTHSEXP

TEK_ADV TNETWK

Subroutine RO

COPY
PASSIVE

COPY
PASSIVE

Simulate a reverse osmosis component.

Functions and subroutines referenced:

EQWRrr
P1PEDP

EQWRrr
PIPEDP

BENCH COMPDP CONINIT CONV
COPY EQWRIT KHECK MTHSEXP
PASSIVE PROPS PSPEC QEXCHG

TBOUND TEK_ADV TNETWK

91

SubroutineSABAT

Simulatesthe SABATier component.

Functions and subroutines referenced:

BENCH CONINIT COPY DEWPT
EQWRIT KHECK MTHSEXP PROPS
PSPEC PROPS QEXCHG SABCHX
SABDEL SABGCAL6 SABH20 SABRAT
SCALE TBOUND TEK_ADV TEMPNET

Subroutine SAWD

Simulates the solid amine water desorb unit.

Functions and subroutines referenced:

BENCH CONINIT COPY CONV

EQWRIT ISOLCO2 ISOLH20 ISOPCO2
ISOLPH20 KI-IECK LOOPWARN MNETWK

PASSIVE PIPEDP PSPEC SAWD_ETA
TBOUND TEK_ADV TNETWK WARN

Subroutine SFWE

Simulates the static feed water electrolysis unit.

Functions and subroutines referenced:

BENCH BIVAR CONINIT COPY
EQWRIT KHECK PASSIVE PIPEDP

PSPEC SFWET TBOUND TEK_ADV

Subroutine SINK

This routine simulates the SINK component.

Functions and subroutines referenced:

BENCH CONIN_ COPY EQWRIT
KHECK

Subroutine SOURCE

This subroutine simulates an ideal fluid source, providing downstream components with a con-
stant (or timelined in user OPS logic) input pressure, temperature, flowrate and composition.

Functions and subroutines referenced:

COPY KHECK PSPEC

Subroutine SUM

Simulates a component that mixes two fluid streams.

92

Functions and subroutines referenced:

COPYA DENVIS DPCS ERRDUMP

EQWRIT FINDC FRICTDP GIMAG
KHECKA LOADCOND PROPS SCALE

SCALER TEK_ADV

Subroutine TANK

Used to simulate the STORE component.

Functions and subroutines referenced:

BENCH CONINIT

EQWRIT FINDC
QEXCH TEK_ADV

Subroutine TBUS

Simulates the thermal bus component.

Functions and subroutines referenced:

BENCH CONINIT
KHECK PASSIVE

Subroutine TIMER

COPYA
KHECKA

COPY
PIPEDP

DPCS
PROPS

EQWRrr

This routine simulates the TIMER component.

Functions and subroutines referenced:

POINTCON TEK_ADV

Subroutine TIMESC

Used to simulate a thermally integrated membrane evaporation system (TIMES component).

COPY CORRECT

PSPEC TEK_ADV

CONINIT CONV

EQWR1T FRICTDP
PASSIVE POINTCON

TEK_ADV TNETWK

Functions and subroutines referenced:

BENCH CONINIT

EQWRIT KHECK

Subroutine VALVE

Simulates a VALVE component.

Functions and subroutines referenced:

BENCH COMPDP
COPY DPCS
KHECK LOADCOND

QEXCHG TBOUND

93

SubroutineVCD

Simulatesavaporcompresseddistillationcomponent.

Functionsandsubroutinesreferenced:

BENCH CONINIT COPY
EQWRIT KHECK PSPEC

SubroutineWASH

Usedto simulateaWASH component.

Functionsandsubroutinesreferenced:

CORRECT
TEK_ADV

BENCH COMPDP CONINIT COPY
CORRECT EQWRIT KHECK PASSIVE
PROPS PSPEC QEXCHG SCALER
TBOUND TEK_ADV TNETWK

SubroutineWQM

Usedto simulatea waterquality monitorcomponent.

Functionsandsubroutinesreferenced:

COPY EQWRIT KHECK PASSIVE
PIPEDP QEXCHG TBOUND TEK_ADV
TNEq-sVK

94

APPENDIX A. PREPARATION OF COMPATIBLE COMPONENT SUBROUTINES

The following sections describe how a user would incorporate a CASE/A compatible component
subroutine that matches the existing program architecture. The process is broken down into three sec-

tions including graphical icon construction, data management initialization, and component routine con-
struction.

1.0 Graphical Component Icon Construction

The CASE/A graphical component icon usually has one, two, or three entering and exiting
streams, but may have more depending on the process at hand. Each entering and exiting stream is num-
bered from one to the total number of streams for the given component, with the entering streams being
numbered first. Integer numbers are used to represent the individual ECLSS components and to specify
their interconnections, order of solution, and the appropriate CASE/A subroutine that is assigned to

simulate their function. Each piece of equipment located by the user will be assigned an arbitrary

equipment number (IEQ) depending on the order of component input. The solution routine solves the
component matrix by taking the component routines in the order of equipment input, with the exception
of certain "flagged" components that are sorted to the beginning of the solution scheme.

Several routines, arrays, and variables must be changed in order to incorporate a new graphical
icon. These routines work together in order to produce the graphics representation on the terminal
screen. The following steps outline the sequence for inserting a new component icon into the existing

data base.

1.1 Step 1: Increase Number of Components

The variable "NCOMP" refers to the active number of components that are readily available for

a given ECLSS simulation. When making an addition to the current library, this variable must be
increased by the number of components that are being added to the CASE/A library. The variable initial-
ization occurs within the main program section of CASEAMAIN.FOR.

1.2 Step 2: Modify "Drawc" Routine

The majority of work involved with the location of a new component icon is contained in the
routine DRAWC. When first entering this routine, the programmer finds a large number of array decla-
rations all of the form "ICOMP(I)", "JCOMP(J,K)". The names ICOMP and JCOMP are shortened

names for integer arrays containing data points for the representation of a particular component icon.
For example, the arrays "IMOL" and "JMOL" contain the data points for graphical representation and
rotation data for the MOLSIEV component. The values contained in the "ICOMP" array pertain to the

coordinates of the graphical picture of the new component. The "JCOMP" array contains the coordinates
data for the stream labels and component name.

The following example code in figure A-1 and figure A-2 use the MOLSIEV component to
describe the "ICOMP(I)" and "JCOMP(J,K)" array usage. Note that coordinates referenced are relative
to the center of the icon, unless otherwise noted, and are measured in pixels.

95

DATA IMOL /60, 60, 8, -30, 0, 30, 0, 15, 30, -27, -30/

Data Items: i, 2 =

3 =

4, 5 =

6, 7 =

8, 9 =

i0, ii =

Height x Width of box (60 x 60 pixels)

number of remaining elements used in array

(x,y) coordinates of stream 1

(x,y) coordinates of stream 2

(x,y) coordinates of stream 3

(x,y) coordinates of body hit dot

Note that IMOL is dimensioned to Ii

DATA JMOL /-58, 5, 35, 5, -16, 42,

-26, -50, -26, 42, -61, 0,

38, -12, -55, -12, -10,-45,

5, 40, 5, -45, 35, -5/

-for 0 degrees

-for 90 degrees

-for 180 degrees

-for 270 degrees

Figure A-1. Example code for new component in DRAWC routine.

Note that the MOLSIEV component has three stream labels. Therefore,

three data pairs (six items) are required to locate the starting point

of the label for each possible icon orientation (0", 90", 180", or
270").

-70 -50 -30 0 10 30 50 70

x,y coordinates

(-3O. -3O)
body hitdot
x,y coord: (-27, -30)

,y coord.
(30, -30)

Figure A-2. MOLSIEV icon layout.

96

Thenextarrayto modify is NSCODE.This arrayis dimensionedto NSCODE(65,8) andcon-
tainsthestreamcodefor eachof theeightpossiblestreamsfor everycomponenttype.Streamcodesare
discussedin section8.2.3of theuser'smanualandsection8.1.3of this manual.Theyaresummarized
below:

LODE TYPE
1 Passiveinlet
2 Active inlet
3 Passiveoutlet
4 Specified(active)outlet
5 Accumulator/boundarystream
6 Stagnantstream

SincetheMOLSIEV is type 16,its streamcodesarestoredin NSCODE(16,i),i=1,8.The
MOLSIEV hasthreestreams:stream1is apassiveinlet, 2 isa passiveoutlet,and3 is aspecifiedoutlet.
Thescreamcodesaretherefore1,3,4, 0,0, 0, 0, 0. Zerosmustbeusedfor non-existentstreams.For a
newcomponent,theprogrammermustspecifythestreamcodeof eachinlet/outletstreambasedon its
function.For example,theMOLSIEV is a simpleflow-throughdevice.Air ladenwith CO2entersstream
1andpassesthrougha sorbentbedandexitsstream2 dueto upstream/downstreamdrivers.Thus,the
inlet andoutlet streamsarepassive.Whenthebedis in desorbmode,avacuumpump(internal to the
component)drawsflow throughstream3,thus,makingstream3 aspecified(or active)outlet.These
codetypesaredefaulttypesonly andanexperiencedprogrammercandevelopacodethatcanchange
thestreamtypesdynamicallybasedonoperatingconditions.

Thefinal modificationto theDRAWC routineinvolvesthecoderesponsiblefor actuallydrawing
theiconon theterminalscreen.As describedin sectionA.1.1,thefirst newcomponentaddedto
CASE/A will becomponenttype56.TheDRAWC routineusesacomputedGOTOstatementto transfer
controlto statementlabelXX00 whereXX is thecomponenttypenumber.Therefore,thecodefor com-
ponenttype56beginsatstatementlabel5600.Thefollowing is adiscussionof theMOLSIEV
(ITYPE=16)icon codethatbeginsat statementlabel1600.This segmentof codeis shownin figure A-3.

ASIDE: If the new component icon could be represented by the MOLSIEV, the pro-
grammer could simply copy the block of code starting at label 1600 and ending before
label 1700 to a new section beginning with label 5600.

C

C MOLSIEV

C

1600 CALL

CALL

CALL

C

TNANSLT (IX, IY, IROT, IMOL, JAR)

COLO_(3)

BLOCX (IMOL (i), IMOL (2), IX, IY, IROT)

CALL

CALL

CALL

CALL

_SF(JAR(4), JAR(5), i, IROT,NSCODE(I, ITYPE))

_ (JAR (6), JAR (7), -i, IROT,NSCODE (2, ITYPE))

BUP (JAR (8), JAR (9),-I, IROT,NSCODE (3, ITYPE))

e_ (2, JAR (i0), JAR(II))

CALL G_LaCT (IX+0, IY+I0, IEN(I, ITYPE), 8)

CALL (]_Z,_"T(IX+0, IY-10,NAME, 8)

CALL G_Z_AB (IX+JMOL (i, JRO), IY+JMOL(2, JRO), 'AIR' ,3)

CALL G_T_%B (IX+JMOL (3, JRO), IY+JMOL (4,JRO), 'AIR' ,3)

CALL G_T_AB(IX+JMOL (5, JRO), IY+JMOL(6, JRO), 'CO2' ,3)

CALL COZ_R (I)

GO TO 9999

Figure A-3. Example icon graphics code (MOLSIEV icon).

