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ABSTRACT

A set of nonhomogeneous radiation and
outflow boundary conditions which automat-
ically generate prescribed incoming acoustic
or vorticity waves and, at the same time.
are transparent Lo outgoing sound waves pro-
duced internally in a finite computation do-
main is proposed. This type of boundary
condition is needed for the numerical solu-
tion of many exterior aeroacoustics problems.
In computational aercacoustics, the compu-
tation scheme must be as nondispersive and
nondissipative as possible. [t must also sup-
port waves with wave speeds which are nearly
the same as those of the original linearized
Euler equations. To meet these requirements,

a high-ocder/large-stencil scheme is necessary.
The proposed nonhomogeneous radiation and
outflow boundary conditions are designed pri-
marily for use in conjunction with such high-
order/large-steacil finite difference schemes.

1. INTRODUCTION

Many exterior aeroacoustics problems in-
volve incoming acoustic or vorticity waves ia-
teracting with an aircraft engine or the body
of the aircralt. An example of this type of
problem that is of current interest is the noise
generation by the ingestion of free stream tur-
bulence into a fan engine. Another exampleis
the scattering and shielding of sound waves by
aircraft wings and fuselage. To simulate these
problems using computational aeroacoustics
methods, the incoming acoustic and vortic-
ity waves must be generated by the boundary
conditions imposed at the outer boundaries of
the finite computation domain. In this paper.
a s»t of nonhomogeneous radiation and out-
flow boundary conditions, which, when used
in conjunction with a high-order finite diffec-
ence scheme, automatically generates the de-
sired incoming acoustic and vorticity waves is
ptoposed.

In the presence of a uniform mean flow.
the linearized Euler equations support three
independent types of small amplitude distur-
bances. They ate the acoustic, the vorticity
and the entropy waves. These waves, to lin-
ear order, are uncoupled and propagate with
different characteristics and wave speeds (see
e.z.. Tam and Webb (1993)). In the compu-
tational aeroacoustics literature, there seems
to be an absence of suggestions as to how to
generate such disturbances in the form of in-
coming waves. There are two intrinsic difficul-
ties. First, the imposed boundary coaditions
must not only generate the prescribed incom-
ing waves, they must also be transpatent to
outgoing acoustic disturbances produced in-
side the computation domain. Second. be-
cause the Euler equations support both acous-
tic and vorticity waves at the same spatial lo-
cation, it is extremely difficult to geperate a
single type of disturbance without also pro-
ducing the other type. Such coupling usually
occurs at the corner regions of the computa-
tion domain. The proposed nonhomogeneous
radiation and outflow boundary conditions are
designed specifically to overcome these diffi-
culties.

In this work. we will use the Dispersion-
Relation-Preserving (DRP) scheme of Tam
and YWebb (1993) for numerical computation.
There are two reasons for choosing the DRP
scheme. First, the DRP scheme was designed
so that the dispersion relations of the finite
difference equations are always formally iden-
tical to those of the original partial differential
equations. This not only makes the waves sup-
ported by the numerical scheme an excellent
approximation of those of the partial differen-
tial equations. it also assutes that there will be
no wave mode coupling ia the numerical sim-
ulation. The second reason for choosing the
DRP scheme is that the exact plane acoustic,
vorticity and entropy wave solutions of the f-
nite difference equatious can be found analyt-
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ically. This is discussed in Section 2 of this
paper. These exact solutions are used in for-
mulating the nonhomogeneous radiation and
outflow boundary conditions.

Over the years, there has Leen a num-
ber of investigations Jevoted to the devel-
opment of radiation/nonreflecting boundary
conditions but without incoming waves. Re-
cently, Hixon. Shih and Mankbadi (1995) per-
fornied a detailed evaluation of the suitabil-
ity of using the Thompson {19287, 1990} quasi-
one-dimensional characteristic boundary con-
dition, the Giles (1990) Fourier mode decom-
position boundary treatment and the asymp-
totic boundary conditions of Tant and Webb
(1993) for computational asroacoustics appli-
cations. They concluded that for their test
problem, the radiation and outflow boundary
conditions of Tam and Webb gave the least
reflections and provided the only acceptable
boundary treatment. In this work, we fol-
low their recommendation and use the asymp-
totic boundary conditions of Tam and \Webb
to develop the nonhomogeneous radiation and
outflow boundary conditions that would au-
tomatically produce very accurate incoining
acoustic and vorticity waves in a finite com-
putation domain.

