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SUMMARY OF WORK

The application of large-scale simulation to problems in shape optimization is very difficult
for (at least) three reasons. First, the objectives can not always be stated « priori. and thus
there is reluctance to expend resources. Second, simulations are still very expensive, at
least for most complex physical problems, and thus optimization — which calls for
repeated appeal to the forward problem — is often prohibitively costly. Third, many
interesting problems in shape optimization also require variations in topology: the latter
introduces singularities that frustrate many classical optimization procedures.

In this grant, we have proposed an approach to shape optimization that addresses, or at
least mitigates, these difficulties. First, as regards how the problem is posed, we have
applied concepts from multi-criterion optimization theory, in particular, Pareto theory. The
Pareto formulation permits the designer to identify (monotonic) preferences in certain
performance metrics (e.g., lift and drag), and then obtain a trade-off curve between these
variables; all points on this trade-off curve are optimal in the sense that there is no design
point at which both metrics can be improved (e.g., both lift increased and drag decreased).
This trade-off curve can then be used to help the designer identify the right balance between
different preferences, and determine the optimal operating point once these preferences are
established.

Pareto optimization has been used only rarely (if ever) for complex problems in tluid
dynamics because the determination of the trade-off curve constitutes a difficult min-max
problem that requires many appeals to the (expensive) simulation. Our approach to
alleviating this computational bottleneck is to replace the simulation with a simulation
surrogate. In particular, we first construct a model, or surrogate. of the input-output
behavior of the simulation — based on some small set of input-output pairs — and then use
this surrogate, not the original simulation, in the resulting (Pareto) optimization. The
surrogate, unlike the original simulation, is very inexpensive to evaluate, and thus
extensive optimization can be performed; of course, the surrogate may also be significantly
less accurate than the originating simulation.

To address the accuracy question, we have developed an extensive statistical validation
procedure and associated theory for understanding how well a surrogate is performing, and
whether any particular surrogate-predicted result can be trusted. The latter is. in fact,
facilitated by the Pareto framework, since the region of input space of interest is narrowed
to the pre-image of the trade-off curve. In particular, if the number of performance metrics
of interest (e.g.. lift, drag) is small, the Pareto pre-image will typically be a low-
dimensional manifold, even if there are many design variables (inputs).

Finally, in order to treat the topology issue, we have implemented a level-set geometry
description within the surrogate context. In this approach, shapes are described as level
sets of parametrized functions such that (discontinuous) changes in geometry can be
described by continuous changes in parameters which, in turn, correspond to continuous
changes in the performance metrics. The latter thus permits the use of gradient
information, critical to any efficient search algorithm.

The ingredients described above have been demonstrated in the simulation-based
optimization of a compact (laminar-flow) heat exchanger. The performance metrics in the
Pareto analysis are the pumping power and heat removal; the simulation is a full unsteady
Navier-Stokes calculation, on the basis of which a simple (radial-basis function) surrogate
input-output model is constructed; level sets are used to describe the geometry of the eddy
promoters through which the flow is excited and the thermal-hydraulic pertormance

improved.






The results of this study indicate that our approach can prove quite effective in practice,
permitting us to address problems not amenable to other techniques. However simple
("connect-the-dot") surrogate methods are fundamentally limited to rather low-dimensional
inputs spaces; although the Pareto approach permits us to validate a surrogate over a low-
dimensional manifold, we must first construct the surrogate over the entire input space. As
is well-known, approximation in many dimensions is plagued by the "curse of
dimensionality" — there are simply too few points in each coordinate to represent the
function unless a prohibitively expensive (exponential) number of input-output pairs is
used.

One promising approach to improving the dimensionality scaling of surrogates is to exploit
state-space based models — models that contain not only simple input-output information,
but also information originating in the underlying mathematical system that describes the
phenomenon. In a follow-on grant we will be studying this possibility, using for our
"surrogate” a low-dimensional numerical approximation, and for our validation procedure a
new form of a posteriori error estimation theory. The latter also replaces the statistical
results of our earlier work with purely deterministic bounds (albeit at some loss in
generality).

A detailed description of the results of the current grant are included in Appendix A in the
form of a recently completed Ph.D. thesis by John Otto.
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Abstract

A nonparametric-validated, surrogate approach to optimization has been applied to the
computational optimization of eddy-promoter heat exchangers and to the experimental op-
timization of a multielement airfoil. In addition to the baseline surrogate framework. a
surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design
problem. The Pareto analysis improves the predictability of the surrogate results. preserves
generality, and provides a means to rapidly determine design trade-offs. Significant contri-
butions have been made in the geometric description used for the eddy-promoter inclusions
as well as to the surrogate framework itself.

A level-set based. geometric description has been developed to define the shape of
the eddy-promoter inclusions. The level-set technique allows for topology changes (from
single-body. eddy-promoter configurations to two-body configurations) without requiring
any additional logic. The continuity of the output responses for input variations that
cross the boundary between topologies has been demonstrated. Input-output continuity
is required for the straightforward application of surrogate techniques in which simplified.
interpolative models are fitted through a construction set of data.

The surrogate framework developed previously has been extended in a number of ways.
First. the formulation for a general. two—output. two-performance metric problem is pre-
sented. Surrogates are constructed and validated for the outputs. The performance metrics
can be functions of both outputs, as well as explicitly of the inputs. and serve to char-
acterize the design preferences. By segregating the outputs and the performance metrics.
an additional level of flexibility is provided to the designer. The validated outputs can be
used in future design studies and the error estimates provided by the output validation
step still apply, and require no additional appeals to the expensive analysis. Second. a
candidate-based a posteriori error analysis capability has been developed which provides
probabilistic error estimates on the true performance for a design randomly selected near
the surrogate—predicted optimal design.

Thesis Supervisor: Anthony T. Patera
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

The unprecedented advances in both computational and simulation capabilities have spurred
a shift in focus from the development, improvement. and application of single-analysis tech-
niques. to the incorporation of high-fidelity simulations into formal design optimization
frameworks. Although formal optimization techniques have been widely used in structural
design [34, 75], they have only recently been used regularly in fluids applications. Com-
putational fluid dynamics simulations are typically very CPU-intensive. and when directly
inserted into optimization routines as a function-call, the evolution of the design to a local
optimal will advance extremely slowly. The lack of interactivity that characterizes such an
approaches may be acceptable in the very late stages of the design. but is unacceptable in
the early stages of design in which widely varying configurations are often examined and
trade studies are typically conducted.

Preliminary design is, intrinsically. an interactive process. It requires that a large num-
ber of assessments be made rapidly as design parameters are changed and updated. Fur-
thermore, as more is learned about the design in terms of its performance and reaction to
changes in input quantities, goals are likely to evolve and change as well. Methods in which
each design cycle requires hours, or even days, are clearly not useful during the evolutionary
stages of preliminary design in which flexibility and interactivity are most valuable.

An approach that has been widely pursued in an attempt to shift as much information as
possible from the late stages of the design process. where radical changes are much too costly
to be practical, to the early stages, where many design scenarios and configurations are
considered, is through analysis-approximation schemes. Fundamental to such approaches
is the notion that the extremely high simulation cost can be front-loaded. and precisely
budgeted to the construction of simulation surrogates: inexpensive input-output functions
that duplicate the responses of the high-fidelity simulation. The simulation surrogates

can then be coupled with the formal optimization techniques. the result of which is a
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(potentially) highly-accurate, interactive design framework.

The primary drawback to surrogate-based optimization approaches is the uncertainty
that is introduced, both in terms of how the performance predicted by the high-fidelity
simulation differs from that of the surrogate near particular designs, predictability, and
also as to how a surrogate-predicted optimal design point compares to the simulation-
based optimal design point, optimality [7}]. Beyond post-evaluation of surrogate-predicted
design points with the simulation, both predictability and optimality are often times ignored
in surrogate-based optimization methods reported elsewhere. The validation and error
analysis steps of the nonparametric-validated surrogate framework described, and applied,
in Chapters 4—5 seeks to address these issues.

A second issue in design optimization is how to best parameterize the surfaces of the
object to be optimized. A great deal of effort has focused on shape parameterizations. In the
work presented here, the underlying desire to examine shape-families that include multiple
topologies (single and two-body configurations). and to treat the entire family in a unified
approach. has greatly restricted the types of methods that are appropriate. The problem
central to this thesis is of an eddy-promoter heat exchanger. The desire to extend the
design problems beyond the single cylinder designs examined in previous work [41, 77, 79].
and the potential beneficial interaction that may result from two-body configurations. has

motivated the requirement that the shape-family encompass multiple topologies.

1.2 Design Optimization

Formal design optimization procedures have received increased attention in the fluid dy-
namics community recently. Both the increased computer capabilities and the improve-
ments in computational fluid dynamics codes in terms of robustness and capabilities have
contributed to the gradual shift to formalized design optimization. In general, the optimiza-
tion approaches that have been pursued can be broken into two broad categories: on-line,
direct insertion approaches in which the CFD simulation serves as a function call inside of
the optimization routine, and off-line, surrogate approaches in which the CFD simulation
is used to construct simplified input-output models that are then used in the formal opti-
mization routines. Each approach has associated advantages and drawbacks that make the
choice between which is best problem dependent.

The primary advantage to on-line optimization strategies is that they can handle prob-
lems with a large number of input (design) variables very efficiently. Optimization methods
are typically gradient based. and restricted to local searches, which reduces the effective
dimension of the problem to that of the low-dimensional manifold traversed during the
optimization process. Issues as to whether a local or global optimal point is achieved at

the end of the process remain, but at the least, the local searches can be accomplished with
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a moderate number of appeals to the analysis even for problems with very large (in terms
of independent inputs) problems. An additional advantage. in the context of the compari-
son between on-line and off-line strategies, is that upon completion of the on-line design

optimization, a true optimal point is obtained.

The biggest drawback to on-line optimization approaches is the inordinate amount of
CPU time that they usually require. The underlying analysis codes are often very expen-
sive, requiring on the order of hours of CPU time for a single analysis case. Not only is the
computational time inordinately large, it is very difficult to know a priori how many sim-
ulation evaluations will be required by the optimizer, making accurate resource budgeting
impossible. Scenarios in which computational resources are exhausted before a meaning-
ful design is obtained can be easily envisioned. Furthermore, as more is learned about
the design during its evolution, goals and specifications often need to be modified as well.
Changes in design parameters require an entirely new set of simulation analyses to perform
the requisite design optimization update. The large computational cost of the on-line tech-
niques greatly reduces the flexibility of the design process and makes interactivity out of
the question. Secondarily. integration of the analysis code with the optimization routine
can be difficult. especially for multidisciplinary optimization applications. irregularities in
the analysis response can cause convergence problems. and finally. the incorporation of data

from outside sources is difficult.

Off-line. surrogate optimization approaches offer a number of advantages that directly
address the disadvantages of on-line optimization. First. by design. the input-output sur-
rogates are trivial to evaluate. ensuring that the optimization process can be completed in a
reasonable amount of time and global optimal points can be obtained. The computational
burden is placed on the construction of the input-output surrogates which occurs prior to
any optimization. Because surrogate construction is performed off-line. and because the
cost of a single analysis can be accurately estimated, available resources can be precisely
budgeted. Design goals can be changed, and new optimal points obtained. throughout the
process, and interactivity is preserved. Integration is greatly simplified as all information is
contained in a simplified input-output function, smoothness can be enforced on the surro-
gates, and data from outside sources is readily incorporated into the surrogate construction

process.

As already stated, the primary drawback to approximate optimization strategies is a
consequence of the surrogate-for-simulation error. The construction of surrogates in high
dimension input spaces is difficult, and as will be shown in Chapter 4. design predictability
deteriorates rapidly with increased input dimension. The validation and a posterior: error
analysis stages of the surrogate framework seek to address the errors that are incurred when

optimizing with respect to a simplified model as opposed to the high-fidelity analysis.
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1.2.1 Approximate Optimization Techniques

Approximate optimization techniques have been pursued in wide range of optimization con-
texts [3]. Central to the notion of approximate optimization is that a (typically) expensive
analysis represents the truth. Direct insertion of the analysis code into the optimization
routine is prohibited by the high cost associated with each appeal to the analysis and a sim-
plified model (a surrogate) is typically used in place of the analysis. The only requirement is
that the surrogate approximate the relevant input-output relationships of the analysis. An
obvious approach is to sample the analysis at a set of input points. obtain the corresponding
outputs, and form a response surface [10]. The response surface serves as a simulation sur-
rogate in the optimization [21, 67]. The surrogates can also be lower fidelity, less expensive
simulations. Variable-complexity, response surface strategies [32] incorporate a hierarchy
of approximations into the optimization process.

The distinction that is made between the high-fidelity analysis and the simplified ap-
proximation can be made more general. For example. an experiment may serve as the truth
and a simplified input-output model would be the surrogate. An application of this type

has been examined in Chapter 6 and is also reported in [54].

1.2.2 Nonparametric—Validated Surrogate-Based Optimization

The key feature that is lacking in many approximate optimization strategies is a rigorous.
well-integrated means for error estimation. Post evaluation of the surrogate-predicted
designs is widely used and provides the requisite information to determine how a design
actually performs. However, many times even a single simulation evaluation will destroy
the interactivity of the design process. In situations in which several designs are selected.,
the cost of appealing to the analysis for each design become prohibitive. Also, in many
situations the analysis may not be readily available during the design phase (certainly the
case for the experimental optimization problem in Chapter 6). Finally, while post evaluation
does inform the designer as to how the selected point performs, it provides no guidance as
to what should be done if design goals are not met and does not give any information as
to how nearby points perform. Post evaluation does not address how surrogate-predicted
optimal designs relate to true optimal designs.

The nonparametric-validated surrogate framework seeks to address the surrogate—for-
simulation error. The baseline framework [77, 79] can be broken into three steps: (1)
Off-line surrogate construction and validation. (2) Surrogate-based design optimization.
(3) A posteriori error analysis. The framework can accept and assess any combination of
surrogate and truth simulation (or experiment), and is valid regardless of the approximation
quality of the surrogate. The results are rigorous, based only on verifiable assumptions, and

require no additional parameters which typically must be estimated. Additionally, the error

20



estimates apply to the specific design (or region near the design) and precisely quantify the
response. By contrast, root-mean-square errors used in the context of response surfaces
[10] provide an assessment of the overall surrogate approximation accuracy but can not be

easily applied to analysis of surrogate-predicted optimal designs.

he baseline surrogate framework was first developed by [77. 79] for non-noisy simula-
tions. It has been extended to the analysis of simulations with noisy outputs [78, 77] in
which the output error is symmetric and unbounded. The original, baseline framework
has been extended to a more general, scaled-error formulation for multiple outputs [57]
and more sophisticated elemental. sequential, and adaptive techniques have been developed
as well [55, 56]. Finally. surrogate methods have been coupled with Pareto analysis for

problems with multiple, competing performance goals [36. 37].

The surrogate methods have been applied to a wide range of problems. The eddy-
promoter heat exchanger that is examined in Chapters 2—35 has also served as an illustrative
problem in [36, 77, 79]. The baseline surrogate framework has been used to optimize the
profile of axisymmetric bodies of revolution in Stokes flow [55. 56, 57]. The noisy output
formulation has been applied to conduction in random media {78. 77} and the elemental and
sequential/adaptive techniques have been applied to the conduction problem of a composite
[55] and design of trapezoidal ducts [56].

In this thesis, the baseline surrogate framework with error scaling given in [57] is first
applied to the eddy-promoter heat exchanger design problem that is characterized by two
performance metrics. The performance metrics are functious of outputs from the simulation
as well as explicitly of one of the design inputs. The surrogate framework has been extended
to assess a general two output. two performance metric problem in which the simulation
outputs are validated. By validating the outputs instead of the performance metrics. an
additional level of flexibility is afforded the designer in that the validated output can be used
in later design studies with modified performance metrics. A distinction is made between
the inputs which are modeled to construct the output surrogates. and those for which the
performance metric response is known analytically. By separating the design inputs in
this way, the greatest advantage can be taken of what is known analytically. The surrogate
theory has also been extended to assess the error on a design point randomly drawn near the
surrogate predicted optimal design. The original surrogate framework made an assessment
of the surrogate error incurred for regions of points near the surrogate-predicted optimal
point.

Second, because the eddy-promoter problem is characterized by two. competing perfor-
mance metrics. and because the output surrogates and hence the performance metrics are
very inexpensive to evaluate, a Pareto formulation of the problem is pursued. An extremely
valuable synergy between the Pareto analysis and the surrogate methods has been identified

(36] in previous work. In high input dimensions, the predictability results of the surrogate
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framework become very poor. To alleviate the loss in predictability, a Pareto analysis is
pursued which reduces the effective dimension of the problem from the number of inputs
to one less than the number of performance metrics. For the two performance metrics
eddy-promoter problem, the Pareto analysis reduces the optimization problem to that of a
single parameter and sacrifices very little generality in the process. A fine-grained Pareto
analysis of the eddy-promoter problem using the simulation is totally out of the question
and a surrogate strategy is necessary to make the problem tractable.

Finally, in Chapter 6, the baseline surrogate framework is applied to the experimental
optimization of the three-element airfoil. The experiment is assumed to be deterministic,

and the non-noisy formulation is used.

1.3 Shape Optimization

The eddy-promoter, heat exchanger that serves as the central example for the majority
of this thesis falls into the wide class of shape optimization problems [63, 65]. Shape
optimization problems are present in most engineering disciplines. The general structural
design problem of determining the optimal truss is one such problem. For the truss problem,
the thickness. length. positions, and possibly the existence of the various components must
be determined and serve as inputs. Numerous shape problems can be found in the field
aerodynamics. The optimization of a wing (both planform and the cross-sectional airfoil
shape) to achieve desired lift, drag. and stall characteristics is frequently considered and
of critical importance for aircraft design. The design of a wind-tunnel nozzle contour to

achieve a prescribed flow profile in the test section is another example of shape optimization.

1.3.1 Topology

An important consideration in some shape optimization problems is that of topology. In
truss problemns [6], not only do elements need to be sized in terms of thicknesses and lengths,
but connectivities and existence must also be considered. This extends truss optimization
from simply that of sizing to include topology of the truss components as well. Several
approaches to topology optimization have been demonstrated on structural optimization
problems. The first approach is the ground structure method in which a given set of
connections is allowed between a fixed set of nodes, and the problem is posed as a continuous
optimization problem in which sizes can go to zero. Zero sized truss components imply no
connection between the two nodes [4]. This approach is restrictive in that the connectivity
(or the family of allowable connectivities) is assumed at the outset.

The second approach to topology optimization. homogenization methods [4, 5, 16, 72],
seeks to treat the problem in a more unified, pseudo-continuous sense. In a homogenization

formulation. the distribution of a material property (e.g. modulus or density) serves as the
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design variable, and the design is optimized for a given objective. Regions of the structure
in which the value of the material property falls below a given cutoff are assumed to be
voids in the structure. Because an underlying mesh is required, the resulting truss must
often times “cleaned up” to smooth boundaries. The post-optimization smoothing that is
required calls into question the actual optimality of the resulting structure.

A third strategy used to find the optimal topology of a structure. zero-one methods [1.
29], discretizes the solution domain into a a mesh of points and each point is systematically
turned “on” and “off” until an optimum is achieved. The problem is thus reduced to the
combinatorial optimization problem of finding the best set of material points that satisfy
the constraints and minimizes the objective.

While such treatments of topology optimization have been effective in many instances for
solid mechanics applications, they are not directly applicable to fluid problems and are still
more unsuitable for surrogate-optimization approaches. Topology is an important consid-
eration. however. for some classes of fluid problems and should therefore not be neglected.
The particular application explored in this thesis, the eddy-promoter heat exchanger. is
one example of a problem that can benefit greatly from a unified treatment of multiple
topologies. In particular. situations in which two bodies may favorably interact. and which
may be more efficient than single body configurations. can be easily envisioned.

None of the strategies pursued for the structural topology optimization are directly rel-
evant or applicable to the eddy-promoter problem. Homogenization techniques do not have
an analogous extension to fluid problems that is physically reasonable. The discrete zero-one
methods could be applied but suffer from several drawbacks. First. for the very expensive
analysis that is used for the eddy-promoter problem. the combinatorial optimization prob-
lem would be prohibitively expensive. A sufficiently refined discretization of the solution
domain would make the problem still more intractable. Second. the zero-one techniques
are not at all applicable to the surrogate techniques (e.g. a smooth input-output function
can not be fit through a 20 x 20 mesh of discrete zero-one inputs) that are required to make
the problem computationally possible. Third, and finally, the resulting optimal shapes are
non-smooth and are likely not optimal in the sense of viscous dissipation. Post-processing
of the optimal shapes to smooth the surfaces could be used, but relationship between the
smoothed bodies and the true optimizers is unknown. The incompatibilities between the
structural topology methods described above and the eddy-promoter design problem have

motivated the development of a level-set based geometry description.