97

An explanationfor eachline in figureA-2 follows:

Line 1:

Line 2:

TRAN.SLT adjuststheIMOL arraybasedon thescreencoordinates(IX, IY) wherethe
icon is to bedrawn.Thatis, TRANSLTconvertsthe iconcoordinatedata,which
locatesthestreamlines,from beingrelativeto the iconcenterto absolutecoordinates
relativeto thelower left handcomerof theterminalscreen.Thesenewcoordinatesare
locatedin thearrayJAR, whichcontainsthesameinformationin thefirst threeloca-
tions(boxheight,width andremainingusedarraylocations)astheICOMParray.The
coordinates(IX, IY) aredeterminedbytheuserwhenlocatingor movingacomponent
with acursorpick. ThevariableIROT is theicon rotationanglein incrementsof 90°.

This line changesthecolor of thecomponent.Color is basedon thecomponent'sfunc-
tion (i.e., air revitalization).

Line 3:
BLOCK drawstheiconbox (body)centeredat coordinates(IX, IY) androtatedatangle
IROT (mustbe0°, 90°, 180°,or 270*)on theterminalscreen.Theheightandwidth are
IMOL(1) andIMOL(2), respectively.

Lines4 to 6:
These statements draw the icon streams. BLF draws a line to the left of the box (parallel
to the x-axis) from point (JAR(4), JAR(5)) determined from the relative coordinates

(IMOL(4), IMOL(5)). The parameter "1" indicates that an arrowhead is drawn to point
toward the icon body. NSCODE (1, ITYPE) contains the stream code that directs this

routine to draw the hit box corresponding to that stream type (see section 8.2.3 of the
user's manual). BRT draws the stream line to the right (parallel to the x-axis) from
(JAR(6), JAR(7)) with an arrow pointing away from the icon body (-1). BUP draws the
third stream up (parallel to the y-axis) and pointing away from the point (JAR(8),
JAR(9)) on the icon.

Line 7:
CIRCLE draws the body hit dot, a circle with a diameter of two pixels, at the point
(JAR(10), JAR(11)).

Line 8:
GRLBCT draws a graphic label eight characters long centered on the point (IX, IY +

10). The label text is the component type (MOLSIEV) that is stored in IEN(i,TYPE),
i= 1,2. For this case, ITYPE is 16.

Line 9:
In this line, GRLBCT draws the NAME (component name located in IEL(4) and
IEL(5)) centered about the point (IX, IY - 10).

Line 10 to 12:
These lines draw the stream labels at the coordinates in the JMOL array. The variable
JRO indicates rotation angle using values of 1 to 4 for the valid rotation angles (1= 0 °,
2 = 90 °, etc.). JRO is calculated from IROT at the beginning of DRAWC. Note that
JMOL is not adjusted as is IMOL. The rotation angle and absolute coordinates are
included in the CALL statement (Remember that the second index of JMOL indicates
the rotation angle).

Line 13: COLOR is again called to reset the color to the default.

Line 14:
Control is transferred to line 9999, which dumps the buffered output and DRAWC is
then exited.

98

1.3 Step 3: Modify_ "Hit" Routine

Subroutine "HIT" contains the data describing the "hit box" locations for each stream and the
controller circle connection data for each component. The first modification that must be made to this
routine involves the NST array (dimensioned to 65). This array contains the total number of streams
associated with each component. The data are stored by equipment type. For example, the total number
of streams for a PUMP component (type 27) is stored in NST(27) and has the value of 2. The total num-
ber of streams for the first additional component will be located in NST(56).

The next change inside this routine involves the component "hit box" X and Y coordinate values

(refer to figure A-4). The X coordinate values are contained in the IXD array and the Y values are con-
tained in the IYD array. Currently, both the IXD and IYD arrays are dimensioned to (65,8). The index of

65 allows for up to l0 new components to be added. The second index "8" corresponds to the maximum
number of streams a component can have. The values in these arrays are input in the following manner:

The X coordinate of the hit box for stream 2 of component type 23 will be stored in the

IXD(23,- 1) location (refer to figure A-4).

The Y coordinate of the hit box for stream 3 of component type 36 will be stored in the

IYD(36,-2) location.

To generalize: x and y coordinates for the HIT BOX of a particular component type, say ITYPE,
are stored in IXD (ITYPE,i) and IYD (ITYPE,i) where i - 1-NST(ITYPE).

To add a new component, the values for IXD (52,1-8) and IYD (52,1-8) must be inserted. Zeroes

are input for the locations where there are no streams (e.g., if the new component has three streams,
locations IXD(52,4-8) and IYD(52,4-8) will have zero values).

C DATA IXD/

C &-15, 15,-15, 15,-70, 70, 0, 0, 0,-15, 15,-70, 70, 0, 0, 0, !EDC,SABAT

C &-15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,!O2N2,BUBBLE

C & 80,-80, 0, 0, 0, 0, 0, 0,-70, 70, 15, 0, 0, 0, 0, 0,!LIOH,IE)I_FJ_'V

C & 0,-15, 15,-70, 70, 0, 0, 0,-15,-15, 15,-70, 70, 0, 0, 0,!SPES,SFWE

C DATA IYD/

C & 70, 70,-70,-70,-i0, i0, 0, 0, 70,-70,-70,-i0, i0, 0, 0, 0,!EDC,SABAT

C & 70, 70,-70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,!02N2,BUBBLE

C & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 0, 0, 0, 0, 0,!LIOH,MOI_gX*

C & 70,-70,-70, 0, 0, 0, 0, 0, 70,-70,-70, 0, 0, 0, 0, 0,!SPES,SFWE

Figure A-4. Example hit box data initialization (MOLSIEV icon).

99

The last modification to be done to the HIT routine defines the X and Y locations of the body hit
dot (circle). Each component has a two-pixel circle that lies on the outer boundary of the component
icon body. This circle is used to connect the given component to a controller (CNTRLLR) or TIMER.

The two arrays used for the X,Y location of this hit circle are the ICNXD and ICNYD arrays. At the
present time, these are one-dimensional arrays with a maximum number of 65 values. Again, as with
IXD and IYD, the data are stored according to equipment type. For example the value stored in
ICNXD(16) = -27, and ICNYD(16)= -30. Therefore, the body hit dot for the MOLSIEV is located at
(-27, -30) relative to the icon centroid (refer to figure A-4). Note that stream hit dots are handled auto-
matically by the routines that draw the stream line and hit box.

1.4 Step 4: Modify_ "Locate" Rgutine

Also located in LOCATE.FOR is the array NANGLE(65), which contains the default orienta-
tions for each component (default IROT). Typically, the default angle is 0 °. If some other orientation is
desired, however, it should be stored in NANGLE according to ITYPE. The MOLSIEV is NANGLE
(16) =0.

1.5 Step 5: Modify "Ssout" Routine

Subroutine SSOUT contains the stream labels for each component that appears in the .LPP print-
out. The character array (STRLBL) that holds these labels is currently dimensioned to 8 by 65, accom-
modating 65 components with a maximum of eight streams each. STRLBL is a CHARACTER*8 vari-

able, thus, the label name can have a maximum of eight characters. For labels shorter than eight charac-
ters, the array must be padded with blanks. In the MOLSIEV example, the three stream labels are stored
in STRLBL (1-3,16). Locations STRLABL(4-8, 16) are strings of 8 blanks. The DATA statement from
SSOUT.FOR initializing the MOLSIEV is shown in figure A-5 (note that the statement is scarred for ten
additional labels represented by the comment "DUMMY").

DATA (STRLBL(i,I),i=I,8)/'AIR IN ','H2 IN ','AIR OUT ',

& 'CO2 OUT ','COOL IN ', 'COOL OUT',' ',' '/

_EDC

DATA (STRLBL(i,16),i=I,8)/'AIR IN ','AIR OUT ','CO2 OUT ', !MOLSIEV

&, , , , /

DATA (STRLBL(i, 65), i=l, 8) /, , , !_

& , , , ,, , ,, , ,, , ,/

Figure A-5. Example hit stream label declaration (MOLSIEV icon).

1.6 Step 6: Modify "Pinit" Routine

The first modification of PINIT.FOR involves the NSCODE array. These changes are fully
described in section A. 1.2. It should be noted that this array is used in DRAWC only as an indicator of
how to draw the hit boxes for a given stream type. In PINIT, the NSCODE array is used to set the values
of the HYDRA array.

The second modification is to the array JSCODE. This array is dimensioned to JSCODE(8, 65),
as is NSCODE. The first index represents the stream number and the second is for component type. The
JSCODE array contains "imposed flow codes" for each of the component's streams• These flow codes
ale:

100

-1 = componentstreamactslike a sink
0 = no imposedflow (passthrough)
1 = componentstreamactslike asource

As anexample,theMOLSIEV hasthreestreams:streams1and2 areflow-throughandstream3
deliversCO2to adevicelocateddownstream.Fromthesystemlevel,streams1and2 donot impose
flow (i.e., air entersandexitsbecauseof thepressureexertedby upstreamanddownstreamdevices).
Stream3, however,appearsto thesystemto bea sourcefor CO2.Thus,for theMOLSIEV component:

JSCODE(1, 16)= 0
JSCODE(2, 16)= 0
JSCODE(3, 16)= 1

SincetheMOLSIEV hasonly threestreams,theremainingvaluesof JSCODE(i, 16)arezero.

