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1. INTRODUCTION

UNIX-based systems are widely used both in industry and academia. A study of
failures in the UNIX operating system can enhance our understanding of software error
maniirstatioqs and aid in building'.robust versions starting early in the software life
cycle. Studies such as in [38] and [20] have investigated OS failures, but no data have
been reported on failures in the UNIX operating system.

This thesis presents a study of software failures spanning several different releases of
Tandem’s NonStop-UX operating system running on Tandem Integrity S2(TMR) sys-
tems. NonStop-UX is based on UNIX System V and is fully compliant with industry
standards, such as the X/Open Portability Guide, the IEEE POSIX standards, and the
System V Interface Definition (SVID) extensions. In addition to providing a general
UNIX interface to the hardware, the operating system has built-in recovery mechanisms
and audit routines that check the consistency of the kernel data structures.

Our analysis is based on data on software failures and repairs collected from Tandem'’s

product report (TPR) logs for a period exceeding three years. A TPR log is created when



a customer or an internal developer observes a failure in a Tandem Integrity system. This
study concentrates primarily on those TPRs that report a UNIX panic that su.bsequently
crashes the system. Approximately 200 of the TPRs fall into this category. Approxi-
mately 50% of the failures reported are from field systems, and the rest are from the
testing and development sites. It has been observed by Tandem developers that fewer
cases are encountered from the field than from the test centers. Thus, our data selection
mechanism has introduced a slight skew.

In this thesis, a failure is said to occur if the system issues a panic message and
crashes. A panic is reported by the operating system when it fails to recover from a
reported error. A duplicate fatlure ig defined as one failure that occurs due to the same
underl’ying fault that was reported in an earlier failure.

Section 1.1 summarizes related research. Chapter 2 provides a description of the
system architecture and the operating system. Block diagrams of both the operating
system and the hardware are provided to assist the reader in associating the faults with
the modules. Chapter 3 provides details about the TPRs. An example of a TPR has
also been provided. Chapter 4 concentrates on classification of failures based on the
panic strings, the detection location of the error, the source location of the fault, and
the type of programming mistakes committed during development. Chapter 5 brings
into perspective the fault behavior of the software for the period extending from 1992
through 1994 and provides failure timing distributions, which include the distribution of

time between failures and the distribution of time taken to repair the fault. Chapter 6



Table 1.1: Measurement-based studies of computer system dependability

| Category [ Issues | Studies
Data Analysis of time-based tuples [44], [8]
Coalescing Clustering based on type and time [15], [19] [43]
Transient faults/errors [36], [29], [15]
Basic Error/failure bursts [15], [9], [43]
Error TTE/TTF distributions [29], [14], [21]
Characteristics | Fault window and impact of failures 5]
Fault latency (3], [49], [30]
Hardware failure/workload dependency (1], (2], [12]
Dependency | Software failure/workload dependency (2], [14], [34]
Analysis Correlated failures and impact [39], [48], [42]
Two-way and multiway failure dependency 6], [19], [40]
Modeling Performability model for single machine [10]
and Model for distributed systems [43], [11]
Evaluation Two-level models for operating systems [21]
Error recovery [47], 9]
Software Hardware-related and correlated software errors | [13], [42], [21]
Dependability | Software fault tolerance . (7], [20], [22]
Software fault tolerance using software diversity | [28]
Software defect classification , [37], [38], [4]
Operational | Experimental data from controlled experiment (26]
Security and definition of security measures
Fault Heuristic trend analysis [44], [25]
Diagnosis Statistical analysis of symptoms [16]
Network fault signature [31], [32], [33]

concludes the thesis by summarizing the important results of this research and laying

out the plans for future work.

1.1 Related Work

Measurement and analysis of computer systems started in the late 1970s. Figure 1.1
traces the evolution of measurement-based studies. It associates measurement-based

research studies with five distinct time periods. Each period consists of five years. We



Before 1980

Early experiments investigating and measuring
hardware failures. Concentration on timing of failures.
Methodology for software fault tolerance devised, and

measurements to evaluate its effectiveness were conducted.

1980-1985

Dependency of hardware/software failures on the
workload of the system. Hardware-related software

CITOrS.

1985-1990

Performability model of both software and hardware
developed to gain better understanding. Standard methods
used were Markov chains and Petri Nets. Study of -

correlated faults in multicomputer systems.

1990-1995 l

Main concentration on software measurement.
Hardware became fairly reliable. Measurement
done on operating system, user-software, etc.

Measurement on network also performed.

