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ABSTRACT

A set of nonhomogeneous radiation and

outflow boundary conditionswhich automat-

icallygenerate prescribedincoming acoustic

or vorticity waves and, at the sara'he time,

are transparent to outgoing sound waves pro-

duced internally in a finite computation do-

main is proposed. This type o[' boundary

condition Ls needed ['or the numerical solu-

tion of many exterior aeroacoustics problems.

In computational aeroacoustics, the compu-

tation scheme must be as noudispersive and

nondissipative as possible. It must also sup-

port waves with wave speeds which are nearly
the same as those of the original [inearized

Euler equations. To meet these requirements.

a high-order/large-stencil scheme is necer_ary.

The proposed nonhomogeneous radiation and
outflow boundary conditions are designed pri-

marily for use in conjunction with such high-

order/large-stencil finite difference schemes.

1. INTRODUCTION

Many exterior aeroacoustics problems in-

volve incoming acoustic or vorticity waves in-

teracting with an aircraft engine or the body
of the aircraft. An example of this type of

problem that is of current interest is the noise

generation by the ingestion of free stream tur-

buleuce into a fan engine. Another example is

the scattering and shielding of sound waves by

aircraft wings and fuselage. To simulate the_

problems using computational aeroacouscics

methods, the incoming acoustic and vortic-

icy waves must be generated by the boundary
conditions imposed at the outer boundaries of

the finite computation domain. In this paper.

a s-t of nonhomogeneous radiation and out-

flow boundary conditions, which, when used

in coujunction with a high-order finite differ-

ence scheme, automatically generates the de-

sired incoming acoustic and vorticity waves is

proposed.

In the presence of a uniform mean flow.
the liuearized Euler equations support three

independent types of small amplitude distur-

bances. They are the acoustic, the vorticity

and the entropy waves. These waves, to lin-
ear order, are uncoupled and propagate with

different characteristics and wave speeds (see

e.g.. Tam and Webb (1993_). In the compu-
tational aeroacoustics literature, there seen_

to be an absence of suggestions as to how to

generate such disturbances in the form of in-

coming waves. There are two intrinsic diffacul-

tie*. First. the imposed boundazy conditions

must not only generate the prescribed incom-

ing waves, they mus_ also be transparent to

outgoing acoustic disturbance* produced in-

side the computation domain. Second. be-

cause the Euier equations support both acous-

tic and vorticity waves at the same spatial lo-

cation, it is extremely difficult to generate a

single type of disturbance without also pro-

ducing the other type. Such coupling usually

occurs at. the corner regions of the computa-

tion domain. The proposed nonhomogeneous
radiation and outflow boundary conditions are

designed specifically to overcome these diffi-

culties.

In this work. we will use the Dispersion-

Relation-Preserving (DRP) scheme of Tam

and Webb [1903) for numerical computation.

There are two reasons for choosing the DRP

scheme. First, the DRP scheme was designed

so that the dispersion relations of the finite

difference equations are always formally iden-

tical to those of the original partial differential

equations. This not only makes the waves sup-

ported by the numerical scheme an excellent

approximationof thoseof the partial differen-

tial equations, it also assures that there will be

no wave mode coupling in the numerical sim-

ulation. The second reason for chooaing the

DRP scheme is that the exact plane acoustic.

vorticit.v and entropy wave solutions of the fi-
nite difference equations can be found aa_al.vt-
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icall.v. This is d/scu._d in Section 2 of this

paper. These exact solutions are u_ed in for-

mulath_g tile nouhomogeueous radiatiou and

outflow boundary couditions.

Over the years, there has bee,| a num-

ber of investigations devoted to tile devel-

opment of radiation/nonreflecting boundary

conditions but without hlconliug waves. Re-

cently, Hixon. Shih and Maakbadi (10051 per-
formed a detailed evaluation of tile suitabil-

ity of using the Thompson (1087. 19_0) quaai-

one-dimensional characteristic boundary con-

dition, the Giles (1990) Fourier ,node decom-

position boundary treatment and the asymp-
totic boundary conditions of Tam and Webb

(1903) for computational aeroacoustics appli-
cations. They concluded that for their test

problem, the radiation and outflow boundary

conditions of Tam and %_bb gave the least

reflections and provided the only acceptable
boundary treatment2 l,t this work, we fol-

low their recommendation and use the asymp-
totic boundary conditions of Tam and Webb

to develop the nonhomogeneous radiation and
outflow boundary conditions that would au-

tomatically produce very accurate incoming
acoustic and vorticity wave* in a finite com-

putation domain.

