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Background

NASA Grant NAGI-1802, originally submitted in June 1996 as a two-year

proposal, was awarded one-year's funding by NASA LaRC for the period 5

Oct., 1996, through 4 Oct., 1997. Because of the inavailability (from IT at

NASA ARC) of sufficient supercomputer time in fiscal 1998 to complete the

computational goals of the second year of the original proposal (estimated to

be at least 400 Cray C-90 CPU hours), those goals have been appropriately

amended, and a new proposal has been submitted to LaRC as a follow-on to

NAG1-1802. The current report documents the activities and accomplish-

ments oil NAG1-1802 during tile one-year period from 5 Oct., 1996, through

4 Oct., 1997.

NASA Grant NAGl-1802, and its predecessor, NAG1-1772, have been di-

rected toward adapting the numerical tool of Large-Eddy Simulation (LES)

to a eroacoustic applications, with particular focus on noise suppression in

subsonic round jets. In LES, the filtered Navier-Stokes equations are solved

nmnerically on a relatively coarse computational grid. Residual stresses,

generated by scales of motion too small to be resolved oil the coarse grid,

are modeled. Although most LES incorporate spatial filtering, time-domain

filtering affords certain conceptual and computational advantages, partic-

ularly for aeroacoustic applications. Consequently, this work has focused

on tile development of subgrid-scale (SGS) models that incorporate tiine-

domain filters. The author is unaware of any previous attempt at purely

time-filtered LES; however, Aldama [1] and Dakhoul and Bedford [3] have

considered approaches that combine both spatial and temporal filtering. In

our view, filtering in both space and time is redundant, because removal of

high frequencies effects the removal of small spatial scales and vice versa.

1 Accomplishments

Most of the effort of NAG1-1772 was devoted to definition of a test case

for axisymmetric-jet flow, to computation of the (laminar) base state for

axisymInetric-jet flow (Pruett [19]), to adaptation of the direct numerical



simulation (DNS) algorithm of Pruett et al. [18] to the jet-flow problem of

interest, and to installation of the subgrid-scale (SGS) model of Erlebacher

et. al [4] (with a temporal filter) into the code to afford a baseline LES

capability. These efforts were successful; however, as expected, tile baseline

model was overly dissipative, which suggested that dynamic modeling would

be necessary as anticipated.

Most of the previous year's effort was devoted to an attempt to develop

an efficient dynamic SGS model based oll a temporal filter.

TIME-DOMAIN FILTER: An early priority of the previous effort was

to development a candidate temporal filter. During this grant period, some

effort was devoted to refinemeut of the filter. Time-domain filters fall into

either of two broad categories: causal or acausal. For application to LES,

only causal filtering is realizable. By definition, causal filters incorporate

present and past information only, the future being inaccessible. Following

Press et al. [17] and Strum and Kirk [24], we exploit the following linear

acausal digital filter
_71 n

at = _--_pjs,_y + _ qka,-k (1)
j=0 k=l

where st = s(tt) is the raw discretized signal, at is the filtered signal, tt = I/kt,

At is the (constant) time interval between samples, and coefficients pj and

qk are determined to give the filter certain desirable properties, which will be

addressed subsequently. The filter of Eq. 1 is "nonrecursive" if qk = 0 for all

k and "recursive" if, for at least one k, qk -_ 0, in which case the current value

of the filtered quantity is a linear combination of past and present unfiltered

values and past filtered values.

It is instructive to examine the frequency response of the filter associated

with Eq. 1. From Press et al. [17], the transfer function, which quantifies

the frequency response, is given by

Y_?-o Pj e-iJ_

H(_) = 1 - E'_=I qk e-ik_
(2)

where i = v/U-l, f_ = w'At* is the dimensionless frequency, co* = 2rrf* is the

dimensional circular frequency, and f* is the dimensional physical frequency.

(Throughout this work, we denote dimensional quantities by asterisk.) In



general, the frequencyresponseof a recursivefilter is related to a rational
polynomial in tile complexvariable 1/C, where _ = e in. The rational poly-

nomial form of the transfer function allows considerable latitude in shaping

the frequency response. Figure 1 below compares the modulus of the trans-

fer function of prototypical low-pass digital recursive filters with that of an

idealized "spectral cutoff" filter.
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Note that, for the spectral cutoff filter, _ = a, which is not true in general.

The transfer function of the digital filter can be made to more closely ap-

proximate the spectral ideal at the computational expense of including more

and more history (i.e., by using larger and larger values of m and n.)

Experimentation with prototype second- and fourth-order temporal fil-

ters lead to tile fortuitous result that (for reasons to be addressed shortly)

second-order filters have some inherent advantages and require relatively lit-

tle storage. Consequently, attention was focused on second-order filters. The

transfer function of our prototype filter is that shown in Fig. 1. By a simple



transformation, wemodify the prototype flter to allow tuning of the cutoff
frequency. The tuning parameter is Re, which relates the actual (f_c) and

prototypical (ft'c) cutoff frequencies as follows:

_ (3)
_,_

Figure 2 compares an (artificially generated) raw time trace with its corre-

sponding filtered trace for several values of the cutoff parameter Re.
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PRELIMINARY NUMERICAL TESTS: As a demonstrationof the
capability of the baselineLES algorithm, we simulated the evolution of a
heatedaxisymmetricjet at Mach0.8and Reynoldsnumber10,000.A second-
order causal Butterworth filter with Rc = .125 (as discussed above) was

exploited for the LES. Tile results obtained were presented at the 3rd Sym-

posium on Transitional and Turbulent Compressible Flows, Sumxner FED

Meeting of the ASME, held in Vancouver in June 1997. The conference pa-

per is attached in the Appendix. Following Colonius [2], we computed the

compressible dilatation of the flow, which is shown in Fig. 5 of the paper.

In terms of the dilatation, each large vortex appears as a quadrupole, which

suggests that the large coherent structures may be the dominant acoustic

sources (although this has yet to be confirmed).

Whereas a DNS calculation (not shown, for which 1280 x 512 grid points

were needed) required 40 CPU hours, the 432 x 192 LES calculation required

less than two CPU hours. Relative to DNS results, the shear-layer roll-up

and pairing events were somewhat retarded, which suggested that the SGS

model was overly dissipative, as expected. It was concluded that a dynamic

SGS model would be beneficial in this context by limitiug SGS dissipation

to regions where the flow is inadequately resolved.

Fig. 6 of the paper presents the principal component of the resolved

turbulent stress tensor £.ij, coinputed by real-time temporal filtering of the

resolved scales. In an LES computation, the magnitude of the terms of

this tensor can be viewed as a measure of ill-resolution, or conversely, as

identifying the locations where additional dissipation is needed to prevent

numerical instability. That the components of the resolved turbulent stress

tensor are both well-defined and smooth gave confidence that a dynamic

procedure could be developed based on a temporal filter. This is the subject

of the next section.

DYNAMIC MODELING: Having tested the candidate filter in LES,

we re-directed attention to the development of a dynamic subgrid-scale model

that exploits time-domain filtering. This effort was only partially successful.

However, the reasons for the lack of complete success have to do more with

perceived problems with the conventional practice of dynamic modeling, in

general, than with the specifics of the temporal filter. A brief review of the



developmentof dynamic modeling is in order.

In the early 1990's,LESexperienceda resurgenceof interest, in largepart
due to the adventof dynanfic SGSmodeling(Germanoet al. [5]), and it was
quickly recognizedthat manyof the shortcomingsof LEScould beaddressed
by dynamic models. The theoreticaladvantagesof dynamic SGSmodelsare
now well established(Moin and Jimenez[14]; namely,the model coefficient
is local, it is computedrather than prescribed, the model is applicable to
transitional flow, and no near-walldamping is needed.Historically, dynamic
modeling is rootedin the Germano[6] identity, whichrelatestensorsobtained
by filtering at two different scales.Oneof the terms in the Germanoidentity
is the resolvedturbulent stresstensor, £i; (mentionedpreviously), which is
a computible quantity. Unfortunately, dynamicmodelingencounterscertain
practical difficulties, which arenow alsowell known. A difficulty of physical
origin ariseswhen the model coefficientbecomeslocally negativedue to a
reversecascadeof energy (backscatter), in which casecomputations may
"blow up" dueto negativeeddyviscosity.A seconddifl:iculty is numericalill-
conditioning inherentin the computedmodelconstant. Asa result, the model
coefficienttends to oscillatewildly. Both problemsare commonlyaddressed
by ad hoc averaging of the computed coefficient over homogeneous spatial

dimensions, a practice that unfortunately removes some of the local variation

of the coefficient that lead to the desirability of dynamic SGS modeling in

the first place.

Recently, considerable attention has been focused to address the prob-

lems of dynanfic SGS models. Specifically, Ghosal et al. [7] have proposed

inathematically elegant and rigorous dynamic inodeling approaches based on

variational formulations. Alternately, Meneveau et al. [13] developed a La-

grangian dynamic model in which smoothing of the model constant occurs in

the time domain. This idea was recently extended to mixed models by Wu

and Squires [25].

In general, most of these proposed fixes to the shortcomings of dynamic

SGS models have gravitated toward greater and greater complexity and com-

putational overhead. (One of the notable exceptions is the localized dynamic

model of Piomelli and Liu [16], in which the model is approximated to arbi-

trary order). In the opinion of the PI, dynamic SGS modeling will realize its



potential in the simulation of flowsof engineeringinterest if and only if its
complexity and computational overheadare reducedsignificantly, and the
continued pursuanceof either ad hoc or inefficient fixes for dynamic mod-

els is ultimately counterproductive. What is needed is a simplified dynamic

procedure.