Thefinal modificationto PINIT whenaddinga newcomponentis to thearrayKSCODE.Like
NSCODEandJSCODE,KSCODEis dimensionedto KSCODE(8, 65).Thisarraycontainstheinternal
(to component)connectiondata.Thepossiblevaluesfor KSCODEareshownbelow:

0
1to8
9

= nodirectinternalconnectionto anyothercomponentstream
= streamnumberof oppositeendof internalflow path
= streamis connectedto all otherstreams(i.e.SPLIT,MSPLIT)

In theMOLSIEV, air entersstream1,passesthroughthecomponent,andexits atstream2.
Therefore,stream1hasaninternalconnectionto stream2. Likewise,stream2 hasaninternal connec-
tion to stream1.Stream3hasno internalconnectionto anotherMOLSIEV stream.Thusfor the
MOLSIEV component:

KSCODE(1, 16)=2
KSCODE(2, 16)=1
KSCODE(3, 16)= 0
KSCODE(4-8, 16)= 0

1.7 Step 7: Modify "Eqsolve" Routine

The subroutine EQSOLVE has the responsibility to call the correct component requested by
SOLVE based on the component type. SOLVE obtains the IEQ number from the NPCS array (see sec-
tion 5.6.1). EQSOLVE is then called. From the IEQ number, the component type is determined from the
IEL array; ITYPE=IEL(IEQ, 3). Based on ITYPE a computed GOTO transfers control to statement label
ITYPE + 10. For example, the MOLSIEV component would cause control to go to label 26, since the
MOLSIEV type is 16. EQSOLVE is scarred for 10 new components at labels 66 through 75 (ITYPE 56
through 65). At each of these statement labels, the CONTINUE statement would simply be replaced by
the statement CALL NEWTYPE, where NEWTYPE would be a component subroutine having the struc-

ture discussed in appendix section 3.0.

1.8 Step 8: Update Case/A Object Library

When code is modified for any reason, the object library must be updated with the new code in
order for all users to access it. The safest way to make changes to CASE/A is to copy the source routines

from the CASEA$CODE directory into a user directory and make the necessary changes to the copy.
When editing of the source is complete, the new routines need to be compiled to create an object file for

101

linking with theCASEA library. As with OPSlogic, this is doneby invokingtheVMS FORTRAN
compilerasfollows:

$ FORTRAN/NOOPTIMIZE/DEBUG/CHECK=BOUNDS/CONT=99 filename. FOR

where filename.FOR is the name of the" modified routine, EQSOLVE.FOR for example. If no compila-
tion errors occur, the new object code can be linked with the rest of CASE/A with the VMS linker. For

example, if adding a new component NEWCOMP, and having made the required changes to the files as
described above, the LINK statement should be:

$LINK/DEBUG/EXE=CASEA.EXE NEWCOMP, DRAWC, HIT, SSOUT, PINIT,-

EQSOLVE, CASEA$CODE:CASEA, CASEA/LIB

This command causes CASEA.EXE to be created in the current default directory (this should be
a user directory, not CASEA$CODE) from the object files NEWCOMP, DRAWC, HIT, SSOUT,

PIN/T, and EQSOLVE in the user directory; CASEA.OBJ and CASEA.OLB (CASE/A object library) in
CASEA$CODE. The linker will use the object code listed first in the link statement, thus abandoning
the old subroutines located in CASEA$CODE:CASEA.OLB (these are not removed, just not linked).
Thus, the library remains intact and costly errors can be avoided.

Since this process is likely to be required several times during the construction of a new compo-
nent, it may be wise to copy CASEA$CODE:LINKCAS.COM into the user directory and modify the

LINK statements contained therein in the above manner. It would then be a simple matter to relink by
the following statement:

$ @LINKCAS or if OPS Logic were involved: $ @LINKCAS OPSFILE

When modifications are complete and thoroughly tested, the CASE/A library is ready to be
updated. It is extremely important to test code modifications rigorously, as the CASE/A library is public
and all users rely upon its integrity. It is a safe practice to retain old versions of code in case errors
should occur when changes are made.

To update the library, copy the new source routines into the CASEA$CODE directory, retaining
the previous versions (default version limits should be greater that 1 for CASEA users). Next, change
default directories to CASEA$CODE:

$SET DEFAULT CASEA$CODE

The command procedure CD.COM is in this directory and is used to compile the source and
replace the objects in the library CASEA.OLB. This is done by entering the command:

$ @CD FILE

at the DCL prompt. "FILE" is one of the new source files and should not include the extension (i.e.,
EQSOLVE not EQSOLVE.FOR). When this is done for each new source file, all users should relink
using LINKCAS (see section 2.1 of the user's manual).

The final step is to update the library list so that in the event the library needs to be recreated the
new component routine will be updated as well. The files LIB 1LIST.COM and LIB4LIST.COM contain

the names of each CASE/A subroutine source file. The new component routine filename (NEWTYPE)
should be added to the end of LIB4LIST.COM. The last two lines are shown below in figure A-6.

102

ELIMINAT, EXCHAN, FIT, GRLBAB,

INTERSEC, PLTOVR, POINT, RANK,

SCAN, SCREDT, SELECT, SIGMA,

SORT, TDPLOT, UNION

Figure A-6. Modified library list (LIB4LIST.COM).

See appendix C of the user's manual for creating a library using LIBCREATE.

2.0 Data Base Construction

2.1 Data Base File Description

When a new component is created, a new data base must be generated to support that component.

A listing of the files in the data base directories reveals that a data base exists for every component
except for BUBBLE. Also, each data base consists of at least eight files:

NAME. DDF NAME. STT*

NAME. DAT NAME. USR*

NAME. EDI NAME. SUB*

NAME. ED2

NAME. SCR * - these files are maintenance files automatically created by

the data management system and their function is unimportant to

the CASE/A programmer and beyond the scope of this manual.

2.1.1 D_at_aD_finition File

The data definition file (DDF) specifies how the component data (stored in binary form) are

interpreted. A generic DDF is shown in figure A-7. The first 12 entries in every component DDF store
the same type of information. The remaining items are user-specified and define the inputs, outputs, and
benchmarks associated with the component. In the generic DDF, words 16 to 66 are inputs, words 67 to

70 are outputs, and words 71 to 79 are benchmarks. The labels shown (INPUT CONSTANT #1, etc.)
should be modified to indicate the particular parameter of interest (32 characters maximum). The header

line and the three-digit integers preceding each item are described in section 3.4.

2.1.2 Binary Data File

This file (.DAT) contains the actual component data. The data are stored in binary form (note
that this file cannot be printed in the typical ASCII form). The NEWCOMP.DAT file is automatically

updated as components of NEWCOMP type are used in model development. It should be noted that the
data associated with every NEWCOMP component in EVERY model at a given installation site are
stored in this file. If NEWCOMP.DAT is deleted, all NEWCOMP data will be lost. This is true for any

COMPONENT.DAT file.

2.1.3 Full Screen Editor Templates

The .ED 1 and .ED2 files store information enabling data from the .DAT file to be read

(according to the .DDF) and presented in a full screen format. The .ED2 file is a text file that contains all
of the parameter labels for a component. These template files are located in the directory with the .DDF
and .DAT files ([CASE.DATA]). This directory is specified by the VMS logical name CASEA$DATA.
The .ED 1 file is created by running TDMS and executing the SCREEN command (from within the

[CASEA.DATA] directory. The details of this command may be obtained via the online help utility.

103

81 78 77 15000 "/8 0 0
002 002 001 CASE NAME
002 002 003 SUBSYSTEM NAME

002 002 005 COMPOt_ENT NAME

003 001 007 NUMBER OF INPUTS

003 001 008 NUMBER OF OUTPUTS

003 001 009 NUMBER 0F BENCHMARKS

003 001 010 CDEL LOCATION

003 001 011 TDEL LOCATION

003 001 012 PDEL LOCATION

003 001 013 POWER ,WATTS

003 001 014 WEIGHT ,LBM
003 001 015 VOLUME ,CUBIC FEET

003 001 016 BED FLAG (1-5A, 2-EMRC)

003 001 017 ADSORBENT BED WEIGHT ,LBM
003 001 018 HEAT OF ADSORPTION ,BTU/LBM-C02

003 001 019 BAKEOUT TENP SET POINT ,DEG-F

003 001 020 BED LOAD CAPACITY INCREASE FACT

003 001 021 OPERATIONAL FLAG(0-ABS, 1-DES)

003 001 022 nED SHELL EIqV CNVCTN G, BTU/HR/F

..°

003

003

003

003

003

003

003

003
003

003

003

003

003

003

001

002 001

$$EX

001 066 **OPEM INPUT**

001 067 MAXIMUM CO2 BED LOADING, %
001 068 **OPEN INPUT**

001 069 TOTAL C02 RE3fOVED

001 070 FINAL CO2 BED LOADING

001 071 AIR IN MAX, LBM/HR

001 072 AIR IN MIN, LBM/HE

001 073 AIR IN NOH, LBM/HR

001 074 AIR OUT MAX, LBM/HR

001 075 AIR OUT MIN, LBM/HR

001 076 AIR OUT NOM, LBM/HR
001 077 CO2 OUT MAX, LBM/HR

001 078 CO2 OUT MIN, LBM/HR

001 079 C02 OUT NOM, LBM/ER

001 080 MOD DATE

081 SECURITY

, L_M

• LBM

2.1.4

Figure A-7. Example data definition file (DDF).

The script file (.SCR) is a text file that is automatically created for every data base. It serves as a

macro file that is executed each time the data base is loaded. This file is useful for output data bases but
should not be used for component data bases.

2.2 Addin_/Modi_ing Component Data Base Fil¢_

Adding or modifying the component data base files requires the use of a text editor (such as EDT
on the VAX/VMS) and the TDMS data management tool. The best source for information regarding
TDMS can be obtained from executing TDMS and reviewing the help screens. The following is a brief
list of steps required to add/modify a component data base:

Step 1:

Step 2:

Step 3:

If modifying an existing component database, make a backup copy of the original.

Update or create the .DDF file using a text editor (such as EDT on VAX/VMS). Refer to TDM, _
Data Structures Help menu or section 3.4 of this manual for the formatting conventions.

(a) If adding a new component, the .DAT file will be updated as new components are added

under the CASE/A model construction process. To add default settings for the new component
execute TDMS and use the ENTRY command.

(b) If modifying an existing component, execute the program INSERT as follows:

RUN/NODEBUG CASEA$DATA :INSERT

I04

Step 4:

Step 5:

This program will prompt for changes to the .DAT file and insert 0.0 into all records for the new
fields in that component database.

Update/Add the .ED2 file using the text editor (e.g. EDT). This screen layout can be changed as
necessary to add or move fields that will be displayed from this component's database. In
addition the .ED2 file must be consistent with the .ED1 file in order for the screen display for

the component to work correctly. Note the row/column positions of the new fields added to the
.ED2 file, so that these can be added to the .ED1 file.

(a) If adding a new component, use TDMS command "SCREEN" to position items in the .DDF
file. This will correspondingly update the .ED1 file as items in the .DDF file are positioned.

(b) If modifying an existing component, use the VAX/VMS editor to update the .ED 1 file. The
format is described in the TDMS help panel for "SCREEN."

3.0 Component Fortran Routine

The most important, and perhaps the most difficult, task in creating a new component is creating
the FORTRAN code to model a component. All of the components are unique in nature due to the archi-
tecture of the CASE/A command processor. Each of the subroutines are broken into four discrete sec-

tions, depending upon the state of execution of the solution routine. These sections pertain to the follow-

ing aspects of a systems-level simulation:

Subroutine Block Execution State

I00 Block Called one time at the beginning of the simulation.