1.3.2 Level Set Geometry Description

The approach that has been developed to describe the geometry sacrifices the generality of
the homogenization and zero-one techniques, but is more relevant to the eddy-promoter

class of fluid problems. It is a level-set based technique and has several advantages. First,
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it provides an unified (albeit restricted) approach to topology optimization in that no addi-
tional logic is needed to distinguish between single or multiple body configurations. Second,
it is directly applicable to surrogate approaches as it is efficient in terms of the number of
inputs that are required and, most importantly, the input-output function is continuous
across a topology change. Third, the family of shapes that are described by the level-set
method are a superset of the cylindrical family studied elsewhere (40, 77, 79] making the
results directly relevant to previous studies. Finally, it can be extended to more complex
geometries and topologies in a rational way. The geometry is defined using superposi-
tion principles and a core, generating function. By systematically adding core functions to
the overall shape function, richer families of bodies can be defined, and a wider class of
topologies can be considered. For the problem examined here, two distinct topologies are
considered: single-body and two-body configurations.

Level-set methods have been used previously to describe the domain in shape opti-
mization problems {12, 80]. More recently, level-set methods have been widely applied to
problems that involve propagating surfaces or interfaces [53]. This includes problems such
as flame propagation and material boundary evolution. Level set methods have also been
applied to character recognition (the determination of true character boundaries) [52] and
image enhancement in the presence of noise. One of the principle strengths of level-set
methods is their ability to handle difficult geometries including sharp corners, cusps, and
topological changes [13]. The specific method used to describe the geometries is given in

Section 2.5.

1.4 Overview of the Thesis

In the first chapter of this thesis, the eddy-promoter problem is described. The configu-
rations, governing equations, shapes descriptions and summary of the fundamental design
inputs, outputs, and performance metrics are included. In the second chapter, the numer-
ical solution techniques used to solve the governing equations are detailed. The baseline
surrogate framework is applied to the eddy-promoter problem in the third chapter and the
Pareto surrogate approach is applied to the eddy-promoter problem in the fourth chapter.
At the end of the fourth chapter, key features of the baseline and Pareto approaches are
compared and contrasted. In the fourth chapter, the baseline surrogate approach is applied
to the experimental optimization of a three element airfoil. Finally, some concluding re-
marks are given in the final chapter followed by appendices that contain surrogate proofs,

details of the numerical implementation, and the surrogate input-output functions.
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Chapter 2

Eddy—Promoter Heat Exchanger

A natural byproduct of almost all mechanical processes is unwanted heat. The amount of
work in the field of heat transfer problems in general has reached such a critical mass that
reviews of heat transfer reviews are available [19]. Additionally, heat exchangers are present
in almost all mechanical systems and have received a great deal of attention as well [25. 76).
The requirement that the heat be efficiently dissipated to preserve mechanical integrity
without incurring undue performance penalties has helped to support a very active field of
research focused on heat transfer enhancement.

One approach to the removal of heat from a surface is through a laminar flow heat
exchanger. In such an exchanger. heat is transfered from a generation source into a fluid
medium and carried downstream. A number of ways exist to enhance the heat transfer away
from the wall of the channel and into the fluid medium. These include active mechanisms
such as oscillatory pumping of the fluid or passive enhancement in which wall contouring or
flow obstacles are introduced into the fluid channel to increase mixing. For all of the meth-
ods. the intent is to increase the convective heat transfer by increasing the mass transport
away from the wall.

The heat exchanger geometry introduced in this chapter, and used as an example in
Chapters 4 and 5. uses a passive enhancement strategy in which flow obstacles are intro-
duced to lower the critical Reynolds number. The exchanger, as defined here. could be a
subsystem in a much larger industrial heat exchanger device or could be a very close approx-
imation to a design that might be used in a space-limited application such as the cooling
of electronic devices. The enhancement geometries studied here take as a departure point
work performed earlier in which cylindrical inclusions (eddy~promoters) were studied [41].
The cylindrical eddy-promoters greatly reduce the Reynolds number at which flow instabil-
ities develop. The onset of instabilities have been observed at Reynolds numbers as low as
125 when the eddy-promoters are present [40]. The presence of the eddy-promoter inclu-
sions greatly increases the temperature convection in the channel and therefore, improves

the heat transfer. The family of eddy-promoter geometries studied here include cylindrical
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Figure 2-1: General geometry for the heat-exchanger configuration.

inclusions, oblong inclusions at various orientations, and two body configurations. A uni-
fied geometry description has been developed to describe the full family of geometries that
preserves continuity in the input-output functions. The geometry description is based on
level-set methods and is described in Section 2.5.

In this Chapter, the general configuration and design goals for the eddy-promoter heat
exchanger problem are presented. A description of the heat exchanger configuration and
the simplifications made for later computations are presented first. Second, the governing
equations and the scalings that are made to reduce the preblem to nondimensional form
are described. Third, the engineering goals for the problem are discussed and the nondi-
mensional formulation for the design problem are given. Fourth. the Pareto formulation is
presented followed by the level-set based geomnetry description. Finally, the reduced for-
mulation for the eddy-promoter design problem is presented in terms of the design inputs.

design spaces. outputs, and performance metrics.

2.1 Physical Problem

The general configuration of the heat exchanger is given in Figure 2-1. The flow is from left
to right and is driven by an applied pressure gradient —AL—},)I. The channel length is L’ and
the channel half height is H'. The temperature of the fluid at the inflow is 77, the wall

temperature at the outlet is Ty, ,, and the channel average velocity V' is

! 1 2H r g1

where u’ is the z'-component of the vector velocity u’ = (v/,v'). There is is a uniform heat
flux ¢” through the lower wall and the upper wall is assumed to be insulated. The objective
is to transfer as much heat as possible through the lower wall, into the fluid stream, and
out of the heat exchanger channel.

A number of methods exist to effect better transfer of heat into the fluid medium. These

include unsteady pumping, grooved walls, and the inclusion of periodically-spaced, cylin-
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Figure 2-2: General geometry eddy-promoter, heat-exchanger configuration (top) showing
one periodicity cell (bottom).

drical obstructions referred to as eddy-promoters. In this work, the focus will be exclusively
on the eddy-promoter configurations. a segment of which is shown at the top of Figure 2-2.
The periodicity spacing (the length between inclusions) for the eddy-promoters is I'. The
primary effect that the eddy-promoters have on the flow is to trip instabilities at greatly
reduced Reynolds numbers than observed for plane channel flows. Two-dimensional. lin-
ear instabilities are observed in channel flows at Reynolds numbers based on the channel
half height H' of approximately 5500 (17, 60]. For properly placed and sized cylindrical
eddy-promoters. the onset of two-dimensional flow instabilities have been observed numer-
ically and experimentally at Reynolds numbers as low as 125 [40, 41]. The unsteady flow
increases the convective transfer of heat away from the wall and increases the efficiency of

the exchanger.

As already stated, the heat transfer can be increased by the inclusion of obstacles in the
flow to induce instabilities at lower Reynolds numbers. While the periodically spaced flow
obstacles do increase the heat transfer, the increase comes at the cost of a higher pressure
drop and greater viscous dissipation. The result of the higher pressure drop is that a more
powerful fluid pump must be employed, increasing the cost and complexity of the exchanger.
Additionally, excessive viscous dissipation, pressure forces. and shear stresses produce larger

structural loads that must be balanced by stronger materials to avoid fatigue failures.

The effectiveness of the exchanger can be quantified by two characteristics: how much

heat it can transfer away from the hot wall and how much effort is required to accomplish the
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transfer. The two quantities that characterize the exchanger are, in most instances, at odds
with each other. Clearly, the heat exchanger design is an example of a thermal-hydraulic
trade-off problem. In words, the goal of the heat-exchanger problem is to maximize the
heat transfered into the fluid medium and carried downstream while holding the required

pumping power as low as possible. These competing goals form the trade-off problem.

2.2 Governing Equations

The total exchanger length L' is assumed to be such that the flow is fully developed in
z'. Additionally, the flow is assumed to be independent of the spanwise coordinate and is
modeled as a two-dimensional problem.. Furthermore, for a periodicity spacing, I, between
eddy-promoter inclusions that is also sufficiently long, the fluid solution will be also be I’-
periodic. With these two assumptions, the full exchanger length can be modeled with a
single periodicity cell that enforces periodic boundary conditions at each end.

The flow solution for the full channel shown in Figure 2-2 is modeled by a single peri-
odicity cell as depicted in the lower half of Figure 2-2. The fluid flow solution is governed
by the incompressible Navier-Stokes equations and it is assumed that all fluid properties
are held constant and are independent of the fluid temperature. The equations governing

the fluid flow. in dimensional form are

!
P?ltl'— +pu’ - V' — VP + V' =0, (2.2)

V'-u' =0. (2.3)

where p is the fluid density, u is the fluid viscosity, and =’ is the pressure. No-slip boundary

conditions are enforced on the velocity along solid walls
u' =0 on B’D‘Ep’, BDEP’, E)Dgpl, (2.4)

and left-right periodicity is enforced on the flow velocity and derivatives

u'(z' =09ty =u'(c" =0y, 1), (2.5)
uy (2’ =0,9,¢) =ul(z' =U'y,t), (2.6)
uy (' =0y, ¢) =u, (= =U'y,¢). (2.7)

The pressure 7n'(x’,t') has the form

!
(X', ¢y =p' (X, t) - ATPJ?’, (2.8)
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where x’ = (z’.y’) is the vector of coordinate directions in two-dimensions and —9—5— is the

pressure gradient that drives the flow. The periodic part of the pressure. p'(x',t"), satisfies

P’ =0.9/.t)=p(z' =1y .t). (2.9)

The temperature is governed by the scalar, convection-diffusion equation

or’ :
57+ v . ('T) = aV"T, (2.10)
where T’ is the full temperature solution and o = ﬁ is the thermal diffusivity. For this

equation to hold, it is assumed that the thermal conductivity, &, is independent of the
temperature. that diffusion can be neglected. and that there is no internal heat generation.
The boundary conditions for the temperature are the prescribed uniform heat flux through
the lower wall

kV'T - fi = q" on ODEY, (2.11)
and zero heat flux (insulating surfaces) through the eddy-promoter body surface and the
upper wall

kYT -fi=0 on 0DE. oDEY". (2.12)

The heat flux ¢" is assumed positive for heat transfer into the domain and n is the unit

outward normal.

The full temperature. T". is decomposed into two components
T (x'.t) =0 t)++'c. (2.13)

The linear part of Equation 2.13 is the most general form for which there is a unique solution

such that 8'(x’.t') satisfies periodicity [30]
6'(z' = 0.4/,t') = 0'(z' = L.y, t). (2.14)

The derivation of the coefficient 4’ is given below.

The governing equation for 8’ is obtained by substituting Equation 2.13 into the tem-
perature equation 2.10
o6’ ~
T V' (') = V7?8 - +'u'e, (2.15)

where €, = (1,0) is the unit vector in the z-direction. The boundary conditions on 8" are

obtained similarly and are
xV'0 -8 =q" on ODEF, (2.16)

xV'0' -2 = —xy'A, on @DE". ODEY, (2.17)
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where 7 is the component of the unit outward normal vector, i = (7, 7,), in the z'-

direction.

Because solution domain DEP' is a single periodicity cell of the full heat exchanger shown
at the top of Figure 2-2, the coefficient 4’ in Equation 2.13 must be set such that heat does
not build up in the channel, on average, over time scales of the order of period of the
steady-periodic state. To determine the constant coefficient v/, the temperature Equation

2.10 is integrated over the solution domain DEP’

0

— U 4 —_ r. et ! ! 12 nt '
5 /DEP,f’ dx /DEP,V [u'(8' + +'z)] dx +/DEP, V26’ dx'. (2.18)

The first integral on the right hand side of Equation 2.18 is expanded, and Green'’s theorem
is applied to obtain

%/EP 8 dx' = —-/ o u’gf.ﬁd['_,y//EP u’dx'__/ . aV'e - fdx'. (2.19)
D ! oD ! D ’ oD ’

The requirement that 77 be bounded as ¢ — = is equivalent to enforcing that the left
hand side of Equation 2.19 be zero when averaged over a length of time on the order of the
solution period. The first term on the right hand side of Equation 2.19 goes to zero by the
velocity boundary condition given in Equation 2.4 and the second term on the right hand

side can be rewritten in terms of the flow rate
Q'(t) = —/ o dx’. (2.20)

For the problem examined here, the flow rate is fixed and Q'(t) = Q’. The expression for
%' is obtained by requiring that the remaining terms satisfy Equation 2.19 which can be

rewritten as
YI'Q =« /aDEP’ v'e-ad' (2.21)

The boundary condition contributions from the body and upper wall in Equation 2.17 are
substituted into the right hand side of Equation 2.21. The contribution from the body is
zero because of integration around the closed contour 9DEF and the contribution along the
upper wall is zero because ﬁl,aDEP = 0. The boundary condition contribution from the

lower wall in Equation 2.16 is substituted into Equation 2.21 to obtain

1
VIO = a / zq, (2.22)
oDEP' K
which is solved for ¥’ to get
' aq'
V= emV (2.23)

where the relation Q' = H'V’ has been substituted, and ¢’ = I’g" is the integrated heat flux
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into the domain DEF through the lower wall §DFF.

To this point, all quantities and equations have been given in dimensional form. To
nondimensionalize the governing equations, and to simplify and generalize the solution
process, the following scales are used. All lengths are scaled by the dimensional channel
half-height H' resulting in a nondimensional channel height of H = 2. The velocities are
scaled by %V’ which has been selected so that the nondimensional centerline velocity for
plane Poiseuille flow is unity. The dimensional time is scaled by the ratio of the length scale

. ! . i 4 .
to the velocity scale g—{{—, and the temperature is scaled by % The scales are summarized

below.
7, H . 3yt
Velocity scale: 5V
Length scale: H'
Time scale: 27{{—'

'

'
Temperature scale: L,\i

The relative periodicity length [’ and the full channel length L’ are scaled by H' and resulting

nondimensional lengths are
ll Ll

| = —, = —.
H L H'

(2.24)

respectively.

The scalings listed above are applied to the governing equations 2.2. 2.3. 2.15 and to
the associated boundary conditions 2.4—2.7, 2.14. 2.16. and 2.17. The resulting equations
are simplified to obtain the full set of nondimensional governing equations and boundary
conditions. The velocity and pressure are governed by the incompressible. Navier-Stokes

and continuity equations

Ju 1 o
— : - = p = f(t). 2.25
(,)t+u Vu ReV u+ Vp = f(t) (2.25)
vV u=0. (2.26)
with boundary conditions
u=0 on IDFF, ODEF ODEP, (2.27)
u(z =0.y.t) =u(zr =1Ly t) (2.28)
us(z =0,9.t) = uslz =1l.y.t). (2.29)
u,(r=0,y.t) = uy(z =1L y.t). (2.30)
The governing equation for the temperature reduces to
06 1 2
5?4-11(‘79)—- T{?P—;V 9—’)/'11.1, (231)
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with boundary conditions

VO-fi=1-~7; on 8DEF, (2.32)
V- = —vA; on 9DEF, 9DEP, (2.33)
0(z = 0,y,t) = 0(z = I, y,1). (2.34)
0.(z =0,y,t) = 0.(z = [,y,¢). (2.35)
By(x =0,y,t) =0,(z =1,y,t). (2.36)

The Reynolds and Prantl numbers are

3V'H' v

Re = 2, s P’r:a

(2.37)

and the Prantl number is held fixed at unity. Pr = 1, for all cases presented here. The
nondimensional velocity, pressure. and temperature are
2ul _ pl 9/

and 6= o0 (2.38)

UZW. p—m. H

respectively and the nondimensional coefficient. +, becomes

_ 3
" 4RePr’

v (2.39)

The dimensional pressure 7’ has been expanded according to Equation 2.8. This yields

a time-dependent forcing term on the right hand side of the z—component of Equation 2.25

AP’

f(t) = —Lt—, (2.40)
3y
o (1)
where the full vector forcing term in Equation 2.25 is f(¢) = (f(¢).0). The forcing term is the
nondimensional pressure drop required to drive the flow at the prescribed Reynolds number.
To be consistent with the velocity scaling %V’, the nondimensional, time dependent, forcing

term f(t) is set such that nondimensional flowrate given by

2
Q:/O w(z.y.1) dy. (2.41)

is a constant Q = '31 The numerical implementation that has been used to to achieve the

prescribed flow rate is detailed in Section 3.2.1.
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2.3 Engineering Goals

The eddy-promoter heat exchanger design problem can be classified as a multicriteria design
problem. The two criteria that characterize the design goals are the pumping power required
to maintain the prescribed flowrate and the temperature rise along the lower wall. The
two design criteria for this problem result in a classic trade-off problem in that design
improvements, reduced pumping power and lower temperature rise, are competing goals
and in many instances run counter to each other [66]. From the designer’s point of view,
it is best to postpone how to precisely balance and prioritize the two criterion until as late
in the design process as possible. This will increase the flexibility and allow the designer to

learn as much as possible before making decisions.

To accomplish the design goals. a number of independent variables can be adjusted. The
independent variables are referred to as design (or input) variables. Of the full set of design
variables, a subset consists of the vector of parameters Zzp that specify the geometric
configuration of the eddy-promoter inclusions shown shaded in the lower part of Figure
2-2. The vector Z';p includes the parameters that describe the profile of the body surface
as well as its placement in the channel. Additional design variables are the height of the
channel configuration H', and the average fluid velocity V' defined in Equation 2.1. The
total channel length L’ is fixed as it is assumed to be set based on the specific application.
The relative spacing between each eddy-promoter. {', can also serve as a design input but.
for the remainder of the work presented here. it is also assumed fixed and is set such that
l = }{—' = 6.666. The value [ = 6.666 matches that used in previous studies and has been
shown to be a valid"léxigth for the existence of [-periodic solutions [40]. The fluid properties

p. v, K, and « are all assumed fixed. The full. dimensional design input vector is

Z = (Zp. V' H). (2.42)

-'.»‘.;M_hv“ ~
As stated in the first paragraph of this section, the two criteria that characterize the
design are the dimensional pumping power required to achieve a prescribed average flow

velocity V' and the temperature rise along the lower wall. The pumping power is given as
Fp(Z') = AP'V'H', (2.43)

and is dependent on the input design vector Z. The temperature rise is broken into two
components and is
g all 1] !
T =T,,—-T

m,i

(2.44)

where T, , is the temperature at the outlet of the heat exchanger. and T, =T,(x=0)is

the mixed mean temperature at the inlet of the exchanger. The mixed mean temperature
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is defined as )

=) = 2

The brackets < - > in Equation 2.45 indicate a temporal average over a sufficiently long

2H'
T / < u(x )T (x.8) > dy. (2.45)
0

period of time to obtain the mean of the time-varying, steady-periodic solutions.

To nondimensionalize the problem, it is important to scale the optimization objectives
by quantities that do not change as the design changes. This requirement simplifies the
solution process but it also restricts the possible nondimensionalizations. The independent
variables are scaled as well. The channel half-height H’ is scaled by the total channel length
L', which is fixed. For convenience, the inverse of the scaled channel half-height

L'

I (2.46)

nL =

serves as the design variable. The eddy-promoter configuration variables are scaled relative

to the channel half-height

Zep = —f’% (2.47)
The average velocity V' is scaled by ﬁ which gives the Reynolds number, Re = 3‘;‘/’{’. as
a design variable. The full set of nondimensional design variables is then given as
Prut = (Zep. Re.nr). (2.48)
To scale the temperature objective. the temperature rise 7" is first expanded as
5T = E’Z‘;_LW + AT (2.49)

where AT = < m > and the over-bar indicates a spatial average in the z-
direction over the length of the spacing between eddy-promoters, {’. The first term on the
right hand side of Equation 2.49 corresponds to the mixed mean temperature rise along
the exchanger length due to the uniform heat flux ¢” and the second term is the heat that
has been transfered into the fluid medium. Scaling the temperature rise by 9% gives the

desired result for the objective

0T’ 1 1
Zep. Re, L) = —— = 2.5
O(Zep. Re, L) CL = RePr T JiNu(Zgp. Re) (2.50)
where the Nusselt number is given by
1 1 -
JVU(ZEP,RE) = — = = (201)

< Tm(z) = Tp(z) > AT

and is the inverse of the nondimensional, temporally- and spatially-averaged difference
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between the mixed-mean and wall temperatures.

The pumping power, Fp(Z'). is scaled by ’I"—'fi The nondimensional pumping power is

AP'V'H'L"?
U(Zep. Re,nL) = ————. (2.52)
pv
Introducing the nondimensional friction factor
AP
Yo(Zep, Re) = _3L____7 (2.53)
P(3v)
and substituting the expression into Equation 2.52 gives
U(Zgp. Re.nt) = ¥o(Zep. Re)nj Re®. (2.54)

where the nondimensional friction factor in Equation 2.53 is identically equal to the tempo-
rally averaged. pressure forcing term on the right hand side of Equation 2.25. The pressure

forcing term is given in Equation 2.40 and the output form is

vo(Zgp. Re) =< f(t:Zgp. Re) > . (2.55)

To this point. no preference as to how to treat the two design criteria. ©(Zgp. Re.ni)
and ¥(Zgp. Re.ny). has been stated. The precise application and engineering constraints
(e.g. available pumps, limits on temperature rise. etc.) would need to be known to de-
termine the best formulation for the design problem. As an example. if the maximum
temperature rise along the lower wall of the exchanger must be limited (say due to oper-
ating temperature limits on electrical components). the problem could be formulated as a

constrained optimization problem

min Y(ZEep. Re. 2.56
2. (Zgp. Re.ny) (2.56)
subject to

©(Zgp. Re,ny) <6, (2.57)

where 8 is the upper-bound constraint on the temperature performance criterion. Con-
versely, the problem could be formulated based on the maximum pumping power that can
be supplied by the fluid pump. In that case, the two performance metrics in Equations 2.56
and 2.57 would be reversed and the upper-bound constraint in Equation 2.57 would be set
based on the particular fluid pump. Ideally, it is best to put off such decisions until as late
in the design process as possible to preserve generality. The design strategy that is used

for the eddy-promoter problem combines the formulation presented in Section 2.4 and the
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surrogate techniques presented in Chapters 4 and 5. The result is an extremely flexible de-
sign environment that addresses both constrained optimization problems mentioned above
as well as a wide class of more general formulations.

