
NASA-CR-203839

FinalReport
Octave: a MARSYAS Post-Processor for Computer-Aided Control System Design

NASA Contract NASA-NAG8-1040

Auburn contract 4-20616

A. S. Hodel

Mar. 1997

The Octave Control Systems Toolbox is essentially completed. This year the package was almost

entirely re-written in order to take advantage of Octave's data structure capabilities. This re-

write greatly simplifies function calls to the toolbox package, and makes much more practical and

convenient the interface between Octave and Marsyas.

The use of existing and new Octave functions is illustrated in the m-file DEMOcontrol Functions

include "block diagram" manipulations (series, parallel, and closed-loop connections of systems),

frequency response calculations and plots, state-space analysis, and root locus calculations. All

functions are now required to use the revised "packed" system data representation, which auto-

matically includes the signal names of internal states, inputs, and outputs, and makes transparent

to the user the representation form of the system being used.

Some mild details listed in the statement of work remain in progress, but will be completed

soon. Octave and the Octave Control Systems Toolbox are now installed on a Sun compute

server and a Linux PC at MSFC. Revisions of the OCST are available by anonymous ftp at

ftp://ftp.eng.auburn.edu/pub/hodel/OCST-ss*. Marsyas/Octave interface functions are in the

same directory with file names maroct-ss*.

A more complete description of the OCST is in the attached paper, [HTCI96].

References

[HTCI96] A. S. Hodel, R. B. Tenison, D. A. Clem, and J. E. Ingram. The octave control sys-

tems toolbox: A matlabtm-like CACSD environment. In Proceedings of the 1996 IEEE

International Symposium on Computer-Aided Control System Design, pages 386-391,

Dearborn, Mich., Sept. 15-18 1996. IEEE Control Systems Society.

:---,

jill '" ' : i, :

The Octave Control Systems Toolbox: A MATLABtm-like

CACSD Environment 1

A. S. Hodel 2 R. B. Tenison 3 D. A. Clem 4 J. E. Ingram 5

Abstract 1.

Octave is a freely distributable MATLABtm-like pro-

gramming environment. The Octave Control Systems

Toolbox (OCST) was developed as a set of script files

to add functionality to the Octave environment. The
OCST was designed to use an object-oriented data

structure to represent linear system parameters and rel-

evant companion data in a single data structure.

1. Introduction

The techniques and computaitonal requirements for

the analysis and design of automatic control systems

has grown increasingly complex with theoretical and

technological advancements of the past few decades.

Control systems conferences appropriately have en-
tire sessions dedicated to the to numerical issues in-

volved in the computational aspects of control sys-

tems engineering. Several commercial packages (e.g.,

the MathWorks MATLAB TM, Boeing's Easy-5 tm, etc.)

are currently available for the purpose of computer-

aided control systems design (CACSD). In this pa-

per we describe a CACSD package design for use with

Octave, a freely distributable MATLABtm-like pro-

gramming environment licensed under the terms of

the Free Software Foundation's copyright policy. Oc-

tave was originally developed for use in control educa-

tion by Dr. John Eaton, currently at the University

of Wisconsin-Madison. The Octave Control Systems
Toolbox (OCST) was developed by the authors.

2. Software organization

The OCST is divided into 6 sections, each section with

its own demonstration program:

1This work was supported in part by the NASA Marshall

Space Flight Center Summer Faculty Fellowship Program and

in part by NASA Contract NASA-NAG8-1040

2a. s .hodel_eng. auburn.edu, Dept. Elect. Eng, Auburn Uni-

versity, AL, 36849

3Reid State Technical College, Evergreen AL

4Dept. Elect. Eng. Auburn University

5Dept. Elect. Eng. Auburn University

2.

State-space analysis (demo program analdemo).

Functions include numerical solution of the Lya-

punov equation, numerical solution of the alge-

braic Riccati equation, and the computation of

Hankel singular values for model reduction.

Block diagram manipulation (demo program:

bddemo). Functions included allow manual con-

nection and modification of linear, time-invariant

systems through parallel/series combinations,

closed loop connections, "pruning" of inputs and

outputs, etc.

. LQG, 7t2 and 7/oo-optimal controller design:
(demo program: dgkfdemo). Currently imple-

mented functions include standard LQG design,

system 7-12 and 7/oo-norm computation, and 7-12

and 7/oo-optimal controller design as specified in

[1]. Checks for controllability and observability
make use of Krylov subspace iterations with com-

plete re-orthogonalization [2]. Structured singu-

lar value ("#") analysis and design is planned, but
not yet implemented.