1995-

Hardware would again become a problem area with
fabrication technology heading towards 0.25 microns.
Measurement in multimedia systems and internet

application would gain relevance.

Figure 1.1: Evolution of measurement-based studies of computer failure.



can see from the figure that the nature of research work is migrating from hardware
to software. Researchers have put more stress on software failures in the recent years
because it has been found that software errors are responsible for 60-70% of system
failures. Table 1.1, adapted from [17], has been updated and provides classification of
major research work in the measurement area. Next, we will in detail discuss some of
the closely related work.

The issue of software reliability has been studied extensively, and a large number
of models have been proposed [27], [35]. For the most part, these models attempt to
describe the reliability growth of the software during the development phase.

Early measurement-based studies of operational software running on the IBM 3081
and DEC systems in [14] and [2] showed the strong correlation between the workload
of the systém and the failures. The research in [2] introduced a workload-dependent
probabilistic model to predict the differences in manifestations of hardware transient and
software errors as a function of system workload. The model was applied to a modified
version of the standard TOPS-10 operating system running on a PDP-10 machine.

Analysis of failures of the VM/CMS and the MVS/SP operating system running on
the IBM 3081 machine [13], [14] found that 25% to 35% of all software failures were
hardware-related. Storage management and exceptions were identified to be the prime
cause of software errors.

A Markov model that describes software errors and the recovery process in a produc-

tion environment using error logs from the MVS operating system was discussed in [9].



The model developed using low-level error data provides a quantification of the system
error characteristics and the interaction between different types of errors. It was found
that multiple errors constituted 17% of all software errors and involved high-recovery
overhead.

Software errors on the VAX/VMS operating system in VAX cluster multicomputer
environments were analyzed using error logs in [41]. The correlations between software
and hardware errors and among software errors on different machines were investigated.
The results showed that most software problems were from program flow control and
I/O management. It was concluded that network-related software was the reliability
bottleneck. The distribution of time between errors was modeled by a two-phase hyper-
exponential random variable.

In [7], the results from a census of Tandem systems were presented. It was found that
the number of hardware failures has reduced considerably with time, and the software
errors account for 62% of the outages.

Software defects in the MVS operating system have been studied using the software
error reports in [38]. Three parameters, the error type, the defect type, and the error
trigger, have been used to classify errors reported from the DB2 and the IMS product.
It has been shown that the error characteristics of different products were different.
A detailed discussion of the undefined state of software (when it fails) has also been

provided.



The use of the observed software defects to provide feedback to the development
process is discussed in {4]. Software defects are mapped back to the different phases of
software development. A deviation from the standard defect pattern would indicate an
imperfect software development procedure. It has been shown that functional errors are
predominant in the early developmental phase, whereas timing/synchronization errors
are more common during the test phase.

In [5], a study of the impact of failures on customers and the fault lifetimes was
presented using failure data from commercial software. Two metrics, fault weight(which
is based on the severity of the fault) and fault window (which is the time frame in which
the fault was reported), were introduced.

In [20] and [24], a study of the Tandem GUARDIAN operating system was pre-
sented. Data collected by a system monitoring facility and the TPRs reported against
GUARDIAN were used to conduct the analysis. The failure times and the classification
of errors were presented. The error propagation study conducted revealed that 47% of
the errors had a short error latency, whereas 41% showed significant error latency. Most
of the errors were detected quickly without corrupting other segments of the code.

A wide-ranging analysis using error classification of software error data collected dur-
ing the development phase was reported in [46]. This study has important results. First,
it provides comprehensive data on UNIX failures (although the UNIX system considered
is significantly more robust/dependable than a typical UNIX system). Second, it relates

the symptoms of the failures to where the error was detected (the panic invocation point),



the source of the error (the module to be fixed), and the panic string that was generated
when the error was detected. It also presents the most prevalent kinds of programming
mistakes in the software. Third, it provides a comprehensive study of failure timing dis-
tributions. Finally, by combining systems from the internal high-stress environment and

systems from the field sites, it provides a wide-ranging view of the system.