2. ACOUSTIC AND VORTICITY WAVES
ON A GRID "

• We will consider small amplitude distur-

bances superimposed on a uniform mean flow

of Much number'M as shown in Figure 1.

Such disturbances are governed by the lin-

earized Euler equations. We will use dimen-

sionless variables with length scale = Az =

Ag, (the mesh spacing), velocity scale = a0

(speed Of sound), time scale = _-_, pressure

scale = _a_ (where Po is tile gas density).

The dimensionless linearized Euler equations
are

OF 0F OF
-_-+a (2.1)_+s_=o

where F, the solution vector, and matrices R
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and S are

F = . R = M.- 0 .

0 .iI,

F.tl_ 0 J
S = 3[,j Ol ,

(2.'2 }

In (2.2) .kl_ and 3/y are the mean flow Mach

numbers in tile z- and v-directions, lfo is tile
direction of tile mean flow measured from the

z-axis, then AG = Mcos_, Afy = Msin*.

Upon discretizing (2.1) according to the

DRP scheme, the finite difference equations

may be written in the following form

_"+",..= _"'_,.,+..xt_biK_?2"., C'2._)
j=O

Subscnpts (_, m) are the spatial indices of tile

mesh in the z- and y-directions. Superscript

n is the time level. At is the time step. Tile

K'"j is given byvector C-',,

,1 nlK(")C,,,,= - R a_ F(")e÷Lm- S _ ai _,"+i
1=--3 j:-3

3
1

- R'-_ _ dj k(F_;_ '_+F_"I÷., ,, _" {2.4)
1---3

The last sum on the right side of (2.4) is the
artificial damping terms. R.,, is the mesh

Reynolds number. The numerical values of

the stencil coefF.cients aj, bj and dj may be

found in Tam (1995).

We will took for plane wave solutions of

finite difference equations (2.3) and (2.4) over

all infinite mesh. The analytical form of the
finite difference solution is

In (2.5). Re{ } is tile real p_t of. F"is the

wave amplitude vector (a constant vector).

(a,,3) are the wave numbers. _ is the angular

frequency. Substitution of (2.5) into (2.3) and

(2.4), at'Let some algebra, the following matrix

equation for [: is derived.

A F = 0. (2.6)



The matrix A is equal to

[o: °A= -2 ]

where

(25)

[_-M,_ - i(D(o)+DI3))]= . -_v,, ,J+ -RT; J
3

=-i X aJei)°

j=-3

_= -i _ a,e_i'_

j=-3

i(e-''a'- t)
_= (2._)

3

At _" bieU'_at
i=o

3

o(_,) = _ d:-'"
j=-3

D(d) = t d:-q_"

1=-3

The quantities (_'. _) and 5 are the wavenum-

bers and angular frequency of the computa-
tion scheme (the DRP scheme). D(e) and

D(_) are the artificial selective damping func-

tions (see Tam (1995)).

For nontrivia[ solution of equation (2.6),

the determinant of the coefficient matrLx A

must he equal to zero. This condition leads to

the genera/dispersion relation

;(_;_"- _-"-_-) = 0. (2.9)

We wish to point out that the Dispersion-

Relation-Pre*erving scheme assures that dis-

persion relation (2.9) is the same as that of

the waves of the original liaearized Euler equa-

tions provided the following substitutions are

made:U--_,_--a,_--_ and _--0.

2.1Acoustic waves

For acoustic waves, the dispersion rela-

tion is obtained by equating the second factor

of (2.9) to _ero. This gives.