Regardless of the problem formulation that is ultimately selected, upon solution of the
nondimensional optimization problem, the physical heat exchanger quantities must be ex-
tracted from the nondimensional results. The steps are as follows: 1) Given the dimensional
length of the heat—exchanger channel L', H' is determined from the optimization solution
for ny. 2) With H’ known, the dimensional geometric configuration parameters Z'zp can
be obtained. 3) The Reynolds number implies (for fixed fluid quantities) the optimal V'
given H'.

2.4 Onptimization Problem — Pareto Formulation

The notion of Pareto-Optimality (PO) has its origins in the field of economics. The analysis
was originally targeted towards the equilibrium conditions in an economy in which gains
made by one consumer would be at the expense of at least one other consumer. The
equilibrium point was first referred to by Edgeworth in 1881 [20] and the concept was
refined and expanded by Pareto [59]. The application of Pareto analysis to engineering
problems has only occurred recently. however.

There are several advantages to pursuing a Pareto analysis of multicriteria optimization
problems when feasible. First, it can be shown that a wide class of multicriteria optimization
formulations have a solution that is also PO. This is important in that by pursuing a Pareto
analysis, one loses very little generality. The second advantage to a Pareto approach lies
in the engineering relevance of the results. For a two-criteria optimization problem, the
resulting family of PO solutions map to a curve in the two-dimensional criterion-space that
provides a designer with the capability to rapidly assess trade-offs and to determine the
impact of changing design goals interactively. Third. PO analysis has a beneficial impact on
the practicality of the error estimates provided by the surrogate framework. This is a direct
result of the reduction in effective dimension that is realized by the Pareto analysis. The
result is that for a problem with a high input dimension (M), the dimension over which the
surrogates are validated is reduced to one less than the number of performance metrics that
characterize the design preferences, (K — 1). The input dimension reduction significantly
improves the predictability and is discussed in Chapter 4.

In this section, the general formulation for the Pareto-optimization problem is presented
first. Second, several classes of multiobjective problems that have solutions that are also
Pareto-optimal are presented and discussed. Third, the methods used to determine the full
set of Pareto—optimal solutions are described. Fourth, and finally, the generalization of the

Pareto formulation to an arbitrary number of objectives is briefly presented.
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2.4.1 Pareto-Optimal Solutions

Central to the Pareto analysis of a problem is the notion that the designer can articulate
monotonic preferences on each performance metric. For all of the discussion of this section.
it will be assumed that there are two (K = 2) performance metrics for which lower values
correspond to better designs. Given a vector of design variables p € 2 and the design
(or input) space Q@ C RV, the two performance metrics are ®;(p) = ®1(¢1(p). ¢2(P). P) :
Q - R and ®y(p) = ®1(é1(p), $2(p).P) : @ — R. It is arbitrarily assumed that the
performance metrics are functions of the two outputs, ¢1(p) : @ = R and ¢2(p) : 2 — R.

as well as explicit functions of the input variables p.

To define the Pareto-optimal sets, the notion of an achievable set
A={sc R*|3pe€ st ®1(¢1(p). ¢2(p). P) < 51. P2(h1(p). @2(p). P) < s2}.  (2.38)

is first introduced. The achievable set A is the the set of all possible output pairss = (s;.52)
for which there is an input point p € € that has correspondingly better performance metric
values. With the achievable set defined as above, the set of Pareto-optimal designs is
then the set of designs for which the performance metric values lie on the non-horizontal.
non-vertical boundary of A not at infinity. This boundary. denoted dA. is depicted on
the left in Figure 2-3 as the solid line and is termed the Pareto-optimal output manifold.
The PO output manifold is also sometimes referred to as the efficient frontier [71] or the
trade-off curve [66]. The inverse map of the PO output manifold back to the input space

is determined from the performance metrics

LY ={peQ]|IsecdAst. 1(d1(P). #2(p).P) = s1.P2(d1(p). #2(p).P) = s2}.  (2.59)

and £ € Q is denoted the PO input manifold. The PO input manifold £ is shown as
solid lines on the right side of Figure 2-3 and the outline of the design space € is shown as
a dashed line. Figure 2-3 depicts 9.4 and L as very well behaved. (K — 1)-dimensional
manifolds. There is no justification for such behavior in general. especially as regards LA,
but for relatively smooth. well defined performance metrics it is reasonable to expect some

regularity.

The design optimization interest is in the designs described by input points. p*. that lie
on LA, p* € LA. These design points can rightfully be called the “best™ or most efficient
designs based on the performance metrics. This is illustrated by considering the input point
p’ with the corresponding output pair (®,(p"), 2(p’)) € 0.A. For such a point, there always
exists a point p* € £ that has output pair (®1(p*), P2(p*)) € JA and that satisfies either

@1(p") < @1(p)) and P2(p) < P2(p'). (2.60)
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Figure 2-3: A schematic the Pareto-optimal output (left) and input (right) manifolds.

or
®1(p") < 1(p’) and P,(p*) < B2(p"). (2.61)

In words. Equations 2.60 and 2.61 indicate that for a point p’ that is not PO. there will
always exist a point p* that performs at least as well in terins of the first performance
metric ®;(p’) and improves upon second performance metric ®,(p’) or (conversely) that
performs at least as well as ®,(p’) but improves upon &, (p’).

Finally. it is noted that the entire boundary of A does not correspond to PO designs.
From the discussion of the previous paragraph. it is obvious that designs that correspond
to horizontal or vertical segments of the boundary are not PO. The reason for this is that
for such designs, there will always be another design input point that improves on one of
the performance metrics without increasing the other. For all of the discussions of 3.4, and
the corresponding £+, it is assumed that all points that are not PO have been eliminated.

This has been suggested on the left side of Figure 2-3 by denoting 9.4 as the solid line only.

2.4.2 Relationship to Other Multi—-Objective Problems

The advantage of pursuing a Pareto analysis is that it is, in fact. a generalization of many
multi-objective problems in that solutions to the given multi-objective optimization prob-
lem, p3,p, are Pareto optimal: p},5 € LA. For example, the single performance metric

minimization problems,

p; = argmin ®,(p), (2.62)
pEN
and
p; = arg gleig P,(p), (2.63)
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both have solutions that lie on £4, p} € £~ and pj € L. In fact, the performance metric
pairs that correspond to p} and p3 lie at the extreme ends of A.

As a second example, if the objective is the weighted sum of the performance metrics,
@(p) = a1®1(p) + ax®2(p). then

p" = argmin ¢(p) (2.64)
peN

is PO as well and can be found on the PO input manifold £, p* € £LA.

In general, for any non-decreasing functions ¢(®:(p), ®2(p).p) and b(®1(p), 2(p). P)

that are not explicitly functions of the input vector p, a solution to

p’ = argminy (®1(p). P2(p). p) (2.65)
pel
subject to
b(®1(p). P2(p),p) <0 (2.66)

will lie on the PO input surface £, This generality in the PO solutions allows the designer
to eliminate uninteresting designs but ensures that sufficient flexibility remains to change
the design goals as the design itself evolves. This flexibility is extremely important because

many times. precise goals can not be defined at the outset of the design process.

2.4.3 Determination of 94 and £+

To find £*. the multicriteria problem is reduced to a series of scalar problems parameterized
by w € W = [0.1}. A min—max formulation for the scalar sub-optimization problems is
used as it is guarantees that non-convex portions of £~ are obtained (22, 14].

Given the scalarization parameter w € W, the scalar problem

§(w) = arg min max(w®,(p), (1 —w)®2(p)). weW. (2.67)
P
is solved for a sufficiently refined W. The curve £(W) (with segments corresponding hor-
izontal and vertical segments of the boundary of A removed) is the PO input surface LA,
The corresponding PO output manifold is obtained from {(W) and the performance metrics.
given by

A = (D1(E(W)), B2(§ (V). (2.68)

It is immediately obvious that it can be an extremely time consuming and difficult pro-
cess to find £(W) to an adequately fine resolution for even moderately complex (expensive)
performance metrics, ®(p) and ®2(p). Each solution to 2.67 is itself an optimization prob-
lem. The prohibitive cost of obtaining (W) is the primary reason why Pareto analysis is

not typically pursued for complex engineering problems.
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Note that in this discussion, it is assumed that the £(W) obtained from the scalarization
process (2.67) has been “cleaned up” to remove duplicate points and horizontal and vertical

segments of the boundary of A that, by definition, are not PO.

2.4.4 Generalization to Arbitrary Output Dimension

The notion of Pareto-Optimal solutions can be extended to an arbitrary number of per-
formance metrics ®;(p),...,Px(p). For the K performance metrics (for all of which it is
assumed that lower is better) the PO output manifold is the (K — 1)-dimensional manifold
that represents the boundary of the achievable set A not at infinity. Here Ag is

Ax={s€ R¥ |3p € Qs.t. &1(¢1(p). $2(P). P) < 51,.... 8k (b1(p), #2(p), P) < sk}
(2.69)

In three dimensions. this can be visualized as the surface of the three-dimensional achievable
set volume in the first quadrant that is “nearest” the origin.

In higher dimensions, the surfaces can not be easily visualized but can be described
with the min-max scalarization process similar to 2.67 [35]. Given the K — 1 scalarization

parameters w = (w),..., Wi _1) € Wu_1, where

K-1
Wk = {v eRMM0<u, LY v < 1}. (2.70)

=1

the PO input manifold can be found by solving

K-1
§(w) = arg ggigxnax <w1¢>1(p), o wr1Pr o1 (). (1 -y uu) <I>;\—(p)) . WEWg_y,
= i=1
(2.71)
where the scalarization vector space is Wgr_, C [0.1]"~!. As before, the PO output

manifold is given by
OAR = (21(E(Wk-1)). 2(E(WK -1))). (2.72)

and finite-sized portions of Ay for which at least one of the performance metrics is constant
have been assumed removed.

In practice, assuming very inexpensive performance metric functions, it may be possible
to obtain and manage the data required to visualize and sample a three criteria (K = 3)
Pareto analysis. As noted above, for a three criteria optimization problem, the PO output
manifold is a surface of a three-dimensional volume (the achievable set) and the PO input
manifold can be visualized versus the two scalarization parameters as surfaces. With a
sufficient amount of data, boundaries between disconnected subsets of £ can be accurately
determined. For problems in which K > 3, the PO manifolds become very difficult to

visualize (volumetric manifolds in four-space for K = 4) and dimensionalization issues make
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it computationally difficult to precisely determine the boundaries between disconnected
subsets of £7. With these considerations in mind, it can be concluded that the Pareto
analysis is best suited for K = 2 problems and, possibly, could be useful for K = 3 problems.
Fortunately, a large number of problems of interest can be meaningfully expressed as two-

criteria optimization problems.

2.5 Eddy-Promoter Shape Description

The effectiveness of cylindrical eddy-promoters as heat transfer enhancement devices has
been studied extensively [40, 77, 79]. For the eddy-promoter optimization problem studied
here, the intent is to expand upon the the cylindrical family of designs that have been stud-
ied previously. It is important that the definition of the design space include cylindrical
geometries so that improvements to optimal cylindrical configurations can be identified. An-
other desire is for the design space to include topologically changing geometries: specifically
it should include single bodies as well as two-body configurations.

The motivation behind examining two-body configurations is the possibility that the
two bodies could favorably interact to improve the heat transfer beyond what is possible
with a single body. The multiple-topology design space presents a particular challenge in
that the definition of the shape parameterization must be consistent and continuous with
respect to the outputs so that surrogates can be constructed.

In this work. a shape parameterization has been developed that describes a family
of geometries that is a superset of the cylindrical family studied previously. The shape
parameterization presented encompasses a richer set of single-body geometries than simply
circular cylinders, and includes two-body geometries as well. To accomplish this. a level-set

based shape description has been developed.

2.5.1 Level Set Methods — Shape Generation Example

To describe the geometry of the eddy promoters, Zgp, a level-set [80, 64] based approach has
been developed. Level-set methods have been applied to problems that involve propagating
surfaces or interfaces [53]. This includes problems such as flame propagation and material
boundary evolution. Level set methods have also been applied to character recognition
(the determination of true character boundaries) and image enhancement in the presence of
noise. One of the principle strengths of level-set methods is their ability to handle difficult
geometries including sharp corners, cusps, and topological changes (13).

In the general level-set based shape generation case, a domain of possible shape geome-
tries Q8 ¢ IR? in which the entire family of shape boundaries will lie is introduced where
d (= 2 or 3) is the dimension of the shapes to be generated. For the generation of two-

dimensional geometries (d = 2), a generating function §(x,w) : 08 — IR parameterized by
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Figure 2-4: Mesh plots of the level-set generating function G(z.y;w) for w = 0.85 (left)
and w = 0.60 (right). The resulting. closed shape geometries are shown shaded below each
generating function.

the vector w = (wy,...,wy~) € A is selected where the Cartesian coordinate directions are
x = (z.y). the shape generation domain is Q8 C IR?, and the input parameter domain is

A C RY". The boundary of the shape geometry, B, is defined by the level-set
B, ={x€9°|G(x:w) <0}, (2.73)

and is parameterized by the vector w. In words, the body B, consists of all points in the
x~plane for which the level-set generating function G(x;w) is less than zero. For a properly
chosen generating function, this set is closed over the range of w € A although it can be

disconnected.
To illustrate the level-set shape description described above. the sample generating

function

defined over the shape domain Q¥ = [-2.0,2.0] x [-1.0,1.0], and parameterized by the
single variable w = w; is selected. The parameter w; serves to select particular geometries
from the family defined by Equation 2.74 for the full parameter range w € A = [0.5,1.0].

Mesh plots of the generating function and shaded, two-dimensional plots of the resulting
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shape geometries are given in Figure 2-4. The single shape parameter is set to w; = 0.85
for the body on the left in Figure 2-1 and w; = 0.60 for the body on the right. For even this
very simple case, the connectivity of the resulting geometry B_ can change discontinuously
for a continuously changing shape parameter w. This is a critical result for the ultimate
application of surrogate-based shape optimization explored later.

The very simple level-set shape generation procedure described above can be easily
extended by introducing a more general generating function. One approach is to treat the

general form of the exponential function on which Equation 2.74 is based

Gilx;w) = Bie” (z-ze,)*+(y=ye, )] (2.75)

as the core for a more complex level-set function that is results from the application of
superposition techniques. The level-set functions formed in this manner describe more
general shapes. Each base exponential function has an associated center (z;.yc;) and

strength 8;. For N¢ exponential functions. this yields a generating function of the form

Nt
Glx:w) = Bo = 3 Gilxiw) = o - Z e~ lrm e e ) (2.76)
=1 1=1
where the vector of shape parameters is w = {(3;.x¢;.yc;) | i =0.....N®.j = VAR

With the additional exponential functions and the greater flexibility afforded by the shape
parameters, a much richer family of geometries can be defined.

The level-set function in Equation 2.76 was explored for the eddy-promoter problem.
It produces smooth bodies that can change topologies (from a single body to more than
one) and also satisfies the preference that the description procedure include cylinders. The
family of geometries that it produces. however. does not include more elongated. oval shaped
bodies without increasing the number of exponential functions beyond what is feasible for
accurate surrogate construction. For this reason, a different shape generation function.

described in the next section. has been developed.

2.5.2 Ideal Flow — Doublet Description

Although not explicitly stated as such. level-set ideas have been used extensively in classical
aerodynamic analyses [2]. The underlying assumption in these approaches is that the true
flow solution over a body can be approximated by an ideal flow solution over the body
[38] with an appropriate circulation superimposed to satisfy flow tangency at sharp trailing
edges. The body surface in ideal flow analyses is a streamline of the ideal flow solution
and general geometries can be analyzed by enforcing flow tangency on the body surface at
discrete points[42].

Ideal fluid solutions can be expressed by a fluid potential function ¢; or stream function
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¥y, both of which satisfy Laplace’s equation
Vi =0, V=0 (2.77)

The fluid velocities u = (u,v) are given by

_0¢r Oy

u=—== _ay . (2.78)
_9¢r O

v= Py - or (2.79)

The velocity solution u is for an incompressible, irrotational, inviscid fluid flow. Because of
linearity, the superposition of flow solutions for which the velocities are given by 2.78 and
2.79. and that that satisfy 2.77, will also satisfy the ideal flow governing equation. This

superposition property is used to generate solutions over general body geometries.

The ideal flow solution for the flow over a cylinder is described by the superposition
of a uniform flow and a doublet. A uniform flow u(z.y) = Uy is described by the stream
function

PP = Uy, (2.80)

A doublet is obtained by placing an equal strength source-sink pair a finite distance apart
on the r-axis and taking the limit as the distance between the source-sink pair goes to

zero. The stream function for a doublet of strength A and center (z.,y.) is

doublet _ _ My = ye)
A PR A (250

The stream function solution for the flow over a cylinder centered at the origin is obtained

from the superposition of 2.80 and 2.81 for (z..y.) = (0.0).

lind : A
w;}lm er _ 1‘bllmlfbrm + w?oublet — Uocy - Y . (2.82)
T +y
The cylinder surface is defined by the zp;}'““der = 0 streamline (excluding the portions

of the streamline on the r-axis) and the cylinder has radius Rcvlinder = VA/Ux. The
relevance of this shape description to the original cylindrical eddy-promoter optimization
problem studied previously [40, 77, 79] is readily apparent. By fixing the value of Uy, the
doublet strength A then serves the sizing input analogous to d, the diameter of the cylinder.
The position input, a, (measured from the lower wall of the channel) is the same as before

giving the two-dimensional input vector Z&p™* = (1, a).

The superposition idea described above can be further extended with the incorporation

of a second doublet. The additional doublet allows for changes of topology (connectivity)

44



similar to the example level-set shape generation procedure described in 2.5.1 and the
results of which are plotted in Figure 2-4. To accomplish this. one doublet of strength A,
is positioned at the origin and a second doublet of strength A, is positioned at (rq.0). The
uniform flow velocity is set to unity, Us = 1. The stream function for this configuration is

then

Ay A2y
=y- - 2.83

and the geometry is given by the ); = 0 streamline with the segments on the zr-axis
removed. The parameters (4, A;. A2) determine the specific geometry that is selected. If
the vector of inputs (74, A1. A2) € QPP is assumed to range over the input space QPP c R3,
then the connectivity of the resulting geometry (one or two distinct bodies) will depend on
the values of (rg. A1. A2) and distinct regions of QDD can be identified that correspond to
single-body geometries, PP or to two-body geometries, QPP and QPP = QPP yQlP.
The original intent of defining a family of bodies that is a superset of the cylindrical
configuration is satisfied for ¢ = 0. When ry =0, a cylinder of diameter d = VA F Ag is
obtained. The two-doublet generating function in Equation 2.83 is the form used for the

eddy-promoter shape description described in the next section.

2.5.3 Eddy-Promoter Geometry Generation Procedure

The full set of geometry inputs for the two-doublet shape description are shown in Figure
2-5. These include the strengths of the two doublets. A; and A;. the position of the second
doublet center relative to the first. (z4.yq). and the position of the pair in the channel
measured from the lower wall, Y. The distance between the two doublets in Equation 2.83
is rq = \/z% + y3. The procedure implemented to obtain the geometrically meaningful set
of inputs Zgp = (T4.y4. Y. A1, A2) from the normalized, eddy-promoter. geometric design
vector pz = (pz,---,Pz3) € Qz = [0. 1] is described below.

The generation procedure defines the geometric design space Q7 in terms of a set of
geometrically meaningful limits put on the resulting eddy-promoter configurations. Because
of the difficulty of solving problems on highly stretched finite element meshes, the eddy-
promoter bodies are never allowed within ¢ of the upper or lower wall. The range of the
of geometric input z4 is set such that rmin < T4 < Tmax and a limit is set on the total
doublet strength Ar = A} + A2 of Agin < A7 < Amax. Upper and lower limits are also set on
the strengths of each individual doublet Ajpin < A1 € Ajmin and Aapin < Ao < Aamin- The
generation procedure that satisfies the geometric requirements listed above consists of the

following 7 steps:

1. The value of x4 is set based on the normalized input pz,; T4 = Tmin+pz1 (Tmax —Zmin)-

2. The total doublet strength is set based on the normalized input pz;: Ar = Amin +

45



(2}

0l l L L L Ll ol ol odohoddododdddod bkl L Ll L L L L L L L L L L L

L\

[ = 6.666

Figure 2-5: General geometry for the two-body eddy-promoter configuration.

pZa(/\max - Amin)

The total doublet strength distribution parameter, «. is set such that amip, < a <

Qmax- The limits are dependent on the total strength and are omi, = %‘j\nrn and

Qmax = 1—amin. The distribution is set according to pz3: @ = min+pz3(@max —Qmin)-
The strength of each doublet is set based on « and Ar; A} = aAr and Ay = (1 —a)AT.