2. ACOUSTIC AND VORTICITY WAVES
ON A GRID

. We will consider small amplitude distur-
bances supetimposed on a uniform mean fow
of Mach number A/ as shown in Figure 1.
Such disturbances are governed by the lin-
earized Euler equations. We will use dimen-
sionless' variables with length scale = Ar =
Ay (the mesh spacing), velocity scale = ag
(speed of sound), time scale = ':‘f pressure
scale = pgaj (where po is the gas deusity).
The dimensionless linearized Euler equations
are

8F _8F _OF
—a‘—+R5:+557—0 (2.1)

where F, the solution vector. and matrices R

and S are

u M, 0 l

F=|v R=(|0 i, 0
P 1 0\,

(2.2)

M, 0 0

S={0 M, 1
0 Lo,

In (2.2) M, and M, are the mean flow Mach
numbers in the z- and y-directions. If 6 is the
direction of the mean flow measured {rom the
z-axis. then M, = M cos ¢, My = Msino.

Upon discretizing (2.1) according to the
DRP scheme. the finite difference equations
may be written in the following form

3
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Subscripts (¢, m) are the spatial indices of the
mesh io the z- and y-directions. Superscript
n is the time level. At is the time step. The
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vector K" is given by
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The last sum on the right side of (2.4) is the
artificial damping terms. Ra, is the mesh
Reynolds sumber. The numerical values of
the stencil coefficients aj, 4; and d; may be
found tn Tam (1995).

We will look for plane wave solutions of
finite difference equations {2.3) and (2.4) over
an infinite mesh. The analytical form of the
finite difference solution is

F(("")‘ = Re {E c-mlwm—«man} : (2.3)

In {2.5), Re{ } is the real part of. F is the
wave amplitude vector (a constant vector).
{a, ) are the wave numbers. w is the angular
frequency. Substitution of (2.5) into (2.3) and
(2.4). after some algebra, the following matrix
equation for F is derived.

AF=0. (2.6)



The matrix A is equal lo
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The quantities (@, 3) and T are the wavenum-
bers and angular frequency of the computa-
tion scheme {the DRP scheme). D{a) and
D(3) are the artificial selective damping func-
tions (see Tam (1995)).

For nontrivial solution of equation {2.6),
the determinant of the coefficient matrix A
must be equal to zero. This condition leads to
the general dispersion relation

G -3-3) =0 (2.9)

We wish to point out that the Dispersion-
Relation-Preserving scheme assures that dis-
persion relation (2.9) is the same as that of
the waves of the original linearized Euler equa-
tions provided the following substitutions are
made: T —w, & —a, J— 3 and R‘::—UA

2.1 Acoustic waves

For acoustic waves, the dispersion rela-
tion is obtained by equating the secound factor
of (2.9) to zero. This gives,

i D{a) + DN}
Ras.

-a*-3 =0 (2.10)
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The corresponding eigenvector is

£ /3
F=iml=13/5]. (2.1
F 1

Suppose the direction of propagation of the
incoming plane acoustic waves is y {measured
from the z-axis) as shown in Figure 1. Here
the direction of propagation is taken to be nor-
mal to the lines of constant phase. It {ollows.
therefore, that o and J must be such that

lan\:é. (2.17)

A plane acoustic wave may be character-
ized by its frequency w and the direction of
propagation Y. The wavenumbers (a.J) of
such a wave can be found by solving equations
(2.10) and (2.12) simultaneously. With the in-
clusion of artificial damping in the finite dif-
ference scheine, equation {2.4), the wavenum-
bers (o, J) of the wave are complex. Since
only a small amount of damping is added. the
imaginary parts are small. The wavenumbers
of the corresponding acoustic wave solution of
the linearized Euler equations are, however,
real.

2.2 Vorticity waves

The dispersion relation for the vorticity
waves of the finite difference scheme is given
by setting & to zero in (2.9); i.e.,

T-M& - M, F+=—(Dl(a)
R.l.:

(2.13)
+ D) =0.
The corresponding eigenfunction is
Gy [=2—
(@ 3703
G=|G|=|—=3— (2.14)
(& +9)/
0 0

Let ¥ be the angle between the lines of con-
stant phase of the vorticity waves and the r-
axis {see Figure [) then

tang = —cot Y = ~- (2.15)

K:.ll Q

LR

RS T IS SEE



A vorticily wave may be specified by its
frequency w and the phase angle ¢. The
wavenumbers of such waves are found by solv-
ing equations (2.13) and (2.15) simultane-
ously. Because of the inclusion of artificial
damping terms. the wavenumbers are again
complex.