The attempt to simplify the dynamic modeling procedure lead to to the

idea of approximating the action of the filter by its Taylor-series expansion

in terms of the filter parameter. The Taylor expansion was then used to

approximate both the SGS stress tensor 7-ij and the resolved turbulent stress

tensor £ij. Although, for simplicity, these (one-dimensional) expansions were

initially carried out for time-domain filters, multidimensional Taylor expan-

sions could be carried out (and have been carried out by other researchers;

e.g., Horiuti [8]) for spatial filters as well. This simple approach has lead to

a number of surprising and somewhat controversial revelations, which were

documented in a conference paper presented at the First AFOSR Conference

on DNS/LES, Ruston, LA, August, 1997. The paper is also attached in the

Appendix. We summarize the most important findings below.

RESULTS: First, for LES, the filter, the SGS model, and the numeri-

cal method must be mutually consistent. Although this issue was partially

addressed by Piomelli et al. in 1988 [15], it is not commonly recognized

within the LES community even today. To be specific, present results show

the Smagorinsky eddy-viscosity model to be consistent only with first- or

second-order filters and inconsistent, for example, with spectral filters. Fur-

thermore, there can be no universal Smagorinsky constant; the value depends

on the properties of the filter. More importantly, it appears that, under cer-

tain conditions, the SGS stresses can be directly approximated (rather than

modeled) by the computed resolved turbulent stresses without appealing to

the Germano identity. The approximation error appears to small when the

filter is of second order and the ratio of grid to test filter widths is unity,

an unconventional practice. Direct approximation of the SGS stresses would

avoid most or all the problems associated with conventional dynamic models.

Initially, these revelations were so surprising that the PI himself ques-

tioned their legitimacy. Gradually, evidence has accumulated to support

present conclusions. Most convincing are the experimental results obtained
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by Liu et al. [12]who investigatedaturbulent jet by two-dimensionalparticle
velocimetry. Liu et al. found high correlationsbetween7ij and £.ij when ill-

tering was accomplished consistently with either Gaussian or physical-domain

top-hat filters (both of which are of low order in our terminology). On

the other hand, negligible correlations existed when a sharp cut-off filter

was used in Fourier space (i.e., a spectral filter in our terminology). More-

over, exact SGS stresses correlated relatively poorly with the Smagorinsky

model. Recently, we conducted a priori tests based on highly resolved DNS

results to compare exact SGS stress and resolved turbulent stress tensors.

Extremely high correlations were obtained, for both temporal and spatial

filters, although some phase error was incurred for temporal filters. Because

of insufficient computational resources, these numerical tests considered only

axisymmetric jet flow, and thorough validation must await the simulation of

fully three-dimensional flows.

Results obtained by this PI, and corroborating results of other researchers

to date, suggest that a simple, accurate, and efficient dynamic SGS model for

LES, which would be applicable to aeroacoustics, is within reach. However,

a nunlber of fundamental unresolved issues need to be addressed. These are

discussed in the next section.

2 Objectives of Proposed Future Work

The efforts of the past year have revealed a number of unresolved issues

relative to LES, in general, and temporally filtered LES, in particular. An

overarching consideration is the establishment of criteria that, when followed,

guarantee filter/model/numerical-method consistency in the practice of LES.

A second issue concerns the convergence of Taylor-series expansions of filter

operators in the context of LES. A third issue, intimated by Speziale [22],

concerns the Galilean invariance of SGS models that exploit temporal filters.

And a fourth issue involves bounding the unavoidable phase errors inherent

with causal temporal filters. The following objectives are proposed to address

these issues.

1. Perform a priori tests based on DNS of three-dimensional decaying



isotropic turbulence to verify that the SGS stress tensor rij can be

directly approximated to suitable accuracy by the residual stress ten-

sor/2ij. Due to the unavailability of sufficient supercomputer time, this

configuration is proposed in lieu of the DNS of a three-dimensional tur-

bulent jet originally envisioned, which is estimated to require in excess

of 400 Cray C90 hours. In contrast, the computation of isotropic tur-

bulence can be accomplished in a very few CPU hours with an existing

code that exploits fully spectral numerical methods.

2. If item 1 above is successful, then direct approximation, rather than

modeling, of SGS stresses is virtually confirmed as a viable LES ap-

proach, given the already existing corroborating experimental evidence.
Further mathematical attention should then be devoted to the conver-

gence properties of the Taylor-expansion representations of the SGS

and resolved turbulent stress tensors, to establish practical criteria for

LES that guarantee the accuracy of this approximation. Based on pre-

liminary results, such criteria are likely to involve the order of the filter,

the ratio of the grid and test filter widths r, and the dimensionless filter

cutoff fi_.

3. The mathematical analysis performed above, which examines filter-

model consistency, should be expanded to include consistency with the

numerical scheme, and a set of criteria for fully self-consistent LES

should be established. These criteria will be codified into a set of

practical guidelines for the practitioners of LES.

4. Speziale [22] has given examples of SGS models based on spatial fil-

ters and in common usage that fail the test of Galilean invariance. A

later paper [23] suggests that tiIne-domain filters may predispose SGS

models to violations of Galilean invariance. This issue is poorly un-

derstood within the LES community, and we propose to examine the

issue afresh. Recently, Meneveau et al. [13] have proposed a dynamic

model that exploits time-domain filtering in a Lagrangian frame of ref-

erence to preserve Galilean invariance. However, it is not yet clear if

the Lagrangian frame is a necessity.

5. Investigate the seriousness of the inherent phase-lag errors associated

with causal temporal filters and attempt to establish practical bounds

10



for sucherrors.

6. Basedon resolution of the items above, recommendand/or propose
a SGS model applicable to aeroacousticsand conduct a validation-
of-concept test for axisymmetric-jet flow. The recommendationwill
include an assessmentof the practicality of time-domain filtering for
LES.
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ABSTRACT

An apl)roa(:h to large-eddy simulation (LES) is devch)ped
whose subgrid-scale model incorI)orates filtering in the time
domain, in contrast to conventional al)proaches, which ex-
ploit spatiM filtering. The method is (lcmonstratcd in the
simulation of a heated, comi)rcssiblc, axisymmctric jet. and
results are comI)ared with those obtained from fitlly resolve(1
direct nulnerical simulation. The present approach w,s. in
fact. motivated by the jet-flow I)roblcm and the desire to ma-
nipulate tit(.' flow by h)calized (point) sources for the Imrposes
of noise sui)prcssion. Timc-(lom_dn filtering at)pears to bc
more consistent with the modcling of t)oint sources: morc-
over. tinlc-domain filtering may resolve 8OlltC fundamental in-
consistencies associated with conventional si)ace-filtercd LES
approachc.s.

1 INTRODUCTION

By definition, direct numerical sinmlation (DNS) is the uu-
mcrical solution of the Navicr-Stokes equations without re-
course to enq)irical lnodcls. In concept, the fluid motions are
rcsolvcd down to thc Kohnogorov hmgth scale, at which ed-
dies succumb to viscous (lissii)ati(m. Consequently, for high
Reynohls nulnber flow. the (:mni)tttational requirements of
fitlly resolved DNS arc staggering.

In contrast, in large-eddy simulation (LES). the large sc_des
of motion arc resolvc(| in Sl)aCC and time on a suitable compu-
tatiomd grid: however, the effects of the subgrid-scalc motions
on the cvohttion of thc large scales are modeled. Relative to
DNS. LES is cot,ductcd on relatively coarse grids at reason-
able computatiomd exl)cnsc. In practice. LES involves filter-
ing the Navier-Stokcs equations in space or time or both. The
filtered equations of motion contain subgrid-sc_de (residual)
stress terms whose effects ltttlSt |)C modeled.

Both DNS and LES can be classified fluMamentally as tent-
i)orally or Slnttially cvolvillg. The distinction between tom-

*Research conducted under NASA Grant NASI-1802, monitored by

Dr. Kristine R. *Ieadows, NASA Langley Research (!enter, Hampton,
VA 23681-0001

pored and spatial apl)roaches is muddied 1)y nlost al)l)lica-
tions of LES. In particular, nearly all current LES approaches.
whether temporal or spatial, exploit spatial filtering. In their
review paper. Moin and Jimenez (1993) state: "Historically.
temporM filtering has not been used." one i)resulnes for rea-
sons of computational efficiency. However. because tit(.' roles
of space and time are fimdamentally interchanged in temI)o-
ral vs. spatial simulations, we suggest that spatiM filtering
is more appropriate for temporal LES. and conversely, tent-
poral filtcriug is lnore al)l)ropriate for spatial LES. Indeed.
time-domain filtering lnay remove some of the conceptual and
practical inconsistencics that have been obscrved by i)racti-
tioners of LES. a few of which are discussed briefly below.

First. as intimated by Germano (1992). LES can bc viewed
as lying somewhere near the middle of a Sl)C(:trmn of nulnc.r-
icld sohttion techniques with DNS at one cud and Reynolds-
averaged Navicr-Stokcs (RANS) at the othcr end. In our opin-
ion. this point of view is most self-consistent if time-domain
filtering is exploited in LES as it is in RANS. Second. Moin
and Jilnencz (1993) observe that the Ol)crations of filtering
and differentiation (lo not connnute on a non-uniform mesh.