2. THE SYSTEM ARCHITECTURE

2.1 The Integrity Architecture

The NonStop-UX operating system runs on the Tandem Integrity S2 architecture.
Figure 2.1 provides a block diagram of the architecture. The system consists of a
triplicated processor local memory system contained on three Central Processing Units
(CPUs). Duplexed Triple Modular Redundant Controllers (TMRCs) provide a large sec-
ondary main memory and serve as the nexus for the I/O operations of the machine. This
1s a major center for error detection, as all data transfers are checked. The TMRC also
does the voting in the architecture. The CPU/local memory connects to the TMRCs over
the Reliable System Bus (RSB). Duplexed Input/Output Packetizers (IOPs) provide the
interface between a TMRC on one side and a superset of an industry-standard I/0O bus
(VME) on the other. The interconnection between the IOPs and the TMRCs is called
the Reliable I/O Bus (RIOB). The IOPs are the conduit through which all I/O in the

machine flows. Each IOP controls a bus called the NonStop-V+ bus, which is the high
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Figure 2.2: NonStop-UX operating system block diagram.

data integrity version of the VME ims. To connect an ordinary VME controller to the
system, a Bus Interface Module (BIM) is connected to the VME controller, and the BIM
connects to the NonStop-V+. The BIM provides a dual-ported path from the peripheral
controller to each IOP. Peripherals are connected to the VME controllers via the Patch
Panel.

The reader is assumed to be familiar with UNIX System V; thus, we will only mention
some of NonStop-UX'’s unique features. Figure 2.2 provides a block diagram of the OS.
The local memory (present on the CPU board) contains the kernel text and data, a
local kernel heap, page tables, and user processes. A similar layout exists for the global
memory (physically present on the TMRCs). If data are not found in the local memory,

they are fetched from the global memory.
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In addition to standard error-handling mechanisms such as signals, techniques are
used to enhance the robustness of the OS. These techniques include a highly 'reliable en-
hanced kernel that corrects High Data-Integrity Panics (HDIPs) and uses audit routines
for checking the consistency of kernel data structures. Thousands of assertions that check
for a viable condition, such as correct pointer values, have been inserted throughout the
OS code. Recovery routines provide mechanisms for problem isolation and for preventing
system corruption by killing problematic processes. Facilities, such as an indestructible
initialization (init) process and a keepalive daemon, allow the system to survive termina-
tion of vital operation processes. If a crucial process is terminated, these facilities restart
it. The data are protected from cor.ruption by using disk checksums, providing strong
tolerax-lce to power loss, and duplicatihg data across multiple disks. There are many other
hardware robustness mechanisms that support OS recovery. Most of these mechanisms

are covered in [18].
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3. DATA COLLECTION AND FORMAT

A Tandem Product Report (TPR) logs the occurrence of a failure and tracks in detail
the problem diagnosis and repair. TPRs form the basis of our study. Typically, when a
failure occurs at a user’s site or through extensive testing during the development of a
release, it is subsequently logged, analyzed, and corrected. In some cases, the symptoms
provide sufficient information to determine the cause of the failure (generally in cases of
duplicates), in which case the data are not entered in the TPR database. If, however,
the developer concludes that further investigation is needed before a conclusion can be
reached, then the failure is entered into the database.

Figure 3.1 provides an example of a TPR reported for a failure in a NonStop-UX sys-
tem. The header section includes the date and time of the TPR creation, severity/priority
of the reported error, and the current status of the error. The second section provides
textual descriptions of the problem, the analysis procedures undertaken to correct the
fault, and the fix information. Although not shown in the example, some TPRs also

contain output from runs of crash on the memory core.
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PRODUCT REPORT
Date Reported: xx-xx-xx Time of report: xx:xx Type of Problem:
HW/SW/Unknown
Severity level: A-C Customer information: Substatus of error: xx

Description of problem: Machine panic’ed with an assertion failure. (Assertion
XYZ checking pointer value P failed.) Before the machine panic’ed, the UNIX
command "ping" stopped working, all telnet sessions were hung, and the machine
complained that the ethernet driver buffer was full. Both the console messages and

the core are available.

Analysis procedures/results: The error was located in the ethernet driver, and the
driver was modified in the following way. Open requests are allowed to the
ethernet driver even if the controller is offline. This allows the streams pointer to
always be in a valid state. Earlier, if the device was offline, the open did not
succeed; however, the streams pointer was used subsequently.

-Analyst xxx (Dated: xx-xx-xx)

Fix incorporated in the affected module on xx-xx-xx by xxx.

Figure 3.1: An example of a TPR reported against NonStop-UX.

Two kinds of data were extracted from the TPRs for our study. The first relates to
the failure detection and repair process. These data include detailed information about
the analysis procedures undertaken at Tandem and the fix information, if the problem
was fixed. Analysis procedures illustrate the use of core image and console messages and
provide chronological listings of the procedures carried out to locate and fix the error.