[_ - M, _ -,t [, _ + i( D( o ) + D(J)) ] "R_., J

-_ -J'_ = 0. (2.[0)

The correspo.ding eigenvector is

_-- F., ] 2 . (2.tl)

F_

Suppose the direction of propagation of the

incoming plane acoustic waves is "( (measured

from the z-axis) a.s shown in Figure 1. Here

the direction of propagation is taken to be nor-

mal to the lines of constant phase, it follows.

therefore, that e and _] must be such that

;3
tan X = --- (2.12)

o

A plane acoustic wave may be character-

ized by its frequency _ and the direction of

propagation :_. The waveaumbees Ca.d) of

such a wave can be found by solving equations

12.10) and ('2.12) simultaneously. With the in-

clusion of artificial damping in the finite dif-

ference scheme, equation (2.4), the wavenum-

bees (e,d) of the wave are complex. Since

only a small amount of damping is added, the

imaginary partsare small.The wavenumbeer

of the corresponding acoustic wave solution of

the linearizedguler equationsate, however,

real.

2.2 Vorticity waves

The dispersion relation for the vorticity

waves of the finite difference scheme is given

by setting _ to zero in {2.9): i.e.,

._-M, _ - .'.f,_ + _'(O(_,)
- Ka., (2.13)

+ D(d)) = O.

The corresponding eigenfunction is

- : = t_"+_Pt-z . 12.141

Let ti, be the angle between the lines of con-

staalt phase of the vorticity waves and the z-

axis (see Figure 1) then

o

tan ,L': -cot X = -_- (2.L5)
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A vorticity wave may be specified by its

frequency _ and tile ph.'_e ang[e _'. "['he

wavenumbers of such w_.ves are found by solv-

i11g equatious (2.13) and (2.15) shnultane-

ousl.v. Because of the inclusion of artificial

damping terms, the waveuumbers are again

complex.

3. INHOMOGENEOUS RADIATION AND

OUTFLOW BOUNDARY CONDITIONS

We will now consider how to carry out
numerical simulation of exterior aeroacoustics

problems involving incoming acoustic or vor-

ticity waves. By necessity, the computation

domain is finite. Without loss of generalhy,

we will consider the flow configuration to be

as shown in Figure I. With the inflow as

prescribed, the bottom and the left side of

the computation domain constitute the inflow

boundaries. The tight, and top sides are the
outflow boundaries.

In the absence of ineonring waves, the

radiation bound.',ry conditions of Tam and

Web (1993) may be imposed along the inflow

boundaries. In polar coordinates (r, 0) with

origin at the center of the computation do-

mare. these radiation boundary conditions for

the outgoing waves, Four, may be written as,

aFou, _V(0) ( 0 1)0---7--= _ + _ Fou,- (3.L)

The acoustic wave propagation velochy V(9)

of (3.1) is equal to,

V(0) = M cos(9 - O)

+ it - M:sin:(O- 0)]½. (3.2)

Along the outflow boundaries. Tam and Webb

showed that the outgoing disturbances may be

comprised of acoustic, vorticity and entropy

waves. By means of the asymptotic solutions

of these waves, they demomtrated that for

pressure, Pout, the outflow boundary condi-

tiou is the same as (3.11. For the vetocity com-

pm*ents. (Uout, eout), the approximate outflow

boundary conditions are,

o[::::]
(3.3)

......

.7.1 Incoming acoustic waves
,ks discussed in Section 2, an iucomhlg

plane acoustic wave on a grid h_s a mathe-
matical solution in the form

t.m --F (3.4)

where F. tile eigenvector, is givell b} (_.ll)

and the wavenumbers (n. 3) are Io be fo:md

by solving equations (2.10) and [2.12) simul-

taneously. Let F '"* be the numerical solution

of the cliscretized linearized Euler equations.

At the inflow boundaries, f:¢.l is made up of
-_,rn

the incoming and the outgoing acoustic waves.

By subtracting F of(3.4)from I:('*_ the out-. "l.m'

going acoustic wave solution, Four, is

Fo., = _Z - F. (3.5)

Now FouL,being purelyoutgoing waves,

must satisfyradiationboundary condition

(3.1), It is to be noted that F and Ftm

and hence Four are defined only on the so-

lution mesh. To implement (3A), the spatial
and time derivatives must be discretized first.

($.1) may be rewritten in the form

0rF,-, ....A,,)]
0-_"t t.,,- (3.61

=W

where W is

0 0

W = -t"(O) [cosO_z + sin O_ + _]

+ da_nping terns. (.3.T)

The discre_ized form of (3.6) following the
DRP scheme is,

3

(n+ll ,_) w(n-j)Ft.,,* = Ft._ +At Eb_ t.m
i=O

-'i-

k

(e --a' - I) _.