Consequently. nmst sul)grid-scale models ina(tvcrtently im-
t)ose different levels of dissipation in different regi(ms of the
comlmtational domMn, a problem ntade worse on the l,ighly
stretched grids associated with COml)licatcd gcomctries. This
problem should t)c ciremnvcnted by temi)oral filtering in con-
jmtction with mfiform time im:rcnmnts. Third. again accord-
ing to Moin and Jinmnez (1993): "'In LES. it is highly de-
sirable for the flter width to be significantly larger than the
cmntmtational mesh to separate the mtmcric_d and lnodcl-

ing errors. Practical considerations, however, usually require
the filter width and lnesh to bc of the same or(let. In this
case. therc does not appear to be a necessity for higher than
second order nmnerical methods for LES.'" In contr_ust, for
the present tOtal)orally filtcrcd apl)roach, the filter width is
tyt)ically 311 order of magnitude larger than the time step.
Fourth, it may be desirabh.' in spatial DNS or LES of certain
l)hysical t)rol)lcms (e.g., jet flow) to Mlow for timc-dcl)cndent
localized (I)oint) sources as a means of manilmlating the flow
for the t)url)oses of control. For examt)le, such sources could
be used to introduce h)cal disturbances to enhance or inhibit

mixing. Dakhoul and Bcdford (1986) suggest that spatial |li-
ter|rig is flmdamcntally inconsistent with the introduction of
i)oint sources, whereas tc.nqmral filtering of a point source is



welldefined.

WhereasDakhoulandBedford(1986)andkldanm (1990)
prolmSC and develoI) SlmC:e-time filters for LES. the author is
LllHtware (if ally l)urely time-filtered apl)roach. In the next fl:w
sections, we clevelol) stud (Lemonstratc a sl)atial LES concept
based on filteL'ing in the time domain, and we al)i)ly the ap-
proach to tit(,' investigation of large coherent stL'ucturcs (CS)
in a heated subsonic axisymmetric jet. For several reasons.
the jet-flow prol)h'`m is well suited to the particular LES ap-
1)roa('h. First. free shear layers, jets. and wakes, whose mean
streamwise velocity l)rofilcs are infiec'tionaL, are inviscidly un-
stabh'` to disturbances of a broad spectrum of frequencies
(wavelengths). As a consequence. DNS of three-dimensional
(3D) unbounded shear flows is I)resently iml)ra(:tieal because
of the extrc'`mely fine grid resohttion rcquiL'c'`d, and some sort
of subgrid-scah'` dissipation is virtmdly a necessity. Second.
the l)roblem is of immediate l)ractical interest to the fieh[ of
computational aeroacousti(:s (CAA). St)ecifically. it is gener-
ally believed that. for supers(mic jets. lnost of the noise origi-
nates from the CS rather than froln the small-seMe turbuh'`ncc
(Seiner, 1984. and Tam. 1995). For subsonic jets. the origin
of noise is less certain. In his r('`ccnt review l)aper. Tam (1995)
exl)resses tit(,' view that subsoldc ,iet noise originates primar-
ily from fin('`-sc:alc turbuh'`nce. Our results (ln'climinary at tit('`
present tilne) would suggest otherwise. Thus. sl)atial LES
may provide a tool by which to investigate the physics of
noise I)roduction and suppression in jets. Last. I)ecaltse no
wMls arc l)rescnt, we avoid for the time being the diftic'ttltics
Cxl)eriem:ed by many subgrid-sc:ah'` models in the vicinity of
solid t)omMaries.

In the next section, time-domain filtering is (Liseussed in
general, and a I)rototypc causal digital filter is dcveloI)ed. The
governing CClmttions for DNS are discussed in Section 3. and
the equations are modified for LES 1)ased on adaptation of the
so-ealh'A SEZHu ("says who") model of Spcziale and cowork-
ers (1988). The i)rescnt mo(Lel differs fi'om the SEZHu model
in that it exploits tcmI)oral rather than spatial filtering. Tit(',
axisymmetric-jet test (:ase is defined in Section 4. The mL-
merical al)proach to tit('` solution of the governing equations.
adapted fi'om Pruett ct M. (1995). is ad(lressed briefly in Se(:-
(ion 5. Results of LES for the axisymmetric-jet probhml arc
presented in Section 6 and are compared with well-resolved
DNS results. Finally. some brief eonchLsions are offered in
Section 7.

2 CAUSAL FILTERING

Time-domain filters fall into either of two categories: causal
or acausal. For al)t)lication to LES. only causal filtering is re-
alizal)le. By definition, causal teml)oral filters exl)loit Itresent
and l)ast ilth)rlllatioli only. the future 1)eing istaccessil)h'`. Con-
sequently, in this section, we consider prototyl)ieal cotltittlLOtlS
and discrete causal filters. A contimLous filter is presented for
concel)tual I)urt)oses: an analogous discrete filter is exl)h)ited
in practice.

A CONTINUOUS CAUSAL FILTER,: If .s(t) represents a
smooth contimtous signal in time t. then a contimtous low-
I)ass causal filter can I)e constructed siml)Ly by integrating
tit('` signal over the interval A. tit('` telnporal window width, as
follows:

1 /it ,s(7-)dr (1):qt. A) = N. -a

The illl)ut to E( 1. 1 is tit('` raw signal s(t). and the outl)ut is
the contimmus filter(el signal, denoted by g(t. At. From ele-
mentary (:ah-ulus. the h)llowing proImrty of the filter defined
by Eq. 1 is readily derived:

74(t. (1) _---lira :_(t. A) = s(t) (2)
/',_0

In general, s # 74If A ret)resents some moderately large telll-
poral window, then filtering ._'(t) via ELI. 1 will tend to remove
oscillations of high frequency relative to A while preserving
low-frequency oscillations, which defines a "low-pass'" time-
domain filter.

LINEAR DIGITAL CAUSAL FILTERS: Let us digitize
the contilLUOUS signal s(t) such that si = s(ti), where ti = iAt.
and At is the (constant) time interval between samI)les. TyI)-
ically, for at)l)lications to LES. A should be an oi-dcr of mag-
nitude larger than At. The apl)roxilnation of Eq. 1 by a lira'`at
(tuach'ature rule results in its discrete analog

rtt

_i = E P-i'si-J
j----O

(3)

where tit('` filter coeffic:ients pj are deterlnined to give the fil-
ter certain desirable i)ropertics (e.g.. h)w-l)ass characteristics.
stability, and high-order accuracy at low frequencies). Follow-
ing Press et al. (1986), wc generalize the linear digital filter
given in Eq. 3 to alh)w the use of I)rcviously filtered data.
St)ecifically. sut)l)ose

j={) k=l

(4)

The filter of E(I. 4 is "noltrec:lLrsive'" if qk = 0 for all k and
"recursive'" if. for at least one k. qk 7t 0. in which case the
current wdue of the filtered quantity is a linear combinati(m
of previous unfiltered and filtered wdues.

FREQUENCY RESPONSE: It is instructive to examine
the frequency response of the filter associated with Eq. 4.
From Press et al. (1986). the transfer fimction, wldeh (lmm-
tifies tit('` fL'equency response, is given 1)y

;'=o PJ c-"J_
H(12) = (5)

1 - _=1 qk_-'k_

where I_= x/_-T, f_ = w'At* is the dimensionless fi'equency.
co* : 27r/* is the dimensional circular frequency, and f* is the
dimensional I)hysical frequency. (Throughout this work. we
denote dimcltsional quantities by asterisks.) In general, the
frequency resl)onsc of a rccursive filter is related to a ratio-
hal t)olynomial fimction in the coml)lcx varial)lc 1/_. where

= c '_. Thus. rccursivc filters are to nonrecursivc filters what
compact-difference oI)crators are to standard finite-difference
operators. The rational I)olynomisd form of tit('` transfer func-
tion allows considerable latitude in shal)ing the frequency re-
Sl)Onse. Fig. 7 comI)arcs the moduhts of the transfer fmwtion
of a prototypical low-pass digital reeursive filter with that of
an idealized "spectral cutoff" filter, for a nominal cutoff fi'e-
quen('y f_,:. Note that. for tit('` spectral cutoff filter, _ = ._.
which, as we have tnentioncd previously, is not true in gen-
eral. The transfer flmction of the digital filter can be made
to lnore ch)sely at)proximate the sl)eetral ideal at the CXl)ense



of includingmoreandmorehistory(i.e..byusinglargerand
largervaluesof m and n.)

For the purposes of time-filtered LES. the design con-
straints for the discrete flter are: 1) stability for all ti: 2)
H(0) = 1: 3) high-order accuracy: 4) [H(f_)[ = 0 for 12 > f_,::
and 5) as little storage required as possible. For reasons
to be addressed fully in a subsequent I)al)er. one is lead to
the fortmmte if surprising conclusion that second-order fil-
ters are optimal for the present application to LES. First.
second-order causal filters require relatively little storage for
history. Second. to avoid lnixing the truncation errors of the
filter and numerical method, one shouhl invoke a filter with
no higher order than that of the tinm-a(1vaneclnent scheme.
Thus. a sccond-or(ler filter is eomI)atible, with the present
third-order time adwm(:emcnt scheme (see Section 5). Third.
and a subtle point, it can be shown that second-order filtering
is consistent with the underlying subgrid-scale model (Pruett.
1996b). Consequently. for our purposes, we have followed the
design procedures outlined in the digital signal filtering text
by Struln and Kirk (1988). Formally. our prototype filter is a
second-order, ilnlmlse-invariant, digital Butterworth low-pass
filter, for which 'm, = n = 2. and P0 = 0. Technically. But-
terworth filters are "all-I)ole" filters, whose transfer functions
are maximally fiat in tile vicinity of the origin. Unfortunately.
however, the transfer flmetions of Butterworth filters do llot

vanish khmtieally for large wdues of ft. In practice, this is
not a problem as will be shown subsequently. The nominal
(:uh)ff frequency for our prototype filter is fY_:= 1.0. for wlfieh
IH(_-_'_)I2 = o.5.

A suitable generalization from the l)rototype filter to a
t utmble-cutoff low-pass filter is made by ineorl)orating a pa-
ranleter B,:. defined as the ratio of the actual att(l l)rototyl)ical
cutoff fi'equencies, namely

fl,: At
B,: -- -- (6)

fl',; A

Note that//,; _ 0 h)r the discrete filter is analogous to A ---, :x:
fin' the continuous filter of Eq. 1. Conversely. as Re --* >c.
A --, 0. in which case :_(t. A) --, s(t) by the property of Eq. 2.
Fig. 7 shows the frequency response of the t)resent filter h)r
1_,: = .125. a wdue typical for the current time-filtered LES
at)l)roaeh. Note that high-frequency oscillations are virtually
eliminated by the present filter, as desired.