The second kind of data consists of the times at which problems were reported and
at which they were fixed. In the case of duplicates, the fix time is the time at which it

was ascertained that the problem was a duplicate.
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4. FAULT CLASSIFICATION

4.1 Broad Classification of the Failures

4.1.1 Types of failure

Figure 4.1 provides a high-level summ.ary of the types of failures reported during the
three-year period. These failures fall into three categories. Sixty-three percent of the
failures were confirmed to be software related, and 4% of the failures were hardware
related. In 33% of the cases, the failure could not be classified; failures in this category
were generally problems that could not be fixed or problems in which changing both
hardware and software components corrected the problem. In the latter case, the cause
of the failure remained unknown. In [24], of all the failures reported in the GUARDIAN

operating system, 89% were software related, and the rest were due to hardware faults.
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. Total =389 |

Unknown
(33%)

Software

Hardware (63%)
(4%)

Figure 4.1: Classification based on the nature of the failures for panics reported during the
measurement period.

4.1.2 Final status of the failures

Many of the failures reported were caused by the same fault as a failure reported
earlier. Figure 4.2 shows the breakdown of the final status of all of the failures reported
during the three-year period against various releases of the NonStop-UX operating sys-
tem. Forty-three percent of failures during this period were duplicates. This can be
compared with the 76% and 47% re-occurrence proportion reported in release 1 and re-
lease 2 of the software in [5], and 72% in [24]. Twenty-eight percent (in the category
Tested) were unique problems, which were fixed and passed through quality assurance.
In the absence of a core image and console messages, an effort was sometimes made to
recreate the problem. The core image and console messages were recorded if the problem
could be recreated. Eighteen percent of the failures, however, could not be recreated
on Tandem test machines. There are several explanations for this. 1) The system used

for testing may not have been the same as the system that failed (although all efforts
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Figure 4.2: Status of errors reported against the OS during 1992-94, as of 1/1/95.

are made to recreate the failure environment). 2) Stress conditions may not have been
the same. 3) Other software interactions with the OS at the time of failure may not
have been present. A reported failure is classified as “not a defect” when the fault is
due to user misunderstanding (e.g., when the user fails to follow the manual and installs

incompatible OS modules).

4.1.3 Importance of the core image

Of all of the failures, only 79% supplied the memory core image. In the other 21%,
a core image either was not created by the system when it failed, was lost during trans-
portation, or was rendered unreadable when it arrived at Tandem. Systems failed to
save a core image when there was insufficient disk space to store the core image or in a
few cases when double panics occurred. A double panic may occur, for example, when a
system encounters an inconsistency while trying to sync the filesystem inside the panic

routine. Nine percent of all failures reported in the OS were double panics.
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Figure 4.3: Importance of the core image in the repair of faults.

Availability of a core image is very important to the fault repair process. Using the
core image, the analyst can see the various operating system internal tables and the
memory structures. Generally, the procedure stack of the processes that were running at
the time of failure provides some clue about the location of the fault. Lee, Iyer, and Mehta
[23] discuss the use of a p;ocedure stack in the identification and correction of software
failures. The file table, process table, and callout table also aid in fault identification
and location. Figure 4.3 shows the importance of the core image in the location and
correction of faults. We see that of the 143 failures containing core images, only 14%
(20 out of 143) could not be fixed, whereas of the other 37, for which no core image was
available, 35% (13 out of 37) of the errors could not be corrected. The critical importance
of the core image in the repair of a fault makes it clear that more effort must be made
to provide a better core-saving mechanism. Static allocation of disk space and regular
removal of old core images from that partition by the administrator can alleviate the
problem of failure to save the core image due to insufficient disk space. In the event of a

disk space shortage in a small system in which a large reserved partition on a disk would
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not be feasible, a partial core consisting of the major internal tables and the process stack

could be saved.

4.2 Detailed Fault Classification

In this section, we describe some fault classifications to provide more information
relating fault source location to the detection location. The classifications presented
also shed light on programming mistakes in the OS. In deciding on classes, our aim was
to abstract at a level that would facilitate the tabulation of failures, while preserving
relevant details.

The general system behavior during a failure can be characterized as the following
sequence of events. A system encounters an error situation, such as the failure of an
assertion, and then passes control to an error-handling routine if that assertion has an
associated error handler; otherwise, it panics. The error-handling routine determines
whether the reported error is recoverable. If the system cannot recover from the error, it
then calls the panic routine, which starts the panic process. The panic process attempts
to save the core image, displays a panic string on the console, and initiates an automatic

reboot.