200 Block Called every component iteration. Called a maximum of NLOOP

times.

300 Block Called after each successful time step convergence or after a

maximum number of loops have been exceeded.

400 Block Called one time at the end of a simulation.

The general types of operations that are executed in each of these blocks will be discussed in the

following sections. The final section provides a step-by-step description for one of the existing CASE/A
library subroutines. This subroutine is for an ideal heater and is called HEATER. This is one of the
simplest component models in the CASE/A system and will allow the user to get a feel for the general-
ized flow of data into and out of the component.

3.1 Data Initialization Segment (100 Block)

The data initialization segment portion of CASE/A occurs only one time for each component

within a given simulation. The first statement within the 100 block (for components with data files) is
the command CALL CONINIT. This command loads all of the data for that particular component type

from mass storage into random access memory. Other types of operations performed in this block
include initializing the CON array outlet locations to zero, initializing variables that stay constant

throughout the entire simulation, setting the plot array (D array) locations to zero, and setting the appro-
priate operation flags to their initial values.

105

3.2 Iterative Solution Segment (200 Block)

The iterative solution segment performs the operations associated with the simulation of that

component type's physical behavior. The mass flow, thermal, and hydraulic calculations are performed
according to the operating characteristics for each specific component within a given case. The general
types of operations executed in the 200 block also depend on the type of component, active or passive.
Active components will generate flow according to a rate specified by the user or a characteristic flow
curve. Passive devices accept flow from the upstream component and operate on the control volume
appropriately depending on the temperature, pressure, and composition of the inlet stream.

The iterative segment of a component becomes more complicated if the component in question
requires a transient mass, thermal, or combined response. Transient response routines require the user to
save the initial conditions from the last successful time step convergence into temporary values, and also
update the transient values from iteration to iteration within the component. Often times, the transient

routine will require a smaller time step than the system time step, hence the routine must be "fooled" by
iterating within that component's 200 block for a number of loops given by the following relation:

Number of iterations inside the 200 block for a routine whose internal time step is calculated to
be 5 seconds and is inside a system whose time step is 60 seconds:

of Loops = (60 S/5 S) = 20

Some of the more detailed transient routines currently available within the CASE/A library are
MOLSIEV, DEFLOW, and DEHUM and SABAT.

Specific requirements must be met in the 200 block of each component routine. The component
pressures, mass flow rates, mass fractions, and specific heats must be passed from the inlet to the outlet
so that the downstream component will have values to operate on if an error condition is reached. This is

usually done near the beginning of the block. The next portion of the 200 block contains the inputs that
are read from the CON array. These values are likely to change with time, hence the user can change
these through operations logic. This section varies in size depending on the complexity of the process at
hand. The actual "iterative" portion of the 200 block is usually based on a mass or temperature relation-
ship. In other words, the iterative portion of the block is executed until some user input relaxation

involving a temperature or constituent mass fraction is met. This section also varies greatly in size de-
pending on the nature of the process. The final portion of the 200 block contains operations that are

similar for all components. The cabin heat load and conductor (CLOAD and GSUM) arrays are updated
based on the final component temperature, outlet stream mass fractions and flow rates are set, and the

stream outlet pressures are calculated depending upon the user's preference for calculation type (see
section 8 of the user's and programmer's manual).

3.3 Post-time Step Wrap-Up Segment (300 Block)

The post-time step wrap-up segment of each component routine is called one time per successful
system time step (at the end of the time step). The CON array output locations are updated at this time

along with any benchmark parameters that tracked on a per time step basis. If the component in question
has an internal accumulation stream, it must be updated within the 300 block also. The 300 block varies

in size depending on the number of output and benchmark locations that are reserved by the new com-
ponent.

3.4 Postsimulation Wrap-Up Segment (400 Block)

The post simulation wrap-up segment of the code is executed one time per simulation (at the

simulation end). The structure of the 400 block is very similar for every component. The data updated in

106

this sectionincludethebenchmarkparameters.Note thatthecall to the routine EQWRIT is no longer
used in the current version.

3.5 Example Component Subroutine - Heater

logic
other

Figure A-8 shows example source code for an ideal heater. It is documented so that the general
of a component subroutine can be determined. The programmer is encouraged to investigate the
component subroutines in CASEA$CODE to obtain a better understanding of each model.

MINS2>type heater.for/page
C *** DEC/CMS REPLACEMENT HISTORY, Element HEATER.FOR

C *** *2 2-OCT-1990 15:34:41 ANDERDE _this is the cosmic (version

4.1) version"

C *** *i 6-SEP-1990 08:58:55 ANDERDE "Initial element creation from

user4$: [ed62.casea4.code]"

C *** DEC/CMS REPLACEMENT HISTORY, Element HEATER.FOR

SUBROUTINE HEATER

C

C COMPCOM.INC CONTAINS COMMON BLOCKS OF ALL CASE/A ARRAYS

C NECESSARY FOR COMPONENT OPERATIONS.

C

C

C

C

INCLUDE 'compcom.inc'

INCLUDE 'com_io.inc'

COMPUTED GOTO DEPENDING ON SOLUTION SEGMENT

GO TO (100,200,300,400) MFLAG

C

C

C

INITIALIZE "CON" ARRAY BENCHMARK LOCATIONS

100 CALL CONINIT

C

C RESERVE D(IEQ, II) AS FLAG THAT INDICATES

C IF HEATER IS ON (0) OR OFF (i.0) FOR

C CUMMULATIVE OPERATING TIME CALCULATION

C PERFORMED IN _300" BLOCK

C

D(IEQ, II) = 0

CON(NOUT+2) = 0 ! INITIALIZE OUTPUT

GOTO 499

C

C COPY UPDATES INLET STREAMS' PROPERTIES

C _ACTIVE SET" FOR CONVERGENCE CHECKS IN

C

200 CALL COPY(2)

C

C PASSIVE CHECKS FOR PULL THROUGH FLOW

C INLET/OUTLET STREAMS

C

CALL PASSIVE(2,1,2)

D(IEQ, II) = 0

IF (CFLAG) GOTO 499

AND FLOW RATES, AND PREPARES

SUBROUTINE KHECK.

IN COMPONENTS WITH PASSIVE

Figure A-8. Example source code for an ideal heater component.

107

C

C

C PASS FLOW RATE AND COMPOSITIONS FROM INLET TO OUTLET AS A SAFETY
MEASURE.

C

DO 210 I = I,NTRACK

210 C(I,npt2) = ABS(C(I,nptl))

C

C

C

C

C

C

C

C

PASS TEMPERATURE TO STREAM 2

PRO(2,IEQ,2) = PRO(2,IEQ, I)

DEFINE PERTINENT LOCAL VARIABLES

FLOW = ABS(C(l,nptl))

CP = PRO (3, IEQ, I)

TIN = PRO(2,IEQ, I)

TNEED = CON(NINP+I)

IF (TIN .GT. TNEED) THEN

D(IEQ, II) = 1.0

QNEED = 0

TNEED = TIN

ELSE

QNEED = FLOW * CP * (TNEED-TIN)

ENDIF

CON(NOUT+I) = QNEED

SET OUTLET TEMPERATURE

PRO(2,IEQ,2) = TNEED

298 CONTINUE

C

C THIS ROUTINE CALCULATES THE PRESSURE DROP THROUGH THE INTERNAL

C CONNECTIONS OF A PASSIVE, FLOW THROUGH DEVICE BASED ON A USER SUPPLIED

C EQUIVALENT LENGTH AND DIAMETER (NOTE THAT DIA MUST BE CONVERTED TO

FEET).

C

CALL PIPEDP(2,1,2,CON(NINP+2),CON(NINP+3)/12.0)

C

C

C

C

CALL ROUTINE TO CHECK CONVERGE AT A SYSTEM LEVEL (FROM THE ACTIVE SET

ESTABLISHED IN Subroutine COPY).

299 CALL KHECK(2)

GOTO 499

C

C

C

C

C

C

SAVE DESIRED VALUES FOR BENCHMARK CALCULATIONS

NOTE THAT BENCHMARKS WORK IN _THREES", I.E., MAX,MIN, AND NOM.

THE ROUTINE BENCH ASSUMES THAT IF BENCHMARK 1 IS SPECIFIED, THEN

BENCHMARKS 2 AND 3 MUST ALSO BE UPDATED.

Figure A-8. Example source code for an ideal heater component (continued).

108

300 CALL BENCH(I,ABS(C(I,nptl)))

CALL BENCH(4,PRO(2,IEQ,I))

CALL BENCH(7,CON(NOUT+I))

IF (D(IEQ, II) .EQ. 0) THEN

CON(NOUT+2) = CON(NOUT+2) + STEP

ELSE

write(iuo,*)

CALL TEK_ADV(1)

write(iuo,*)'HEATER WARNING: INLET TEMP > DESIRED OUTLET TEMP.'

CALL TEK_ADV(1)

WRITE (6,310) (IEL(IEQ,K),K=4,5),IEQ

310 FORMAT(IX,'EQUIP NAME: ',2A4,' EQUIP IEQ: ',I5)

CALL TEK_ADV(1)

write(iuo,*)'NO HEATER POWER APPLIED: CONTINUING SIMULATION...'

CALL TEK_ADV(1)

ENDIF

GOTO 499

CALCULATE NOMINAL VALUES OF BENCHMARKS (3RD VALUE).

400 IF (TIME .NE. STRT) THEN

CON(NBEN+3) = CON(NBEN+3) / (TIME-STRT)

CON(NBEN+6) = CON(NBEN+6) / (TIME-STRT)

ENDIF

IF (CON(NOUT+2) .NE. 0) THEN

CON(NBEN+9) = CON(NBEN+9) / CON(NOUT+2)

ENDIF

NULL CALL, THIS ROUTINE IS NO LONGER USED.

CALL EQWRIT

499 RETURN

END

Figure A-8. Example source code for an ideal heater component (continued).

109

APPENDIX B. GLOSSARY OF LABELED COMMON BLOCK VARIABLES

The following table provides the definition of all major variables that are in common blocks. It
describes the function of the variable and what is represented by each index. These common blocks are

located in the following "INCLUDE" files:

COMPCOM.INC denoted as "C"
FRAMECOM.INC denoted as "F"
GRAPHCOM.INC denoted as "G"

COM_IO.INC denoted as "I"
SOLVCOM.INC denoted as "S"
UTILCOM.INC denoted as "U"

Also "P" denotes common block used for plot functions that is declated directly in subroutines where
referenced.

These files are located in the CASEA$CODE directory.

VARIABLE DATA COMMON INCLUDE DESCRIPTION
TYPE BLOCK FILE

NAME

AFLNAM CHAR*80 /ARCHIVE/ G Contains archive file name for model to be
archived. Used in the ARCHIVE routine.