3 GOVERNING EQUATIONS

We first specify the governing equations for DNS and then
present the governing system as modified for LES.

DNS: As a basis on which to evMuate various LES solutions.

we re(luire a well-resolved DNS solution for tile axisymmetric-
jet problem. For a eolnpressible fluid, it is approl)riate to
define a fluid state vector [p. p. T. u. v. w] T comprised of the
density p. pressure p. temperature T and veh)eity eontI)onents
u. _,. and w. The governing equations for the m'dsymmetric-
jet probh,ml are adapted fi'om those l)resented in Pruett et al.
(1995) for a body-fitted coordinate system :F, = Ix. 0. z] T on
an axisymmetric body. where x as the are length along the
body. 0 is the azimuthal angle, z is the coordinate norlnal to
the body. r = R + z cos ¢ is the radial coordinate. R(x) is the
body radius, and ¢(x) is the angle of the surface tangent to
the body. For the jet-flow al)plication, B = ¢ = 0. in which

case the coordinate system degenerates to z = r with x as the
axial coordinate, whereby a and w become the m,dal and ra-
dial velocities, respectively. Because R = 0. the equations are
geolnetrieally singular Mong the jet ;u,ds. For the eontilmity
equation, the singularity is removed by applying L'Hopital's
rule along the axis (z = 0). The singularity is not l)roblematic
for the lllOlllentlllll art(1 energy equations because _u,dal 1)oun(1-
ary conditions replace the governing equations ahmg the a_xis.
Speeifie_dly. considerations of symmetry require that the az-
imuthM velocity (¢,) vanish everywhere and that

cOT cOu
- -,.,=0 (z=0) (7)

Oz cOz

LES AND SUBGRID-SCALE MODEL: If the compress-
it)le Navier-Stokes equations (CNSE) are filtered in the time
(hmmin according to Eq. 1. the resulting equation system is
fl)rmally identical to that of Eqs. (15). (16). and (34) of Er-
lebacher et al. (1992). where ove,rbars and tildes (listinguish
eonventiomdly filtere(l and Favre-filtered quantities, respec-
tively. In general, the use of Favre-filtered (density-weighted)
variables reduces the eomph,_xity of the filtered CNSE. Sl)ecif-
ically, for examl)le, the Favre-filtered axi_d velocity is defined
as

i_ = P__2 (or ?_a = )_) (8)

Other Favre-fittered quantities are defined analogously. For
the filtered equations, the fluid state vector is comt)rised
of a mixture of conventiomdly and Favre-filtered quantities.

namely [_._,2/'. it. i,. "tb]T. The filtered governing equations
contain residual stresses not present in the original equations.
wlfich are decomposed into Leonard-stress. cross-stress, and
Reynohls-stress terms denoted by L. C. and R. respectively.
fl)llowing the notation of ErM)a(:her et M. (1992). Of these.
C and R must be modeled: L eatl t)e eomtmted.

Several candidate subgrid-seale models are awdlable: how-
ever. for o(11" present lmrpose, we adapt the SEZHu model
(Speziale et. al. 1988) as adapted by Erlebaeher et al. (1992).
Several considerations fiwor this selection. First. to demon-
stratc the time-filtered approach, the filtering l)rocess nmst
participate in the model, rather than simply serving as a con-
cel)tual framework as it does in some models (e.g.. Smagorilt-
sky). Second. although present results suggest that a dy-
tlatnic model (Germano et al.. 1991) is desirable, we wanted
initiMly to avoid some of the pitfalls of dynamic subgrid-scale
models, particularly, the need to smooth the eomlmted model
constants. Finally. the SEZHu tnodel is extremely well docu-
mented in Erlebaeher et al. (1992).

FormMly. our hnl)lementation of the SEZHu model is vir-
tually ide, ntical to that of Erlebacher et al. (1992). except.
of course, that the filter is tenq)oral. In tensor notation, the
dimensionless filtered equations, with the modele, d terms de-
noted by underlines. Are

7M:/i = 7i_b (9

cO_ cO(_,,k) _ o (1(1
O--t-+ C&rk

Ot
--+ co [-fihk,hl .-b -_(_k--[tl -- [tk_,l)] :

(11
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is the resoNed-seMe dilatatiou.

Ohk

0:1: k

Skt = 2(Gt - _D_kt)

(5"_1is the kronecker delta, and (?kl is the resolved-scale strain-

rltte tensor, namely

ak, = Lo: 'I+ (15)

MODEL CONSTANTS: Equation 17 requires vMues fl)r

three constants. Following Erh_bacher et al. (1992). we use

Pry = 0.5 and C_ = 0.012. It remains to (letermine I. wlfich.

for the originM SEZHu model, is a characteristic length scale
(12) related to spatial grid resolution. Specifically. Erhd)acher et

al. (1992) show that l = cAx is oI)tinud (ill the sense of In'e-

serving the Galilean invariance of certain terms of tile model)

for c = 2. where Ax is the actual conq)utational grid spacing.

(13) Here. wc must det(_rmine l I)ased Oll the choice of the teml)o-

ral scale A (or equivalently. R,;). for wlfich l)Url)oscs we al)l)eal

to results froul the area of hydrodynamic stability. Frmu lin-

ear stability thcory, we know that jets. wakes, and fl'ee shear

(14) layers are dispersive: i.e.. waves of different frequencies I)rOl)-
agate at different phase veh)cities. However. disturbances of

moderate to high frequencies 1)ropagate at a vch)(:ity ai)prox-

imately that of U_*w. the average of the jet and and)lent ve-
h)cities. Accordingly. we define Ax* its tilt; characteristic size

of an eddy associated with a disturl)anee of cutoff frequency

f,*: t hat is

For l)revity, the I)hysieal viscosity and thernud conductivity

are deuoted, rest)ectively, as

# #
(16)

I_,, = Re : tq, M2 Bepr

where Re. Pr. and M arc the dimensMdess Reynolds.

Prandtl. and Maeh munbers, respectively. Similarly. the eddy

viscosity aud the eddy thermal cou(htctivity are given I)y

Ax* - Uitv - 27rU;_vAt* (19)
f,y R,:

Finally. we note that tile CNSE are recovered fronl tile

governing cqmttions ill thc limit as A --_ 0.

ttT = C,.12-fiFI 1/2 : K,T -- tiT (17) 4 TEST CASE
7M2prT

where l is a length scale to 1)e defined shortly. PrT is the

turl)ulcut Prandtl munl)er, ? is tit(; ratio of sI)ecific heats.
itltd

H = Sk_Skl (18)

Whereas the underlined tenus ou the right-hand sides of the

governing equations model R. the un(M'lined ternls on the

left-hand sides, wlfich are l)rol)erly referred to as the resolved

stresses, are eoml)utibh, _ by filtering the resolved fiehls. For
the present subgrid-scale lno(M, the resolved stresses model

the stun L + C.

Ill the original SEZHu subgrid-scale model (Sl)eziale et al..

1988). tile Reynolds stresses were split into deviatoric and

isotropic l)arts, which were modeled sei)arately. Ill the more
detailed paper of Erlebaeher et al. (1992). on wlfich the

l)res(mt apI)roach is l)ase(l, the isotroIfiC I)art is disregarded
on the rMionale that its contril)ution should be small for tur-

lmlent Math nmnbe, rs Mt < 0.6 (a constraint satisfied by most

c(mq)ressible flows). Several other subtleties of the implenten-

tat(on of the model are not ilmnediately apl)arent upon the

study of Erlebacher et al. (1992). First. the viscous-stress

terms of tile filtered lnOlllelltlllll equations, and the dissipa-
tion fluLetion (I) and therlmd-stress ternls of the filtered en-

ergy equation, fl)rmally involve couventiomdly filtered rather

tluul Favrc-filtered quantities. Because these quantities are

unavldlable, however, they arc apl)roxinutted by their Faw'e-
filtered e(luivalents. Second. ternls that arise fi'mn sul)grid-

st:ale fluctuations of p,, and _;,, are neglected. Third. the re-

solved stresses are conq)uted using ?7 rather than p. tile latter

of which is uuavailable. These apl)roxilnations should be con-

sidered its additional mo(leling errors.

The numeri(:al test case was chosen to al)l)roxinultely rel)lieate

an a(:oustics experilncnt that is being conduct(x( at NASA

Langley Research Center. St)ccifieally. we investigate a heated

subsonic (5I = 0.8) jet cxhausting into a nearly quiescent at-

mOsl)here. The jet tcmt)erature T_. on which the Math muu-

her is b;_scd, is 600 F (1059.6 R). and the anti)ion| tempera-

ture is 70 F (529.6 R). The nonlinal jet radius is B_ = 0.5 ill.

(0.0417 ft.). Thc ambient pressure ill the i)hysical CXl)eriumnt

is _q_l)roxinlatcly one atnmsl)here (2161) psf.). However. this
results ill too high a Reynolds munt)er for a DNS conq)uta-

tion of reasonable expense: eonse(luently, tile coml)utati(mal

exi)criment asslulles all aml)ient t)ressure 10 I)ercent that of

the I)hysicld exl)crimcnt: that is. 216 psf. wlfich results in
Rc = 1(}153 1)ased (m tile jet con(litions and the noufinM jet

radius. Ill the I)hysical CXl)crinwnt. tile and)ient air was quies-
cent. However, conqmtational exl)erinmnts with uubounded

shear layers typically encouuter numerical difficulties (as did
the present work) whcne, ver the ambient stream is perfectly

quiescent (Tamlehill ct al.. 1984). Consequently. it is cus-
tomary fl)r the jet to exhaust iuto a coflowing stream with a

velocity of a few t)ereent of the jet veh)city. For the present

prollleln, we use all ambient to jet velocity (U;) ratio of 1(1

percent. We flu'thor assume that the jet is fillly expanded, ill
which case. in the absence of any disturbances, the pressure

is constant both radiMly aud axially.