Set the value yy4 for the y-position of generator two relative to generator one based on
P29 Yd = Ymin + Pz2(Ymax — Ymin). The limits on y4 are dependent on the values of Ay,
Az, and ¢y and are ymin = —2(1 —to) + VA1 + VA2 and ymax = 2(1 — to) — VA — Vs

Generate the bodies based on the input values (zy4,y4). A1, and Ay and find the min-
imum and maximum extent of the configuration in the y-direction. This requires
placing a doublet of strength A, at the origin, a second doublet of strength A, at
(0,74), finding the body surface. and rotating the configuration by 4. The maximum
and minimum vertical extent of the eddy-promoter configuration, y5; and yZ,.. are

used to set the final limitson Y.

Set Y according to pz4; Y = Ymin + P24 (Ymax + Ymin). The limits on Y are functions
of yf‘m, ygax, and fp and are Yy, = tg — yfflin and Ypa = (2.0 — tg) — yfwx.

This somewhat involved set of steps must be performed to generate the bodies because

simply positioning one doublet at (0,0) and a second at (z,4,y4) will not produce a closed
contour (or two closed contours) unless y; = 0. This requires the superposition of two
doublets on the same axis and then the rotation to define the bodies in the channel. It is
important to note that for the cases in which two distinct bodies are described, the resulting

bodies are not circular cylinders. However, in the limit as the distance between the doublet
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centers approach infinity, the bodies approach circular cylinders of radius R, = VA1 and
Ry =V

Matlab [47] has served extensively for the shape generation. The steps described above
have been coded into a Matlab routine that takes as input a sequence of normalized inputs
pz. and writes as output a file that contains the surface node coordinates for each input.
design point pz. The node coordinate file is read by the mesh generator to build the finite
element solution mesh.

As already mentioned, the primary benefit to defining the shapes in this manner is
that it allows for topology changes relative to smoothly changing input parameters. This
capability permits optimization over a wider range of configurations without having to resort
to discrete optimization procedures. The most important characteristic of geometrically
describing a shape space with more than one distinct topology in a level-set based approach
such as this is that the input-output relationship can be expected to be continuous (and
possibly smooth). This property is demonstrated empirically in Section 2.5.4.

The level-set method described above can be extended through the incorporation of
additional doublets to allow the definition of more geometrically rich body profiles. Ap-
proaches such as this are very common in ideal flow analysis of airfoils. Finally. through the
careful selection of generating functions that consistently define bodies for arbitrary {x.. ;).
the method could be extended to still more complex topologies.

The above described steps generate a set of shapes that obey the geometric constraints.
It also ensures that that the entire normalized input space Q7 corresponds to feasible
designs. In the next section. an example that illustrates the topology change is given. The
example shows the smooth transition from one to two distinct eddy-promoter bodies. and
gives empirical evidence that the input-output functions are continuous across a topology

change.

2.5.4 Input-Output Response Example

To demonstrate. at least empirically, that the relationship between the normalized geometric
inputs, pz. and the outputs is continuous across a topology change. the finite element
simulation described in Chapter 3 has been used to approximate two of the outputs. Only
one of the normalized inputs, pz,. of the full normalized input vector pz has been has been
varied. The first component of the normalized geometric input vector corresponds to the
physical coordinate z4 shown in Figure 2-5. The bounds on z4 have been set to zpin = 0.00
and Imax = 0.75 and pz, € [0.1]. A total of 21 geometries have been generated with the
values of pz, clustered near the value at which the topology change occurs. The remaining,
normalized geometric inputs have been fixed such that pz = (pz;.0.60.0.50,0.50.0.50). The
lower and upper limits of the geometric quantities that correspond to fixed normalized inputs

are Amin = 0.109. Amax = 0.109, aymin = 0.85, and amayx = 0.85. With the above information.
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the geometry generation procedure described in Section 2.5.3 has been used to compute
the surface coordinates for each input pz. Representative eddy—promoter configurations
produced by this set of inputs are plotted in the top half of Figure 2-6.

For the computational case examined here, the Reynolds number has been set to Re =

250. The two outputs of interest are obtained from the finite element simulation and are

1

FE _ pgFE —
90 = 60 (pZ) = NU(ZEP(pZ)vRe = 250)’ (284)
wEF =yl E(pz) =< f(t;ZEP(PzZ), Re = 250) > (2.85)

where Nu is the Nusselt number given in Equation 2.51, and f(t; Zgp, Re = 250) is the
time-dependent forcing term in Equation 2.25 required to achieve the prescribed flow rate.
The results of the computational study are given in Figure 2-6. Selected eddy-promoter
geometries from the sample set are plotted in the upper half of the figure. The output
responses versus geometric input value x4 are plotted in the lower half of the figure. The
normalized input pz, is a simple linear scaling of z4: therefore, the output response plots
versus pz; would tell the identical story to those in Figure 2-6. In the output response
plots, the dashed line indicates the approximate value of z, for which the topology change
occurs. Single-body configurations have z4 values to the left of the dashed line and two-
body configurations lie on the right. The results plotted in Figure 2-6 support the assertion
that the input-output relationship remains continuous across topology changes. In fact, the
first derivative appears to be continuous as well, further supporting (empirically) that the
geometric déscription used for the eddy-promoter pioblem is well suited for the surrogate—

based optimization techniques applied in Chapters 4 and 5.

2.6 Reduced Problem for the Eddy—Promoter Example

In this section, the particular set of inputs used for the eddy-promoter example problem
and the corresponding design space are described. Second, the outputs of interest and
the inputs of which they are functions are restated. Finally, the performance metrics that

characterize the design preferences for the eddy-promoter design problem are presented.

2.6.1 Inputs and Input Domain

The full set of physical inputs are the variables that specify the specific geometry of the
eddy-promoter inclusions Zgp = (z4, ¥4, Y, A1, A2) as well as the nondimensional, inverse
channel height n,. For the eddy-promoter problem examined in the Chapters 4 and 5,
a reduced set of inputs is used. The generator strengths, A; and Xg, are fixed and the

remainder of the geometric variables, x4, y4, and Y serve as inputs. This gives a reduced
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Figure 2-6: Input-output response results for a topology change. Selected eddy-promoter
configurations are given in (a)—(f) and the output responses are plotted in (g) and (h)
versus the geometric input zg.
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set for the normalized input vector
p=(p,....ps) €Q=[0.1]} (2.86)

which has M = 4 inputs and is a member of the normalized design space 2. The fixed
generator strengths are A\; = 0.0871, and Ay = 0.1065. The relationships between the

normalized inputs p and the geometric quantities (z4, y4, Y, ny) are

Zd = Tmin + pl(xmax - xmin)a (287)

Yd = Ymin + P2(Ymax — Ymin). (2.88)

Y = Yain + P3(Ymax — Ynin). (2.89)

NL = TLmin +p4(77Lmax - anin)f (2'90)

where zgi; = 0.0, Tmax = 3.3, Ymin: Ymaxs Ymin, and Y., are each determined based

on tg = 0.15 and the generation steps described in Section 2.5.3. np;, = 13.332, and
NLmax = 106.656. The limits on the inverse channel height correspond to a range. for
the full heat exchanger, from 4 periodicity lengths. [, through 32 periodicity lengths. The
periodicity length is held fixed at { = 6.666.

For convenience in the latter sections of the thesis. it will be necessary to make a
distinction between the inputs for which the performance metric response must be modeled,
either by the finite element simulation or by surrogates. and the inputs for which the
performance metric response is known analytically. The vector of modeled inputs p,, €

Qm = [0, 1]? consists of the first three components given in Equation 2.86

Pm = (pl-,p?apl})s (291)

where the relationships in Equations 2.87—2.89 and the steps described in Section 2.5.3
are applied to relate the normalized inputs to the geometric quantities. The analytic input

Pa € Q4 = [0, 1] corresponds to the inverse channel height

Pa = (p1). (2.92)

where p; is the identical input to that given in Equation 2.86 and which can be related to

7t through Equation 2.90.

The design domain is likewise decomposed into modeled, Q,, = [0, 1]‘”'", and analytic.
Q, = [0,1]Ye, subspaces of Q where the number of modeled inputs is My, = 3 and the

number of analytic inputs is M, = 1. The full design domain is the tensor product given
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by
Q=0 xQ, (2.93)

and the full design vector is
P = (Pm,Pa) € . (2.94)

2.6.2 Outputs

The two-body, eddy-promoter problem has two outputs of interest. The outputs are each
functions of the modeled design inputs, p,,. The first output is the time-average of the

nondimensional pressure gradient given in Equation 2.40 and expressed as

Yo(Pm) =< F(pm-t) >=< f(t) > (2.95)

where as before, < - > refers to a time—average over a sufficiently long time.

The second output is the inverse Nusselt

1

90(Pm) = KT(pm) = Tt(p"“')‘

and is defined in Equation (2.51).

2.6.3 Performance Metrics

The performance metrics have been described in detail in Section 2.3 and will only be
restated here. The metrics have been selected to characterize the design preference for the
full eddy-promoter heat exchanger, a segment of which is shown at the top in Figure 2-2.
The engineering goals of the design problem are to transfer as much heat as possible into
the channel and to do so with as little pressure drop as necessary.

The performance metrics are functions of the modeled inputs p,, through the output
functions ¢¥o(p.m) and 8g(pm) and, although not the case for this problem, could be explicit
functions of the modeled inputs as well. The performance metrics are functions of the
analytic inputs p, explicitly. In fact, the analytic relationship between the performance
metrics and p, is known.

The first performance metric is the nondimensional pumping power

¥(p) = ¥(¢o(pm). P) = logyo [to(pm) Re*n} (2.97)

which is a function of the output ¢o(pm) and of the analytic input p, through the nondi-
mensional, inverse channel length n,. The response of ¥(p) to the input p, is known

analytically through the normalization relationship in Equation 2.90.
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The second performance metric is the nondimensional wall temperature difference

1 1
O(p) = O(60(Pm). P) = 0810 | 5= + folpm) - (2.98)

which, similarly to ¥(p), is a function of the output 8o(pm,) and of the analytic input p,

through the nondimensional, inverse channel length 7;. The response of ©(p) to p, is also

known analytically through Equation 2.90.
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Chapter 3
Numerical Approach

In this section. the numerical approach used to solve the governing equations 2.25, 2.26.
2.31 is described. A second-order accurate in time. semi-implicit. split tiine advancement
scheme has been used [23]. The spatial discretization uses a Galerkin finite element approach
with triangular elements. Second order. isoparametric elements are used to approximate the
velocity and temperature solutions and first order. linear clements are used to approximate
the pressure. A variable time-stepping scheme has been employed to allow the time-step
size to vary as the solution is advanced so that the Courant condition is satisfied.

In the following sections. the details of the numerical approach are presented. First. the
spatial discretization is described including the elemental matrix treatment. the strategy
used to form the convection operators on-the-fly. and the required quadrature accuracy to
ensure that heat does not build up. Second. the second-order accurate. temporal discretiza-
tion is presented. the method used to achieve the prescribed, constant flowrate is given. and
the iterative and direct solvers used to invert the matrices are described. Finally. a sample
of the code performance for a representative problem and for the various solver options is

presented.

3.1 Finite-Element, Spatial Discretization

For symbolic expediency, in this section the velocity vector components will be expressed
indicially, u = (u;,u3). This runs counter to the (u,v) form used in the remainder of
this thesis but greatly simplifies the presentation of the numerical implementation. The
variational weak form of the governing equations 2.25, 2.26, 2.31 over the solution domain
Q for the solution variables u(x.t) € [Hl#o(Q)]?, p(x.t) € L;O(Q). and #(x.t) € H}%(Q) is

Ou;

1
(vi. —(,)?) + (vi.u- V) + =

RE(VUnV‘ui) ~(Voi.p) = (vi. fi). i=1.2.

Vv € [HLo(].  (3.1)
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(V-u,q)=0, Vge L;O(Q)s (3.2)

and
(w,6,) + (w.u- (V) + == (Vew, V6) = —(w, u-8)) + = to, (w)
W, ot w-u Repr ' = Tnwner RePr o™ wh
Vw € Hio(Q),  (3.3)
where
lon, (w) = wdl, (3.4)
oy

Q, is the lower wall of the computational domain, Lio(Q) is the set of all r;-periodic
functions that are square integrable, and H#O(Q) is the set of all x,-periodic functions that
are square integrable and have first derivatives that are also square integrable. The product
{(a,b) is defined as

(a,b) = /Qabdx. (3.5)

A finite element, spatial discretization of the governing equations is pursued. A P>,—IP
(Taylor-Hood [70}) elemental basis is selected. With this choice. the velocity and tempera-
ture solutions are represented by second order triangular element and the pressure is treated
with linear triangular elements. The reason for choosing the Taylor-Hood elements is that
it is known to satisfy the inf-sup condition [33] for the existence of a unique solution and
can be conveniently implemented. The second order node points consist of the vertices of
each element as well as the midpoints along each element side and the linear “pressure”
mesh is simply a subset of the second order mesh consisting of only the node points at the
vertex of each element.

The full solution domain €2 is subdivided into A’¢ triangular elements such that

A
Q= ok, (3.6)
ke=1

and Q% is the triangular element with index k.. The discrete solution to the governing
equations 3.1-3.3 can then be expressed as: Find u®(x.t) € [V,]?, p"(x.t) € P,, and
6"(x,t) € Vj, where the following are satisfied

3uf‘

1
(v,,—a—t—)+(‘vi,uh-Vu?)+——

Re(vvi»vu?)—(vvi-l)h) = (Uiafih)v 1= 1725 Vv e [‘/rh]l (37)

(v ’ Uh-,Q) =0, V(I € th (38)

1 1
h k. (voh — (Vw.Vo") = — h.g
(w,8;) + (w,u” - (V")) + RePr( w. V") ~v(w,u"-e;) + RePr _/(;QlwdS,

Ywe Vi (3.9)
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The superscript ‘h’ refers to the discrete solution and the discrete subspaces are defined as
Py = {vlgr. € PL(Q%)}NCL(0), (3.10)

Vi = {vlas € P2(Q%)} N Hio(9), (3.11)

where Cio(Q) is the space of all z;-periodic functions that are continuous and have zero

average.

A Galerkin finite element approach. in which the solution and test function bases are

identical, is pursued. A global basis for the velocity and temperature is introduced
¢i(x,) = d&ij, 1<4,5 <N, Vi =span{¢,. i=1,...,N"}, (3.12)
where AV is the number of global second order nodes and x; is the global coordinate of
node j. The basis is used to express a general function v over the full solution domain Q as
AT
o' (x) = 3 vndn(x) (3.13)
n=1

where v; = v(x;). Similarly. a second basis for the pressure is introduced
i(x;) =08, 1<i.j <NP. Pp=span{y,. i=1.... NP}, (3.14)

where A7 is the number of global pressure nodes. The basis is used to express the general

function q. discretely over {2 as

AP
(%) =Y quvn(x) (3.15)

n=1

and. as before. ¢; = q(x;).

To proceed with the discretization, the solution variables and the test functions are

expanded with the appropriate basis function defined above. The expanded forms

AT AT
uh = Z un¢n(x)- v = Z vnd)n(x)-
n=1 n=
AP .\'pl
P' = pa¥n(x). =3 atn(x). (3.16)
n= n=1
AT AT
Bh = 9n¢n(x)a w = Z wn¢n(x)~
n=1 n=1

are substituted into Equations 3.7-3.9. The resulting spatially-discrete. governing equations

()]
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are obtained

i 1
B% + C(u)ui + EEAUi — D?p = sz‘, 1 =1.2, (317)
Diu,- = 0, (3.18)
1
f+ ——Af=— -e1). .
Bé; + C(u)é + RePrA vB(u-e) (3.19)
where, for convenience, the superscript ‘h’ has been dropped. The finite element matrices
are
Bij = /nqbl'd)j dx (320)
A,‘j = / V(/)i . V¢j dx (3.21)
Q
Dy = [ dutydx. Day = [ puoyix (3.22)
Cij(u) =/ UVQb,‘(f)j dx (323)
0

The finite elemental matrices given in Equations 3.20—3.23 are evaluated elementally, and
a direct stiffness summation procedure is used to apply the corresponding global matrix

operators when needed.

3.1.1 Elemental Matrices — [P, Isoparametric Formulation

At the elemental level. each element is transformed from the Cartesian coordinate system to
an elemental coordinate system through a a transformation. For subparametric elements.
an affine transformation is used. For such a transformation. the elemental coordinates

€ = (£,.£5.8&3) take the form

£ =a1+bir+ay.
& = ay + bax + cay. (3.24)
&3 = a3 + b3z + c3y.

where the coefficients are given by

. - . -

_ {z2y3 — T342) by = (y2 — y3) o = (3 - I‘z)’

an= 94 24 94
_ {z3y1 — T193) _(ya-w) _ (21— z3) .
a; = 51 , b= 51 2% Tar (3.25)
e = (z1y2 — T291) b — (y1 — y2) o = (ry — 1)
3T 24 3 24 = 7 24

and A is the area of the element. Note that only two of the affine coordinates are independent

(as expected for IR?) and the the relationship that & + &, + & = 1 holds. If subparametric
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Figure 3-1: Affine mapping from the x-plane to barycentric coordinates § = (£,.62.&3).

elements are used. the expressions in Equations 3.24 and 3.25 allow the elemental matrices
to be evaluated analytically. Because isoparametric elements have been used in this work.
the elemental matrices can not be evaluated analytically and the relationship in Equations
3.24 and 3.25 can not be applied. Instead Gaussian quadrature must be used to evaluate
the elemental matrices’ integrals.

Over element k.. a function can be expressed in terms of the elemental. linear basis

functions as

3
¢ (&) = > a*h(8), (3.26)
=1
where the linear basis functions are

hi(€) =61, hol€) =&.  h3(€) =& (3.27)

and qf‘ is the function value at node i of the element k.. Similarly. a function can be

expressed in terms of the elemental, second order basis functions as

6
o (€) = 3 b ha(8), (3.28)
=1

where the second order basis functions are

>
=
m
S
il

£&1(26 - 1), hy(€) = 4618,
ho(€) = £(262 — 1),  hs3(§) = 1828, (3.29)
h3(€) = &3(283 — 1),  he(€) = 48381-

w

The derivatives of the basis functions with respect to the barycentric coordinates, §. are
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obtained from the expressions in Equation 3.29, and the relationship that & =1 — &, + &

and are
MO i1 L
1 2
6}52{(5) — 4{2 -1, %82;5—) =0,
: 2
) s v - T2 —sa -3
e, - 4, (3.30)
3{1 852
afgf(le) i a—};gii) = 4(1-& - 26),
o oh
_g;{(f) = 4(1 ~ 2, — &), ;;f) = -4

A direct stiffness summation procedure is used to form the matrices given in Equations
3.20-3.23 based on elemental components. This is accomplished by using the local basis
functions given in Equations 3.27 and 3.29 and transforming the integrals to £-space. For

example. the elemental contribution for stiffiess matrix is

ke _ Oh(€) Oh;(§)  Ohi(€) ah,»(s)) _
Au B Qke ]( )( or ox + ay 8}/ d£ (331)

where the Jacobian J(£) is given as
Jg) = 250y 0z by o)

S 0606 0606

and is a function of the coordinate £ because of the isoparametric implementation. The

(z,y)-coordinates are expanded in terms of the basis functions in Equation 3.29 as

6 6
z(€) = Y z:hi(&), y(€) =D wihi(€). (3.33)
i=1 i=1

Plugging the coordinate expressions into Equation 3.32 gives

5. On, 6. 9n 5. o, 5. Ok
J(&) = (sz—aéf—)) (Z yi%) - (ZL 5;25)) <Zyi 85(16)) (3.34)

=1 1=1 1=1 =1

which is now expressed entirely in terms of the £ coordinates.

The derivatives within the parentheses in 3.31 (of the elemental basis functions with
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respect to r and y) are expanded as

Ohi(€) _ Ohi(€) 9 _ Ohi(€) 06 _
5z 06 or | 06 0z’ (3.35)

Oh(€) o) 06 | Ohi(E) 06
By~ 06 oy T o8 oy (3.36)

To obtain derivatives of the elemental coordinates with respect to the Cartesian coordinates,

the relationships
dr = Igldfl + .’L‘g_,dfg, (337)

dy = ye, d&1 + ye,dSe, (3.38)
are solved for the differentials d€; and d€,. This gives the expressions

Ye.dr — re,dy

de, = (3.39)

Le e, — TealYe .

Te, dr — ye, A
dey = 027 Va TV (3.40)

TeYe: — Ia:0a
from which the desired results are easily obtained. Recognizing that the denominators in
Equations 3.39 and 3.40 are the Jacobian (3.34). the expressions for the derivatives of the

elemental coordinates with respect to the Cartesian coordinates are

9 _ ye 9 _ _ze
or  J(&) dy J(&)
Qf_’_.? 3 852 Tg,

2 ) L D (3.41)
oz J(€) gy J(§)

Again, the derivatives of the Cartesian coordinates with respect to the elemental coordinates

can be obtained. as they were for the Jacobian in Equation 3.34. by using the expressions

in Equation 3.33.