.

.

Frequency response functions (demo program:

frdemo). Implemented functions include Nyquist
and Bode plots in both continuous and discrete-

time systems. Automated frequency range and
step size is provided to provide useful and smooth

plot curves. Speed in SISO plot computation is

provided by conversion to zero-pole format (see

discussion of system representation below).

Root locus functions (demo program: rldemo).

Pole-zero maps and standard root-loci are pre-

sented in graphical form. The latest release of the

OCST includes automated gain range and step
size selection.

. System representation and conversion functions

(demo program: sysrepdemo). The initial re-

lease of the OCST supported the same system

representation formats as MATLABtm: tf trans-

fer function form (ratios of polynomials), zp zero-

pole form (ratios of factored polynomials with a

leading gain coefficient), ss state-space form, and

a "packed" system form similar to that used in

theMATLABtm p-toolbox[3]. Thecurrentre-
leaseutilizestheOctavestructuredvariablesfea-
turesothatall threerepresentationstf, zp,and
ssarecontainedin a singledatastructurevari-
able.(Thisisdiscussedfurtherin §3.
Careis takenin the conversion from one system

representation to another; see, e.g., [4], [5]. Ar-
tificial transfer function zeros created by numeri-

cal perturbation of zeros at infinity is avoided the

use of the Emami-Naeini/Van Dooren mvzero al-

gorithm [6].

Documentation is available for all functions in three

forms: in "help" commands on-line in Octave, in TEX
form, and in the Free Software Foundation's info for-

mat, providing filrther on-line documentation.

The remainder of this paper is organized as follows. We

first present in §3 our structured variable representation

of systems and describe therein related functions and is-

sues for the use of this useful data structure. Following

this, in §4, we discuss some of the relevant numerical

features of the implementations, especially where they

differ significantly from MATLAB tm behavior.

3. Packed system representation

The OCST packed system representation is a data

structure, similar in use to a C language struct.

The packed system representation was developed in re-

sponse to the following observations:

1. Due to the wide variety of system representa-

tions, a substantial portion of the code is devoted

to determining which of four representation for-

mats (tf, zp, ss, or packed system form) is being
passed to a given OCST function. Such evalua-

tions are not always reliable, and they leave room

for undetected user error when calling such func-
tions

2. It is desirable to assign meaningful names to sys-
tem states, inputs, and outputs. In turn, it is
desirable to make use of these names when de-

signing observers, compensators, etc. This is es-

pecially critical when Octave is being used as a

CACSD tool, generating a code description of a

controller for use in closed-loop with a system be-
ing simulated and/or analyzed, possibly by an-

()tiler software package.

The OCST packed system representation is a flexible

data structure that allows users to pass a single vari-

able for each dynamic system passed to OCST func-

tions, regardless of the selected internal representation

and replaces the packed system format used in an ear-

lier release. This is in contrast to tf, zp, and ss forms
which each require 2, 3, and 4 variables to be passed,

respectively, for continuous time systems, and an addi-

tional variable (the sampling interval) for discrete-time

systems. The packed system format allows an object-
oriented interface to all software, so that users need not

concern themselves with the internal representation of

a system once they have put it into a structured form.

The internal representation is capable of simultaneously

representing a given system in all three forms above, if
required to do so; typically only one is used.

3.1. Internal structure

The structured format representation uses the following
internal variables:

a, b, c, d State-space representation matrices

hum, den Transfer-function representation vectors

(SISO systems only)

k, zer, pol Zero-pole representation variables (SISO
systems only)

stname, innname, outname String matrices con-
taining names of states, inputs, and outputs, re-

spectively.

sys an integer vector of four variables, indicating which

of the three representations above was used to

initialize this system representation, and which

of the remaining representations are "up to date."
The vector format is

primary type

tf up to date

zp up to date
ss up to date

The primary system type is a variable with value

0-2, representing (in order) a primary system type

of tf, zp, or ss. The up to date variables are

true/false flags, with zero indicating that a given

form is not up to date (not consistent with the
primary system type), and non-zero indicating

that the given form is up to date. For example,

sys=[2 1 0 1] indicates that a system was ini-

tialized with a state-space format (using function
ss2sys) and that it also has a transfer function

format representation available, but not a zero-

pole format representation.

n, nz, tsam Number of continuous time (differential

equation) states, number of discrete-time (differ-

ence equation) states, and discrete-time sampling

interval, respectively.

If a system has either tf or zp representation in-

ternally, then exactly one of n and nz is non-zero.