In the governing equations and in the results to follow, idl

lengths have bceu nm'malized by R_. and tilt veh)cities, lem-

i)erature, and density, have been n()rmalized t)y b_*. T_. and
, * _*2

PJ' resl)ectively" Pressure is nornudized by pj _tj .



5 NUMERICAL METHODOLOGY

Spatial DNS and LES can be viewed as three-step processes.
First. an mq)crturbcd tinm-indet)el_dent ])ase state is ob-
tained, usually by boulLdary-layer techniques. Second, the
base state is subjected to either randonl or temporally peri-
odic l)erturbations, which are tyI)ic_dly impos('d at or near th('
computational inflow bomldary. The structure of these dis-
turbances is commonly obtained from linear stability theory,
or more recently, fl'om parabolized stability equation (PSE)
methodology. Third. the spatial evolution of the propagating
disturbances is computed by solution of the conlplete Navier-
Stokes equations, with (LES) or without (DNS) subgrid-sclde
mo(l(,ls. We discuss in turn each of these steps in th(' cont(,xt
of the current problem.

COMPUTATION (-)F THE BASE STATE: The applica-
tion of standard fully iml)licit boundary-layer teclmiqucs to
the axisymmetrie jet rcv(,alcd an unanticipated conq)utational
difficulty: nam('ly, the ,Iacobian matrix associated with the
iteration I)rocedure was extremely ill-conditioned and the it-
eration did not converge. The COml)utational t)roblenl arises
fronl a reversal of sign in the transverse velocity experienced
l)y interred boundary-layer flows such as jets. wakes, and free
shear layers. To eircmnvcnt this munericat difficulty, a semi-
implicit boundary-layer technique was developed, which is is
docum(,nted in Pruett (1996a). The interested reader is re-
ferred to this paper for details. Also to avoid munerieal diffi-
culties, the internal shear lay('r is given finite thickness at the
lip of the jet. The |)oun(lary-laycr solution call bc view('d its
an unstable equilibrimn state of the CNSE.

IMPOSITION OF THE DISTURBANCES: The torture of
instabilities is diff('rent for wall-bounded and free-shear flows.
St)ecifically. wall-hemMed flows are subject to viscous insta-
bilities, fl)r which tyl)ically only a relatively narrow band of
frequencies are mlsta])le. In contrast, free-shear layers, j(,ts.
and wak('s are subject to inviscid instabilities over a broad
l'allge of frequencies. Relative to viscous instabilities, inviscid
instabilities ('xl)erience rapid growth rates. Thus. fl)r simulat-
ing instability waves in wall-bounded flows, it is essential that
th(' ilnl)osed disturbances bc consistent with eigcnfunctions
obtained from stability theory: otherwise, one |litre(lutes spa-
tial transients that may corrupt the l)artieuhtr instability of
interest. On th(' other hand. one can |)e somewhat cavalier in

imposing (list url)anccs in free-shtmr flows beemlse of the flow's
tend(,'ncy to ral)idly organize arbitrary (listurbalLCC's into the
dominant eig(,nmod(,s. Const, quently, following Mankbadi ct
al. (1994). at the inflow boundary, we impose a temporally
periodic fiuctmttion comprised of a few harmonics of sp(,cificd
fl'equencies, but whose structure is not derived fl'om stability
theory. At present, we imi)ose the disturbance only through
the streamwise velocity. SI)eeifically. at the inflow boundary
:l? -_- .I_0

_(t. :co.z) = -_(_'o. z) + _'(t, z) (20)

u/(t. z) = ¢(z)[sin(_ft) + cos(().5_/t)] (21)

_(z) = exp[-(2(z- 1))4] (22)

wh(,rc the subscril)t B denotes the base state, the l)rime de-
notes a fluctmtting quantity, and the subscript f denotes the
fluidamental frequency. The fluwtion ¢(z) is used to shape
the (listuri)ance I)rofile so that the disturbance is largest m_'ar
the e(lge of the j(:t but essentially wufishes ahmg the jet axis
and at the far-field boundary. Numerical experinmntation re-
veals the most rapid deveh)pment of the jet for o:f = 7r. wlfich

corresponds to a Strouhal mmll)er (St = v*B*/U*Jl J/ 'J) of 0.5.
in kceIfing with tile obserwttions of Mankbadi et al. (1994).
Following the early comlmtational investigation of free-shear
layers by Riley and Metcalfl: (1980). we include an out-of-
I)]t_tse sll|)harlllOllic conlI)Ollellt to ellhall(:e i)_firing of adjacent
vortices. At prcscnt, wc use a fl)rcing amplitude of e = 0.005.
which is ramf)ed u I) slowly (over a time interwd of one l)e -
riod of oscillation at the flmdament_d frequency) to minimize
temporal transients.

DNS AND LES METHODOLOGIES: For both the DNS

and LES. we adapt tile high-order munericM schenm of Pruett
et al. (1995). to which the reader is referred for details.
Briefly. this algorithm exI)loits flflly explicit time a([wuwe-
merit, high-order COml)act-differellce methods (Lcle. 1992)
fl)r aperiodic spatial dilnensions, and spectral collo(:ation
methods fin" l)erio(lic spatial dimensions. Sl)ccifically. for
the l)rcsent axisymmetric-jet application, we use fom'th- and
sixth-order coral)act difference schemes in the axial and ra-
dial dim('nsions, respectively. The azimuthal dimension, of
course. ([oes lt()t conic into play for the axisylllmetric ca.s(:,

The method of Pruett et al. (1995) uses a variabh: step for
time advancement in the context of a three-stag(:, low-storage
llmtge-Kutta (RK3) scheme. However. the i)resent LES aI)pli-
cation, which involves teml)orM filtering, requires a constant
time stei). Consequently. tile original Runge-Kutta teml)O-
ral integration has been reI)lace(l t)y a fixed-length, nmltilfle-
stcl), third-order Adams-Bashforth (AB3) technique. All ad-
ditional motivation for replacing the RK3 method was that it
wits not iimnediately clear to the author how total)oral filter-
ing would interact with time adwmeenmnt whenever multil)le
stages t)er time step were involved, tile fear being the t)os-
sibility of nulneric_d instability. The storage requirelnent for
the algoritlun with AB3 time advancelnent is about 150 l)cr-
cent that of the original algorithm with RK3. Ill general.
multiple-step lnethods are not self starting. The AB3 inte-
gration is started initially with a single first-order EuM" ste I)
folh)wed by one see,end-order Adams-Bashforth step. Be(:ause
the perturbation is raml)ed slowly to fifll alnl)litude, and the
initial state is in (near) equilibrium, the in|tied loss of tmnpo-
ral accm'a(:y is inconsequ('ntial.

For both the DNS and the LES. thc symmetry conditions
given by Eq. 7 are imt)oscd along the jet axis. At the in-
flow boundary, for the present axisylmnetrie-jet l)roblem, the
flow is everywhere subsonic, all(l one characteristic points uI)-
stream. Consequently. not _dl flow variables can bc specified.
Currently, we sl)ecify v. 'w. T. and the incoming Riemann in-
variants. At the far-field boundary (z = zmax), we adapt
the non-reflecting boundary conditions of Thompson (1987)
as modified by Pruett et al. (1995). At the outflow boundary.
we exl)loit a buffer-domain aI)proach (Streett and Maearaeg.
1989/1990). Near the outflow boundary, a buffer zone of fi-
n|t(' width is constructe(l in which both the base state sum

the governing equations are modified to ensure that all waves
l)rot)agate out of the domain.

Finally, we note that the present LES algorithm is one of
few to incorl)orate high-order numerical methods, another be-
ing that of E1-Hady and coworkers [5].

COMPUTATIONAL EFFICIENCY: On the same grid, an
LES computation with the present algorithm rc(luires m)t
quite twice the computational effort as DNS and approxi-
mately 2.5 times the storagc for 3D fows (twice the stof
age for two-dimensional or axisymmetric flows). Most of the
additional memory is relegated to storage of the time histo-



ties of quantities associated with the time-filtered apl)roaeh.

Ore: nmst keep in mind. however, that. by defiuition. LES

allows computations on coarser grids than DNS. If. fl)r the

present LES algorithm, fl)r example, the grid resolntion rela-
tive to DNS couhl be red(wed by a factor of three in each of

the three Sl)atial dilnensions and time. then storage require-

ments wouhl be dilninished by a factor of approxinmtely ten.

and processor time would diminish by a factor of approxi-

mately 40. Thus. llle_tsttrcs of efficiency in LES nmst consider

not only nominal storage anti operation counts, but also tit(:

potential grid-coarsening Nctor. which eouhl eoneeiwtbly be

higher for tmnimrally filtered LES than for conventional ap-

in'oaches.

6 RESULTS

For the DNS and LES results l)resented below, tlt(: conq)uta-
t,ional donmin was

0<:t:<20 : (}<z<5 (23)

Tit(: length of the (hmmin was sufficient to allow one pairing of

the adjacent vortices shed at the edge of the jet, Tit(: final 16

percent of t,lw axial extent of the (lonmin lies in the l)uffer do-
main: results within the buffer domain shouhl be disregarded

as unl)hysical. D)r cotlv(:ttieltce ill l)resenting results, we tit:-

fill(: tp. tit(: time in periods of oscillation at the fundamental

disturbance frequency.