3. INHOMOGENEQUS RADIATION AND
QUTFLOW BOUNDARY CONDITIONS

We will now consider how to carry out
numerical simulation of exterior aeroacoustics
problems involving incoming acoustic or vor-
ticity waves. By necessity, the computation
domain is finite. Without loss of generality,
we will consider the flow configuration to be
as shown in Figure 1. With the inflow as
prescribed, the bottom and the left side of
the computation domain coustitute the inflow
boundaries. The right and top sides are the
outflow boundaries. -

In the ahsence of incoming waves, the
radiation boundary conditions of Tam and
Web (1993) may be imposed along the inflow
boundaries. In polar coordinates (r,8) with
origin at the center of the computation do-
main, these radiation boundary conditions for
the outgoing waves, Fqy(, may be written as,

a Fuu‘ - - a 1
T_-L (9) dr+:2_r Fnu&- (31)
The acoustic wave propagation velocity V()
of {3.1) is equal to,

V(8) = M cos(8 — &)

2
+[L = M7sin?(8 - o))} (-2
Along the outflow boundaries. Tam and Webb
showed that the outgoing disturbances inay be
comprised of acoustic. vorticity and entropy
waves. By means of the asymptotic solutions
of these waves. they demonstrated that for
pressure, poyr. the outflow boundary condi-
tion is the same as (3.1). For the velocity com-
ponents. (Uout, tout). the approximate outflow
boundary conditions are,

9 [uout ) F
v =-M,—+ M, —
e {uou. AMegz +h g,
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(3.3)

3.1 Incoming acoustic waves

As discussed in Section 2, an incoming
plane acoustic wave on a gridl has a mathe-
inatical solution in the form
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u

I
-
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where F. the eigenvector, is given by (2.11)
and the wavenunibers (a.J) are 1o be found
by solving equations {2.10) and {2.12) simul-
taneously. Let F‘""" be the numerical solution
of the discretized linearized Euler equations.
At the inflow boundaries. F‘t",,)l is made up of

the incoming and the outgoing acoustic waves.
{n}

By subtracting F of (3.4) [rom F, . the out-
going acoustic wave solution, Foy, is
Four = Fy") —F. (3.5)

Now Fyy,. being purely outgoing waves,
must satisfly radiation boundary condition
(3.1). It is to be noted that F and F"}
and hence Foy, are defined only on the so-
lution mesh. To implement (3.1), the spatial
and time derivatives must be discretized first.
(3.1) may be rewritten in the form

i [F(nl ~ Re (’F‘ :i(al+dm-wnél))]

at Lo {3.6)

=W

where W is

. a .8 1
W= -1{8) [“’505; +sm8¢()—y- + ;}

. {F}’: —Re (; en(o(+.’!m—wn.§l))]

+ damping terms. (3.7)

The discretized form of (3.6} following the
DRP scheme is,
mn
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Iu the inflow boundary regton (see Figure
2): i.e.. the bottom three rows and the left-
most three columns of mesh points. backward
diflerence stencils ate to be used to approxi-
mate the spatial derivatives of {3.7). The par-
ticular backward difference stencils to be used
depend on the location of the point relative to
the boundary of the computation domain. For
example. for the corner point "4" with £ = L
and m = M as shown in Figure 2, the dis-

cretized form of (3.7) is.
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where {rz s, 8¢,y ate the polar coordinates
of the point *4". d§s| and d'i,s’ are the coef-
ficients of the 5-point and J-point damping
stencils (see Tam (1995}). Equation (3.8} sup-
plemented by formulae for Wi" in the form of
(3.9) is the desired nonhomogeneous radiation
boundary conditions.

On the outflow boundaries, a similar
treatment as above, starting with radiation
boundary condition (3.3) instead of (3.1),
leads to a set of inhomogeneous outflow
boundary conditions.

To test whether nonhomogeneons radi-
ation boundary conditions (3.8} and (3.1)
and the corresponding outflow boundarycon-
ditions can. indeed. generate an accurale
plane acoustic wave propagating across the
finite computation domain without, at the
same time. generating spurious vorticity of e+
tropy waves. a series of numerical simulations
have been carried out. In the simulations. a
100 x 100 mesh was used. In the interior re-
gioa. time marching scheme (2.3) and (2.4)
were used to time-stepping the solution to a
petiodic state. Aloag the inflow boundaries.
the variables of the solution were updated us-
ing nonhomogeneous radiation boundary con-
ditions (3.8) and (3.9). Along the outflow
boundaries, nonhomogeneous outflow bound-
ary conditions were used. Figure 3 shows the
time history of convergence to the exact finute
difference acoustic wave solution for the case
M =05, 6 = 30 deg, x = 60 deg. w = 1.2
and F:—. = 0.025. The ordinate is the max-
imum error; defined as the absolute value of
the maximum difference (over the entire com-
putation domain) between the numerical solu-
tion and the exact solution of the finite differ-
ence equations. The abscissa is the number of
time steps. For this simulation, a zero acous-
tic wave initial condition was used. As can be
seen. over time, the computed solution con-

_verges to the exact incoming wave solution to

336

machine accuracy.

3.2 Incoming vorticity waves

A set of nonhomogeneous radiation and
outfow boundary conditions for incoming vor-
ticity waves can be formulated in exactly the
same way as discussed above.

4. APPLICATIONS

In this section we report the results of
applying the nonhomogeneous radiation and
outflow boundary conditions developed in the
previous section to the numerical simulation
of the scattering of plane acoustic waves by a
cylinder and the generation of sound by the
interaction of a flat plate in a gust.