State space systems may have both continuous

and discrete states; it is assumed that the first

n states are continuous and the last nz states

are discrete. This convention is respected by the

block diagram manipulation functions.

Example 1 In order to represent a double-integrator

1/s 2 plant in state-space form as a packed system sys,

the following OCST commands may be used:

sys

sys

sys

sys

sys

sys

sys

sys

a= [0 1 ; 0 0];

b = [0; 1] ;

c= [1 0];

d=0;

n=2;

nz = O;

sys = [2 0 0 1];

stname = ["pos" ;"vel"] ;

sys inname = ["f"];

sys.outname = ["pos"] ;

C programmers will recognize the notation for struct

variables; other than this the notation is identical to

MATLAB tm.

sysconnect sysdup

UlI
sysprune

sysgroup

sysscale

Figure 1: Block diagram manipulations with packed sys-
tem format. Function names are shown below

the diagram indicating the corresponding oper-
ation.

Remark 1 The OCST uses packed system form in a

object-oriented fashion; that is, the user should ac-

cess structure members only using the provided struc-

ture manipulation functions e.g., ss2sys and sys2ss

to convert from state space to packed system and vice

versa. The use of a single structure to represent all lin-

ear time-invariant systems greatly simplifies the writ-

ing and maintenance of OCST functions, since it is no

longer necessary to identify which representation type

is being passed, only to reference the structure variable

sys and update the appropriate internal variables via

the OCST sysupdate function. Further, since input,

output, and state names are stored internally in the

structure, it is straightforward for users to write au-

tomatic code generation software (done by the authors

for Marshall Space Flight Center) whose output is much

more easily integrated into the target package (an inter-

nal simulation package, in our case). Should the names

of inputs, outputs, and states be required, the OCST

command sysout may be used to obtain output of the

form:

2 continuous states:

I: (BALL\DYNAMICS) X'

2: (BALL\DYNAMICS) X

0 discrete states:

None

i inputs:

i: I\MAG

2 outputs:

I: X

2: KDOT

3.2. Block diagram manipulations

The packed system format provides a convenient vehi-

cle for performing block diagram manipulations. The

available manipulations and their corresponding func-

tion names are depicted in Figure 1, and are as follows.

sysconnect connect selected system outputs to se-

lected system inputs. This option is used to "close

the loop" around a system/controller pair.

sysdup duplicate selected system inputs/outputs.

This option is used when, for example, an SISO

control input requires a difference r(t) - y(t),

where r(t) is a reference signal and y(t) is the

output of a plant. (See the example below.)

sysgroup combine two separate systems into a single

system

sysprune prune selected inputs/outputs, sysprune's

input parameters list the inputs and outputs that

are to be kept, not deleted.

sysscale scale inputs and outputs by specified con-

stant

transformation matrices Ti and To.

u(t)

Figure 2: Example closed loop system

present) as shown in Figure 1; the system is mod-

ified to reflect that the input vector is multipled

by the input matrix Ti = diag(1,1,-1) before

it is passed to the original system. Thus, Ti is an

input scaling matrix that changes the sign of the
input _ to KP, and so the input to the controller
gisnowe-_.

Example 2 Suppose that an SISO plant and controller

are stored in respective packed structures P and K, and
that it is desired to obtain a closed loop transfer func-

tion of the closed loop system shown in Figure 2. For

clarity below, we denote the input to the plant P as u,
the output of the plant as y, the input of the controller

K as e, and the output of the controller as c, as shown in

the figure. Thus, we wish to combine together P and K,
and to set u = c, and e = r - y. The OCST commands

to obtain this system are as follows:

PK = sysgroup(P,K)

Group the plant and the controllerinto a sin-

]'gle system with inputs [u e and outputs

[y c]'.

U

PK =

Since the new system is MIMO, sysgroup auto-

matically changes the internal representation of

the system to a state-space form; this conversion

is transparent to the user.

sysdup (PK, [], 2)
Since the input to the controller is a combination

of both a reference signal r and the output y,
we duplicate the input e so that now the overall

system has inputs [u e _]' where the new

input _ enters the system in the same way that e
does; that is, the input to the controller K is now

e+_.

e

We now proceed to set _ = -y and u = c.

PK=sysscaIe(PK, [] ,diag(1,1,-1))

sysscale adds tile scaling matrices when

PK = sysconnect(PK, [1 2], [3 l])

This command connects output 1 (y) _ 3 (_) and
output 2 (c) _ input 1 (u). (If the user is unsure

of the order in which the inputs and outputs are

listed, they may use the command sysout to read
the contents of the input, output and state names.