ARCH_DIR CHAR*40 flO_UNITS/ I Contains directory name for the directory
containing archive files. Used in the
ARCHIVE routine.

ARCHSET_NA CHAR*8 /ARCHIVE/ G Contains archive set name for model to be
ME archived. Used in the ARCHIVE routine.

C(54,2000) REAL*4 /CPRO/ C,G,S,U Stream constituent array. See section
7.2.2.

CFLAG /CON/ C,G,S,U

CLOAD(25,3)

CON(75000)
CONFLAG

LOGICAL*
4

REAL*4

REAL*4

REAL*4

/CABIN/

/CON/

/CON/

C,U

C,G,S,U
C,G,S,U

When CFLAG is TRUE the 200 block of

components whose input/output arrays
have not changed since the last iteration is
skipped.
Sum of component heat transfer from
components in an assigned subsystem. The
first index is the relative cabin number.
The second is for convection, radiation,
and conduction respectively.
Component data array. See section 7.2.1.

CONFLAG is used by the controller for
various "ACTIVATION CODES"
CONFLAG can be between 0 and 9. See
CNTRLLR component in chapter 10 of
the user's manual.

CRAD(25) REAL*4 /CABIN/ C,U Effective radiation temperature in cabin
environment.

CSPLIT(250,9) REAL*4 /MSPLIT/ G

/CABIN/REAL*4CSTR(25)

CTEMP(25)

C,U

C,UREAL*4 /CABIN/

The first index of CSPLIT is the relative

number of the split component and the
second is l=number of split legs, 2-9 =
split fraction for each le_.
Structure temperature.
Internal cabin temperature.

111

D(1000,50) REAL*4 /PLOT/ C,G

DEVICE CHARACT /DEV/ C,G,S,U
ER* 12

DIRECIORY CHARACT /DEV/ C,G,S,U
ER*20

D1RNAME CHARACT /DEW C,G,S,U
ER*80

END REAL*4 /EXQ/ C,F,G,S,U

ERRFLAG(100
0,3)
FLOCOND(200
0,5)

LOGICAL*
4

REAL*4

REAL*4

/ERRFLG/

/PRESSURE
/

/CABIN/GSUM(25,3)

C

C,G,S,U

C,U

HOST CHARACT /DEV/ C,G,S,U
ER*32

REAL*4 /CPRO/ C,G,S,UHYDRA(2,1000
,8)

IABORT INTEGER*4 /ARCHIVE/ G

IARCHIVE INTEGER*4 /ARCHIVE/ G

/ARCHIVE/

/BBOX/

INTEGER*4IAUTOPLOT

IBBLAB(25,8) INTEGER*4

G

G,S

D gives 50 internal storage location for
1000 components. This is internal and
unique to each component. The 50
locations should be initialized in the
components 100 block. This is so that
when changes are made or new
components added, the common.inc files
will not need changini_.
VMS logical disk name (i.e. DISKS2).

VMS directory (i.e. ECLS.CASEA).

Concatenation of the above to form a
complete directory path (i.e.
HSV::DISK$2:[ECLS.CODE]).
Simulation termination time in hours.

A conditional flag used by the H2OSEP
component.

This array contains the conductor data for
each flow conductor. The first index is the
conductor number, the second is: Node A
number, Node B number, mass flow rate,
pressure drop, and C array pointer for
values of 1, 273 r 4rand 5.
Sum of conductance values from assigned
subsystem components to assigned cabin.
First index is relative cabin number,
second index is convection, radiation, and
conduction, respectively.
VMS network host name (i.e. HSV).

The Hydra array is used to determine the
pressure solution code for a given stream.
The code indicated hydraulic
characteristics of the stream. The first
index indicates the hydraulic code number.
The second indicates the relative
component location. The third is the
stream number of that component.
Flag used to indicate selection by user to
exit routine. Used in RETRIEVE,

MERGE IN and MERGE OUT.
Switch set to indicate to MERGE_OUT
that ARCHIVE routine is callin_ it.
Set to indicate pitting is complete. Used in
AUTOPLOT and OPENDB_X.
Black box label array. The first index is
the relative black box number. The second
index is a 4 character label for each of the

eight possible streams.

112

_L(ZOO0,20)

ICNXD(65)

INI'EGER*4

INTEGER*4

ICNYD(65)

ICP(IO00)

INTEGER*4

/CONSUME
/

/STRM/

/STRM/

INTEGER*4 /POINT/

/CONSUME
/

ICS(2) IN TEGER*4

IEL(1000,15) INTEGER*4 /IEL/

INTEGER*4

ICL is the connection data array. The first
index is the connection number. The
second index is as follows:

INDEX DATA
1 IEQ of "A" side component
2 Stream # of "A" side component
3 IEQ of "B" side component
4 Stream # of "B" side component
5 Unused

6 Number of segments
7-16 (x,y) coordinates of midpoints
17 Equivalent length
18 Equivalent diameter
19-20 Unused

IEN(2,65)

C,F,G,S,U

INTEGER*4

INrEGER*4

IEQ

U-,RAMEFLAG

/CONSUME
/

/EXQ/

/KSCREEN_
LOC/

G,S

G,S

C,S,U

C,F,G,S,U

C,F,G,S,U

C,F,G,S,U

C,F,G,S,U

C,F,G,S,U

X location of body hit circle relative to

icon center. Index is component TYPE
number.

Y location of body hot circle relative to
icon center. Index is component TYPE
number.

Contains the pointer to the start of each

segment of the CON array. (ICP(IEQ)).
See Section 7.2.1.

Current casename. ICS(I) is the first 4
characters, ICS(2) is the second 4
characters.

IEL is used to store system and graphic
data for each component. The first index is
the relative equipment number (IEQ), the
second is :

1-2
3
4-5
6
7
8-11
12
13
14-15

INDEX DATA
subsystem name

component type
component name
x location on subsystem screen
y location on subsystem screen
unused

cabin assignment data
record number in data base
unused

This is the list of CASE/A component
names. For values of the first index of 1
and 2 IEN holds the first 4 or last 4
characters of the name. The second index
is the component TYPE (ITYPE) as
discussed in chapter 10.

The relative equipment number of the
component currently being considered.

IEQ is advanced in SOLVE according to
the PCS.

Used by TEK ADV to determine wether
to erase the screen.

113

ILB(150,10)

INOTE(26,150)

IPCS(2000,2)

IPLT(20,300,4)

IPREC(20)

IPSNAME(20,2)

IPSTIT(300,8)

IPTFLG

ISS(2)

IUI

IUNIT

IUNLOCK

IUO

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INIEGER*4

INTEGER*4

INTEGER*4

/CONSUME
/

/CONSUME
/

/IEL/
/PLTSET/

/PLTSET/

¢PLTSET/

/PLTSET/

IEXQI

/CONSUME

/

/IO_UNrI'S/

/IO_UNfIS/

/IO_UNITS/

/IO_UNITS/

C,F,G,S,U

C,F,G,S,U

P

P

P

C,F,G,S,U

LABEL data array. The first index is the
label number. The second is:

INDEX DATA

1-2 subsystem name
3 stream number
4 location in target array
5-6 label text
7 target array l=c,2=pro,3=con
8 x location
9 y location
10 IEQ number

See the LABELS command in the user's
manual.

NOTE data array. The first index contains:

INDEX DATA

1-2 subsystem name
3 justification code
4 text size
5-24 text
25 x-location
26 y-location

The second index is the note number.
Used to store PCS data.

Plot item code array. First index is plotset
number NSET, second is item number
(LITEM), the last corresponds to IEQ,
Array code, location in array, stream
number. The array codes are l--CON,
2=C, 3=PRO r4=USERCON, 5=D.
Record number of the plotset in the parent
data base.

PLOTSET name. First index is plotset
number (NSET) second is name stored in
two four-byte integers.
Title associated with item to be plotted.
Title is eight four-byte integers for a total
of 32 characters.

If flag is set false, then pressure and
temperature convergence will not be
considered.

Subsystem name for the current subsystem
ISS(1) is the first four characters, ISS(2) is
the second four characters.

Contains unit number from which input is
read. Used throughout CASE/A code.
Contains unit number for additional input
device.

Contains value designating that a file is
unlocked. 1- locked, 0-unlocked.

Contains unit number to which output is
written. Used throughout CASE/A code.

114

IXD(8,65) INTEGER*4

IYD(8,65) INTEGER*4

JCL(2000,4) INTEGER*4

JCON INTEGER*4

KOUNT(20) INTEGER*4

INTEGER*4KSCREEN_XIN
C
KSCREEN_XL
OC

INTEGER*4

KSCREEN_XM INTEGER*4
AX

INTEGER*4KSCREEN_XM
IN

KSCREEN_YM
IN

/STRM/ G,S

/STRM/ G,S

/IEL/ C,F,G,S,U

/POINT/

/PLTSET/

/KSCREEN_
LOC/

C,S,U

P

C,F,G,S,U

X location of hit box relative to icon
center. First index is stream number,

second is component TYPE number.
Y location of hit box relative to icon
center First index is stream number,
second is component TYPE number.
JCL is the same as ICL except the second
index contains only IEQ and stream
numbers in the same order as ICL.

A pointer to the con array used during
loadin;g of data.
Number of items to be plotted in each
plotset (300 max).
Number of pixels to move the cursor.

/KSCREEN_ C,F,G,S,U Current X location of the cursor on a
LOC/ Tektronix TM terminal in pixels from the

lower left corner.

/KSCREEN_ C,F,G,S,U Width of the screen.
LOC/

C,F,G,S,U Left edge of the screen./KSCREEN_
LOC/

KSCREEN_YIN INTEGER*4 /KSCREEN_ C,F,G,S,U Number of pixels to move the cursor.
C LOC/

KSCREEN_YL INTEGER*4 /KSCREEN_ C,F,G,S,U Current Y location of the cursor on a
OC LOC/ Tektronix TM terminal in pixels from the

lower left corner.

KSCREEN_YM INTEGER*4 /KSCREEN_ C,F,G,S,U Height of the screen.
AX LOC/

INTEGER*4 /KSCREEN_ C,F,G,S,U Bottom of the screen.
LOC/

LBEN INTEGER*4

INTEGER*4

INTEGER*4

/POINT/

/IEL/

/POINT/

/POINT/

/PLTSET/

C,S,U

INTEGER*4

INTEGER*4

LCPU(4)

LFXD

C,F,G,S,U

C,S,U

C,S,U

Number of benchmark data (see section

7.2.1).

LINP

LITEM

LOUT INTEGER*4

LPCS INTEGER*4

LTITLE(150) INTEGER*4

LPCU contains the record number for the

labels, control, plot, and usercon data
bases in the Master data base.