4.2.1 Panic string classification

The panic string displayed on the console provides an error message describing the

last action that crashed the system and initiated the panic. Table 4.1 displays the failures
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Table 4.1: Classification of failures using their panic strings

Panic String Number Percent
Displayed of Failures | of total
Total 86 (rounded off)

Assertion failed 32 37.2
Translation Lookaside

Buffer miss 12 14
Bus error 4 4.7
Recovery not allowed 11 12.8
Recovery threshold exceeded | 3 3.5
Streams recovery

handler timed out 2 23
Kernel trap 2 2.3
Kernel memory freed 2 2.3
Kernel memory coalesced 1 1.2
Kernel stack overflow 3 3.5
Interrupt stack overflow 3 3.5
TMRC data transfer 3 3.5
Fatal TMRC error 1 1.2
Swap failed in user area 2 2.3
Page substitution 1 1.2
Hardware specific memory

management problem 1 1.2
Unexpected write

I/0 failure 2 2.3
Byzantine data in

writeprotect RAM 1 1.2

classified by the panic string. It should be noted that a panic string was not available for
all of the failures, and, thus, only a subset of the TPR data was used for the classification.

We see that about 40% of the panic strings displayed the message assertion failed.
This directly suggests that assertions provide good error detection. Assertions test a
condition, such as the value of a pointer. If the value does not match the expected value,

the assertion transfers control to the recovery routine or calls a panic.
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The next major contributor was the error message TLB miss in kernel space. This
occurs when the kernel references an address pointer that has no mapping in the TLB.
A wrong address for the kernel page is usually generated when a pointer data structure
in the kernel is corrupted.

The fourth row of Table 4.1 shows that in 15 cases the OS entered the recovery rou-
tines, and then, after several trials, the recovery routine declared the error unrecoverable
and invoked a panic. Other failures reported include kernel memory errors, errors during
transfer of data from the TMRC (global memory), some I/O errors, and one Byzantine

failure.

4.2.2 Detection location classification

Although the discussion so far suggests that many errors were detected by the asser-
tion tests, it does not reveal much about the propagation already incurred. Table 4.2
provides a classification based on the location of the code that called the panic routine.
Most of the errors were detected in the machine-dependent virtual memory module, in
which an assertion failed and the panic routine was called. A probable implication of
this is that these errors have incurred some propagation because the machine-dependent
code for virtual memory resides at a very low level. Many errors were also detected in
the streams module. These errors were due to software defects in the streams module
itself and to the propagation of device driver faults into the streams module when the

streams mechanism was used by device drivers for communication. The third row in
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Table 4.2: Classification of faults based on the location of the code that calls the panic routine

Code section from which # failures | Fig.2
invokes panic Total 92 | map
Virtual memory management 8 2
Machine dependent virtual memory

and process management 23 2
Streams subsystem 14 2
File system operations 7 5
Asynchronous device driver 10 3

Related to dispatch queue.(process scheduling,
process preemption, context/process switching) | 3

Sleep-wakeup hashing 2 1
V node operations

(read/write/release/open/create) 4 5
Transport Interface Library R/W Module 1 3
Routines for moving data around

(used by device drivers) 1 3
Remote procedure call section 1 5
Diagnostic/Integration section

i (memory scrubbing/re-integration) 4 4

Error message logger 14 4

Table 4.3 gives the number of defects encountered in the streams subsystem. Similar rea-
sons explain the phenomenon observed in the asynchronous device drivers, which have
a significantly high incidence of software defects. A number of panic calls were made
from the error message logger, which is responsible for passing messages to syslogd. In

all cases, it encountered a TLB miss and then panic’ed.

4.2.3 Fault source location classification

Table 4.3 shows the number of software defects identified in each module. We separate

the number of unique faults from the total number of failures to show the visibility of
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Table 4.3: Classification of failures based on faulty modules