DNS: Tit(,' DNS results were obtain(:d on the eonq)ut_ttional

donmin defined al)ovc at all extrmnely fine spatial grid reso-

lution of 128(} x ,512 and a t,enll)oral resohltion of 2048 steps

per (fundanlental) disturbance period. To arrive at this res-

olution, eonllmtations were made on successively finer grids

beginning front a coarse grid of 256 x 128. For each spatial res-

olution, an estimate of tilt,' tmnporM resolution necessary for

stability was made t)as(:d (m stability analyses of model advce-

tion and diffusion equations. All conlI)utations except for that

on the finest grid eventually "'bh',w up" (hte to nmn(:rical insta-
bilities associated with unr(:solved scales. In contrast. Fig. 7

shows instantaneous contours of constant density at t/, = 18

for tit(: fully resolved conH)utation. On the finest grid. the

DNS conq)utation required ill excess of 20 CPU hours on a

Cray C90. Consequently. calculations at a higher I/cynolds

numl)cr v¢ould have ]men iml)ractical given tit(: ('omputational
resources awtilabl(:.

The t)resent fine-grid DNS represents one of the lnost atOll-

rate ,Rlld highly refined eotni)utations of itn ltllbOtlltded sh(,'ar
layer of which wc' are aware, another being that of Colonius et

al. (1995). and Fig. 7 affords consideral)lc detail. It is int(,'r-
csting to note a striking correlation between the contours of

constant density and thos(: of constant vortieity (not shown

due to space limitations). Both quantities ch:arly show the

roll-up of tim shear layer at tit(,' jet's edge into a vortex street

and the subscqu(:nt l)_tiring of ;uljaccnt vortices, l)hcnonlcna

COIlIIIIOII to llltl)Olllt(le(l sh(:_u' flows. A silnihu" (;OlltI)&risolI of

vorticity and pressure contours is also most rew:aling. Not ittl-

exl)ectedly, the centers of low pressure eorrespoml precisely
with the centers of the large vortit'cs. As adjacent vortices

merge, the individual pressure lows are rephtced by larger

and stronger low pressure regions. High pressure regions lit;

between adjacent vortices.

LES: For LES of jet flow, tlt(: trick is to find an appro-

I)riate amount of (:ddy viscosity. If the LES subgrid-scah:

model is insufficiently dissipative, the eOlnputation will blow

ut). On the othc'r hand. if tit(', model is excessively dissipative,
tit(: instabilities that result ill vortex shedding and pairing

arc suppressed or diminished. It api)ears I)ossibh:. however.
that an intermediate amount of dissipation will t)reserve tit(,'

large-scale features of the flow whih: preventing numerical in-

stabilities associat, cd with unresolved scales. In particular.

Figs. 7 and 7 plCSeltt installtlul(:olls (:olttollrs of (:OltStallt den-

sity and I)ressure. resl)(:ctively, obtained fl'mn an LES COlnl)U-

talion with a spatial grid resolution of 432 x 192. coarser by a

factor of al)I)roxintately three in each direction than the DNS

(:onq)utation i)rescntcd I)reviously. The time is tp = 18. an(l

tilt: temporal resolution is 1024 time steps per l)eriod. Be-
cause fully ext)licit tilne-advancement schemes typic, ally yichl

ov(:r-resolution in tittle, l)racticality delnands a filter width A
that is at)t)roxintately, say. all order of magnitude larger than

the tim(: step. Her(:. we used A/At = 8 (B,: = 0.125). At this

cutoff frequency, th(: maxinnnn eddy viscosity wits apl)roxi-

mat(,ly eight times the nlaxilnuln l)hysicM viscosity. Wherelts

the DNS calculation required 20 CPU hours, the 432 x 192

LES calculation required two CPU hours. (Cah',ulations on

the ('oarsest grid of 256 x 128. for which the cmni)utation

eventmdly blew rip. requir('d only a matter of minutes.) Rel-
ative to the DNS results of Fig. 7. the shear-layer roll-u t)

and pairing events of the lnoderately dissipative LES com-

putation at'(' retarded, t)ut not prevented. Consequently. we
believe the moderat(:ly resolved LES couh[ serve as a conqm-

tational l)latfornl for tile investigation of jet noise. To this

end and following Colonius et al. [3]. wc extract the com-

t)ressibh' dilatation fronl the nulncrical solution: The instan-
taneous dilatation field at tp = 18 of the moderately resolved

LES eonqmtation is shown in Fig. 7. It wouhl appear that.
ill t(:rms of the, dilatation, each large vortex appears as an

acoustic quadruI)ole. Tiles(: results suggest that significanl
acoustic radiation is associated with the large-scah: vortic(:s.

in c,(mtrast to the view exi)ressed by Tam (1995) for subsonic

.jets.

For the I)resent work in progress, our primary ol)jective has

1)(:en to (lemonstrat(: the feasibility and practicality of time-

filtered sl)atial LES. As one possil)h: measure of success, w(:

examine tit(: resolved sul)gritl-s(:ale stresses comlmted by the
time-filtered subgrid-scale model, the l)rincil)al (:Oral)orient of

which is l)resentcd ill Fig. 7. For an LES computation, tilt:

lnagnitude of the resolved stresses can be viewed as a mca-
snre of ill resolution, or equivah:ntly, as identifying the re-

gions where additional dissipation is needed to prevent muner-

teal instability. For the present time-filtered apt)roach, these

ternls at'(: well defined, judging by the apparent smoothness of

the, contours in tilt: figure. In sunnnary, these results suggest
that a time-filtered dynamic subgrid-scah: mod(:l couhl I)(: de-

velope, d. We SUSl)eet that dynamic modeling (Germano ct al..

1991) wouhl improve tilt' present results by limiting tilt: eddy
viscosity only to regions where it is needed. For this reason,

the (tvnantic approach is judged to bc more al)i)rot)riate for
transitional flows, as was demonstrated for contl)ressibh: flow.

for example, in the work of E1-Hady ct al. (1993).

Ill (:losing. we c(mnnenl that Cmnl)utations of 2D or ax-

isymmetric unbounded shear tious are I)oth less and more
tlitfi('ult than conq)utations of 3D flows. Although the total

conqmtational requirements art: lower for simulations in 2D.
the resolution needed for those two tlimensions may well be

greater than for the slune two tlimensions of a 3D simulation.

The reason is that, in 3D. tit(" third (linmnsion provitlcs a path

for relief of II,eynohls stresses that (:ararat be relieved in 2D.

Coml)lete validation of tile present time-filtered LES concept



and its application to acroacoustics ultinlately will require the
consideration of fully 3D flows.

7 CONCLUSIONS

* Time-domain filtering fl)r the residual-stress models of
LES is a via})lc concci)t that shouhl be investigate(1 fur-
ther. Preliminary results suggest that time-domain fil-
tering may have significant adwmtages relative to con-
v(mtional sI)ace-filtcrcd al)I)roachcs.

• The current baseline LES Mgorithm is one of a very fl;w
LES algorithms to exph)it high-order nmnerieal methods.

• The present subgrid-scah; model, which involves time-
domain filtering, might be iml)rovcd for al)t)lieation to
transitiomd flows by recasting it in a dynamic-lnodcl con-
text (Germano et al.. 1991).

• The I)resent al)l)roach to LES aI)t)ears to be aI)l)licabh;
to aeroacoustics, as had bt;en hoped.

• A thorough wdidation of the time-filtered LES approach
and its usefulness to aeroacoustics will require LES of
fully 3D flows.
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Figure 1. Transfl_u' function of I)rototyt)e second-order
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Abstract

We examine tile relationship between the filter and the subgrid-scale (SGS) model for large-eddy

simulations, in general, and for those with dynamic SGS models, in particular. From a review of the

literature, it would appear that many practitioners of LES consider the link between the filter and the

model more or less as a formality of little practical effect. In contrast, we will show that the filter and

the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first-

or second-order, and that the Smagorinsky model is inconsistent with spectral filters. Moreover, the

Germano identity is shown to be both problematic and unnecessary for the development of dynamic

SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the

computible resolved turbulent stresses, properly scaled, closely approximate the SGS stresses.

1 Introduction

By definition, direct numerical simulation (DNS) is the numerical solution of the Navier-Stokes equations

without recourse to empirical models. In concept, the fluid motions are resolved down to the Kolmogorov

length scale, at which eddies succumb to viscous dissipation. In general, the computational workload for

fully-resolved DNS scales as Re 3, where Re is the Reynolds number. Consequently, for the complex, high-

Reynolds-number flows of engineering interest, the computational requirements DNS are staggering and

prohibitive.

In contrast, in large-eddy simulation (LES), tile larger scales of motion are resolved in space and time

on a moderately coarse grid; however, the effect of the subgrid-scale (SGS) motions on the evolution of the

larger scales is modeled. In practice, the decomposition into resolved and unresolved scales is accomplished

by a spatial (temporal) filtering operation with an associated cutoff length (time) scale A.

First introduced in the 1960's, LES has experienced a resurgence of interest since 1991, when dynamic

SGS modeling was proposed by Germano and coworkers 6. The advantages and difficulties associated with

dynamic SGS models are now well established, and space does not permit elaboration. However, it is fair to

say that the promise of dynamic modeling has not been fully realized largely because many of the proposed

fixes to the shortcomings of dynamic models involve considerable additional complexity and computational

overhead.

Here, our purpose is to examine the connection between the choice of the filter and the subgrid-scale

(SGS) model, with an eye toward the simplification of dynamic SGS models.