J
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Iuthein_low bo.t_dary region (_,e_ Figure

'2); i.e.. the bottom three rows _ud the left-
most three columus of mesh poi_ts, backward

difference stencils are to be used to approxi-

mate the spatial derivatives of (:LT). The par-
ticular backward difference stencils _o be used

depend on ti_e location of the point relative to

the boundary of the computatiou domain. For

example, for the corner point ".4" with _"= L
and m = 3I as shown in Figure 2. the dis-

cretized form of (3.7) is.

W'"' = V(OL _,){ cos('c _,) _ _L ..1/ . % 4
j=-2

" [ I'L+I'M

IS [F_4_
+sin(eL..,/) _ a, L L.3,+,

I=-L

+ _ FL,3;

- ' L

_ (

FF(,n
+ _-_ _3'[ L..,,+,

where (rL.M. eL.M) are tSe polar coordinates

oF _he point 'A'. _sl and _=1 are the coef-
ficients of the +%point and 3-point damping

stencils (see Tam ( 109:3)). Equation (3.8) sup-

plemenCed by formulae for VV_"_ in the form of

(3.9) is the desired uonhomogeneous radiation

bouudary conditions
On the outflow boundaries, a similar

treatment as above, starting with radiation

boundary condition (3.;3) instead of (3.1),
leads to a set of ini_omogeueous outflow

boundazy conditions.

"1"o test whether .o,homogeneo.s radi-

ation boundary conditions (3.8) and (:¢.'._)

and the correspouding outflow boundarycon-

di;ions can. indeed, generate an accurale

plane acoustic wave propagatin.g acros.s *lie

finite computation domain without, at the

same time. generating spurious vorticity or en-

tropy waves, a series of numerical simulations

have been carried out. In the simulations, a

[00 x I00 mesh was used. Ill the interior r_

gion. time marching scheme (2.3) and (2.4)
were used to time-stepping the solution to a

periodic state. Along the inflow boundaries.
tile variables of the solution were updated us-

ing nonhomogeneou-s radiation boundary co,-

ditions (3.$) and (3.0). Along the outflow

boundaries, aonhomogeneous outflow bound-

ary conditions were used. Figure 3 shows the

time history of convergence to the exact finite

difference acoustic wave solution for the case

M = 0.5. _ = 30 dego _ = 60 deg. _a = 1.2

and _ = 0.025. The ordinate is the max-
imum error; defined as the absolute value of

the maximum difference (over the entire com-

putation domain) between the numerical solu-
tion and tl_e exact solution of the finite differ-

ence equations. The abscissa is the number of

time s_eps. For this simulation, a zero acous-
tic wave initial condition was used. As can be

seen. over time. the computed solution con-

verges to the exact incoming wave solution to

machiue accuracy.

3.2 Incoming voericiry waves

A set of nonhomogeneOus radiation and

outflow boundary conditions for i,,coming vof

ticity waves can be formulated in exactly the

same way as discussed above.

4. APPLICATIONS

In riffs section we report the results of

applying the nonhomogeneous radiation and

outflow boundary conditions developed in the

previons section to the numerical simulation
of the scattering of plane acoustic waves by a

cylinder and the generation of sound by the

interaction of a flat plate in a gust.

4.1 5catt¢ring of acoustic w_ves by _ solid cylin-

der

The problem ofthe scattering of acoustic

waves by a solid cylinder was simulated nu-

merically in the time domai,*. The incoming
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acotlstic wave.S were generated by the iiol|ho,.

mogen_ous radiatiou boundary conditions of

Section 3. A 32U x 320 mesh w_ used in tile

computation. Tile cylinder with a diameter of

32 was placed in the center of the computation

domain. Plane acoustic waves with a wave

length of 8 mesh spacings entered the com-

putation domain from the left bouudary. In

the numerical simulation, the linearized Euler

equations were solved using the DRP scheme.