An expression for the stiffness matrix that is entirely in terms of the elemental coordi-

nates. €. can be obtained by first substituting Equation 3.41 into Equations 3.35 and 3.36

-
to obtain ohi(§) 1 (0/1,(5)@_ 3 Bhi(ﬁ)_aﬂ> (3.42)
or  J(&) o0&, 0§ 8 0] )
ohi(e) 1 (0hi€) 0z Ohi(E) Oz
oy JE) ( 6, 06 06 a@)' (3.43)

Finally. substituting Equations 3.42 and 3.43 into Equation 3.31 gives an expression for the

stiffness matrix that is a function of § only

by o [ L [(Ph:l€) Oy Ohi(€) Oy (Ohy(€) Oy _ On,(8) Oy
AG(E) are J(E) K 96 8&% 06 8&)( 9§ 9& 0% 051)+
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06, 0, 551 &2

o0& 06 o0& d&

<8hi(£) dz  Ohi(&) 8:5) (811 j(&) 0z Oh;(€) 337)] dE. (3.44)
where the Jacobian, J(£), is given in Equation 3.34.

The remainder of the elemental matrices are obtained by following the same procedure

as was used for the stiffness matrix. The resulting expression for the mass matrix is
B (&) = | JEh(Ehi(€) dt. (3.45)

The gradient matrix in Equation 3.22 is split into two components; the first for the derivative

in the r-direction and the second for the derivative in the y-direction. The resulting two
Oh(§) 9y Ohi(€) Oy \ =
Dy (€) = / < - -——) hy(€) d .
ll] (5) Qke 8{1 a£2 852 861 ](g) E’ (3 46)

_ Ohi(§) Oz Ok (€) Oz
) _/le( 0& 0§ o0&, 96,

and it is interesting to note that the Jacobians completely cancel in the above expressions.

matrices are

k
Dgi;

o ) h(©) de (3.47)

The elemental component of the full convection operator in Equation 3.23 is broken
into its directional components. The velocity vector that is embedded in the integral is
expanded with the local basis functions similarly to Equation 3.33. The expansion allows
the velocity values at the nodes to be taken out of the integral. The elemental convection
operator is

6
Cls (uh ) Culn + 3 (w)f Col, (3.48)

i:l i=1

[\/]m

where the convection operators take the form

(&)h,(¢) (21x18) Oy Ohi(E) Oy
Cilile) = [ mleny (@) (e gL - T8 L) e (3.49)

e ((OhalE) 0z Ohe(g) 0z
CZUk(E) /ka hz(e)h](g)( 862 3{1 051_ 6{2) dﬁ.

For subparametric elements in which the second order nodes are at the midpoints of

(3.50)

the vertices. the elemental matrices in Equations 3.44-3.50 can be evaluated analytically.
However. subparametric elements introduce ‘skin’ [69] errors along curved boundaries. To
reduce the skin errors, isoparametric elements are used along the curved boundaries. With
the isoparametric elements, it is not possible to compute the integrals of the elemental
matrices analytically, and Gaussian quadrature is used instead. Using Gaussian quadrature,

the integral of a function g(€) : Q% — IR is approximated as

Qke

Aq
g9(€)d€ ~ area® " w;g(¢,), (3.51)
=1
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where area*s is the area of element A.. The weight at point ¢ is w; and the position
to evaluate the integrand is quadrature point §;. When used for the matrix evaluations,
the arca of the elements in -coordinates is always area® = 1/2. A 5'"-order Gaussian
quadrature scheme in which A9 = 7 has been used for all of the simulations. The weights,

w;, and quadrature points, §;. are given in Appendix C.1.

3.1.2 Convection Operator Treatment

The elemental stiffness, mass. and gradient matrices in Equations 3.44-3.47 are computed
for each element k. =1,..., N and stored in three-dimensional arrays during the initial-
ization phase of each run of the Navier-Stokes code. Neglecting symmetries. the storage
required for each of the stiffness matrix, mass matrix, and the two gradient matrices com-
bined. is 6 x 6 x A'¢'. which is not unreasonable from a memory standpoint. However. each
convection operator requires 6 x 6 x 6 x N¢! for storage which has a dominant impact on
the code memory requirement. While this issue is only moderately significant for the two-
dimensional solver. it dominates the storage for three-dimensional problems and severely
limits the size of problemsthat can be solved.

Fortunately. the application of the convection operator can be evaluated for each time-
step as needed (on-the-fly) at the expense of only a moderate increase in computational
effort. This completely eliminates the overwhelming storage penalty. To demonstrate the
scheme used. the convection operator term in the u-momentum equation is used as an
example. The velocity vector in two-dimensions is u = (uy.u2). The variational weak form

for this term is

(w.u-Vu) = /A wu- Vup dx
Qke

= J(&)wu - Vuy d€

ke
= L L
= [ e (mGE rwSt) b
_ Ou, Jduy .
= o J(&)wu, 37 d€ + e J({)uuz—@ d€ (3.52)

where w is the test function. The test function and the velocities are expanded in terms of

the elemental basis functions

6
w (&) = S whhi(€). uf(€) =3 (u)lhi(€). uf(€) = (w)hi().  (3.33)

1=1 1=1 =1

where wff, (ul)fe, and (u-g)f° are the values of the test function and the velocities at node
i of element &..

If only the first term on the last line of Equation 3.52 is considered first. the expansions
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in Equation 3.53 and the result given in Equation 3.49 can be used to obtain

6 6 6
J(Ewr St dg = =23 Lttt (atCitile) (3.54)

Qke

Similarly, using the same expansions and the convection operator in Equation 3.50, the last

term on the last line of Equation 3.52 can be written as

ou 6 6
J(g)wuzgj de =373 3 whe (ua)¥ (w)fF Gl (8. (3.55)

k

,_.

o
Il
—

Recognizing the the convection operators in Equations 3.49 and 3.50 are of the form

Cil(e) = [ COuerde.  Caliile / GSi(8) (3.56)
h
T e e (Ohe(6) By Ohi(E) By ,
GEL) = hu(@y () (et 7L - SHE LY, (3.57
ohy Jz '
Gg;(g):}Ll(g);Lj(g)( '2&5)55 822(16)00;) (3.58)

and evaluating the integrals by Gaussian quadrature as in Equation 3.51 gives the following

expressions

Ju AR . '
L @wn g de s 55NN et w) w)y GRLE). (3:59)
¢ I=1i=1j=1k=1
01“ 1 AT 66 6
. Qe dE x5 D20 > muwf (w)) ()i G (€)): (3.60)

where &, is the coordinate of quadrature point [.

The summations over ¢ in Equations 3.59 and 3.60 are dropped because the solution
will be for any test function w * € V. The expressions for the convection operators could
be implemented in a code with nested summations exactly as suggested by Equations 3.59
and 3.60, but this would be extremely inefficient. Instead. by expanding the expressions for

G{ (&) and G

Uk(&',). the terms in Equations 3.59 and 3.60 precomputed and stored inside

of the direct stiffness summation procedure. This greatly reduces the number of operations

from a brute-force implementation.

First, for Equation 3.59, the regrouping takes the form

2

Nt 6 6
=1 j=lk=

wi(ur)ye (u)j GOL(E) =
1

-
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[ SRR

A 6 6
T k oh; (&) Oy  0Oh;(&) Oy)

) = = —_— .(3.61
2= [ (Z ) (Z (a8~ e o) )| -0
Similarly, the regrouped form for Equation 3.60 is

9

~

N —

6 6
35 wi(un)se ()i G =

1j=lk=1

N7 6 6 :
ukeh ke (Ohi(&) Oz Oh;(&,) O
g { &) (E_ 1:( D) h](a)) (,2 (2)] ( S5 T ae ——65_))}.(3.62)

l

MIH

At this point, all that remains is to clean up the terms in Equations 3.61 and 3.62.
The j- and k-summation terms in Equations 3.61 and 3.62 can be precomputed at each

quadrature point and stored. The terms are

' 6
I€wh &) = 3~ () hy(&), (3.63)
J=1
6
10 &) =3 (u)hhy(&) (3.64)
1=1
° L (Ohy(&) Dy Oh;(&) By
. - ke AT . J 365
I7 (uy”. &) J}::l(m)J ( T TR TS 0£1>. (3.65)
6 . )
Croke £y = ke [(Ohy(&) 9z Oh;(§) O
I, (w7, &) —]Z:l(uz)J (_062 7, 2, 852). (3.66)
where ft_t’f‘ = (('ul)lf'-’,....(ul) ) and gée = (('UQ)’{E....,(UQ)SE) are vectors of the velocity

components at each node of element k.. A vector N7 long is required to store each of the
terms in Equations 3.63-3.66. Additionally. the values of the basis functions and the deriva-
tives of the basis functions can be precomputed at each quadrature point, further reducing
the operations needed during the time advancement. The only elementally-dependent quan-
tities that are needed for the above calculations are for y’f‘, 1_1’2“, and the derivatives of z
and y with respect to the elemental coordinates. The derivatives are computed as they are
for the expression in Equation 3.34.

Finally, inside of the loop over the elements of the direct stiffness summation procedure.
the terms IC (uke, &), I€(u*, &), IS (u*e &), I (v*. &), I (whe. &), and I (v*. &) are
computed and stored in N?-length vectors. For the elemental computations, the terms
IC (uke &)) and I€(v*. €,;) each require 2 x 6 x N9 operations and the terms I (u ke €)).
IS (v €)). ch(gkf. £,). and Ic( ke ¢,) each require 5 x 6 x N7 operations. The derivatives
of the spatial coordinates with respect to the {-coordinates in Equations 3.65 and 3.66

require 8 x 6 x N7 operations. The effect of the convection operator is added to the the
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right hand side of the discrete equations with a direct stiffness summation procedure. The

elemental contributions to the right hand sides of the z- and y-momentum equations are

1 : .
RHS[* = 53 wihi(§) (16 (uf, €)IC (ule, &) + 1€ (e, €) I (e, &), (3.67)
=1
1 N . .
RHSy" = 53" mihi(&) [1°(uf- €017 (wl . €) + I°(ube &) I (e, €0] . (3.:68)
(=1
respectively.

The total operation count required to apply the stored convection operators to both
momentum equations is 1512 x A"¢!. The total number of operations required to compute the
right hand side contributions in Equations 3.67 and 3.68, and to apply them globally to both
momentum equations using the direct stiffness summation procedure, is 2712xAIN€. For a
5'"-order quadrature scheme in which A9 = 7, the on-the-fly evaluation requires roughly 13
times as many operations to apply convection contribution full-storage technique. However.
the memory requirement is reduced from 2 x 63 x A’¢! for the full-storage technique to roughly
30 x A7 for the on-the-fly evaluation, which is trivial compared to storage needed for the

other elemental matrices.

3.1.3 Temperature Solution Periodicity

Care must be taken in the solution of the governing equation for the periodic part of the
temperature given in Equation 2.31. For the continuous equation, it has been shown in
Section 2.2 that the last term on the right hand side of Equation 2.31 will ensure that there
will not be a build-up of heat over long periods of time. This is not guaranteed for the
discrete case. If. however. a sufficiently accurate Gaussian quadrature scheme is used. it
can be shown that the discrete equations will be exactly satisfied by the value of « given in
Equation 2.39.

For convenience, the weak form of the periodic temperature Equation 3.3 is repeated

1
Repr oo (w).

(1.8) + (w1 - (V) + ——(Vw, V8) = —y(w,u - &,) +

RePr (3.69)

A procedure similar to that used in Section 2.2 to find ' is followed for the discrete equations
to determine the required accuracy for the Gaussian quadrature rule so thaf.for v = Iﬁ'
heat does build up over long time periods. Integrating the equation over the discrete solution
domain 2 is equivalent to setting the test function w = 1.
First, the requirement that heat not build up over long time periods is equivalent to
requiring that
1 t+r
< (w,0;) >= ;/ (w,6,) dt = 0, (3.70)
4
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for w = 1, and 7 on the the order of the period of the steady-periodic state. In the discrete
case, the time-average in Equation 3.70 is equivalent to summing the 2nd_order, implicit,
backward difference stencil over a sufficient number of time-steps. Because the coeflicients
of the stencil given in Equation 3.83 sum to zero. inner terms of the summation cancel

exactly, and Equation 3.70 is satisfied discretely when averaged over enough time-steps.

For the second term on the left hand side of 3.69 to be zero when w = 1. the quadrature
rule must be sufficiently accurate so that the integral over each element for w = 1 is exactly
evaluated. The test function w will be is included in the elemental integrals. At the end of
the analysis, setting w = 1 will be equivalent to evaluating the integral over the element.

The integral in terms of the elemental coordinates £ is expressed as

o~

wY - (uh) dxz/ wJ (€)Y - (uh) dE. (3.71)
Qke

ke

The solution values and test function inside of the integral are expanded according to the

elemental basis functions in Equation 3.28 to obtain

D)) _ <~ ke Ohil€) _ s~ gk L (Ohi(€) Ox  Ohi(§) Oz .

—_— = uf)cs ——= =) (uf);* ( - — , —> . (3.73)
2 (uf) 20 575 e, o~ om o,

Note that a modified expansion has been used in which the velocity-temperature prod-

uct is treated as one variable. This form has been implemented in the code and allows a

lower quadrature rule be used than if the velocity and temperature were expanded sepa-

rately. By substituting Equations 3.72—3.75 into Equation 3.71, the convection term of the

temperature equation is written as

6 6 6
/ﬁk wV - (uf) dx = /ﬁk > wieh;(8) lZ (uf)¥ D (€) + > (v6)i* Dj: (€)
e ¢ =1 i=1 i=1
6 6
- Z Zu@"’/ﬁ £)Dk (£) d€ +
P
Z 'S vo) ) L m(&)DE @) de. (3.76)
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where the substitutions

ke gy _ ORi(€) Oy Ohi(§) Oy
Dz: (&) = 6, 86 06 B¢ (3.77)

D} (€) = aiai(ﬂa—x - M@, (3.78)
§2 06 96 0

have been made. For w = 1, the basis functions /;(£) in the integrals of Equation 3.76 can
be neglected. The highest remaining power, in terms of the components of £ = (£,,&2), in
the integrals are of 2"d~order. This implies that the integral will be evaluated exactly for
each element, and subsequently for the summation over all elements of the domain, when
a Gaussian quadrature scheme of at least order two is used. As stated in Appendix C.1, a
5" -order quadrature scheme has been used that satisfies this requirement.

The third term on the left hand side of Equation 3.69 goes to zero for w = 1 from
taking the gradient of the constant function, Vw = 0. All that remains is to show that the
two terms on the right hand side exactly balance. The first term on the right hand side is
integrated over the solution domain 2 by setting w = 1. Evaluating the discrete integral
gives

—y(w=1l.u-e) =-~vQLl (3.79)
where the result is dependent on the flowrate. The flowrate is prescribed Q@ = % and is

exactly enforced as described in Section 3.2.1.

The final term on the right hand side of 3.69 is evaluated for w =1 to get

1 !
Reprloau(w =1 = g0

(3.80)

The sum of Equations 3.79 and 3.80 must be zero. Solving for v gives the desired result

3
" 4RePr’

¥ (3.81)

The accuracy for the Gaussian quadrature rule necessary to evaluate the discrete inte-
grals exactly, and to ensure that for v given in Equation 3.81 that heat will not build up in
the periodic domain is determined by the integrands in Equation 3.76. The quadrature rule
must be such that a second order polynomial function is integrated exactly. A 3'"-order

scheme has been used which meets (exceeds) this requirement.

3.2 Temporal Discretization — Split Time—Stepping

The spatially discrete, analytic in time, governing equations are given in Equations 3.17-
3.19. The temporal discretization pursued is a semi-implicit. fractional time-stepping

scheme [23. 28]. This approach reduces the time-advancement problem to a sequence of
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smaller subproblems and allows the convection operator to be treated explicitly while the
remainder (the Stokes subproblem) is advanced implicitly. In the scheme that has been
used here. a 3"%-order accurate, explicit Adams-Bashforth integration scheme is used to
advance the nonlinear convection terms, and a 2"¢-order accurate, implicit backward dif-

ference scheme is applied to the Stokes subproblem.

A variable time-step formulation is used. The reason for this approach is that. due to
the unsteady nature of the solutions, the stability criterion is likely to vary significantly
as the solution is advanced. It is difficult to determine a priori a time-step that will be
stable for the entire solution evolution. and it is inefficient (from a computational effort
standpoint) to use the minimum step-size for the entire solution advancement even if it
could be determined. The semi-implicit form for the velocity equations is

. _ 1 .
B(¢u'! + Gul + (sul 4+ —Aut! - DIpr!

: Re
5
=3 3,Clu" ! !+ Bf T i=1.2 (3.82)
q=0
where the 2" order. backward Euler coefficients are
2AE, + At _ X At, + Aty — At
Q 1 1—1 Q'Z - _ n n 1‘ CB - n . (383)

T A (A, + Atay) At Aty At (Dfn + a1

As expected. for the constant time-step case where At,_, = At, = At. the coeflicients in
Equation 3.83 reduce to give the well known finite-difference stencil for the first derivative
Bgn+l _4gn +gn—1

gyt = 5AL + O(At?). (3.84)

The coefficients 3,. ¢ = 0.1.2, have been derived in Appendix C.2 and are

4 = Aty [12A8 -1 (Atn_y + Aty_g) + 62, (208, + Atp_n) + 4AL (3.85)
0 = 12 L Atn_1(Atp-1 + At,_9) ' 9
Aty [6Ata (A1 + Atpoo) +4AL
g = B At 1Dt . (3.86)
Aty [ 6AtAtn 1 +4AE2
B = : LT . (3.87)
12 _Atn_-_)(Atn_l + Aty2)

The terms in Equation 3.82 can be collected to obtain
2
Hu!*! - DTp"! = —B(Gul + Gul ™) = 3 3,C(u" u ™/ + Bf"™. i =1.2. (3.88)
q=0
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where H is the second-order, Helmholtz operator

1
H=-A+(B. (3.89)

The fractional splitting scheme approximates semi-implicit form in Equation 3.82 with

a sequence of smaller steps. The result is

2
Hi**! = D5 - B(Gu" + (3u"~ Z u"™? +BEH (3.90)
Epcorr = _ClDﬁn-H (3.91)
u"“ = ﬁ 1 —B_lpcorr (392)
G
n+l _ ~n-1 3Q:
p =p + Peorr (3.93)

where @1"*! is an intermediate approximation to the velocity at step n+1. E is the consistent

Poisson operator

E=D,B"'D! + D,B"!DJ. (3.94)

1 ~n+1] 1

Pcorr = p"+ -p
pressure at time step n + 1 and is simply a linear extrapolation from the previous two time

is the pressure correction term. and p"™! is an approximation to the

steps
At,

Atn—l'

~n-+1

P :p71+(p71+pn—1)

(3.95)

The solution steps of Equations 3.90-3.93 are as follows; (3.90) approximate the pressure at

n+1 and solve for an intermediate velocity a" ™"

. (3.91) solve for a pressure correction term
Peorr Dy enforcing divergence-free flow, (3.92) use the pressure correction term to correct
the velocity approximation, (3.93) use the pressure correction term to update the pressure.

The governing equation for the periodic part of the temperature, 8, is decoupled from
the flow equations, and is updated after the flow solution is updated. An identical scheme is
used to advance Equation 3.19 in time. The resulting, semi-implicit, fully discrete equation
is

2
Hgo" ! = —B((0™ + (6™ 1) Z u~)e" "9 — 4B(u"t! - §)), (3.96)
where Hy is the temperature Helmholtz matrix

Hy = ——A +(,B. (3.97)

RP

The inversion of the Helmholtz operator H in Equation 3.90 and of Hy in Equation 3.96
are elliptic solves and can be accomplished with an iterative, conjugate gradient algorithm,

or with a direct, sparse LU-factorization. Because H and Hy are well conditioned, Equa-
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tions 3.90 and 3.96 can be solved very efficiently with a preconditioned conjugate gradient
method. Inverting the E operator in Equation 3.90 is more difficult as the conditioning
is very sensitive to the homogeneity of the finite element mesh. For solution schemes in
which all inversions are iterative, it requires the bulk of the solution time. Because E is
much smaller than the other matrices (its size is determined by NP < A'¥) and its inversion
dominates the solution time, it is the best candidate for treatment with a direct solver.

Details of both the iterative and direct solvers used in the code are given in Section 3.2.2.

In both 3.91 (inside of the Poission operator) and 3.92, the mass matrix B must be in-
verted. For a spectral element spatial discretization. this is a trivial matter as the elemental
mass matrices are diagonal. However, the mass matrix for the IP;, triangular elements is
not diagonal, and therefore must be inverted with either an iterative solver or direct, sparse
solver. To avoid the additional matrix inversions resulting from the use of the full mass
matrix. the diagonally lumped mass matrix has been substituted. The elemental, diagonally
lumped mass matrix B*e for element k. is

- Bl

Bke —_

= Gk =1, . .
Trace(Bks)l L i=1.....6 (3.98)

where [Q%¢| is the area of element Q% computed from the full elemental mass matrix and is

04 =3 > B, (3.99

3.2.1 Flow-Rate Specification — Green’s Function

In this section. the method used to determine the time-dependent. pressure forcing term
fr+1 = (f7*1,0) in Equation 3.90 is described. The value of the f™™! must be set to
achieve the desired average flow velocity V' = % This is accomplished by first solving in a
preprocessing stage for a Green's function u*. The Green's function is obtained by solving
the ‘Stokes-like’ part of the spatially discrete Equations 3.17 and 3.18 for a unit pressure
forcing term. Then, the full set of governing equations are advanced in time, neglecting
the pressure forcing in Equation 3.90, and, after each time step. superposition is used to

achieve the correct flow rate and to determine the required value of f™*!.