__ I d
C

_t

(Dashed lines above are removed below with

sysprune.)

PK = sysprune (PK,1,2)

This command omits alloutputs except forout-

put 1 (y) and input 2 (e), which may easily be
seen from the above to correspond to the refer-

ence input r.

Remark 2 The two steps

PK = sysdup(PK, [] ,2)

PK=sysscale (PK, [] ,diag(1,1,-1))

could have been executed with a single sysscale com-
mand,

PK=sysscale(PK,[],[1 0 0; 0 1 -1])

However, this requires sysscale to attempt to identify
a meaningful input name for newly created inputs. If

there is ambiguity, the new names are merely selected as

u_i with i set to the index number of the input. A sim-

ilar action is taken for outputs created via sysscale.

Remark 3 The current implementation of

sysconnect requires that no inputs or outputs
be listed twice in the above vector lists; sysdup must
be used in order to obtain such connections. This

restriction will be removed in a later release of the
OCST.

Remark 4 Notice (see Figure 1) that sysconnect does

not change the number of inputs and outputs; in effect,

sysconnect merely inserts a summing junction at the

selected input(s) and connects the corresponding out-

put(s) to the summing junction. As such, the above

syscormect command effectively reassigns _ := _ + y

so that the input to the controller is now e - (_ + y).

Remark 5 sysconnect is able to correct connect in-

puts and outputs in the presence of algebraic loops. If

there is a direct feed through (D-matrix) term from any

of the selected inputs to any of the selected outputs,

sysconnect correctly closes the loop around these di-

rect feed-through terms and only provides a warning

message to the user that there is a possible algebraic

loop. An error occurs only when (1) an algebraic loop

does in fact exist and (2) the corresponding block/9 of

the system D matrix has an eigenvalue at 1 (I - D is

singular).

4. Numerical Features

The numerical solution of control problems requires

care in the development of solution software. Whenever

possible, it is desirable to employ orthogonal matrices

in order to reduce the impact of numerical roundoff [7].

The OCST solution methods for Lyapunov equations

AX + XA' + B = 0 and algebraic Riccati equations

A'X + XA - XBX + C = 0 both employ the Schur de-

composition as implemented in LAPACK [8]; the reader

may consult [9] and [10] for details.

The design of 7-12 and 7ioo optimal controllers requires

several checks on system properties, including stabiliz-

ability and detectability. These tests are performed in

the OCST as follows:

1.

2.

.

construct an orthogonal basis V1 of the control-

lable/observable subspaces in an Arnoldi iteration

with complete re-orthogonalization [2]

construct an orthogonal basis 1/2 of the span of the

right/left eigenvectors corresponding to eigenval-

ues of system that are not exponentially stable.

Tile system is stabilizable/detectable if and only

if V1 'V2 has full column rank.

These conditions (among others) are checked with a sin-

gle OCST function is_dgkf, named for the now famous

paper [1].

5. Example program

An example of the use of the OCST to design an 7/0o-

optimal controller is as follows (taken from dgkfdemo):

help hinfsyn % get on line description

% of command

A = [0 1; 0 0];

B1 = [0 0;1 0]; B2 = [0;1];

c1 = I1 o; 0 0]; c2 = [1 0];

Dll = zeros(2); D12 = [0;1];

D21 = [0 1]; D22 = 0;

D = [Dll D12; D21 D22];

_default state,input,output names

%are selected by ss2sys

Asys = ss2sys(A,[Bl B2], [CI;C2] , D);

% open loop bode plot for MIMO system

bode(Asys);

gmax = i000;

gmin = 0.i;

gtol = 0.01;

% design controller

[K,gain] = hinfsyn(Asys,l,l,gmax,gmin,gtol);

% close the loop and compute the Hinf norm

K_loop = sysgroup(Asys,K);

% print out system input/output names to

%show connection numbers (listed below)

sysout(K_loop);

Kcl = sysconnect(K_loop,[3,4],[4,3]);

delete "u" and "y" inputs

Eel = sysprune(Kcl,[l,2],[l,2]);

gain_Kcl = hinfnorm(Kcl);

% check actual gain vs predicted

gain_err = gain_Kcl - gain;

%Check: multivariable bode plot

bode(Kcl);

Notice that, due to the flexibility of our system format,

there is no need to pass extra parameters to indicate

whether a system is continuous or discrete time, etc.

Also notice that, by using function sysout, a user can

easily check that he/she has the correct indices of tile

inputs/outputs are passed to sysconnect.

