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INTRODUCTION

There is a great deal of overlap in the problems of interest to the solid state -

physicist and the material scientist. To date, however, many of the properties of
most interest to material scientists such as the strength of materials or their defect

energetics have not been amenable to accurate calculation by physicists because of

the complexity of these phenomena. Accurate models for material properties, such
as the band structure, transport, and magnetic properties, have been limited to rel-

atively simple systems. However, the results of such calculations were impressively

successful for the simple systems in that accurate agreement with experiment was
obtained. To a considerable degree, such atomic-level treatments have relied on lat-

tice periodicity (Ref. 2) in order to reduce the calculation to one over a single (and

relatively small) unit cell. The properties of interest to the material scientist generally
are related to "defects" in atomic structure producing a partial loss of periodicity

and thus involving calculations over a large number of atoms. For example, dislo-

cations, grain boundaries and interfaces between different materials can involve cal-
culations over hundreds of atoms. The breakdown of periodicity and the involve-

ment of many atoms clearly complicates such problems. Until recently, the lack of
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CHAPTER 3

adequate affordable computing power combined with the lack of efficient methods

for performing the quantum mechanical calculations made it di_cult to tackle such

complex problems. For example, it was only fairly recently (Refs. 16, 25) that it be-

came poss_le to determine which of the simple structures, fcc, bcc, or hcp for an
elemental metal had the lowest energy and thus was the most stable. These struc-

tures involve only small differences in energy. Since the cohesive energy is obtained
from the difference in total energy between an ion in the metal and the energy of an

isolated atom, this difference in total energies (each of which is a large number) made

the sman differences in structural energy _t to calculate.
These limitations have lead the material scientist to the use of simplified ap-

proaches to approximate properties of interest. Pair-potentials (two-body forces),
such as Van der Waals interactions, have long been used to treat some problems of

interest in material science (Refs. 2, 8). However, the pair potential approach has

some serious shortcomings. Perhaps the most serious is its inability to describe the

angular effects associated with covalent bonding which requires at least three-body
forces. Also, it is not clear that the pair potential approach adequately treats the

many-bcdy effects that occur in real materials, especially metals CRef. 17). For ex-

ample, the significant changes in the electron gas in a metal with changes in atomic

positions greatly affects the energetics of a defect. Some attempts have been made
to correct for these effects by including angular dependent terms (Refs. 20, 22, 5) in

the potentials whose parameters are adjusted to give certain material properties cor-

rectly. The potentials are then used to calculate other properties of interest. The

emphasis in this review is on modern computational techniques that go beyond pair-

potentials including many body effects and not a review of calculations for specific

defects (such as grain boundaries). All pertinent references which could serve as a

starting point for a literature search in modern techniques are included. With the

space limitations for this review, no attempt is made to make it a comprehensive
review of the literature.
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New semi-empirical and more efficient versions of earlier first principles meth-

ods have been developed which enable the treatment of a complex defect including

obtaining its total energy. The new semi-empirical embedded atom method (EAM)

(Ref. 10) and equivalent crystal theory (ECT) (Ref. 18) have shown considerable

promise in describing defects in metals. These approaches go beyond pair potentials

in including electron redistribution and many body effects. Both methods make use
of the "universal binding energy relation" (UBER) (Refs. 14, 15, 24). It has been

established that with an appropriate scaling of the length, binding energy, and equi-

librium separation, the shape of the binding energy distance curve is the same for

many types of bonding (Fig. 1). EAM represents the energy for embedding an atom

in a solid by an electron density dependent term obtained by overlapping atomic
densities and a pair repulsion term with parameters selected from physical proper-

ties along with fitting the total expression to the UBER. ECT uses perturbation the-

ory, the perturbation being the difference in energy between a solid with a defect
and a fictitious ideal "equivalent crystal" described by the energy change in the
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UBER. Requiring the perturbation terms to vanish leads to a simple analytic relation

for the lattice parameter of the equivalent crystal. This value is then used in the
UBER to calculate the energy of an atom in a defect-, Both methods are almost as

simple to apply as the pair potential approach and have the advantage of inclucUng

many-body terms. The difficulties involved in locating the minimum energy config-
uration and carrying out a molecular dynamics calculation to include temperature

effects are mitigated by the simplicity of these semi-empirical approaches. In two
cases which have been tested for surface energy determinations, the surface energy

and surface relaxation of metals (Table 1), ECT is more quantitatively accurate than

the EAM scheme. However, EAM is presently more versatile than ECT, which is in

an earlier stage of development. Another approach that should be noted utilizes the

so-called fight-binding bond model CRefs. 9, 21). Significant progress has recently

been made in justifying and implementing this approach in the framework of density

functional theory (Ref. 11). Force_mics and ceramic-metal interfaces, pair potentials
still dominate as a calculation,IV" technique. In some cases the form of the pair po-

tential includes a term accounting for the charge transfer between anions and cations