The preprocessing step (which only needs to be solved once) consists of solving the

Stokes equation
Hu! =B1+D7p", i=1.2 (3.100)

for the velocity u* = (u},u}) and the pressure p*. The unit forcing 1 = (1.0) is a vector

of ones on the z-equation nodes only. The finite element matrices are identical to those in
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Equation 3.90. The flowrate is computed

1 .
=5 DEPu dx, (3.101)

Q#
and is used to determine the pressure forcing term f(t¢). The intermediate velocity u* and
pressure p* solutions will be superimposed with the time-step solution to determine the

correct Navier—Stokes solution.

The second, time-advancement phase of the solution proceeds exactly as outlined in
Equations 3.90-3.93, but with the forcing term neglected. The modified, intermediate

solution phase has the steps.

2
Ha;n-s-l = DTﬁ;n-H _ B(CQUIn + Cgu[n—l) _ Z ch(uln—q)u[n—q (3'102)
q=0
Epcorr; = —(Da;" ™! (3.103)
— 1
u[n+1 — u[n“'l _ Z—B_lpcorrl. (3.104)
1
p[n-‘-l = P~1n+1 + Dcorr; (3105)

after which. the pressure forcing is determined and the solutions are superimposed. The
forcing term is simply
n+1
R — 7
it = Q—Q-Q— (3.106)

where the intermediate flow rate @y is

1
Qr = % /DEP ur dx, (3.107)

and the flow rate at step n + 1 is the prescribed flow rate

4l
QM =1V = T (3.108)

The final step is the superposition of the solutions to obtain the velocity and the pressure
at step n + 1;

u't = Ayt 4oy, (3.109)

Pt = "t 4 pr (3.110)

The preprocessing stage of the solution needs to be done only once. The increase in
solution time is very small in relation to the total time required to sufficiently advance the

solutions to achieve a steady-periodic state. To solve 3.100, an Uzawa algorithm is used [46]
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which decouples the pressure solve from the velocity solve and results in the two equations

Sp* = D,H !B, (3.111)
Hu* = D7p" + B1, (3.112)

where S is defined as
s =D,H'D? + D,H"'D!. (3.113)

Equation 3.111 is solved with a nested conjugate gradient scheme and Equation 3.112 is

solved for the velocity components with a conjugate gradient algorithin.

3.2.2 System Solution Strategy — Iterative and Direct Solvers

In this section. the solvers used to make the necessary matrix inversions at each step of the
solution process are described. Matrices must be inverted for the solution of the preliminary
Stokes solve (nested inversions for S in Equation 3.111 and of H in Equation 3.1 12). to obtain
the approximate velocity solution in Equation 3.90. for the solution of the pressure correction

term in Equation 3.91, and finally for the temperature solution update in Equation 3.96.

3.2.2.1 Iterative Solution — Conjugate Gradients

The iterative solution algorithm of choice for finite element solvers is the conjugate gradient
method. The conjugate gradient algorithm is extremely efficient for solving well conditioned
problems and requires very low storage. The conjugate gradient algorithmn has been exten-
sively reported [31, 68] and the underlying theory is not detailed here. The preconditioned
conjugate gradient algorithm for the solution of Az = f, for a symmetric, positive-definite
matrix A € R"*", preconditioning matrix M € R"*", z € IR", and f € R" is

m=0.1"=f-Az0 0= M0 w0 = 20,
while ¢(r™) < tol

m=m++1

o™ = (2™, zM)/(w™, Aw™)

™l =™ + oM™

Ml = pm = oM Aw™

LmHl = V- lpmtl

g7 = (L) )

wm-H — ,,.m*lﬁmwm

end



The stopping criterion is based on {r™), where

(3.114)

™
=
A
Il
| Sa——]
M -
W=y
| CE——
e

It should be noted that, for the preconditioning to be efficient, the solution z = M~ !r must
be easily obtained. The preconditioner used for all of the iterative solves was simply the

matrix diagonal M = [4;;],i = 1,...,n which has only limited beneficial impact in practice.

3.2.2.2 Direct Solver — Sparse LU-Decomposition

A sparse matrix solution package written by Kundert [43] has been used to perform the
direct matrix solves when the Navier-Stokes code is run in one of the the direct-solver
modes. The package is Sparse Version 1.3 and is available at Netlib.! The Sparse package
is written in C and manages all of the memory allocation internally making it very easy to
integrate into other codes. It can handle arbitrary square, real and complex, linear systems
and is also able to find determinants and estimate ill-conditioning errors. According to its
documentation. it performs as fast or faster than other sparse matrix packages and. at least
anecdotally. it seems to be very efficient.

The sparse solve consists of two stages. For the first stage, matrix factorization. the
matrix elements are re-ordered and a LU factorization is performed [11]. The lower and
upper triangular matrices are then stored. The second stage. forward and backward sub-
stitution, is performed on any number of right hand sides without having to re-factor the
original matrix. For details of the algorithm. the reader is referred to [43].

As is well known. the factorization time is very large compared to each forward /backward
solve. For the initial CPU cost of the LU factorization to be worthwhile, it must be prorated
over enough time-steps to make the total solution time for the direct solve approach to
be lower than for the iterative solver. The break-even point is easily exceeded by the
total number of time-steps that are needed to obtain periodically varying, steady-periodic

solutions.

3.3 Sample Code Performance

The Navier-Stokes code can be run in several modes, based on whether the iterative or
direct solver is used for each matrix inversion. The lowest memory. most time consuming

solution mode uses the iterative solver for all of the matrix inversions. Conversely, the

'The Netlib master index web address is http://netlib.bell-labs.com/netlib/master/index.html
and the Sparse Version 1.3 package is located in the sparse directory
hetp://netlib.bell-labs.com/netlib/sparse/index.html.
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highest memory, fastest solution mode uses the direct solver for all of the matrix solutions.
Various combinations of iterative/direct solves result in solution modes that fall in between

the two extremes. The solution modes are described below.

Mode I Conjugate gradient solvers used for all matrix inversions: H in Equation
3.90, E in Equation 3.91. and Hy in Equation 3.96. This mode requires the
least memory but highest CPU time.

Mode II Conjugate gradient solver used to invert H in Equation 3.90 and Hy in

Equation 3.96. The direct solver is used to invert E in Equation 3.91.

Mode III Conjugate gradient solver used only to Hy in Equation 3.96. The direct

solver is used to invert E in Equation 3.91 and H in Equation 3.90.

Mode IV Direct solver used for all of the required matrix inversions: H in Equation
3.90. E in Equation 3.91. and Hy in Equation 3.96. This mode has the highest

memory requirement but the lowest CPU time.

It is important to note that the H and Hy matrices are dependent on the timestep size
At,. If the timestep size is changed during the time advancement. the H and Hy matrices
must be updated and. if running in Mode III or Mode IV. one or both factorizations
must be recomputed. The time penalty incurred by frequent timestep adjustments and re-
factorizations would rapidly overwhelm the performance benefit realized by the direct solver.
To avoid such a situation. a conservative timestep is selected as soon as the periodic-steady
state is achieved and is held fixed for the remainder of the time advancement. Because the
E matrix is not At, dependent. timestep updates can be performed more frequently when
the code is used in Mode I or Mode II.

To demonstrate the performance of the code. timings have been performed with the
code running in each of the solution modes listed above. For the computational times that
are reported, the factorization time has been neglected. It is reasonable to neglect this as
the contribution to the total solution from the factorization for the O(10,000) time steps
that a solution is typically advanced is negligible. In all cases, the timestep size is constant
throughout the run.

The sample problem consists of a two-body. eddy~-promoter configuration with the grid
shown in Figure 3-2. The number of nodes and elements are indicated in the figure resulting
in matrices sized as H € BTISSXTISG_’ E ¢ R1842z< 1842T and Hg c m7156x7156' Because the
E operator is much smaller than H and Hy. and its inversion requires the majority of the
fully iterative solution time, it is the best candidate for solution by the direct solver. This

result is evident from the solution times and memory requirements listed in Table 3.1.
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Figure 3-2: Mesh plot of the configuration used for code performance tests (A'® = 3471,
NE =T156. NP = 1842).

Solution Mode || CPU seconds/timestep | Core memory (Mbytes)
Mode I 791 18.2
Mode I1 2.51 26.5
Mode II1 1.32 44.1
Mode IV 1.22 63.4

Table 3.1: CPU time and memory required for the four solution modes running on a Hewlett
Packard C-160 workstation.
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Chapter 4
Baseline Surrogate Approach

To begin the description of the baseline. non-parametric validated. surrogate framework it
is first necessary to define a hierarchy of approximation models. Implicit in this discussion
is the assumption that the governing equations (or experimental setup) accurately represent
the problem under consideration. With this assumption. a hierarchy of three approximation

models are defined:

Exact This is the exact. analytical solution to the governing equations. For the eddy-
promoter problem, it is the solution to Equations 2.25—2.36. The exact solution can

be obtained only for the very simplified cases (e.g. channel flow with no obstructions).

Truth The truth model is the 2"9-order in time. IP,—IP; finite element solution of the
governing equations that is described in Chapter 3. While this is clearly not of the ac-
curacy of the eract solution, it represents the best obtainable solution for the problem.

The truth model serves as the reference for the validation and error analyses.

Surrogate The surrogate model is the very inexpensive (by design) approximation to the
ezact solution and typically consists of a simple input-output model (e.g. response
surfaces, scattered data interpolation, etc.). The surrogate model is used in place of

the truth model in design studies.

The non-parametric validated, baseline surrogate framework has been extensively re-
ported [55, 57, 77, 78, 79] and is only repeated here to serve as a reference to the surrogate-
Pareto optimization pursued in Chapter 5. In the baseline surrogate approach. a simple,
inexpensive model (a surrogate) is substituted for an expensive simulation (or experiment as
in Chapter 6) in the optimization process. The simulation serves offline first, to construct,
and second. to validate the surrogates which are usually an inexpensive input-output func-
tions. This is in contrast to online optimization approaches in which the simulation is called
directly by the parent optimization process. In online approaches, the simulation serves as

a subroutine call to the optimization routine.
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Approximate, offline optimization approaches have been widely used but typically do
not provide rigorous error estimates for surrogate-predicted designs. The distinguishing fea-
ture of the non-parametric, validated surrogate approach is the surrogate validation step
of the framework that provides a posterior: error estimates on designs near the surrogate-
predicted, optimal design(s). The surrogate approach is related to probably-approximately-
correct approaches [74, 26] and information-based complexity theory [73]. It differs, how-
ever, from the former in that it is truly non-parametric (no assumption is made in regard to
the distribution of optimal input points) and from the latter in that it requires no regularity

estimates for the input-output function.

The surrogate approach is best suited to problems that meet at least some of the follow-
ing classifications: (1) The underlying simulation or analysis is computationally expensive
making the large number simulation queries required for the optimization intractable. (2)
The integration of the analysis code with the optimization package is impractical because
of difficult interfacing or the lack of sensitivity derivatives. (3) The problem is global in
nature and the design space covers a wide range of potential designs in which there may be
many, locally-optimal designs. (4) Flexibility is needed in terms of rapid turnaround. as in

cases in which the design goals evolve with the design and more is learned.

In each section of this chapter, the surrogate framework is presented for a general prob-
lem with two outputs and two performance metrics that are functions of each output as
well of the input vector. An important distinction to be made between the general prob-
lem presented here and those cases analyzed previously [33. 57. 77, 78, 79] is that here.
surrogates for the simulation outputs are validated. The performance metrics which serve
to quantify designer preferences are functions of the validated outputs as well as (possibly)
of the inputs. This adds additional flexibility and generality to the surrogate framework in
that the validated simulation outputs can be used in future design studies with different
performance metrics and similar error bounds will obtain without the need for additional
appeals to the simulation. In the earlier surrogate work, the performance metrics are val-
idated directly. This restricts the design studies to that particular choice of performance
metrics. A change in the form of the performance metrics therefore requires that the vali-
dation step be repeated, necessitating additional appeals to the simulation. The two-body,
eddy-promoter problem serves as an example of the two output, two performance metric

design problem presented in this chapter.

The baseline surrogate framework consists of four steps. The first step of the framework,
surrogate construction, is discussed in Section 4.1. In the second step of the framework.
presented in Section 4.2, the inexpensive surrogates are validated against the truth simula-
tion at randomly selected points. In Section 4.3 the third step of the framework, surrogate
based design, is presented. The fourth and final step is the a posteriori error analysis of

the surrogate-predicted designs and this is presented in Section 4.4. The a posteriori error
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analysis. which uses the validation results without requiring additional appeals to the sim-
ulation, gives error estimates for designs near the surrogate-predicted optimal designs as

well as an estimate to the design optimality.

4.1 Surrogate Construction

The first step of the baseline surrogate framework is surrogate construction. To begin, given
a vector of M,, modeled inputs, p, € Qm C R that lie in the model design (or input)
space Q. surrogates for two (K = 2) truth outputs of the simulation, o7 (ply) : O — R,
and #1(p’,) : @m — IR, are constructed. Although the intent is that the surrogates,
éﬁ:(p'm) : Q,, — IR and %(p’m) : Q,, — IR. approximate the simulation as closely as
possible over Qp, (};(p’m) = ¥ (Pin)s q—;z(p'm) ~ ¢J (p),). the results that will be obtained
in the later sections of this chapter are valid regardless of the quality of the surrogates.
The surrogates can be constructed by any means, whether it be by appeals to the truth or
to another simulation, by empirical relationships. by the use of limiting solutions. or some
combination of all of these.

For the two-body. eddy-promoter problem. the two truth value outputs obtained from
simulation are is the pressure forcing term required to achieve the target flow rate. Wl (Pm).

and the inverse Nusselt number, HOT(pm). The surrogate construction set

-0

’YCO = {(pm- Hg"(pm). ‘l%/"g‘(pm)]l ----- (pm- 90T(Pm) wg-(pm)).\'fo}- (41)

is formed by appealing to the finite element simulation (Truth) at 91 points in the design
space Q,, (defined in Section 2.6.1) and by including an additional 165 limiting solutions for
a total constuction sample size of N = 256 input-output pairs. The 91 simulation points
have been chosen from an orthogonal array (Appendix D.2) that ensures a good space filling
design. The additional 163 limiting solutions correspond to the upper and lower limits of
Pmo (Pmy = 0 and pmy = 1) and represent duplicate geometric realizations at different
points of the design space Q.

The approximation scheme used for the surrogates is a radial basis function fit through
the construction set, X<°, for each output. The particular radial basis function used here
is described in Appendix D.1. The surrogates for the outputs are interpolating functions
in that the output surface passes exactly through all of the points in the construction set
X. As demonstrated empirically in Section 2.5.4. the output functions are continuous
over the entire model design space €),, and an interpolatory model is appropriate without
the need to track and account for discontinuities. The plot in Figure 2-6 shows that the
output function continuity is preserved across a topology change. Three-dimensional mesh
plots of the surrogates are given in Figure 4-1. On the left in the figure are pjn)=pm> slices

of the surrogates for pm3 = 0.50 and on the right are pi,—pm3 slices of the surrogates for

77



DPm

(d)

Figure 4-1: Mesh plots of the output surrogates: (a) %(pmlslice for p,n3 = 0.50. (b) 9~0(pm)
slice for pp,» = 0.50. (¢) ¢o(pm) slice for p;n3 = 0.50. (d) ¥o(pm) slice for p,,, = 0.50.

Pm2 = 0.50. The temperature output Bo(pPm) is at the top and the pressure output %(pm)

i1s at the bottom.

4.2 Surrogate Validation

The second step of the surrogate framework is surrogate validation. In this step, the surro-
gate models are validated against the truth at input points that are randomly chosen from
the model design space 2,,. To proceed with the description of the validation step, several
functions must first be introduced.

The importance function p(p,,) serves as a probability density function for the selection

of validation points from the model design space §,,:
/Q p(Pm) dpm = 1. (4.2)

The importance function leads to the notion of a p-measure of a subdomain of the design

space {1, which is simply the weighted relative M,,~volume of the subdomain. For any
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subdomain D C Q,,. “the p-measure of D.” p,(D), is

1p(D) = /D p(Pm) dpm < 1. (4.3)

The p-measure of of full model input domain Q,, is one, u,(Qn) = 1.

Next, K scaling functions are introduced, one corresponding to each of the output
surrogates that are to be validated. For the general two output problem examined here. the
scaling functions gs, (pl,) : @m — R~ and o, (p},) : @m — IR+ are the two strictly positive.
error-scaling functions. The scaling functions serve primarily to make the errors between
the truth value and the surrogate values for each of the outputs of the same magnitude. A
secondary purpose for the scaling function is to reduce the impact of regions of the design
space where large surrogate errors may exist.

With the importance function and error-scaling functions defined. the validation sample

set X' is formed as

X = {(Pm1- 8] (Pm1)- 65 (Prm1)). - (P91 (P x). 65 (Pmy))} Py ~ p(Pm)-
(4.4)
where the input points P,,; are independent. identically distributed random points drawn
according the probability density function p(pm). The truth outputs in 1.4 are obtained by

appeals to the simulation at each validation point P ;. The size of the validation sample

. Inzy .
N= [111(1 —Ex)] ) (:5)

where [z] is the smallest integer that is greater than z. Later. it will be shown that

set 18

¢) represents the p-measure of the uncharacterized region (the region in €2,, where the
surrogate error magnitudes |¢7 (p),) — &1 (p,)| and |63 (pl,) — #2(p!,)| are unknown) and
g5 is the significance of the probabilistic error estimates that are developed.

With the validation sample set formed. the model prediction error U is computed as

. 167 (Pmi) = 61 (P mi)l 191 (Pm ) = 62(Pom))|
v (‘“a“< dor (Prn) o (P B
and the uncharacterized region T is defined as
167 (Pl) = d1(Ph)! 16T (Pln) = &S(pinn) } .
T= m € Qm 3 . X >Usp. 4.7
{p | max < Gor (Ph) 30, (Phn) 7

The model prediction error is the maximum. absolute truth-surrogate difference over the
set of randomly drawn. validation input points Pp;.i = 1.....N. The uncharacterized
region is that subset of the model design space Q;, for which the scaled truth-surrogate

error is greater than the model prediction error U. The validation provides no information



as to the location of the uncharacterized region nor does it provide any insight as to the
magnitude of the errors in that region. This uncertainty manifests itself in the locality of

the error estimates that are developed in Section 4.4.

The model prediction error provides a probabilistic estimate as to the maximum truth-
surrogate error over a fraction of the model design space Q,,. The precise validation state-

ment reads:
Pr(up(T) < 61) 21 —e9. (48)

What 4.8 says in words is that, with probability of at least 1 — &, the fraction of the model
design space 2,, for which the surrogate differs from the truth by more than U is less than
€1. The relationship between NV, €, and €3 is entirely determined by the sampling theorem
in Equation 4.5. The validity of 4.8 given 4.5 can be proved with order statistics. The proof

is given in Appendix B.1.

The validation step is the final step in the surrogate design framework where truth cal-
culations are needed. The results of the validation framework provide precise, probabilistic
bounds on the prediction error of the surrogates for designs near surrogate-selected opti-
mal designs. without having to appeal to the simulation. The estimates can be generated
for any number of designs and can be obtained verv rapidly as the only required function
evaluations are of the surrogates. This gives near-instantaneous turnaround for the er-
ror estimates of each design and makes that design process interactive, which is extremely

important in situations where the design goals evolve as more is learned.

The validation step has been performed for the global surrogates of the two outputs for
the eddy-promoter problem. Because no prior importance had been assigned to any region
of the model design space {,,, a uniform probability density function p(p,,) = 1 has been
chosen for the selection of the validation input points. A total of 24 simulation evaluations
have been budgeted for the global validation which. from Equation 4.5, gives ¢; = 0.0561
and ¢; = 0.2500. The scaling functions have been set to constant values gg(p,.) = 2.00 and
Gu(Pm) = 1.00. Forming the validation sample, X"®. and finding the maximum, unscaled

surrogate error for each output gives

max (67 (pm) = fo(Pim)| = 0.0968, (4.9)
max [ (Pm) — Yo(Pm)| = 0.1910. (4.10)

The model prediction error U is computed from Equation 4.6 and is U = 0.9681. From
this, the following statement on the global quality of the surrogates can be made: With

probability of at least 75% (1 — €2),
8% (Pm) — Bo(Pm)| < 0.096845(pm) = 0.1936, (4.11)

80



[T (Pm) — %o (Pm)| < 0.09683,, (Pm) = 0.0968. (4.12)

over at least 94.39% (1 — &) of the model design space. The global bound for the two

output surrogates hold for the same 94.39%-sized subset of the model design space Q.