Length of fixed data. Always 9 (see
section 7.2.1).
Number of input data (see section 7.2.1).

Item to be plotted for a particular
PLOTSET.

/POINT/ C,S,U Number of output data (see section 7.2. !).

/EXQ/ S,G,F,C,U Used with the map data to step through the
PCS.

/LABELS/ C,S,U The constituent labels contained in the
LABELS data base are stored in this array.
Each label occupies three elements of this
array. For example CO2 is:

LTITLE(10)='CARB'
LTITLE(I 1)='ON D'
LTITLE/12)='IOX '

115

MACI'I-%AG(20
)

INTEGER*4 /PLTSET/ Stores a number for the relative PLOTSET
which equates to the OPS Logic segment
during which that set is active. For
example MACTFLAG(1) = 0 indicates
relative plotset number 1 is inactive.
MACTFLAG(3) = 4 indicates PLOTSET
4 is active during OPS4. OPS4 is the
default.

MATRXFLG INTEGER*4 /PRESSURE C,G,S,U Indicates wether matrix solution or
/ feedback solution is desired.

MFLAG INTEGER*4 /EXQ/ C,F,G,S,U

NACT /SORT/ C,G,S,UINTEGER*4

NBEN INTEGER*4 /POINT/ C,S,U

NBOX(25,3) INTEGER*4 /BBOX/ G,S

NCAB

NCOMP

/CABIN/

/EXQ/
INTEGER*4 C,U

C,F,G,S,UINTEGER*4

Flag to determine code block of
component routine to execute.
The number of active components in a
case. (All components minus bubbles).
Con array pointer to benchmark data (see
section 7.2.1).
The first index is the relative black box
number. The second index determines the
number of input streams, number of output
streams, and relative component number
for index values of 1, 2, and 3,
respectively.
Relative cabin number.

Number of component types.
NCON INTEGER*4 /EXQ/ S,G,F,C,U Number of connection streams in a case.

NEQ INTEGER*4 /EXQ/ C,F,G,S,U Number of components in the case. Not to
be confused with NACT.

NFXD INTEGER*4 /POINT/ C,S,U

NINP INTEGER*4 /POINT/ C,S,U

NLAB INTEGER*4 /CONSUME C,F,G,S,U
/

NLPCS(2000) INTEGER*4 /SORT/ C,G,S,U

NNOTE INTEGER*4 C,F,G,S,U/CONSUME
/

NODEINFO(10
00,3)

NODENO(3,100
0,8)

INTEGER*4 C,G,S,U

C,G,S,UINTEGER*4

/PRESSURE
/

/PRESSURE
/

NOUT INTEGER*4 /POINT/ C,S,U

NPCONDS INTEGER*4 /PRESSURE C,G,S,U
/

NPNODES INTEGER*4 /PRESSURE C,G,S,U
/

Con array pointer to first data location (see
section 7.2. I).
Con array pointer to input data (see section
7.2.1).
Total number of LABELS for the case.

Stores the values of LPCS by component
number (IEQ).
Total number of notes in a case.

Used for the pressure drop solution, the
first index contains the node number for a
I000 nodes, the second contains relative
equipment number, stream number, and C
array pointer (NCPT) for values of 1, 2,
and 3, respectively.
Used for the pressure drop solution,
NODENO(i,IEQ,ISTR) contains the node
number, imposed flow code, and C pointer
(NCPT) for i= 1,2 and 3. for each
equipment/IEQ) and stream(ISTR).
Con array pointer to output data (see
section 7.2.1)
Number of conductors in the solution.

Number of pressure nodes in the solution.

116

NPT(8) REAL*4 /CPRO/ C,G,S,U

NROT(1000) INTEGER*4 /ROTATE/ G

NSEQ(2000) INTEGER*4 /SORT/ C,G,S,U

NPT(ISTR) points to one of the 1500 C
army locations for a particular stream
number (ISTR) of a component.
Rotation angle of component from default
in degrees. Must be in increments of 90*.
Component IEQ numbers in the order of
the PCS.

NSISI" INTEGER*4 /PLTSET/ * Relative PLOTSET number.

NSORT(2000) INTEGER*4 /SORT/ C,G,S,U

NSSCAB(5,100)

NST(65)

NSYSLOOP

NTRACK

NUM_ARCHIV
ED_PLOTSET

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

NUMBOX

/ASSIGN/

/STRM/

/EXQ/

/EXQ/
/ARCHIVE/

/BBOX/

/ASSIGN/

/MSPLIT/

NUMCAB

F,G,S,U

G,S

C,F,G,S,U

C,F,G,S,U
G

G,S
F,G,S,U

GNUMSP

NUMSS INTEGER*4 /ASSIGN/ F,G,S,U

NUMTYPE(65) INTEGER*4 /IEL/ C,F,G,S,U

PINITIAL REAL*4 /PRESSURE C,G,S,U
/

PLOTSET_ARC CHAR*8 /ARCHIVE/ G
HIVED

PRO(12,100,8) REAL*4 /CPRO/ C,G,S,U
RDPLUS LOGICAL* /GRAPHLO U

" 4 G/

REAL*4 /CON/ C,G,U,SRELAXX(1000,
8,4)

RELX REAL*4 /EXQ/ C,F,G,S,U

Used in SORTIEQ to sort the relative
equipment numbers and determine the
pseudo compute sequence.
The first index contains the subsystem
name for i=i,2; cabin name for i=3,4 and
the cabin relative component number
(relative to other assigned cabins) for i=5.
The second index is for up to 100 assigned
subsystems.
Number of "external" streams for each

component. Index is component TYPE
number.

Number of iterations at the current time

step.
Number of constituents tracked.

Number of plotsets stored in the current
archive file selected. Used in ARCHIVE,
MERGE_IN, MERGE_OUT, and
RETRIEVE.

Number of black boxes (25 maximum).

Number of cabins to which subsystems
have been assigned.
The total number of MSPLTS.

Number of subsystems assigned to a cabin.

Contains the number of each type of
equipment NUMTYPE(ITYPE).
Initial guess at pressures which are
undefined by the user.

Contains name of plotset in archive. Used
in ARCHIVE, MERGE_IN,
MERGE_OUT, RETRIEVE.

Stream properties array (see section 7.2.3).
When RDPLUS is false, the ReDraw
command does not write the labels to the
screen. RDPLUS is true if the command is

RD% otherwise it is false.
Storage for the relaxation values at the
current iteration. Referenced as
RELAXX(IEQ,NSTR,I) where IEQ is the
relative equipment number; NSTR is the
stream for that component. For values of I
= 1, 2,3 and 4 respectively, I is relaxation
value for mass flow rate (total or
constituent), temperature, pressure, and the
constituent number which had highest
relaxation value for flow rate.
The relaxation criteria which must be
achieved prior to time incrementation.

117

RXCC REAL*4 /EXQ/

LOGICAL*
4

C,F,G,S,U

/TDMS_FL
AGS/

Maximum change in percent change in
relaxation values for all streams.

STEP REAL*4 /EXQ/ C,F,G,S,U Time step interval in hours.

STRT REAL*4 /EXQ/ C,F,G,S,U Simulation start time in hours.

SYSDAMP REAL*4 /EXQ/ C,F,G,S,U A Damping factor used by some hydraulic
routines.

TDMS_FLAG G A flag to tell when IPU commands are in
effect. This flag toggles some commands
so that they only work when it is set.
Others, such as solve, do not work when it
is TRUE. TDMS_FLG is set to TRUE
when the IPU command is issued.

TERMTYPE REAL*4 /DEV/ C,G,S,U Unused

TIME REAL*4 C,F,G,S,U Current time in hours.

USERCON(100) C,G,S,UREAL*4
/EXQ/
/USERCON/ An array for storing data specific to a

user's model (see section 7.2.4).

In addition to the above, the file CASE$CODE:SMMARY.INC contains the following variables

which are output as results in the .LPP file. The SUMMARY common block is used to develop the
consumables summary data at the completion of a simulation.

COMMON/SUMMRY/CREW1 (25) ,XMETAO2 (25) ,XMETACO2 (25) ,DRINK1 (25) ,

& URINI(25),

& XLEAKN2 (25) ,XLEAKO2 (25) ,02GENH20(25) ,O2GENH2 (25) ,O2GENO2 (25),

& EDCH2 (25) ,CO2Pd_402 (25), EDCO2 (25) ,C02REMH2 (25), CO2REM(25),

& CO2RMWAT(25) ,CO2RMH20(25) ,CO2REDH2 (25) ,C02RDH20(25),

& CO2RDCH4(25) ,CO2RED(25),BOSCHH2(25) ,CO2REDC(25),WASHH20(25),

& WASHLOAD(25) ,FLUSH1(25) ,URINMIX(25) ,COND(25) ,STMASS(1000),

& XMASSI(1000) ,EI4ASS(1000)

CREW1
XMETAO2

XMETACO2

DRINK1

URINI

XLEAKN2

XLEAKO2

O2G_%_120

O2G_%5_2

02G_2_O2

EDCH2

CO2 P3_402

EDCO2 ;EDC

CO2REMH2

CO2REM

CO2RMWAT

CO2RMH20

CO2Pdmm_

CO2RDH20

CO2RDCH4

CO2RED

BOSCHH2
CO2REDC

WASHH20

WASHLOAD

FLUSH1

URII_4IX

CC_D

STMASS

XMASSI

EMASS

Number of crew members

Metabolic 02 requirement

Metabolic CO2 produced

Metabolic Water requirement

Urine Production

N2 leakage

02 leakage

Electrolysis water consumption

Electrolysis hydrogen production

Electrolysis oxygen production

EDC hydrogen constur_tion

total 02 consumed by CO2 removal process

oxygen consumption

total H2 consumed by CO2 removal process

total CO2 removed by CO2 removal process

SAWDwater consumption

total H20 producedby CO2 removal processes

total H2 consumed by CO2 reduction processes

total H20 produced by CO2 reduction processes

total CH4 produced byCO2 reduction processes

total CO2 reduced by CO2 reduction processes

BOSCH H2 consumption

BOSCH solid carbon produced

WASH H20 consun_tion

WASH latent H20 load

PREWAST H20 consumption

PREWAST total mixture output

condensate

initial STORE mass

final STORE mass

change in STORE mass

118

APPENDIX C. THE MODEL (.MOD) FILE

All information necessary to create the subsystem screens is contained in the MOD file. Since
this file contains graphical information, it is highly recommended that this file not be modified through
means other than CASE/A (i.e. using the VAX editor). The MOD file is strictly formatted and contains a
considerable amount of unlabeled data. As such, it is extremely difficult to debug a corrupted MOD file.