Module affected No. of unique | Total | Fig.2
failures map
Device drivers (async, ethernet, etc.) | 15 31 3
Memory subsystem 8 16 2
Streams mechanism 5 12 3
Process management 3 6 1
Machine dependent VM code 4 8 2
Shutdown/Bootup process 4 8 not
shown
Filesystem 6 10 5
I/O subsystem related to data
movement 3 3 3
Mirror driver 1 1 3
Interrupt handling 1 1 4
Diagnostic/Integration 2 3 4
MIDAS(monitoring facility) 1 1 not
shown
Total . 53 _ 100

each group of faults. If the proportion of duplicates ((totai — unique)/total) is high, as
in the case of the device drivers and the memory subsystem, there is a direct implication
that faults in this area will affect many users and should be repaired immediately.
Table 4.3 also shows that the device drivers (which include disk, other async, and
ethernet drivers) contribute to the greatest number of faults. This result is mainly
because the system interacts with the outside world through these device drivers, and
many exceptions occur at this level. Many of the faults loéated in this region of the
code were missing checks for some exception. Some of the faults were also due to request

conflicts or to exceeding the limit of the number of opens in the device drivers.
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Faults in the streams section of the code involved freeing a memory location or making
a pointer NULL and then trying to use it. In some cases, exception situations were not
checked.

Filesystem faults usually occur when the system is working under a high load or
in unrecommended situations, such as booting up the system with some disk removed.
Although the booting process is generally robust, unanticipated exceptions were en-
countered. Ten filesystem failures were reported during the period, of which four were
duplicates.

Faults in the page-swapping mechanism and faulty allocation and deallocation of
memory when forking a process are typical examples of memory subsystem faults. Eight
unique faults were reported in the memory subsystem.

The information in Table 4.3 can be used to direct major code correction efforts in
modules, such as the device drivers and in the memory subsystem, because not only are
these modules more likely to have faults, but also the faults in these regions have high

visibility (manifest into errors easily).

4.2.4 Fault propagation

Relating the classifications in Tables 4.2 and 4.3, we derivé the propagation incurred
by the faults before they were detected. Although the number of TPRs providing infor-

mation for both the tables has been reduced slightly, we find that 62% of the errors were
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detected in close proximity to the location where they were generated. By “close prox-
imity” we mean that the errors were detected in the code that performed similar actions
and that these faults were present in the same subsystem. The other 38% propagated
to unrelated code sections. Many of the errors caused by faults from the streams sub-
system were detected in the machine-dependent section when an assertion failed. These
problems generally occurred when a wrong address in a pointer subsequently interacted
with the memory. With 38% of the faults incurring some propagation before detection,
there is room for improved error containment. Building in fault tolerance with object-
oriented languages might reduce propagation. In addition to doing a check when a value
is used, a consistency check when a value is written into a structure would result in

instant detection. However, there is certainly an issue of the overhead involved.

4.2.5 Programming mistake type classification

Lastly, the type of programming mistakes committed during the development of the
OS was made the basis of classification. Table 4.4 provides the details of the classification.
In this table, we have left out the duplicates, because those do not provide any additional
information.

The first category relates to mistakes made in pointer data structure management.
“Missing check for an exception” means that an if statement to check an obvious check
condition was missing. The “incorrect logic” part groups all failures due to an incorrect

algorithm in the code or to wrong code placement. This class does not include cases in
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Table 4.4: Classification of faults on the basis of programming mistakes

Cause Number of
Cases
Pointer made NULL and later used 9
Pointer assigned to wrong location 5
Stale pointer left from before 1
Missing check for an exception 14
Incorrect algorithm or code placement
(includes major algorithm mistakes) 14
Uninitialized data structures 2
Memory allocation/deallocation 6
Unnecessary code left in the OS 2
Total 53

which trivial statements, such as exception checks or pointer tests, were overlooked. A
mistake in which a wrong assumption about the timing was made and about where the
code is placed at a wrong location would fall into this category. The “uninitialized data
structures” .category is used to group fa@lures in which a data structure is used before its
initialization. “Memory allocation/deallocation errors” constitutes the next group and
includes errors such as memory leaks or freeing memory at the wrong time. “Unnecessary
code” is the category that is not seen very often. This class means that some code (e.g.,
debug code) that was not required for proper functioning was left in the OS. A similar
classification has been used in [4]. Many of the errors involved pointers that either became
NULL before their use was over or were pointing to the wrong location. As is common
to all software, variables were sometimes uninitialized. At places, the semantics of the

code did not represent the intended algorithm.
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Because many mistakes were due to mismanagement of pointer data structures, a
more robust methodology for program implementation should be followed. Research in
[45] suggests that using data structures, such as linked lists with backward pointers that
have inherent error detection and correction capabilities, might improve overall software
robustness. A feasibility study of robust data structures and their effect on software

performance would provide suggestions on their usability.
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5. ANALYSIS OF TIME OF FAILURE AND REPAIRS

Time of failure and repair also portray failure characteristics. Figure 5.1 gives the
distribution of failures encountered on customer systems during the measurement period.
The x-axis starts at the b.eginning of the year 1992. Although the first version of the
operating system was released in 1990, not much data are available for the period 1990-91.
This is partially because there were not many customers, and the data collection system
was unorganized. During the first six months there was not much activity. After 200
days, the failures reported increased as a major customer started testing the system and
contributed to the failure reporting. Discussions with developers at Tandem helped us
to identify the various factors that affect the failure reporting rate. Those factors are:
1) an increase in the number of customers, 2) a diversification of the customer base
resulting in usage of the OS in many different ways, and 3) an increase in the number
of supported features (Tandem adds certain features to the OS for major customers).