4.3 Surrogate Based Design

It is assumed that the design preferences are characterized by two performance metrics, each
of which is a function of both surrogate outputs, &(p’m) : Q' —» Rand g;_)(p’m) Q" = R,
as well as of the full design vector p’. For both metrics, lower values are assumed to

correspond to better designs.

To form the surrogate metrics. the output surrogates, (:ﬁvl(pﬁn) ~ ¢l (p/,) and %(p’m) ~
#1(p',). are substituted into the performance metric functions. The resulting surrogate
metrics ¢, = <I>1(<;-1(p’m), ag(p'm).p') Q' > R and &, = fbg((}i(p’m).q’g-}(p’m).p’) Q> R
are then used for the design studies. Because the surrogate outputs are trivial to evaluate.
any number of designs may be pursued and the trade-offs between improvements in one
metric versus the other can be fully examined and understood. The a posterior: error
bounds developed in the following sections will apply for any design chosen based on the
surrogate performance metrics and will require no additional simulation evaluations. In
addition. because the surrogate outputs have been validated (and not the full performance
metric functions). different performance metrics (using the same inputs. outputs and design
spaces) can be used as the basis for design studies and the error estimates will still be

derivable. This gives additional flexibility to the design process.

The eddy-promoter problem that serves as the illustrative example here falls into the
problem class just described. The output surrogates, constructed in Section 4.1 and val-
idated in Section 4.2. are used to form the surrogate performance metrics. The output
surrogates, 9~0(pm) and %(pm). constructed in Section 4.1 are substituted into Equations

2.97 and 2.98. The resulting surrogate performance metrics are given by

~ ~ 1 ~ 1
8(p) = Ol(pm)-p) = 0810 | 75 + fo(Pm) - (113)
#(p) = (Yo(pm). p) = logyp [Vo(Pm)Re*n} ] . (4.14)

and are dependent on the full design vector p = (pm,Pa) € @ = [0.1j=%. The range for
the analytic input, n; € [13.332,106.636], is as stated in Section 2.6.1.

For the design study, two designs, @ = 2, are pursued. The first design problem (g=1)
is to find the configuration that gives the best heat transfer. The second problem (q = 2)

imposes a constraint on the value for the pumping power W. Both problems. ¢ € Q = {1.2}.
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can be formulated as

p’ = arg min ©(6o(pm).p). Vg€ Q (4.15)

{pe | ¥(vo(pm).p)<U"}
where p? is the surrogate-predicted design point that minimizes the surrogate-based, wall
temperature performance metric subject to the constraint that U9 = \P(%(ﬁ%), pY) < ¥

The temperature performance metric at the optimal point p? is 67 = @(%(f)‘,’n),f)q).

To perform the optimizations, a subspace searching, simplex algorithm (SUBPLEX)
written by T. Rowan [61] and available on Netlib,’ has been used. The algorithm is a
generalization of the the Nelder-Mead [51] simplex algorithm in which high-dimensional
problems are decomposed into low-dimensional subspaces that can be efficiently searched
with the simplex algorithm. The SUBPLEX algorithm is well suited for the unconstrained
optimization of noisy objective functions. The problem studied here (4.15) is a constrained
optimization problem. The optimization results presented in this section have been obtained
using the scalarization technique presented in Section 2.4.3. To find a global minimum for
each design problem. 200 random restarts selected from a uniform distribution over {2 have
been performed. The inexpensive nature of the surrogates makes such a “brute-force”
approach tractable. The optimizer proved to be very robust in practice, and this was the

primary reason for choosing it.

The two design problems have been carried out for the eddv-promoter heat exchanger
example. and the results are summarized in Table 4.1. For the first design. the pump-
ing power constraint ¥’ only needs to be set sufficiently high to ensure that it remains
inactive. For the first design @1 = 1 x 10 and for the second design EQ = 0.4801.
The optimization process gives the optimal points p! = (0.1008,0.2875. 1.0000, 1.0000),
p> = (0.8549.0.4729,0.6449,0.0000), and the corresponding surrogate-predicted, perfor-
mance metric values ©! = —2.2626, ¥! = 12.5137, and 6? = —1.7106. ¥2 = 9.4801. The
inverse channel heights for each design are n} = 106.656, and n? = 13.332. The physical

geometry for a single periodicity cell of each design point is given in Figure 4-2.

Design (q) | % p’ o1 e
1 1 x 10% | (0.1008,0.2875.1.0000, 1.0000) | —2.2626 | 12.5137
2 9.4801 | (0.8549.0.4729.0.6449,0.0000) | —1.7106 | 9.4801

Table 4.1: Baseline surrogate-based optimization results.

'The Netlib master index web address is http://netlib.bell-labs.com/netlib/master/index.html
and the SUBPLEX software is located in the opt directory.
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(a) Design 1.

o O

{b) Design 2.

Figure 4-2: Eddy-promoter configuration for each of the surrogate-predicted optimal de-
signs.

4.4 A Posteriori Error Analysis

The a posteriori error analysis step of the surrogate framework takes as inputs the surro-
gates. the probability density and error-scaling functions, the model prediction error. and
the surrogate-predicted design points. From these inputs. and without appealing to the
simulation. probabilistic estimates of the difference between the surrogate and the truth at
points in the design space near the surrogate-predicted designs are derived. Two formu-
lations for the estimates are presented: proximal region. in which the estimates are valid
for a region of non-zero measure. and proximal candidate, in which the estimates apply to
a randomly selected design point near the surrogate-predicted optimal point. In addition.
the a posteriori error analysis provides an assessment of the surrogate-predicted design
optimality in terms of an estimate of how much effort is required to improve the design
beyond a given amount. The proximal region and proximal candidate error analysis meth-
ods are presented in the next two sections, followed by the optimality analysis in the final

subsection.

4.4.1 Surrogate Predictability — Proximal Region

To begin the Proximal Region error analysis, a model prediction region P €  is de-
fined as a subdomain in the full design space 2 of p-measure ¢, and that contains the
surrogate-predicted design point p*. Here. the p-measure of P; is computed only from

the components in the model design space {1,;,. Recall that the design input vector p can

83



be decomposed into a modeled input vector p,, (the inputs over which the surrogates are
constructed) and an analytic component p, (the inputs for which the performance met-
ric responses are known analytically). Likewise, the surrogate predicted optimizer can be
decomposed into p* = (p;,, p,). The prediction neighborhood can then be defined as the
tensor product P; = P, x p; where P, is the model prediction neighborhood with
the p-measure defined in Equation 4.3, u,(Pg,. ) = €1. The notion of how to precisely
define the prediction region P in practice is made more clear with the eddy-promoter
example later in this section and in the following section. In general however, very limited
assumptions are made as to the construction of P; and it is not required to be connected.

With the prediction neighborhood defined, probabilistic bounds on the outputs for de-
signs near the surrogate predicted optimizer are first derived. The output bounds then serve
to construct probabilistic bounds for the performance metrics for designs near the surrogate
predicted designs.

The predictability statement for the outputs reads: With probability at least 1 — ¢;.
there will exist a region of non-zero measure I';;, C P;,. in the neighborhood of pj, such

that for all points p},, € '},
lo, < & (Phn) < toy. (4.16)

loy < 85 (Pl) < oy (4.17)

where the truth-output bounds are

lor = (20 }[Zﬂ (Pin) — Udo, (Prn)]- (4.18)
o = (02 | [81(Pln) + Udo, (P (4.19)
o = min }@p’m) = Ugo, (Pn)]- (4.20)
Ugy = (p,glgit”}[gz(p'm) + Uo, (Ph)]. (4.21)

The above result effectively bounds the truth values of the outputs near the surrogate
predicted designs.

To extend the bounds to the performance metrics, a second step is pursued using the
output bounds presented above. The predictability statement for the performance metrics
reads: With probability at least 1—¢2, there will exist a region of non-zero measure ['' C P},

in the neighborhood of p* such that for all points p’ € I
Lo, < 81(8] (Pln): 83 (Pm) P') < Vs, (4.22)

Lo, < @2(¢7 (). 82 (D). P') < Vs, (4.23)
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where the performance metric bounds are

Lo, = min ®1(21.22.p"), 4.24
o {Plép;l,:xézhzgez?} 1( 1:22 p) ( )
Ug, = max ®,(z1.20,p). 105
i {Plep;l,:1631.:g€32} 1( 1142 p) ( )
Ly, = min By(21. 20.D'). 196
b2 {p'eP: 21€21.22€ 22} 2(z1.22.P); ( )
U¢2 @2(21,32.p'), (4‘27)

= max
{P'EP;, 21€21 12622}

and the output ranges. Z; and Z,, are determined by Equations 4.18—4.21 and are

Zy={z]ls, <2< ug } (4.28)

To define the prediction neighborhood P? precisely. a distance metric A(pmy.Pma)
that quantifies the distance between two points is introduced. The prediction neighborhood
around the surrogate predicted optimal point p%, is then defined as that region R. of size
£1, that minimizes

ra = max A(pm, 5?71)' (4.30)

pmel
For the eddy-promoter problem, the distance metric function has been defined based on

the cutputs and is

9~0(Pm1)—@)(sz).%(lbmﬁ—%(sz)> . (—1.31)

A(pml: sz) = max ( hG hu

where hy and h, are positive scalars. The definition for the distance function in 4.31 can
be used to specify the neighborhood with minimum 6y sensitivity (for A, sufficiently large)
or. likewise, the neighborhood with minimum % sensitivity (for hy sufficiently large). By
setting the levels of the hg and hy, to match the relative variation of the surrogate over the

region R, a balance between the 9~0 and % sensitivity can be obtained.

The output bounds in Equations 4.18—4.21 have been evaluated for each design. The
output bounds have then been used to evaluate the bound quantities given in Equations
4.24-—4.27. The resulting predictability statements for the truth values of the performance
metrics are given below. For Design 1, the statement reads: With probability of at least
75%. there will exist points in I'' C ’Psl1 such that for p’ € I'!

11.1809 < T (yd (p,,).p') < 12.8194, (4.32)
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Figure 4-3: Output plane plot of the two design point performance pairs (o) and the asso-
ciated predictability boxes.

~2.3899 < (80 (pl,).p') < —2.1132. (4.33)

For Design 2. the statement reads: With probability of at least 75%, there will exist points
in T? € P such that for p’ € I'?

8.4716 < U(¢ (pl,).p') < 9.8613. (4.34)

—2.3372 < ©(8 (p),).p") < —1.4601. . (4.35)

The predictability statements are valid for each design for the corresponding prediction
neighborhood. For a given design g¢. the region I'? C PJ for which the points satisfy the

performance metric bounds is identical for each metric.

The results given above have been plotted in the output plane in Figure 4-3. In the
figure, the surrogate performance metric values for each design are plotted as solid dots and
the bounds on the truth performance metrics are plotted as boxes. It is evident from the
predictability bounds for the two eddy-promoter designs given in 4.32—4.35 that the global
output surrogates are quite poor. Even for the two very different designs that have been
selected (based both on the associated geometries and the surrogate-predicted performance
of each). the error bounds between the two design overlap. This implies that the surrogates

are not accurate enough to distinguish between the two designs as regards temperature.
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4.4.2 Surrogate Predictability — Proximal Candidate

The Proximal Candidate a posterior: error analysis requires that we define a prediction
region P} C Q that is of p-measure ¢, and that contains the surrogate-predicted optimal
point P*, in a manner similar to that presented for the Proximal Region analysis of Section
4.4.1. A sample candidate design 13;‘,1 is selected randomly according to f’:n ~ pp(pm). The

density function pp(pm) is defined as
1 *
pp(pPm) = —p(pm) . YPm € Py (4.36)

where P;,, C Qp is the sub-manifold of P that corresponds to the model design space
and the full neighborhood is the tensor product P; = {Pp,, x ps}. The full candidate
design vector P is given as P = (15:"});) where p; is the analytic inputs of the sur-
rogate predicted optimizer p* = (P},.p;). The candidate designs can easily be selected

with acceptance-rejection techniques without having to formally construct the prediction

*
maog*

neighborhood P

A second small parameter, ¢.. is introduced and is related to p~measure of P, _. 7. by

1 .
fe= ——— (1= (1 =a)* 7). 1.37
il N (437)
where 0 < z,.0 < 1. and N is the validation sample size given in Equation +.5. It will
become evident below that ¢, is the significance of the probabilistic bound estimates that
are derived.
Now, given the two inputs to the analysis ¢, and 0. and the model prediction error U.

the following statement can be made: With probability of at least 1 — ¢.. the truth output

values at f’;‘n are bounded by

I, < o7 (P},) < u,. (1.38)
5, < 65 (Pr,) S us,, (4.39)
where the bound values are
15, = 61(Ph) = Ujo, (Pr), (4.40)
u§, = ¢1(Ph) + Ugo, (P},), (4.41)
15, = 62(P) = Ujos (P},). (4.42)
uS, = $2(Py) + Udo, (Pr). (4.43)

Equations 4.38—4.43 bound the truth value of the outputs for the candidate design point
Pr,.

87



To extend the analysis to the performance metrics, a procedure similar to that of Section
4.4.1 is pursued. Again, the following statement can be made: With probability of at least

1 — g, the truth performance metric values at f’;‘n are bounded by
3, < 21(61 (P1), ¢ (P1). P*) < U§,, (4.44)

S, < ®a(¢T(P,), 05 (P,), P*) < US,, (4.45)

where the performance metric bounds are

Ly, = {ZIE%{iZI;EZS}<I>1(zl,z2,f‘"), (4.46)
Ug, = {:1617?:3:)2(635} ®,(z1.20. P, (4.47)

S, = {3165?}3625}@g(zl.zg.f:*), (4.48)
Us, = {:16}2?.2(635} ®g(z1,22,15'). (4.49)

and the ranges for the outputs, Z{ and Z5. at the candidate design point are obtained from

Equations 4.40—4.43 and are

={z 105 <3
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[

25 ={z]1l5, <2< ud,} (4.51)

The proximal candidate error analysis produces estimates that apply to a specific design:
the randomly chosen candidate design P* near the surrogate—predicted optimal point p*.
This is in contrast to the proximal region analysis presented in the previous section in which
the error estimates applied to a region of finite measure in the neighborhood of p*. The
proximal region analysis assures that the region will exist with 1 — ¢, confidence, but can
not provide precise information as to where in P/, the region exists. Although the proximal
region analysis does provide a sense of stability. it may not be satisfying in some design
scenarios. The error estimates for the candidate design developed in this section provide
an alternative interpretation. In this scenario, the designer can be assured that the error

bounds apply, with 1 — ¢. confidence, to the specific, randomly drawn candidate design.

For the eddy-promoter problem, the same two surrogate-predicted designs given in
Table 4.1 are considered. The uncertainty parameters, o and ¢, in Equation 4.37 are set to
o = 0.1578, and ¢, = 0.2500 which agree with the N = 24 global validation points that have

been computed in Section 4.2. A new distance metric that quantifies the distance between
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two input points, Py and Pmy. is introduced to define the prediction neighborhood

o

Ac(Pm)Pm2) = [(pml - Pma) (Pm1 — pm-z)]' : (4.52)

where the [() - ()] term above is the vector dot product. The distance metric defined in
Equation 4.52 is simply the Euclidean distance between the two input points in the model
input space Q,,. The metric in Equation 4.52 emphasizes designs that are “near” the
surrogate-predicted optimal designs based on the eddy-promoter geometry (model inputs)
whereas the distance metric given Equation 4.31 defines designs “near” the surrogate-
predicted optimal design as similarly performing designs. The prediction neighborhood is

then defined as that region R, of size o, that minimizes
Ta, = mg}‘)T(Z Ac(pm- f)?n) (4.53)

With the prediction neighborhood defined as above, Monte-Carlo sampling is used to em-
pirically measure the neighborhood and acceptance-rejection techniques are used to obtain
a candidate for each design.

For Design 1. the candidate design input vector is drawn according to the density in
Equation 4.36 is P! = (0.2256.,0.4976.0.8211. 1.0000) and the corresponding surrogate per-
formance metric values are (:)é = @(50(13,1").131) = —2.2192 and \ilé = xp(fg(ﬁl)f)}n) =
12.6431. The predictability statement for the candidate design point reads: With confidence
of at least 75%. the truth performance metric bounds for the candidate design are bounded
by

—2.3745 < ©(6L (P}). P!) < —2.1050. (4.54)
12.4085 < U(yI (P1). PL)) < 12.7946. (4.55)

For Design 2, the candidate design input vector is pP? = (0.7928,0.3888.0.6837,0.0000)
and the corresponding surrogate performance metric values are éﬁ = @(%(ﬁ?n).ﬁz) =
—1.6766 and \ig = \P(%(f’g), 13?,1) = 0.4762. The predictability statement for the candidate

point for Design 2 reads: With confidence of at least 75%. the truth performance metric

bounds for the candidate design are bounded by
-2.3372 < ©(67 (P2)), P?) < ~1.1601. (4.56)

8.4716 < U(yT(P?),P2,) < 9.8613, (1.57)

The two design points and candidate surrogate performance metric pairs. and the pre-
dictability boxes are plotted in the surrogate performance metric plane in Figure 4-4. The
predictability boxes show graphically where the truth performance of the candidate design

(shown as an open circle) will lie with the associated 75% confidence. Comparing the re-
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Figure 4-4: Output plane plot of the two design point peformance pairs (e), candidate
design performance pairs (o), and the predictability boxes for the candidate designs.

sults in Figure 4-4 with the proximal region analysis results plotted in Figure 4-3 show
that the predictability boxes for the candidate designs are sharper than for the proximal
region. However. although both analyses indicate that the surrogates can discriminate be-
tween the designs based on the pumping power metric. neither can do so in terms of the
temperature performance metric. This further reinforces the conclusion that the surrogates
are not performing adequately to select designs based solely on the surrogate predictions.
The geometry for each of the candidate designs is plotted in Figure 4-5 and these can be

compared to the surrogate-predicted optimal designs shown in Figure 4-2.

4.4.3 Design Optimality

In earlier work [77, 78, 79], optimality estimates were obtained for surrogate—predicted
optimizers in the neighborhood P; that relied on the assumption of quasi-convexity of
the truth response in the region P; . The resulting optimality bounds, however, are often
times too large to be of use. Another approach to the optimality analysis is to estimate
the effort required to improve upon the surrogate-predicted design. The procedure is to
develop estimates as to the amount of improvement in each metric that could be realized by
randomly drawing additional simulation points according to the probability density function
used for the validation step. It is again assumed that lower values of the two performance

metrics are preferred.
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Figure 4-3: Eddy-promoter candidate design configurations for each of the surrogate-
predicted optimal designs.

Given a surrogate predicted optimizer p* with associated surrogate performance metric
values ®F = ®(d1(P)- 2(Pr)-B7) and 5 = @a(d1(B},). @2(Pin)- P*). the extent that
a surrogate-predicted. optimal design. p*. can be expected to be improved by randomly
selecting design points. and evaluating the truth performance metric values for each. is
bounded. For the analysis of this section. it is assumed that. because lower values of the
performance metrics correspond to preferred designs. a lower value in at least one metric
without an increase in the second. represents an improved design. This assumption has been
shown. in Section 2.4.2. to be consistent with a wide class of multiobjective optimization

formulations.

First, an unbounded set of points in the surrogate, performance-metric plane is defined

as

= {s€ R |s; < B1(¢1(BLy). $2(Bl)- P*). 52 < B2(d1(Pn)- 62(B})- B} (4:38)

which is the set of all performance metric pairs to the left. and below. the surrogate-
predicted optimal point performance. As stated in the preceding paragraph. input points
with performance metric pairs in A™ can arguably be called better than p*. A second set

of points in the surrogate. performance-metric space is defined as

AP = {se R?|3p €, 21 € 2P, e 25 s
(pl(¢l(prn)~¢2(pm)‘p) < s ¢’2(¢1 (pm) (E;(pm) ’) < S‘.’.}' (4‘39)
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Figure 1-6: Surrogate performance metric plane plot showing the surrogate predicted opti-
mizer performance (s). the expanded optimality set A°P* (light shade), the uncharacterized
optimality set .A""" (dark shade). and boundary 9.4°Pt,

where the ranges Z*' and Z5*' are
Z?pt = {Z t Vp'm S Q’m [&(p;n) - U‘GOL(p:n” <z< [le’(p;n) + DYgOL(plm)]} (460)

ZP = (2| VPl € Ao [02(P1) = Udos(Pla)] < 2 < [$a(Pln) + Udos (D))} (461)

The third region in the surrogate performance metric plane is then simply defined as 4%"h =
A*\ At The region A" is the set of possible performance metric values that improve
upon the surrogate-predicted design performance and correspond to input points in the
region of the design input space that is uncharacterized by the surrogate validation. A
schematic of the region A°P' (shaded) and .A""" in the surrogate performance metric plane
is given in Figure 4-6. In the figure, the surrogate performance metric response pair of the

surrogate predicted optimizer plotted as a solid dot.

Next. a sequence of N°P', independent. identically distributed. randomly selected inputs.
.. . ..P

; is drawn according to the probability density function p(pn); lsmt ~
p(Pm).7 = 1...., N°P' The optimality statement then follows that, the probability that at

ITlNop[ b
least one of the randomly selected design points will have truth performance values that lie
in A% is less than 1 — ;. The number of random input vectors drawn, N°P', is computed

as

1
NPt < N (— - 1) , (4.62)
€L

where the parameter ¢ €]0, 1] is set independently. The optimality result states that, with

a confidence of less than 1 — ¢;, N°P' additional truth evaluations at randomly selected
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points will produce a design with truth performance metric values better than A°P".