To illustrate the MOD file, an example example schematic is shown in figure C-1. The associated MOD

file is shown in figure C-2 and described below.

CASE/A v5.0 CASE NAME SUBSYSTEM CABIN ENV FEB 15, 1996
..........................

MSFC ATC 1 ATC ** NONE ** 16:34

CNTRLL R

%___..... _-_

I

i
i

i

Figure C-1. Example subsystem schematic.

119

4 5 0 0 0 0 0 0 24 19 22 15 15 121
&TC 27 P-1 301 426 0 270 5 0 0 1
ATC 32 LOAD-I 651 206 0 O 3 0 0 2

ATC 33 PAYLOAD 650 554 0 90 3 0 0 3

ATC 50 C-i 607 420 0 0 3 0 0 4
1 2 2 1 0 2 301 206 0 0 0 0 0 0
1 600
2 -2 4 2 0 2 698 420 0 0 0 O 0 0

1 600

4 1 1 99 0 3 452 420 452 446 0 0 0 0

1 600

2 2 3 1 0 2 736 206 0 0 0 0 0 0

1 600

3 2 1 1 0 2 301 570 0 0 0 0 0 0

1 600

0 0

0 0

0 0

0 0

0 0

Figure C-2. Example model description file (.MOD FILE).

Model File Description:

Line 1--This header line contains general information about the model. There are 14 items as
follows:

Item

1)
2)
3)
4)
53
6)
7)
8)
9)
10)
11)
12)
13)
14)

Description Example
number of components in model (4)
number of connections (5)
number of labels (0)

number of subsystems assigned to cabins (0)
number of cabins with assigned subsystems (0)
number of SPLIT components (0)
number of BLACKBOX components (0)
number of notes (0)
record number of LABELS data base (24)
record number of CONTROL data base (19)
record number of PLOT data base (22)
record number of USERCON data base (15)
record number of ARCHIVE data base (15)
not currently in use (121)

Note that the remaining lines in this file are grouped according to items (1) through (8)
above. In other words, the components are listed first, then all of the connections,
followed by labels, etc.

Lines 2 to 5--These lines are a listing of all components in the model. Initially, the order of the
components depends upon the order in which they were located in the model. After a solution has been
invoked, however, this list is resequenced accordingto the component priority code discussed in section
4.1.2. The ten items on each line of this section are described below (examples are for the first line
only).

Item Description
1)
2)
3)
4)
53
6)

Example
subsystem name (8 characters) (ATC)
equipment type (ITYPE) (27)
component name (8 characters) (P-1)
x-coordinate (0,0 at lower left of screen) (301)
y-coordinate (0,0 at lower left of screen) (426)
cabin assignment info (by bits) (0)

120

7)
8)
9)
10)
11)

orientation angle (IROT) (270)
record number in respective data base (5)
unused (0)
unused (0)

equipment number (1)

Lines 6 to 10--These lines contain connection information. The 18 items are described below:

Item Description Example
1) component "A" (1)
2) stream "A" (2)
3) component "B" (2)
4) stream "B" (1)
5) unused (0)

number of segments (2)

(x,y) of intermediate point 1 (301) (206)
(x,y) of intermediate point 2 (0) (0)
(x,y) of intermediate point 3 (0) (0)
(x,y) of intermediate point 4 (0) (0)
(x,y) of intermediate point 5 (0) (0)
equivalent length (feet) (1)
equivalent diameter (hundredths of inch) (600)

6)
7, 8)
9, 10)
11, 12)
13, 14)
15, 16)
17)
18)

The next section of the MOD file is normally reserved for stream label data. Recall from the
header line, however, that there are no lables in this model. One can determine the details of this section

by examination of LOADCASE.FOR and using the appendix B, common block variables, as a
reference.

The remaining section of the .MOD file can contain BLACKBOX component data and NOTE
data neither of which are present in this model. There are three types of notes: C is a note centered at
(x,y) containing 4 strings 20 characters long; L is a note left justified at (x,y) containing 4 strings of 20
characters, and N is a note left justified at (x,y) containing 1 string of 80 characters. The format for the
NOTE information:

Item Description

1) subsystem name
2) note type
3) character size, 1-4 (4 is smaller)
4) string(s), total of 80 characters

5) x-coordinate
6) y-coordinate

121

APPENDIX D. INDEX OF CASE/A SUBROUTINES

This appendix contains a listing of all CASE/A FORTRAN subroutines and the pages of this

manual where descriptions of the routines can be found.

ROUTINE PAGE

CASEAMAIN .. 37

Function DEWPT(PARTIAL_PRESS) .. 56
Function ROWATER(TEMP) .. 59
Function SATPR(TEMP) ... 81
Subroutine ADSORPTN .. 84
Subroutine AFSPE .. 85
Subroutine ARCHFILE .. 61
Subroutine ARCHIVE .. 61
Subroutine ASSIGN ... 53

Subroutine BCK_GD_CLR(IBACKGD) ... 17
Subroutine BDN (IX, IY, K, IROT,ISTM) .. 13
Subroutine BDNSHT (IX, IY, K, IROT,ISTM) .. 13
Subroutine BENCH(M,X) .. 55
Subroutine BIVAR(X,Y,A,Z) .. 55
Subroutine BLF (IX, IY, K, IROT,ISTM) ... 14
Subroutine BLFSHT (IX, IY, K, IROT,ISTM) .. 14
Subroutine BLOCK (IXSIZ, IYSIZ, IX, IY, IROT) .. 14
Subroutine BMR .. 85
Subroutine BOSCH .. 85

Subroutine BRT (IX, IY, K, IROT,ISTM) ... 14
Subroutine BRTSHT (IX, IY, K, IROT, ISTM) ... 14

Subroutine BUP (IX, IY, K, IROT,ISTM) ... 14
Subroutine BUPSHT (IX, IY, K, IROT,ISTM) ... 15
Subroutine CABIN ... 85
Subroutine CAP .. 85
Subroutine CDCODE (CLINEJ, LOC, ITYP, IWORD, IDATA, IERR) 28

Subroutine CDEL(NEA,NEB,ISTR) .. 55
Subroutine CDELA(NEA,NEB,ISTR) .. 55
Subroutine CEDIT(IEDIT) .. 27
Subroutine CFIELD (CLINEJ, LOC, ICOLL, ICOLH, IERR) ... 28
Subroutine CFR .. 86
Subroutine CHX ... 86
Subroutine CILLCHAR(CISC,LEN,CHRFLG) .. 55

Subroutine CIRCLE (IRAD, IX, IY) ... 15
Subroutine CLDRAI (NDATE, NYR, NMO, NDA) ... 28
Subroutine CLDRIA (NYR, NMO, NDA, NDATE) ... 28
Subroutine CLOADCASE(NAME) ... 7, 25
Subroutine CMPOPEN .. 25

Subroutine CNEWCASE(NAME) ... 8
Subroutine CNHX .. 86
Subroutine CNTRLLR ... 86

Subroutine COLOR(INDEX) ... 17
Subroutine COMPDP(NSTM,NSI,NSO,DP) ... 80
Subroutine CONDP(NEA,NSA,NEB,NSB,NC) .. 79
Subroutine CONECT .. 16
Subroutine CONINIT ... 55

Subroutine COPY(NUMSTM,CFLAG) .. 77
Subroutine COPYA(NUMSTM) .. 77
Subroutine COPYALL ... 9

Subroutine CORRECT(NC) ... 56

123

ROUTINE PAGE

Subroutine CP .. 87

Subroutine CREADAL (CLINEJ, ICOLL, ICOLR, IDATA, IERR) .. 28
Subroutine CREADALC (CLINEJ, ICOLL, ICOLR, IWORD, CDATA, IERR) 28
Subroutine CREADFL (CLINEJ, ICOLL, ICOLR, DATA, IERR) .. 29
Subroutine CREADIN (CLINEJ, ICOLL, ICOLR, IDATA, IERR) ... 29
Subroutine CREW .. 87
Subroutine CTOLOWERC(CCHAR,NCHAR) ... 56
Subroutine CTOUPPERC(CCHAR,NCHAR) ... 56
Subroutine CUTALL .. 9
Subroutine DCLFOR .. 52
Subroutine DEFLOW ... 87
Subroutine DEHUM ... 87
Subroutine DEL(IREC) .. 56
Subroutine DELCAS .. 7
Subroutine DELCN .. 16
Subroutine DELEQ(ICUT) .. 9
Subroutine DELLAB(ICUT) .. 9
Subroutine DELNOTE(ICUT) ... 10
Subroutine DELREC (IRECL, IRECH) ... 29
Subroutine DENVIS(NEA,NSA,NEB,NSB,DEN,VIS) .. 56
Subroutine DINTER(X,A,Y) .. 56
Subroutine DIR .. 7
Subroutine DIST (IX1, IYI, IX2, IY2, XD) .. 56
Subroutine DPCS(IEQA,ISTA,IEQB,ISTB,NCPT) .. 38
Subroutine DRAWC (KEQ) ... 15
Subroutine DRLABL (KLAB, MEQ) .. 10
Subroutine DRNOTE (K) ... 10
Subroutine DUPLICATE(IREC,JREC) ... 57

Subroutine EDC .. 87
Subroutine EDT .. 53
Subroutine EQLOAD ... 26
Subroutine EQOPEN (ITYPE) ... 26
Subroutine EQSOLVE ... 38
Subroutine ERRDUMP(ITEST) .. 57
Subroutine EVAP ... 88
Subroutine FIELD (ICOM, LOC, ICOLL, ICOLH, IERR) ... 29
Subroutine FILREC (IA, IDATA) ... 29
Subroutine FILTER .. 88
Subroutine FINDC(IEQ) .. 57
Subroutine FINDRM (IREC) ... 29
Subroutine FLAG ... 52
Subroutine FLOLEG(XM,DEN,VIS,XL,XD,XK,PDEL,MAX) ... 57
Subroutine FRAME 1 .. 17
Subroutine FRICTDP(SDEN, SVIS,SXL,SXD,XMDOT, DPX) .. 79
Subroutine GETC(NAME,ISTR,ICONST,VALUE) ... 73
Subroutine GETI(NAME,IEQVAL) .. 73
Subroutine GETK(NAME,ICON,VALUE) ... 73
Subroutine GETP(NAME,ISTR,VALUE) ... 73
Subroutine GETr(NAME,ISTR,VALUE) .. 74
Subroutine GETU(ILOC,VALUE) .. 74
Subroutine GIMAG(IEQB,ISTB,NCPT, PDEL,MAX,GIX) .. 57
Subroutine GRALPH .. 18
Subroutine GRCHRZ (ISIZ) .. 18
Subroutine GRCOPY ... 18