(Ref. 19).
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TABLE 1

SURFACE ENERGIES FOR SOME SELECTED METALS

(In erg/cm z)

Remerlt

Rrst

Crystal Pdndale=
Face ECT LDA rAM Experimenl_

402 A1 (111) 920

403 poly 1169

404 (1001 1280

(lOO1 131o lo9o°
407 Ni (111 ) 2400 1450 =

408 poly 2664

409 (100) 3120 3050 = 1580=

_]? (100} 2980 1730 '=

412 Cu (111) 1830 2100" 1170':

413 poty 2016

414 (100) 2380 2300 a 12802

_]_ (100) 2270 1400 =

417 Ag (1111 1270 62o'=
418 poly 1543

419 (100) 1630 1650 = 705"

_) (11 O) 1540 770 =

422 Fe (110) 1810

423 poly 2452

(100) 3490 3100= 1693'
426 w (110) 3330
427 poly 4435

428 (100} 5880 51 O0 e 2926 f

431

432

433

434

435

436

437

"Wawra, H. 7 Metellk. 66, 1975, 396, 492.

aHo, K. M., Bohnen, K. P. PhysicalReview 832, 1985, 3446.

¢ Fofles, S. M., et eL, Physical Review B 33, 1986, 7893.

=Gay, J. G., at el., Journal of Vacuum Science Technology, A 2, 1984, 931.

"Appelbaum, J. A.; Hamann, D. R. Solid State Communications, 27, 1978, 881.

fFinnis, M. W.; Sinclair, J. E. Phil. Meg. A, 50, 1984, 45.

gFu, C. L. eta/., PhysicalReview 8. 31, 1985, 1168.
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The wen-known improvements in computers, combined with more efficient the-

oretical techniques, have made some problems of interest in material science amen-

able to first principle studies. Most often the defect problems have been recast into

closely related periodic problems, since those are most readily handled by the effi-
cient band structure methods. This is accomplished by using large unit cells, the so-

called "super cells" (Refs. 13, 23). For example, interfaces can be treated by large

cells with each half of the cell occupied by one of the two materials involved. When

the cell becomes sufficiently large (in practice surprisingly small) the behavior around

the plane separating the two materials converges to that of an isolated interface. At

this stage, defects of the order of several hundred atoms can be treated practically

by this approach. (Note, typical numbers are about 64 atoms for point defects and
56 for interfaces. The actual limit depends on the availability and cost of computer
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TABLi= 2

INTERFACE ENERGY IN eV NORMAUZED PER

INTERFACE UNIT CELL AREA (I.U.C.A.} FOR

DIFFERENT BONDING CONFIGURATIONS

Interface

SiCIAIN

SiC/BP

Bonding ¥(eVlhU.C.A.|

Si--N, C--AI 0.45

Si--AI, C--N 8.10

Si--P, C--B 3.57

Si--B, C--P 0.50
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time). Self-consistent first-principles calculations are generally carried out using the

density functional theory (Ref. 11) in the local density approximation. A few brief
comments on this theory are given in Appendix 1. It should also be stated that' there

are essentially no material limitations in applying first-principle methods, i.e., met-

als, semiconductors or ceramics or interfaces between them.

These first-principles techniques are now at a stage where they can treat the

energetics and electronic properties of ceramic interfaces (see, e.g., Ref. 3). In
Table 2 we show the results of examining the possible bonding combinations at ce-

ramic interfaces (Ref. 12) using the first-principles LMTO (linear muffin tin orbital)
method (Ref. 1) which shows which configurations are energetically preferred.

Therefore, it is now possible to provide information of interest in interfaces involving

ceramic-matrix composites.
A second important problem, mentioned earlier, is determining the minimum

energy configuration for a defect. This problem is significant, no matter what ap-

proach is used. For example, a tilt boundary is often treated simply as a geometric
construction. It is necessary, however, to consider the atomic relaxations which yield

the minimum total energy configuration. Since there may be many subsidiary min-

ima. finding the absolute minimum by varying the configurations may require sub-

stantial computer time in first-principles calculations. A new approach, unifying
state-of-the-art electronic.structure theory with molecular dynamics methods has re-

cently been developed. It allows one to minimize the total energy as a function of
electronic degrees of freedom and atomic position simultaneously and even allows

the study of dynamics and temperature dependent phenomena (Ref. 6).

The future for first-principles and semi-empirical calculations in material science

is quite bright. A brief description of EAM and ECT are presented in the Appendix
sections Embedded Atom Methods and Equivalent Crystal Theory lc. To the phy-

sicist the problem is simply one of knowing the geometry and applying the tech-

niques. Therefore, the more powerful the computer, the easier it is for one to treat

a complex defect. For the near term, the optimum approach will likely be to combine
the two, with accurate semi-empirical approaches obtained from first-principles

methods giving the minimum energy geometry for the final, more correct first-prin-

ciples calculations.
The rapid advance in computer technology is also likely to continue for at least

the foreseeable future. Such advances will, in the near future, affect these compu-

tations in two ways. Within a year, it is expected that desk top systems will be avail-

_._ 10

c"

23 ASME NOQR: Volume 6 woR_0_^7378sss83 o_-,. :_o3_



28

183

184

185

186

187

188
189

190

191

192

193

194

195

196

197

198

199
2O0

201

2O2

CHAPTER 3

able with the computational power of a vector super computer of a few years past.