Despite the involvement of the above factors, we see that the failure reporting frequency
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Figure 5.1: Software failure during measurement period starting 1992. Includes failures re-
ported by customers only.

has decreased, suggesting that the OS has matured considerably. During this period,

Tandem released more than 50 major and sub-releases of the operating system.

5.1 Up-time (Age) of the System at the Time of Failure

Up-time of a system is defined as the time elapsed since the last bootup of the system.
Sometimes this is also called the age of the system. Figure 5.2 shows the age distribution
of the customer systems at the time of failure. In many cases, when a new device is
installed, the kernel has to be recompiled with new parameters. Generally, the failures
reported with a small system age occur after this installation. The installation of new
devices, for example, uncovers faults in sections of code that were never executed before.
Incorrect setup of the newly installed devices can crash the system. In some cases, the
same fault crashed the system multiple times before a remedy could be supplied by

Tandem. The crash usually occurred because the user wanted to perform a specific task
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Figure 5.2: Age of the system at the time of crash.

repeatedly and encountered the same errors in quick succession. This result corroborates
the findings in [2] and [41]; however, in our case, the up-time period was longer because

we have only looked at major failures (panics).

5.2 Failure Times

In this section, we provide the distribution of the time between unique failures and
the duplicate failures for customer systems. The TPR creation time has been used to
approximate the failure time. The usage of TPR time as an approximation of failure time
introduces some uncertainty about the actual numbers obtained from the distribution.
It was observed that there was always a delay between the failure time and the failure
report time because of the delays at the customer’s end and the standard delay in the

TPR entry procedure. For some cases in which information about the actual failure time
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Figure 5.3: Time between duplicate failures and inter-arrival times of unique faults for cus-
tomer systems.

was available, we compared the act'ual failure time to the TPR time, and an average
delay of 14 days was found. The variance was comparatively small.

Time between failures for all systems, although a useful parameter in cases in which
all systems are uniform, does not provide useful information in our case because systems
under consideration can be using different versions of the OS. It was observed that many
customers did not upgrade the OS for a long time, primarily because of the fear that
installing something new might have detrimental effects on their system’s operation.

However, we provide two failure-time distributions that are useful in understanding
the behavior of the failures. Figure 5.3(a) provides the distribution of time between
failures due to the same fault. It was obtained by subtracting the failure time of each of

the duplicate faults from the failure time of its first reporting. Similar timing distribution
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has been reported in [5]. Many faults having the same cause were reported in quick
succession. This may have been due to either of the two following reasons 1) a new
version of OS was supplied by Tandem simultaneously and, thus, failures are reported
around the same time, or 2) the same customer reported the same error more than once
before that problem was corrected. Duplicates have been reported sometimes after a very
long period (3004 days). Many customers waited a long time before up-grading to new
versions of the OS, and the rediscovery of an old fault was reported after a long time.
The mean time recorded between duplicate failures was 85 days.

Figure 5.3(b) gives the distribution of the inter-arrival times of the unique failures.
A failure that is not a duplicate of a fault reported earlier is called unique. The mean

time was 20 days.

5.3 Repair Times

When a system crashes, it generally comes up after a reboot if the crash was not due
to a software defect present in the bootup module. We do not define repair time as the
time to bring the system back into a running state, but as the difference between the time
of failure and the time at which the problem was identified and corrected. The problem
could either be a new problem or just a recurrence of a previously reported fault. In the
case of a fault that is a recurrence of a previously diagnosed fault, the repair time is the