Subroutine GRCUSR (ICHAR, IX, IY) ... 18
Subroutine GRDRAW (IX, IY) .. 18

124

ROUTINE PAGE

Subroutine GRERAS .. 18
Subroutine GRIN-IT .. 18

Subroutine GRLBAB (IX, IY, ISTRING, LSTRING) .. 18
Subroutine GRLBCT (IX, IY, ISTRING, LSTRING) ... 18
Subroutine GRMOVE (IX, IY) .. 18
Subroutine GRSCREEN(IWIDE) .. 19
Subroutine H2OSEP ... 88
Subroutine HATCH .. 88
Subroutine HEADER ... 41
Subroutine HEATER .. 88
Subroutine HELP .. 52
Subroutine HIT (IX, IY, JEQ, NSTR,IXC,IYC) .. 17
Subroutine HITBOX(IX,IY,IXOFF,IYOFF,ISTM) .. 15
Subroutine HX .. 89

Subroutine INTER(X,A,Y) .. 57
Subroutine IONEXCH .. 89

Subroutine ITEMIO (ITEM, IA) .. 30
Subroutine ITMOUT(ITEM,IA,IOUT) .. 26
Subroutine KAM2AS (NCHAR, KA4, KADE) .. 30
Subroutine KAS2AM (NCHAR, KADE, KA4) .. 30
Subroutine KHECK(NUSTM) ... 57
Subroutine KHECKA(NUSTM) .. 58
Subroutine LABL ... 10
Subroutine LBIT (NS, NL, IW, IV) ... 30
Subroutine LIOH .. 89
Subroutine LISOPEN ... 26
Subroutine LOADCOND(IEQA,ISTA,IEQB,ISTB,XM,DP) ... 58
Subroutine LOCATE .. 10

Subroutine LTSEMCIR (IRAD, IX, IY, IOFF, IROT) .. 15
Subroutine MASSFRAC(NUM,YI,XMWI,XI) ... 58
Subroutine MERGE .. 54
Subroutine MNETWK .. 81
Subroutine MODBAK .. 58
Subroutine MODULE .. 89
Subroutine MOLEFRAC(NUM,PRESSI,YI) .. 58
Subroutine MOLSIEV .. 89
Subroutine MOVALL .. 11
Subroutine MOVEIT .. 11
Subroutine MOVLAB .. 11
Subroutine MOVNOTE .. 11
Subroutine MSPLT .. 90

Subroutine MVBITS (ISORC, ISTRT1, ILEN, IDEST, ISTRT2) .. 30
Subroutine NODE .. 90
Subroutine NOTE ... 12
Subroutine O2N2 .. 90
Subroutine OPS0 .. 67

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

OPS 1 .. 67
OPS2 .. 67
OPS3 .. 67
OPS4 .. 67
OPS5 .. 68
OPS6 .. 68
OPS7 .. 68, 90

PAS SIVE(NSTM,NSI,NSO) ... 58
PDEL(NS) .. 58
PIPE ... 90

125

ROUTINE PAGe,

Subroutine PIPEDP(NSTM,NSI,NSO,XL,D) .. 80
Subroutine PLTDATA(NUM,PLD ERR) ... 43
Subroutine PLTFILE,(IA,PLF_ERR) ... 43
Subroutine POINTCON ... 58
Subroutine PREPRO .. 59, 74
Subroutine PREWAST ... 91
Subroutine PRNTSS ... 41
Subroutine PROPS(NE,NS,NC) .. 81
Subroutine PSEUDO .. 39
Subroutine PSPEC(NSTR,PRESS) .. 80
Subroutine PTMOD .. 26
Subroutine PULLSTX .. 59
Subroutine PUMP .. 91
Subroutine PUSHSTX .. 59
Subroutine PWVSUM .. 41
Subroutine QEXCHG(IQ,FAE,GCONV,GCOND,TRAD,TCONV,TCOND) 59
Subroutine RACK .. 91
Subroutine RAD ... 91
Subroutine RANDIN(ILOCK,IUNIT, IREC,IA,NWD) ... 26
Subroutine RBIVAR(X,Y,A,Z) .. 59
Subroutine RBYTE (IBYTE, IVAL, IARY) .. 31

Subroutine READAL (ICOM, ICOLL, ICOLH, IWORDS, IDATA, IERR) 31
Subroutine REDRAW(JFLAG) .. 12
Subroutine RESET1 (IREC) .. 19
Subroutine RESTOR (IRECL,IRECH) .. 3 l
Subroutine RETRIEVE .. 61
Subroutine RINTER(Y,A,X) .. 59
Subroutine RNSS .. 12
Subroutine RO .. 91
Subroutine ROTATE .. 12
Subroutine RTSEMCIR (IRAD, IX, IY, IOFF, IROT) .. 16
Subroutine SABAT .. 92
Subroutine SAVE ... 8, 27

Subroutine SAVEAS(NAME) .. 8, 60
Subroutine SAWD .. 92
Subroutine SBYTE (IBYTE, IVAL, IARY) .. 31
Subroutine SCALE(IST) .. 60
Subroutine SCALER(ISTRM,NSTRM,DESFLW,ALWFLOW) .. 60
Subroutine SCREDT(IEDIT) ... 27
Subroutine SEMIRECT(IH,IW,IX,IY,IROT) .. 16
Subroutine SEQUENCE(NAME) .. 39
Subroutine SETC(NAME,ISTR,ICONST,VALUE) .. 74

Subroutine SETK(NAME,ICON,VALUE) .. 74
Subroutine SETP(NAME,ISTR,VALUE) .. 74
Subroutine SETI'(NAME,ISTR,VALUE) ... 74
Subroutine SETU(ILOC,VALUE) ... 74
Subroutine SFWE ... 92
Subroutine SINK .. 92
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine
Subroutine

Subroutine
Subroutine

SMVBITS (IVAL 1, ISTART, ILEN, IVAL2 ITO) .. 31
SOLVE .. 39
SORTIEQ .. 40
SOURCE .. 92
SSOUT(NA) .. 42
SUBSYS .. 13
SUM ... 92
SUMINIT ... 60

126

ROUTINE PAGE

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

SUMMARY ... 42

SYSBAL .. 76

SYSCLK (NDATE, NTIME) .. 32
TANK .. 93

TBOUND(IQ,TRAD,TCONV,TCOND) .. 60
TBUS ... 93

TDEL(NS) .. 60
TDELA(NS) .. 60
TEK_ADV ... 19
TEK_HOM .. 19
TIMESC ... 93
TIMER ... 93

TIMESTEP(TSTEP,N,GSUM,CAPAC,TAU,MINILPS) ... 61
Subroutine TNETWK(MAX, RELAX, TSTEP, G 1, G2, G3, G4, G5, FAE, G7, G8, CAP,

QMASS, QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL,
TMAS, TSHEL, IC) ... 80

Subroutine TNETWK2(MAX, RELAX, TSTEP, G1, G2, G3, G4, G5, FAE, G7, G8, CAP,
QMASS, QSHEL, TRAD, TCONV, TCOND, TIN, TMI, TOUT, TWAL,
TMAS, TSHEL, IC) ... 80

Subroutine TRANSBOD (JEQ, IXC, IYC) .. 19
Subroutine TRANSCON(JEQ, NSTR, IXC, IYC) .. 19
Subroutine TRANSLT (IX, IY, IROT, IARRAY, JARRAY) ... 19
Subroutine TRANSLT 1(JEQ,KEQ) ... 20
Subroutine TSTEP(A,B,C,D) ... 61
Subroutine TYCON (IA, BI) .. 32
Subroutine UNASSIGN ... 54
Subroutine VALVE .. 93
Subroutine VCD ... 94

Subroutine VISC(C,W,T0,XMU0,T,XMU) ... 81
Subroutine WASH .. 94

Subroutine WQM ... 94
Subroutine WRITCON ... 42

127

APPROVAL

COMPUTER-AIDED SYSTEM ENGINEERING AND ANALYSIS
PROGRAMMERS MANUAL, VERSION 5.0

By J. Knox, Editor

The information in this report has been reviewed for technical content. Review of any informa-
tion concerning Department of Defense or nuclear energy activities or programs has been made by the
MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

Wc_ingA_Rectorl_, Structures and Dynamics Laboratory

128

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public repotting burden for this collectk_ of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the date needed, and compiling and reviewing the collection of information. Send comments regarding this burden estimate or any oth¥ aspect of this
collection of infownAtien, including suggestions for reducing this burden, to Washington Headquarters Se_ces, Directorate for Information Operation and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Offme of Management and Budget, Paperwork Reduction Protect (0704-0188), Washington, De 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1996 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Computer-Aided System Engineering and Analysis (CASE/A)

Programmer's Manual, Version 5.0

6. AUTHORS

J.C. Knox, Editor

7. PERFORMINGORGANIZATIONNAMES(S)ANDADDRESS(ES)

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-108517

11.SUPPLEMENTARYNOTES

Prepared by Structures and Dynamics Laboratory, Science and Engineering Directorate.

12a.DiSTRIBUTION/AVAILABILITYSTATEMENT

Unclassified-Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Computer Aided System Engineering and Analysis (CASE/A) Version 5.0 Programmer's Manual provides the

programmer and user with information regarding the internal structure of the CASE/A 5.0 software system. CASE/A 5.0 is a trade

study tool that provides modeling/simulation capabilities for analyzing environmental control and life support systems and active

thermal control systems. CASE/A has been successfully used in studies such as the evaluation of carbon dioxide removal in the

space station.

CASE/A modeling provides a graphical and command-driven interface for the user. This interface allows the user to

construct a model by placing equipment components in a graphical layout of the system hardware, then connect the components

via flow streams and define their operating parameters. Once the equipment is placed, the simulation time and other control

parameters can be set to run the simulation based on the model constructed. After completion of the simulation, graphical plots or

text files can be obtained for evaluation of the simulation results over time. Additionally, users have the capability to control the

simulation and extract information at various times in the simulation (e.g., control equipment operating parameters over the

simulation time or extract plot data) by using "User Operations (OPS) Code." This OPS code is written in FORTRAN with a

canned set of utility subroutines for performing common tasks.

CASE/A version 5.0 software runs under the VAX VMS TM environment. It utilizes the Tektronics 4014 TM graphics

display system and the VTI00 TM text manipulation/display system.

14. SUBJECT TERMS

air revitalization, computer modeling, computer simulation, ECLSS, environmental control,

FORTRAN, International Space Station, life support, system analysis, thermal control, VAX TM

17. SECURITY CLASSIRCATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

137
16. PRICE CODE

NTIS
20. LIMITATION OF ABSTRACT

Unlimited
i

Standard Form 298 IRav. 2-89)

_U.S. GOVERNMENT PRINTING OFFICE--1996--733-109/40053