When this happens, it will in many cases radically increase the productivity of work-

ers performing these types of calculations. In many super computer installations,

the actual CPU time used by a program is a very small fraction of the program's

"'turn around time" -- many hours or even days may be lost while a program waits

in the queue for time on a heavily-used super computer. With the advent of pow-

erful, inexpensive desk-top systems, shared by one or two workers, this part of the

turn around time is effectively eliminated; furthermore, the performance/price ratio

of these systems is becoming extremely attractive, making it practical to provide dis-

persed super computer-equivalent power to workers performing atomistic simula-
tions.

In addition, it is becoming increasingly apparent that the best way to perform

these calculations is through the use of massively-parallel machines. In many in-

stances, an atomistic simulation "'maps onto" a massively parallel machine in a nat-

ural and intuitive way, and the performance obtained from such systems is already

starting to exceed that of more conventional vector super computers. These mas-

sively parallel machines are at an early stage of development, and it is not clear

which of the several proposed architectures will prevail. Still, enough work has been

done using these systems to begin to point out their promise (Ref. 4).

SUMMARY
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In any event, when increased computational power becomes available, it will be

possible to more accurately simulate large defect complexes, and also defect dynam-

ics. It will also be poss_le to perform first-principles calculations for larger systems

than is currently practicable, again permitting a more complete understanding of

larger defects and complexes. As these expectations are realized, a new era in ma-
terial science will develop which will include design of new materials with special

properties, e.g., high modulus super-lattices (Ref. 9) and an understanding of, and

greater accuracy in, "rules of thumb" presently used in design.
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First-Principles Equations

The first-principles calculations involve solving the Kohn-Sham Equations usu-

ally within the local density approximation (LDA) (Ref. 11). The Kohn-Sham equa-
tions are

(-(1/2) Vz + V(r)) "l'i(k, r) ,,, _i "l_i(k, r)

where _I'i and e, are the one-electron wave function and energy, respectively and

V(r) = _(r) + V=(p(r))

(1)

(2)

11
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V=( p (r)) is the exchange and correlation energy, and • (r) is the electrostatic energy

given by

a(r') zj (3)
¢(r) = | dr' fir - r'D _ fir - RiD

The first term is the electron-electron interaction and the second term is the electron-

ion interaction, • is the electron coordinate and R is the ion coordinate, z/is the ion

charge. The electron number density is given by

, p(r) -- _,_I_'(k. r)l2 (4)
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occ refers to the sum over k-space occupied states. With the geometry and an ap-

proximation for the wave functions, these equations are solved self-consistently, i.e.,
one iterates until the output density or potential agree. The total energy is then ob-

tained from the LDA as

E(p) = E_(p) + EEs(P) + Exc(P) (5)

where KE refers to the kinetic energy, ES to the electrostatic energy, XC refers to the

exchange and correlation energy and the brackets refer to the energy being a function
of the electron number density (atomic units are used throughout).

Embedded Atom Method

The energy for the ith particles is given by

E_= F(p,) + (1/2) _. Z,(R,,)Z,(R,;)/R,,
I

(6)

where F(p) is called the embedding energy, the second term gives the ion-core re-

pulsion, Rii distance, pi is the electron density contributed by all of the atoms except
the one at the i th site and Z(R) is the ionic charge given by

Z(R) --7-o(1 + BR9 exp (-_R) (7)

R_) is determined by overlapping atomic electron densities, requiring that this

expression agree with the UBER given by

E(R) = - AE (1 + a*) exp (--a') (8)

where AE is the cohesive energy, a* = (R - R,_)/d is the equilibrium distance and d

is a scaling length. The other parameters are obtained by fitting to other physical

properties, such as the vacancy formation energy or elastic constants. Once the

embedding energy for metal is determined and the geometry specified, the energy

for a defect can be easily calculated.

12
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Equivalent Crystal Theory

This technique also uses the UBER. The energy of a solid with a defect is written
as

_,_ = _(a) + aE(a) (9)

here Ecr_ua (a) is the energy of a crystal of the same material and with the same crystal
structure as the ground state crystal which is represented as a point on the UBER.

The energy difference 6E(a) between the real crystal and the equivalent crystal can

be expressed as perturbation series. A simple procedure is specified which finds the

value oL a, for which _E = 0, thus one is left with the simple result of evaluating

(Ecry_a (a) for an atom in the defect from the UBER, (Eq. 8). ECT at this stage requires
only one fitting parameter which is contained in the expression for BE.
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