time taken by the Tandem developers to ascertain that the fault was indeed a duplicate.
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The calculation of the repair time was done by subtracting the time at which the
fault was entered from the time at which a final conclusion was drawn. We then add the
mean of the difference between the time of failure and the TPR time (which was 14 days)
to extend the period to the time of the crash. Figure 5.4(a) gives the distribution of the
time to repair all (testing/customer) failures. The mean time to repair was 40 days. This
time includes the delay in reporting the failures and the time taken by the customer to
send the details of the failure, such as console messages and memory core image. The
first bar in Figure 5.4(b) (with repair time of four days) consists of those cases in which a
problem was resolved even before the TPR was assigned to a developer. The longer times
resulted when there was a delay in sending the information. It should be noted, however,
that in many cases a workaround or a temporary fix (not fully tested) is provided to the

customer very quickly (long before the case is closed). There were many cases in which
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the core image sent by the user was unreadable, or it reflected a different machine state
(wrong core file). Repair time also went up when the problem could not be reproduced
in the test laboratory. In some cases, a fault thought to have been repaired was closed,
and later, it was discovered that the suggested repair did not eliminate the problem.
Usually the duplicate errors were repaired in less time because both the detection and
the correction of the problem were easier. First, the duplicate failures generally show
similar symptoms to those in the previously reported cases [23]. Second, because the
fix is already available, the implementation time is eliminated. Most of the faults were
repaired within a month. Figure 5.4(b) gives the distribution of the time to repair the
duplicates with a mean of 29 days. The duplicates that can be easily identified by the
first-or second-line support people are not documented as the TPRs. In these cases, the

repair time is fairly short. Figure 5.4(b) does not show such duplicates.



35

6. CONCLUSIONS

6.1 Summary

With the widespread use of UNIX systems today, there is an urgent need to form a
clear understanding of its dependability.” In this thesis, we have presented an analysis
of failures in the various releases of the NonStop-UX operating system, which is based
on UNIX System V. Initial classifications were based on the nature (hardware/software)
and the current status of the failures. An in-depth fault classification was provided. We
classified faults based on their source location, their detection location, the panic string
displayed on the console, and the kind of mistakes that were made by the developers of
the OS. We also provide distributions of the failure arrival rate and the inter-arrival times
of both duplicate and unique failures. Distributions of the time to repair all failures and
duplicates are also provided.

It was found that 68% of the panics reported were software problems. Forty-three

percent of the software failures were duplicates. The device drivers contributed the most
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to the number of failures. These failures were also very common because many cases were
reported. Failures were most commonly detected by triggers in the machine-level virtual
memory code area. Sixty-two percent of the errors were detected very near to their source,
while the other 38% percent showed some propagation. We also saw that the insertion of
thousands of assertions in the OS improved error detection by detecting approximately
40% of all of the errors that displayed a panic string. Most of the failures were caused
by missing exception-checking statements. On many occasions, wrong pointer addresses
caused the failure. Using the above data, it can be concluded that there has been room
for improvement of the OS robustness, as 38% of the faults incurred propagation before
detection. Modules such as device drivers and the memory subsystem should be tested
rigorously because most faults were present in these modules, and the errors were visible.

Inter-arl;ival times between the unique failures and the time between the duplicate
faults were distributed with a mean of 20 and 85 days, respectively. The repair times
of all failures were distributed with a mean of 40 days. The repair of the duplicates
was faster (mean of 29 days) due mainly to fast identification of the faults using similar
symptoms and to the évailability of a fix. The availability of a core image also facilitates
the repair process. It was observed that failures that recorded the core image had a
higher probability of getting fixed. A study of the age (up-time) of the system when it
failed showed that most of the system’s ages were very low, suggesting that failures occur

more often after a system upgrade or occur in succession due to the same fault.
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6.2 Future Work

This research has opened a door in the area of research for understanding failures
in the UNIX environment. Despite the universal use of UNIX-based systems in both
industry and academia, not much research has been done on understanding the failure
mechanism and behavior of a UNIX-based environment.

Continuing with the pursuit of developing a better understanding of failures in a
UNIX-based system, a monitoring tool was implemented to collect failure logs from the
CRHC Sun network in January 1995. This tool, which is written in Perl, is responsible

for the collection of system logs from 64 SUN workstations in the CRHC (Center for

"Reliable and High Performance Computing) network. SunOS, which is based on the

BSD UNIX, logs all of the console messages in a file called messages in the var-adm
directory. Each week this message file is collected by the monitoring tool. At the end
of the measurement period, the tool collates all of the messages based on the machine
name and filters out the non-error messages.

Using the above tool, we monitored the CRHC network for eight months (January 95
to August 95). These data will be analyzed and classified in the near future. Preliminary
results show that classification of failures can be done based on the client/server and the
network. Because time information is also available, some timing distributions can also

be generated.
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