A Cartesian boundary treatment using ghost

values of pressure to enforce the solid surface

boundary condition of zero normal fluid veloc-

ity developed recently by Kurbatskii and Tam

(1996) was applied around the surface of the

cylinder. A zero acoustic wave mhial condi-

tion was used to start the computation. The

solution was marched in time until a time pe-

riodic state was reached.

Figure 4 shows the contours of zero pres-

sure obtained b,v the numerical simulation.

The zero pressure contours of the exact so-

lution are also plotted in this figure as dotted

curves. The agreement between the numerical

and the exact solution is good so that the two

se:s of curves are almost indistinguishable, in

Figure 4, the shadow zone behind the cylinder

shows up prominently. There are strong scat-

tered waves propagating backward and to the

two sides of the cylinder. They are responsible

for the wiggles of the zero pressure contours of

the figure. The good agreement between the

numerical and exact solution provides strong

evidence that the proposed nonhomogeneous

radiation boundary conditions are, indeed, ac-

curate and effective.

42 Sound generarMn by the interaction of a flat

plate ;n a gust

As another application of the nonhomo-

geneous radiation and outflow boundary con-

ditzons, numerical simulations of sound gen-

eration by the interaction of a flat plate in a

gust (vorticity waves) were performed. The

case of M = 0.5 and a vertical gutst with

u=O, , = O.lsin [_ (._/- ,)1

as shown in Figure 5 was coltsidered. A

200 x 200 mesh was used. The flat plate

had a length of 30. [t was located on the

z-a.xis in the center of the computation do..

main. The incoming vorticity waves were con-

v_ted into the computation domain by the

mean flow from the left bouudary. The DRP

time marching scheme w,xs again used. The

wall boundary condition on the plate was ell-

Forced by the ghost point method. Nonhotuo-

geneous radiation boundary conditiona were

hnposed on the left, top and bottom boundary

regions.._onhomogeneous outflow bouudary

conditio,s were imposed on the right bound-

ary. The numerical solution was time-stepped

from a zero vorticity wave initial condition uu-

til a time periodic state was established.

Figure 6 shows the computed directivity

of acoustic radiation in the top half-plane. No

exact solution of the present problem is avail-

able for comparison. Shown in this figure also

are the computed direcLivities using twice aud

three times the original spatial resolution. ]t
is clear from the numerical results that there

is numerical convergence. This gust-pLate in-

teraction problem is a generic turbomachinery

noise problem. Direct numerical simulation of

this problem as a scattering problem in the

time domain has never been carried out be-

fore.

S. SUMMARY

A set of nonhomogeneous radiation and

outflow boundary conditions designed for use

in conjunction with high-order/large-stencil

finite difference schemes has been developed.

The nonhomogeneot.ts boundary conditions

generate the desired incoming acoustic or vor-

ticity waves and. at tile same time. allow

the scattered or internally generated distur-

bances to leave the computation domain with

almost no reflections. These nonhomoge-

neotm boundary conditions have been applied

successfully to two benchmark aeroacoustics

problems. In this work, only two-dimensional

problems have been considered. The method-

ology, however, can easily be extended to,

three-dime,tsionai problems.
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Figure L. Computational domain show-

ing uniform mean flow and the direction of

propagation of incoming plane acoustic or vof

citify *_aves,

i

I I i /_ I i

_ t.I ii t i t i i,

Figure 2. Backward difference stencils

used to approximate spatial derivatives in the

inflow boundary region of the computational

domain.
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Figure 3. Convergence history of di-

rect numerical simulation of incoming acoustic

wave on a 100 x 100grid. M=0.5. 4' = 30

deg, X = 60 deg, _ = 1.2, l/Raz -- 0.025.

u t ....... v, ....

p.

Figure 4. Map of the zero pressure con-

tours at the beginning of a cycle associated

with the scattering of plane acoustic waves by

a solid cylinder. Wavelength = 8A._, Diame-

ter of the cylinder = 32Az.

J
I

l/-x//-x/-

tka _ac

J

___z___ i
i

Figure 5. Schematic diagram showing the

interaction of a flat plate in a vertical gust.

Figure 6. Directivity of sound generated

by the interaction of a flat plate in a vertical

gust. A = wavelength of incoming gust. --

Az = ._/8 .......... Az = ,_/16, - - -
--- Az =AI24.
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