4.1 Scattering of acoustic waves by a solid cyfin-
der

The probiem of the scattering of acoustic
waves by a solid cylinder was simulated nu-
merically in the time domain. The incoming

Ztt I

o

RS - . G .

L L



acoustic waves were generated by the nonho-
mogeneous radialion boundary conditions of
Section 3. A 320 x 320 mesh was used in the
computation. The cylinder with a diameter of
32 was placed in the center of the computation
domain. Plane acoustic waves with a wave
length of 8 mesh spacings entered the com-
putation domain from the left boundary. [n
the numerical simulation. the linearized Euler
equations were solved using the DRP scheme.
A Cartesian boundary treatment using ghost
values of pressure to enforce the solid surface
boundary condition of zero normal fluid veloc-
ity developed recently by Kurbatskii and Tam
(1996) was applied around the surface of the
evlinder. A zero acoustic wave initial condi-
tion was used to start the computation. The
solution was marched in time until a time pe-
riodic state was reached.

Figure 4 shows the contours of zero pres-
sure obtained by the numerical simulation.
The zero pressure contours of the exact so-
lution are also plotted in this figure as dotted
curves. The agreement between the numerical
and the exact solution is good so that the two
sets of curves are almost indistinguishable. [n
Figure 4, the shadow zone behind the cylinder
shows up proniinently. There are strong scat-
tered waves propagating backward and to the
two sides of the cylinder. They are responsible
for the wiggles of the zero pressure contours of
the figure. The good agreement between the
numerical and exact solution provides strong
evidence that the proposed nonhomogeneous
radiation boundary conditions are, indeed, ac-
curate and effective.

4.2 Sound generation by the interaction of a flat
plate in a gust

As another application of the nonhomo-
geneous radiation and outflow boundary con-
ditions, numerical simulations of sound gen-
eration by the interaction of a flat plate in a
gust (vorticity waves) were performed. The
case of M = 0.3 and a vertical gust with

u=0, v:O.lsin[%(ﬁ-—t)l

as shown in Figure 5 was considered. A
200 x 200 mesh was used. The flat plate
had a length of 30. It was located on the
Z-axis in the center of the computation do-
main. The incoming vorticity waves were con-
vected into the computation domain by the

mean flow from the lelt boundary. The DRP
time marching scheme was again used. The
wall houndary condition on the plate was en-
forced by the ghost point method. Nouhomo-
geneous radiation boundary conditions were
tmposed on the left, top and bottom boundary
regions. Nonhomogeneous outflow bouudary
conditions were imposed on the right bound-
ary. The numerical solution was time-stepped
from a zero vorticity wave initial condition un-
til a time periodic state was established.

Figure 6 shows the computed directivity
of acoustic radiation in the top half-plane. No
exact solution of the present problem is avail-
able for comparison. Shown in this figure also
are the computed directivities using twice and
three times the original spatial resolution. It
is clear from the numerical results that there
is numerical convergence. This gust-plate in-
teraction problem is a genetic turbomachinery
noise problem. Direct numerical simulation of
this problem as a scattering problem in the
time domain has never been carried out be-
fore.

5. SUMMARY

A set of nonbomogeneous radiation and
outfiow boundary conditions designed for use
in conjunction with high-order/large-stencil
finite difference schemes has been developed.
The nonhomogeneous boundary conditions
generate the desired incoming acoustic or vor-
ticity waves and. at the same time. allow
the scattered or internally generated distur-
bances to leave the computation domain with
almost no reflections. These nonhomoge-
neous boundary conditions have been appiied
successfully to two benchmark aeroacoustics
problems. In this work, only two-dimensional
problems have been considered. The method-
ology, however. can easily be extended to.
three-dimensional problems.
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Figure 1. Computational domain show-
ing uniform mean fAow and the direction of
propagation of incoming plane acoustic or vot-
Licity waves.

Figure 2. Backward difference stencils
used to approximate spatial derivatives in the
inflow boundary region of the computational
domain.
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Figure 3. Convergence history of di-
rect numerical simulation of incoming acoustic
wave on a 100 x 100 grid. M=0.5. ¢ = 30
deg, x =60deg, w=12, 1/Rs, = 0.025.
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Figure 4. Map of the zero pressure con-
tours at the beginning of a cycle associated
with the scattering of plane acoustic waves by
a solid cylinder. Wavelength = 8.z, Diame-
ter of the cvlinder = 32Ar.
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Figure 5. Schematic diagram showing the
interaction of a flat plate in a vertical gust.

Figure 6. Directivity of sound generated
by the interaction of a flat plate in a vertical

gust. A = wavelength of incoming gust. —
Ar=A/38. ... Azr=2/16,-- -
-esAr =/