From a review of the literature, it would appear that many practitioners of LES consider the link between

the filter and the model more or less as a formality of little practical effect. Surprisingly little is written

on this topic, Piomelli et al. 9 and Aldama 1 excepted. Specifically, regarding the conventional practice of

LES, Piomelli et al. 9 observed: "In the past, however, the choices of model and filter have been regarded as

completely independent." Recognizing that the behavior of the SGS model strongly depends on the choice of

*Research conducted under NASA Grant NAG-l-1802, monitored by Dr. Kristine R. Meadows, NASA Langley Research

Center, Hampton, VA 23681-0001



the filter, they attempted to address the issue of filter-model consistency on the basis of physical arguments

and a priori tests, which involve comparisons of the exact and modeled SGS stresses computed by fully
resolved DNS. Here, we approach filter-model consistency from a mathematical point of view. From the

present analysis come a number of revelations, some of which run counter to conventional wisdom.

In the next section, we discuss aspects of linear filters in general, focusing on their order properties. In

the third section, starting from the Germano identity and in the context of a dynamic SGS model, we derive

a simple but accurate approximation for the residual stresses. In the fourth section, we derive a similar result

without first appealing to the Germano identity. In the fifth section, we briefly discuss the implications of
these results. Conclusions are summarized in the final section.

2 Linear Filter Operators

Like differential operators, filter operators may be either continuous or discrete. Here, for brevity, we

consider only continuous filters (which are also referred to as "analog"); however, the conclusions drawn for

continous filters generalize immediately to linear discrete filters. Moreover, also for brevity, we consider only

time-domain filters. However, the implications should apply to spatial filters as well.

Let f(t, _) be a continous function of time and space, and let A, the "window" width, denote a charac-

teristic time scale associated with the temporal linear filter Fir(t), A]. As a specific example, consider the

continuous, causal filter given by the integral equation

f(T, M)dT (1)F [:(t, i), =

From first principles of the Calculus, it is readily shown that limz_-_0 F[f(t), A] = f(t). On the ottmr hand,

for a finite window A, the time-domain filter above tends to remove oscillations of high frequency relative

to A while preserving low-frequency oscillations, which defines a "low-pass" filter. For applications to LES,

we consider only low-pass filters.

The effect of a filter is most apparent in Fourier space. To each filter is associated a transfer function

H(fl) that quantifies the amplitude and phase effects of the filter on oscillations of dimensionless frequency

f_ = wA. For example, the transfer function associated with Eq. 1, shown in Fig. 1, is readily obtained

by directly integrating F(e _t, A) for arbitrary _. Figure 1 reveals some undesirable traits of the filter: the

amplitude decay is not monotonic, the amplitude envelope decays slowly (like 1/fl), and, consequently, the

cutoff is gradual.

1.2 , I ° I ' I
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Figure 1. Transfer function of integral filter of

Eq. 1.

F If(t), A] = f(t)- -_f(t)+ _-_--6f"(t)+ O(A 3) (2)

Again by analogy to difference operators, to each filter operator is associated an order-property that
quantifies the behavior of the filter as fl tends toward zero. The order property is revealed by the leading

non-zero term in A in the Taylor-series expansion of the filter. For example, for a function of time only, the

Taylor-series expansion with respect to A of the filter of Eq. 1 is



A classofcausaltime-domainfiltersmoresuitableforLESthanEq.1isthatoftheso-calledButterworth
filters.Figure2comparesthemoduliofthetransferfunctionsofprototypicalButterworthanalog(BA)low-
passfiltersoforders1,2,and4,eachof whichhasanominalcutofffrequencyf_'c= 1. The properties and
design constraints of the first- and second-order low-pass BA prototypes can be found in Strum and Kirk 12.

The fourth-order BA prototype was developed by tile author using Mathematica. The prototype BA filters
shown in Fig. 2 are readily discretized and adapted to an arbitrary cutoff _c.
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Figure 2. Comparison of Butterworth analog

(BA) filters of orders 1, 2, and 4 with spectral

(sharp cut-off) filter.

The order of a filter is closely related to the flatness of its transfer flmction at f_ = 0. In general, for a

filter of order n, H(t')(f_)l_=o = 0 for all 0 < k <_ n, but H("+I)(0) # 0. In particular, Butterworth filters

manifest several desirable properties for applications to LES: 1) stability, i.e., IH(f_)] _< 1; 2) their transfer
functions decay monotonically with increasing f_, and 3) their transfer functions are maximally flat near

f_ = 0. For comparison, Fig. 2 also presents the idealized transfer function of an analog spectral filter, which
can be considered of infinite order.

For brevity in future discussions, let an overbar denote filtered quantities; that is, ] =- F[f(t), A] for

some fixed A. From Figs. 1 and 2 it can be inferred that, except for the spectral filter, ] # ]. It is also

clear that the spectral ideal is more closely approximated as the order n increases. As a result, high-order

temporal filters are problematic for practical applications to LES, because they necessitate the storage of

relatively more tittle history. This nlay be a principal reason that, to date, time-dontain filtering has been

avoided by practitioners of LES, as hinted by Moin and Jimenez 8 in their survey paper.

One might naively assume (as did tile author originally) that higher order is better. One of tile more

significant results of this work is to show that, in the context of LES, lower order filters are desirable for

several reasons. This is particularly good news if one wants to consider the application of time-domain filters
to LES, for exanlple, as in Pruett 10.

To develop tile results of the next sections, we make use of the Taylor series expansions of filter operators.

For example, recall Eq. 1 above. More generally, assunfing sufficient differentiability of u, any time-domain

filter can be expanded as
C A3U tu(t(t,2, A)=U+ClA'U'+c2A2u'+ a +... (3)

where primes denote temporal partial derivatives. For spatially multi-dimensional filter operators, similar

expansions could be derived; however, their Taylor expansions would, of course, be multi-dimensional. In

general, a filter is of order n in A provided c,_ # 0, but ck = 0 for 1 _< k < n. Thus, Eq. 1, for example,

defines a first-order filter. Sinlilarly, one can show that both Gaussian and tophat physical-space filters are
first order.

3 Conventional Dynamic SGS Modeling

In tensor notation, the linearly filtered Navier-Stokes equations are given by

0fii
- o (4)

_gxi



Ofii _ 10p Onj0-7 + _(_i_J) - p Oz_ + vv2_' + oz--] (5)

where repeated indices imply summation, and rij is the SGS (residual) stress tensor defined as

rij = uiuj - uiuj (6)

Equation 6 is exact; inexactness enters only when tile rij are modeled. V_refocus now on dynamic modeling
of the residual stresses.

Dynamic models 6 of the SGS stress tensor are rooted in the Germano 5 identity and typically exploit
successive (spatial) "grid" and "test" filtering operations with associated length scales 1 and l, respectively.

To transition to temporal filtering, we explicitly assume that £S = i = r, where r > 0 is a parameter.

Typically, r = 2. The Germano identity relates the resolved turbulent stress tensor £ij and the "subgrid"

and "subtest" stress tensors, rij and Tij, respectively. Specifically,

where

and

z:_ = Ti_ - +_j (7)

c,, _ _,g, - _-'-} (8)

r_j - _,_, - _i_-_ (9)

The Germano identity is exact; moreover, its left-hand side is computible. It remains to model each of the

terms on the right-hand side, which is frequently accoinplished via the Smagorinsky eddy-viscosity model,

namely
1

rij - -_6ijrkk ._ 2CI2[SISij (10)

Here, 5ij is tim Kroneeker delta, Sij is the resolved-scale strain-rate tensor, IS[ - _, l is the char-

acteristic length scale associated with the grid filter, and C is the model constant of primary interest. In

general, a criticism of eddy-viscosity models is their implicit assumption that the principal axes of the resid-
ual stress and the resolved-scale strain-rate tensors are aligned (Moin and Jimenez8). Indeed, in a recent

experiment that examined turbulent three-dimensional boundary-layer flow, Compton and Eaton 4 found

considerable misalignment between residual-stress and strain-rate tensors in the near-wall region. They

concluded that eddy-viscosity models are inappropriate for such flows. Moin and Jimenez 8 propose a more

generally applicable model, for which each stress-tensor component has its own coefficient, namely

where

1

rij _ (CikSkj + Cjk-Ski)121-SI= _(Cik_kj + Cjk&i) (11)

flo _ 2/21SI&J (12)

We will refer to Eq. 11 as the "generalized residual-stress model." The generalized residual-stress tensor is
symmetric; hence, six independent coefficients must be determined. In principle, these coefficients can be

uniquely determined by the dynamic procedure of Germano et al. 6, as adapted to the generalized model by

Moin and Jimenez 8. We briefly describe the procedure below.

It is now assumed that the subtest stresses can also be modeled by Eq. 11 with the same coefficients Cij,

in which case

Zij._ (Cik_kj + Cjk_k_)Pl_l (13)

(In the author's opinion, this assmnption represents a considerable leap of faith, given that vii and Tij are

not formal twins.) From Eqs. 7, 11, and 13, a set of integral equations for the coefficients Cij follows, namely

A

2£ij _ ( Cikakj -4- Cjkaki -- Cik flkj -- Cjkflki ) (14)

where

aij = 2i'21_l_ij (15)



WenowexploittheTaylor-seriesexpansionof thetestfilter to obtaina simpleapproximationto Eq. 14.
Forspecificity,weusethefilterofEq.1andits expansionEq.2. Omittingdetailsforbrevity,weobtainthe
approximation

2£0 ,,_ (r 2 - 1) (C/k/3kj + Cjk;3ki) + 2L.O.E. + 0(12£_ 2) -- 2(r 2 - 1)Tij + 2L.O.E. + 0(12£_ 2) (16)

where the leading-order error (L.O.E.) term in/_ is given by

We conclude that
_---ij L.O.E. + o(?,h 2) (18)

Tij _ F2 _ 1 r _ - 1

We now assume that the highest order term is insignificant. It remains to show that the second term
(L.O.E.) on the right-hand side of Eq. 18 is of lesser significance (on average) than tile first. We assume

here that all quantities have been previously scaled by appropriate reference values, so that we are dealing

only with dimensionless quantities. It particular, lengths have been scaled by the wavelength of the largest

eddies, and time has been scaled by the large-eddy turnover time. From Eqs. 8 and 2, to leading order in
A, the resolved turbulent stresses are given by

c.,, = 1-g \ ot ] + °(_'a) (19)

In scaled variables, on the basis of reasonable assumptions and approximations (omitted for brevity), it can be

argued that the L.O.E. above is relatively unilnportant whenever tile dimensionless frequency FI -- Aco << 1

(provided the filter is of first- or second-order, as will be shown). Specifically, for example, if f_ _ 0.1, an

entirely reasonable value in practice, then, Eq. 18 is approximated simply as

_' (20)
Tij _ r2 _ 1

Remarkably, Liu et al. 7 arrive at a result similar to Eq. 20 fi'om experimental measurements in a turbulent

jet. Specifically, they obtain several components of the SGS stress tensor of a jet by two-dimensional

particle velocimetry. Whereas eddy-viscosity closures correlate poorly with the measured residual stresses,

the resolved stresses correlate well. They propose tile simple stress-similarity nmdel

rij = CLEij (21)

where the coefficient CL is empirically derived. For r = 2, they obtain cL = 0.45 4- 0.15 for a "clipped" (no

backscatter) SGS model by matching the exact and modeled SGS dissipation rates. For a model without
clipping the optimal coefficient is approximately unity (Meneveau, personal communication). Either way,
their result corroborates our observation that the residual and resolved turbulent stresses should be highly

correlated.

The implications of our present results for the practice of dynamic SGS modeling are both troubling

and hopeful. Because the effects of numerator and denominator of the modeled residual stresses essentially

"cancel" in the present analysis, dynanfic SGS models, viewed in the present light, are ultimately independent

of the form of their underlying model (whether Smagorinsky or otherwise)[ This unanticipated result suggests

that the whole concept of dynanfic modeling needs re-exanfination.

In hindsight, it appears to the author that the basis of dynamic models in the Germano identity is
fundanmntally flawed. The Germano "identity" is actually tautological, having been derived simply by

regrouping and renaming certain quantities from the starting point "?ij = "_ij. This is not to say that the idea

of dynamic modeling is flawed, only that there is no necessity for the Germano identity, as will be shown.

Moreover, not only is the Germano identity unnecessary, it results in the practical difficulty associated with

the vanishing denominator of the model coefficient.



4 Alternate Approach to Dynamic Modeling

In light of the discussion above, it is natural to ask: Can the residual stresses be modeled by the resolved

turbulent stresses without appealing to the Germano identity?

By applying tile general Taylor expansion Eq. 3 to Eq. 6, we obtain

Ti j (C 2 '' 2 ,U u ' U, A3= -- 2C2)UiUjA + (CLC2 -- 3C3)(Ui j + Uj_t i )[-_ + H.O.T. (22)

where H.O.T. denotes higher order terms. Because the SGS-stress tensor Tij arises solely from the quadratic

nonlinearity of the NS equations, it is quadratic at leading order in A, provided that the filter is of either

first- or second-order. On the other hand, if the filter is of order n > 2, then Tij is of leading order n. Because
the Slnagorinsky model is of second-order in 1 (or equivalently, in A), it can be concluded immediately from

Eqs. 10 and 22 that the model is appropriate only in tim context of first- or second-order filters. Moreover,

the use of Smagorinsky-based SGS models is totally inconsistent with spectral filters (which as we have said

previously, can be considered of infinite order). This conclusion should hold regardless of whether filtering

is accomplished in space or in the time domain. Our results are supported by experimental evidence. Liu

et al. 7 find high correlations between rij and £ij when filtering is accomplished consistently with either

Gaussian or physical-domain top-hat filters (both of which are first-order in our terminology). On the other

hand, negligible correlations exist when a sharp cut-off filter is used in Fourier space (i.e., a spectral filter in

our terminology).

Of fundamental importance in dynamic models is the resolved turbulent stress tensor £ij (Eq. 8). As

mentioned previously, the resolved turbulent stresses can be directly computed by filtering the resolved

velocity fields fii. Let us now expand £ij analogously to Eq. 22 above. To this end, we presume that the
grid and test filters differ only in their respective filter widths. More precisely, if the grid filter is defined by

Eq. 3, then the test filter is defined by

fz(t, :_) =_ F [u(t, _), £] = u + c, (rA)u' + c2(rA)2u '' + c3(rA)3u ''' + ... (23)

with the same coefficients c2 as in Eq. 3. From Eqs. 3, 8, and 23, and with the aid of Mathematica, it follows
that

= -- ¢C r3X_zt t u i tlxA3£ij (c_ - 2c2)u'iu_(rA) 2 + (c3r 2 - 2clc2r 2 + clc2r 3 o 3 1_ iuj + ujui )_ + H.O.T. (24)

From comparisons of Eq. 22 and Eq. 24, we conclude that the SGS stresses can be approximated to leading

order by the resolved stresses scaled by r2; that is,

t:_j (25)
rij ,_ r2

How good is the approximation? Let the approximation error E be defined

£ij

Eij =- Tij r2

From Eqs. 22 and 24, we obtain

Eij [3ca(r 1)+clc2(3 r)-c a ]_a" , ,, , ,,= - - _ [uiu j + uju i ) + H.O.T.

From Eqs. 22 and 27, we immediately conclude the following:

(26)

(27)

1. If the filter is of either first- or second-order in A, then the approximation error is of higher order (3)

than is the SGS stress (2), and the approximation is likely to be reasonably accurate (given additional

constraints to be addressed shortly).

2. On the other hand, for any filter of order n > 2, the approximation error is of the same order as 7
itself; hence, T is likely to vanish in the noise of the approximation.



3. If thefilter isof ordertwo(Cl-- 0.0,c2 ¢ 0.0) then

Eij = 3c3(r - 1)A3(u',u_ + u_'u',') + H.O.T. (28)

4. Far from being inadmissible, as implied by the conventional dynamic modeling approach, r = 1 is

optimal for second-order filters in that the leading error term vanishes.

5. Because the residual stresses can be approximated directly from the resolved turbulent stresses, the

Germano identity is unnecessary for the development of dynamic SGS models.

5 Discussion

Although, for brevity, the present results were derived using time-domain filtering, similar results could

have been obtained for spatial filtering, albeit by more arduous mathematics. For example, Eq. 19 is the
time-filtered analog to the space-filtered result of Clark et al. 3 as interpreted by Speziale 11, who reports that

12 \axkJ \Oxk] +O(_3) (29)

Although Eqs. 20 and 25 are similar and in reasonable agreement for moderately large r, they are not

identical. Whence the difference? Because the former originates from the Germano identity and the latter

explicitly avoids it, we speculate that the discrepancy follows from the assumption that Tij and Tij of Eq. 7
can both be modeled by formally identical models, despite some formal dissimilarity.

If both analysis and experiment conclude that the residual stresses correlate closely with the (com-

putible) resolved stresses, then it is tempting to suggest for LES the use of SGS models that contain oifly

scale-similarity terms. However, it is well known (e.g., Liu et al.7), that scale-similarity models alone are in-

sufficiently dissipative, and such calculations are almost guaranteed to blow up, particularly if the numerical

scheme is non-dissipative. Our interpretation of the situation is as follows: the SGS models of LES must

unfortunately play two roles: one physical and one mathematical. Whereas scale-similarity models appear

sufficient to capture the physics of SGS energy transfer, additional dissipation (e.g., a Smagorinsky-like term)
is necessary for mathenmtical reasons; i.e., to stabilize the numerical scheme whenever resolution is marginal.

These roles are somewhat separated by mixed models (e.g., Bardina2), which include both scale-similarity

and dissipative terms.

Although our results are completely consistent with the experimental results of Liu et al. 7, they are

only partially consistent witil the DNS results of Piomelli et al. 9, whose a priori tests show good agreement

between modeled and exact stresses both for a mixed model with a Gaussian filter and for the Smagorinsky

model with a sharp cut-off filter. Whereas the former result is consistent with our findings, the latter is not.
However, as Piomelli et al. 9 are careful to point out: "The fact that the SGS stress is essentially zero when

the cutoff filter is used on the present [DNS] grid indicates that, with that filter, the grid may be capable of
resolving the Reynolds stress and no model is needed." Thus, the inconsistency may be more apparent than

actual. We are currently conducting a priori tests to further validate our present analysis.

6 Conclusions

1. Mathematically tautological, the Germano "identity" is suspect as a basis for dynamic SGS modeling.

2. A practical difficulty with dynamic SGS modeling, manifested in the vanishing denominator of the

model coefficient, is directly' attributable to the use of the Germano identity.

3. The Germano identity is not only problematic, it is an unnecessary basis for dynamic SGS models.

4. For first- or second-order filter operators, the computible resolved turbulent stresses, when properly

scaled, closely approximate the residual stresses, without appeal to the Germano identity.



5. In general,filtersof higherthansecondorderareinconsistentwith theSmagorinskySGSmodel.
6. In particular,spectralfiltersareinconsistentwiththeSmagorinskySGSmodel.
7. In LES,theSGSmodelplaystworoles:onephysicalandonemathematical.Toseparatetheseroles,

mixedmodelsshouldbeexploited.Ill mixedmodels,tile scale-similaritytermcapturesthe physics
andthedissipativetermpreventsnumericalinstability.CommonexperiencewithLESrevealsthatthe
scale-similaritytermaloneis insufficient.

8. Thescalingof thescale-similaritytermofmixedmodelsshoulddependonthechoiceoftheparameter
r relating grid and test filter widths. This has been overlooked in practice.

9. A new model for the dissipative term, directly based on the computible resolved turbulent stresses, is

sorely needed.
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