For the eddy-promoter design problem, the upper boundaries for Al A7, have been
plotted as dashed lines in Figure 4-7. The boundaries of A‘fpt and Agpt are plotted as thick
solid lines and the uncharacterized optimality regions, A" and AUreh are shown shaded.
Note that the regions A" and AY™" overlap in the lower left corner of the plot even
though the lightly shaded 44" supersedes AR in that region.

With the optimality regions evaluated. the optimality assessment follows directly. First,
for Design 1, if €1, is set to e, = 0.25, then according to 4.62, if an additional N°P' = 72
input points are drawn randomly. and the truth performance metrics for each evaluated.
then the probability that at least one of the randomly chosen inputs, ¢, has truth metric

output pair such that
(¥(¥5 (Prm,) P.). O(6] (P, ).By)) € AP, (4.63)

is less than 1—¢7, = 75%. Similarly. for Design 2. if an additional N°P' = 72 input points are
drawn randomly, and the truth performance metrics for each evaluated. then the probability

that at least one of the randomly chosen inputs. i. has truth metric output pair such that
(2] (Br,).P.). O] (Pu,). P)) € AP, (164)

is less than 1 — =, = 75%.

The optimality analysis provides an additional evaluation as to the quality of the sur-
rogates. For very accurate surrogates, which would in turn result in an extremely small
model prediction error U, the boundary on the regions APneh and A4nh would be very close
to the surrogate-predicted optimal performance pairs. This would suggest that even with a
great deal of computational effort, the performance of a given design can be improved only
slightly (and only at best with a 1 — £, certainty) and is likely not worthwhile. However.
the model prediction error for the eddy-promoter problem is fairly large and this is evident
by the large improvement that can be realized (the large distance between Ayneh and 4ynch
and the design point performance pairs) for the additional computational effort. The ad-
ditional effort, would likely be worthwhile for the eddy—promoter problem suggesting that

improvements in the surrogates are required.

4.5 Baseline Surrogate Summary

The primary drawback to the baseline surrogate approach is the difficult construction and
validation of the surrogate in high dimensional input spaces. This can be easily illustrated
by considering the uniform importance function p(p) and a neighborhood of p-measure

¢, in the input domain Q = [0, 1], The neighborhood will span at least si’” in one of
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Figure 4-7: Uncharacterized optimality regions shown shaded for each of the surrogate-
predicted designs (s).

the input directions which rapidly approaches one as M -+ x. The loss of localization
as M — > produces a corresponding loss in predictability through increased value of the
neighborhood radius as given in Equation 4.30.

In certain instances, the surrogate approach can be effectively applied to problems with
high dimensional input spaces. One such case occurs when the shape inputs are highly cor-
related. An example is the optimization of smooth body profiles in which highly oscillatory
geometries are not likely optimizers [55, 56, 57]. For cases in which the inputs are highly
correlated, the effective input dimension of the problem is reduced. The eddy-promoter
problem is a second instance in which the surrogates can be effectively applied to a prob-
lem with a high input dimension. By pursuing a Pareto formulation for the two-criteria
optimization problem, the effective dimension for the validation and predictability error
analysis is reduced from the number of inputs to one fewer than the number of critera: here
a single parameter. The surrogate-Pareto formulation has been applied previously [36]. In

Chapter 5, the surrogate-Pareto formulation is applied to the eddy-promoter problem.
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Chapter 5
Surrogate—Pareto Approach

In this chapter. the nonparametric-validated, surrogate-Pareto optimization framework is
presented. The basic structure of this chapter follows the presentation employed to describe
the baseline surrogate framework in Chapter 4. The identical Exact/Truth/Surrogate hier-
archy of solution approximations will be assumed.

In Chapter 4, the weaknesses of the baseline surrogate framework in terms of design
predictability was apparent for problems with more than ~several” inputs. In fact. even
for the eddy-promoter problem with only 3 modeled inputs. the surrogate construction is
quite difficult due to the complexity of the input-output relationship. Although pursuing a
surrogate-Pareto approach to the design optimization can not avoid the difficulties of sur-
rogate construction. it does dramatically improve the predictability of designs for problems
with many inputs and 2 or 3 performance metrics.

In the following sections, the steps of the surrogate-Parcto framework are presented. The
format for each chapter is to present the theory for a general, two output, two performance
metric problem and then to illustrate the techniques with the eddy-promoter problem which
is a specialized case of the general problem. Throughout the chapter, it is assumed that
lower values of the performance metrics are preferred although no such assumption is made
for the outputs. In the first section, the surrogate construction stage is presented. Second.
the validation stage of the framework is presented. Third, the surrogate-based design step

is described. Fourth, the a posteriori error analysis is described.

5.1 Surrogate Construction

Surrogate construction takes two stages. In the first stage. global surrogates are constructed
to approximate the truth input-output function over the model design space Q. The sur-
rogate models are %(pm) =~ Yo(pm) and é—Q(pm) =~ By(pm) and are constructed exactly as
they were for the baseline surrogate framework in Section 4.1. In the sccond stage of the

surrogate construction, the global model surrogates are used to form the surrogate perfor-
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mance metrics, which are then used to find the surrogate Pareto-optimal input manifold A

and output manifold £A. The construction stages are presented in the next two sections.

5.1.1 Global Surrogates

The global surrogate construction step is identical to that presented in Section 4.1. Given
M, modeled inputs and the associated input (design) vector p,, € Q,, C RM= that
lies in the model design space Q,,, two truth outputs (K = 2), ¢7 (pl,) : Qm — IR and
#%3(pl,) : Qm — IR, are considered. Surrogates for the truth outputs are constructed,
a{(p'm) ~ ¢7 (ply), &;(pfm) ~ ¢I'(p!,). that approximate the truth input-output function
as closely as possible. The surrogates can have any form. incorporate data from any source,
and in general, no limiting assumptions are made concerning construction or quality. The
validity of the results obtained later are not impacted by the surrogate approximation
quality, however the utility of the results will be.

The global, eddy-promoter surrogate models. %(pm) and %(pm), constructed in this
step of the surrogate-Pareto framework are identical to those constructed for the baseline
surrogate framework (Chapter 4). The surrogates are a radial basis function fit to N = 256
construction input-output pairs. The radial basis function is described in Appendix D.1. Of
the 256 construction points, 91 have been obtained by appealing to the truth simulation at
model input points selected based on an orthogonal array (Appendix D.2). The remaining
165 construction points are duplicate points in the design space Q,, that arise from the
mapping from geometric inputs Zgp to the normalized input vector p,, described in Section
2.5.3. The duplicate points correspond to input points for which p;,, = 0.1. Slices of the

surrogate surfaces are plotted in Figure 1-1.

5.1.2 Surrogate PO Manifolds

The goal of the design problem is find the design (or designs) that achieves lower val-
ues for the two performance metrics, ®1(¢7 (pl,), ¢3 (Phn), P') and ®2(¢7 (pl,). ¢L(Pl), P)-
Because the truth values of the outputs are typically very expensive to evaluate, the
global surrogates, (E(p’m) and %(p’m), constructed in the previous section are used to
form the surrogate performance metrics, ®,(p) = @1(&(p’m),<}>§(p’m),p’) : ¥ - R and
®,(p) = QQ(a(pin),%(p’m),p’) : ¥ — IR. Because the output surrogates are (perforce)
computationally inexpensive, the surrogate Pareto-optimal manifolds can be obtained to a
sufficient resolution within a reasonable amount of time.

To determine the surrogate Pareto-optimal input manifold E:‘, the scalarization proce-
dure described in Section 2.4.3 is used. With this approach, the multicriteria optimization
based problem on the performance metrics &)1(p) and ;I;g(p) is reduced to a series of scalar
problems parameterized by the scalarization parameter w € W = [0,1]. A min-max for-

mulation [22] for the scalarization has been used as it ensures that the full £+ is obtained.
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The parameterized. scalar optimization problem has the form

§(w) = arg min max(w®y(p). (1 - w)@2(p)). w € Wi, (5.1)
p
and is solved for a sufficiently resolved, discrete set Wy = {wy,...,wyro} C W. The

curve g(w), with duplicate points, and horizontal and vertical segments removed, is the
surrogate Pareto-optimal input manifold £A. For each value of w, the solution to Equation
5.1 requires a global optimization. If the computational cost of ®, or &, is even moderately

high. the total computational effort required to obtain £ would be prohibitive.

With the surrogate Pareto-optimal input manifold. £A, known, the surrogate Pareto-
optimal output manifold OA can be determined from the surrogate performance metric

functions. The surrogate Pareto-optimal output manifold is

A = (B, (EW)). B2(EOWV))).

—
wr
(3]

~—

The result from the above process is similar to the curves shown in Figure 2-3 but, because
the surrogates are only approximations of the truth outputs. there is no assurance that oA
and £A will correspond to dA and L. respectively. The validation and error analysis steps
of the surrogate Pareto framework presented in latter sections of this chapter address the

impact that the surrogate errors have on the results.

The surrogate performance metrics for the eddy-promoter problem are obtained by
substituting the surrogate output functions constructed in Section 5.1.1 in place of the

exact output functions in Equations 2.98 and 2.97. The surrogate metrics,

6(p) = O6o(pn)-p) = logio | 75m + folpm) ] (5.3)
& (p) = U(do(Pm)-p) = logig [Yo(Pm)Re™n] ] . (5.4)

are dependent on the full design vector p = (pm.pa) € @ = [0. 1]*=4. The range for the
analytic input. n, € [13.332,106.656]. is as stated in Section 2.6.1 and the value of 7, is
prescribed by the design input p, = psy € [0.1] and is

—_
(@]
Ut

~

ML = NLmin T p-l(anax - r]Lmin)'

The next step of the process is to define the surrogate, performance-metric achievable set

as

A={se R*|3pe st O(p) <s1,¥(p) < 52} (5.6)

and find 9A. the boundary of A not at infinity. with the min-max scalarization procedure

in Equation 5.1. The surrogate performance metrics are used and the sequence of scalar
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optimization problems that must be solved is

£(w) = arg min max(wO(p), (1 — w)¥(p)), w € Wy (5.
PEN

()]
-~1
—

where W, C W = [0,1]. Because the surrogates are (by design) trivial to evaluate, solv-

ing for £(W}) is a reasonable computational task. Once £(W},) is obtained through the

scalarization process, the surrogate PO output manifold is

8A = (B(E(Wh)), T(EW)R))). (5.8)

Intervals of [0, 1] that are not PO are assumed removed and W is appropriately rescaled so
that the full extent of W = [0,1] is PO.

To solve the optimization problem in Equation 5.7. a subspace searching, simplex opti-
mization package, SUBPLEX, has been used [61]. The SUBPLEX method is based on the
Nelder-Mead simplex algorithm [51], but reduces the searches to lower dimensional mani-
folds to more efficiently solve problems with high input dimensions. The primary reasons
for the using the SUBPLEX package so solve the scalar optimization problems its demon-
strated robustness, its availability at Netlib, and its ease of integration with the radial basis
function surrogate routines. Because the SUBPLEX algorithm converges upon local opti-
mizers. random restarts were used to ensure that a global optimal point was obtained for
each value of w. "~

The surrogate PO manifolds have been obtained by solving Equation 3.7 over a suffi-
ciently refined. discrete set Wy. The surrogate PO output manifold is plotted as a solid line
in Figure 3-1 and the corresponding PO input manifold is given in Figure 5-2 in four plots:
in each plot. one component of the input vector p has been plotted versus the scalarization
parameter w. An inner nested, bisection approach has been used to isolate points in W, for
which the PO input manifold is discontinuous. In total, Equation 5.7 has been solved for
NFPO =932 values of w to obtain sufficient data to reconstruct the PO manifolds accurately
with linear interpolation between points in Wy. In the presentation of the results, it is
assumed that W, = W to sufficient accuracy to ignore the discrepancies. Even with the
very inexpensive radial basis function surrogates, the solution to the scalarization problem
at 200 w-points, with 300 random restarts for each value of w. requires approximately 3.6
CPU hours on a Hewlett-Packard C-160 workstation.

The surrogate PO output manifold. (")74, for the eddy-promoter problem is plotted
in Figure 5-1 as a solid line. The corresponding curve for a plane Poiseuille, heat ex-
changer (Appendix A) is labeled AP and plotted in the figure as a dashed line. The
only input available for the plane-channel heat exchanger is n7'¥ and the range required

to achieve the same range of temperature performance metric as the eddy-promoter is
nPP = [24.546,507.849]. The third line (plotted with a dash-dot) in the Figure is the PO
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Figure 5-1: Surrogate- predicted. Pareto-optimal output manifolds for the eddy-promoter
heat exchanger. OA. the plane Poiseuille heat exchanger. d A7, and for the construction
points. 9A.

output manifold for the N = 256 construction points. dA. It is obtained by evaluating
the performance metrics for each construction-point. truth-output value over the range
nr € [13.332.106.656]. forming the construction achievable set. and then finding the points

that are PO.

The PO ou%ﬁiﬁ manifolds plotted in Figure 5-1 suggest that a considerable performance
improvement is realized for the eddy-promoter exchanger relative to the simple channel-
flow exchanger. This is evident by considering the required pumping power. 0. for each
exchanger for a given temperature performance value, ©. In all cases, to achieve a given heat
transfer performance, the plane-channel exchanger requires a higher pumping power. and
hence, is less efficient. The comparison between dA and 0 APP shows that the surrogates at
least predict better performance than obtained by simply selecting one of the construction
point configurations. The uncertainty in the accuracy of the output surrogates. however,
calls into question whether the eddy-promoter heat exchanger would actually perform better
than the plane-channel exchanger, and the full set of construction point configurations. in
practice. The surrogate validation and a posteriori error analysis steps will address this

question.
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Figure 5-2: Surrogate-predicted. Pareto-optimal input manifold plotted for each input
p € Q versus the scalarization parameter w.

5.2 Surrogate Validation

The validation step of the surrogate-Pareto framework requires two steps. First. the sur-
rogates are validated over the full input domain Q as was done in the validation step of the
baseline surrogate framework. The results of the global validation are used in the optimal-
ity analysis. Second. the surrogates are validated in the lower dimensional manifold of the
design space “near” the PO input manifold. The results of the second validation step are

used for predictability analyses of surrogate selected designs.

5.2.1 Global Validation

The global validation step for the surrogate Pareto framework is identical to the validation
step of the baseline surrogate framework. The output surrogates cE (pl,) and ?p}(p'm) are
validated over the model input domain Q,. The details of the global validation step are

given in Section 4.2 and are only briefly repeated here.

To begin, a sequence of N validation points, P,,,...,Pnpy, is randomly drawn accord-

ing to the probability density function p(pn) : ), = R. Pm; ~ p(pm). The truth outputs
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are evaluated at each validation input point and the validation sample set X' is formed

A = {(Pmlv ¢{(Pml)~ ¢§(Pml)): s (Pm;\'w ¢’{(Pm‘\')~ ¢§(Pm\))} (5-9)

The size of the validation sample set is exactly that given in Equation 4.5 and is

N = [ﬁ’fz—m} (5.10)

where [z] is the smallest integer that is greater than z.
The global model prediction error U is computed by finding the maximum scaled differ-
ence between the surrogate and the truth over the full set of validation input points. The

model prediction error is

U = max (5.11)

{t' va

(m (|¢{<Pmi> =~ 01(Prn)f 6 (Prms) = &(Pmln))
’ gol(Pmi) . gOQ(Plni) .

where §,, (ply) : @ = R and go,(p},) : @, = IR arc the two strictly positive. scaling
functions. Introducing the notion of the uncharacterized region T as defined in Equation

4.7, the following validation error statement can be made

ot
—
o

Pr(p,(T) <e1) 21— e (5.

The statement in 5.12 gives an assessment of the surrogate performance over the model
input domain /. It bounds, with a confidence of 1 — &7, the maximum scaled difference
between the surrogates and the truth over 1 — ¢, of the design space. The proof of the result
given in Equation 5.12 given the validation sampling theorem of 5.10 is given in Appendix
B.1.

The global validation step for the eddy-promoter problem follows exactly the validation
step in Section 4.2. The validation sample size has been set to N = 24 and the validation
input points have been selected according to a uniform probability density function o(pm) =
1. From the sampling theorem in Equation 5.10, €, = 0.0561 and <2 = 0.2500. The scaling
functions have been set to constant values gg(pm,) = 2.00 and g (pr,) = 1.00. The validation
sample set has been formed and the resulting model prediction error is U = 0.0968. This

result is then used in Section 5.4.3 for the optimality analysis.

5.2.2 Surrogate PO Design Validation

The goal of the surrogate PO validation step is to provide information that will be used for
predictability analyses of surrogate-predicted optimal designs. The strategy is similar to the
global validation described in section 5.2.1. but instead of validating over the entire model

design space Q,, the validation points are restricted to the vicinity of the surrogate PO
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Figure 5-3: A schematic the Pareto-optimal input manifold (solid line), the PO design
space Q,fll (shaded), and the model design space Q,," (dashed lines).

input manifold LA, As will be seen later, this restriction greatly improves the predictability
of the a posteriori error analysis results. The improved predictability translates directly
to error statements that are much more sharp. and hence, more meaningful and useful.
As was demonstrated in section 2.4.2. the strategy outlined here achieves the improved
predictability without losing design generality and flexibility.

For the general problem of validating the surrogate outputs. a(p;n) : Q. — IR and
é2(ph,) : Q. — IR. in the vicinity of the PO input manifold L4, a PO design space
QL' < @, is introduced. The PO design space Q%' is a finite-width (but narrow) “tube”
in the model design space ), that contains the surrogate PO input manifold LA A
schematic of lel is shown shaded in Figure 5-3 for a two-dimensional model design space
Q.. In the figure, the PO input manifold is plotted as a solid line and the boundaries of
¥, is shown as a dashed line.

An importance function, analogous to the importance function p(p,,) used in Section
5.2.1, is introduced pz(p)y,) Q,‘%’ — IR. The PO importance function serves as a probability
density function for the selection of validation points in Q%’. It is also used to introduce

the notion of the p-measure of a set R C Q%
wo(R) = [ pc(pin) dpip < 1 (5.13)

which is the weighted volume of R relative to the PO design space Qﬁ'; note up(Qﬁ') = 1.

Because of the complexity of the function that describes ZZ, it is often times not possible,
or practical, to attempt to define a particular density function, ps(p.,), explicitly. Instead.
pc(pr,) is defined implicitly through the procedure used to select random. validation input

oints P ~ pr(p},). This approach is straightforward to describe and easy to implement in
p m M p
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practice. First, a random scalarization parameter is introduced
W' ~ fi(w') (5.14)

distributed according to the probability density function fy#(w'). The scalarization param-
eter specifies the coordinate of a point along the PO input and output manifolds. It can be,
but is not restricted to, the scalarization parameter w used to obtain the PO manifolds in
Section 5.1.2. Another coordinate such as the one of the performance metric values along
the PO output manifold [36] may be used as well. Next, a uniformly distributed, unit vector
V' and a radius ry~ are introduced. The density function is that function, ps(py,), that

prescribes the distribution of the validation points
P, ~ pc(pn)- (5.15)

such that the random input points are given by

P, =&W)+r-V'. (5.16)
and the validation sample set is
Q% = {pl, € Q' | lIp) — Sl < ryv. V' e W' (5.17)
Although this implicit definition for ps(p.,) is difficult to express analytically. it is easy to
sample in practice.

With the probability density function pz(p),) defined as above. IV validation points are
drawn randomly according to P} ~ pc(p},),7 = 1.....N. The validation sample X£* set is

formed

X = {(Pm1, 61 (Pm1) @3 (Pm1))s- - (P, 81 (Prn). 63 (Pmn))}, Py ~ p(Pm)-
(5.18)
by appealing to the truth outputs at each of the N, input validation points. The size of

the sample set is given by the validation sampling theorem
In £2
Ne=|——— (5.19)

where [z] is the smallest integer that is greater than z.

The model prediction error is then computed as

B 16T (Pns) = 1P )l 61 (P i) = $2(Pomy)]
U‘:",‘%f‘i‘(‘“a"< 40Pmi)  90:(Pm) ))
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Where g, (P}) : le’ — R, and §,,(pl) : an, — IR, are strictly positive scaling func-

tions. The notion of the the uncharacterized region Y. is defined as

167 (Pl) — b1(Pln)] yas{(p:n)—qz(pinn) <U£}_ (5.21)

T, = € O, | max - ; - -
£ {p”‘ | ( G0, (P 30, (BL)

The model prediction error is the maximum. absolute difference between the truth and
surrogate outputs over the set of randomly drawn, validation input points Pp,;.i =1,..., N.
The uncharacterized region, T, is that subset of the PO model design space Qﬁl’ for which
the scaled surrogate error is greater than the model prediction error Uz. The validation
provides no information as to the location of the uncharacterized region nor does it provide
any insight as to the magnitude of the errors in that region.

For the eddy-promoter problem, the scalarization parameter w € [0,1] used to find
the PO manifolds has been used (after being appropriately cleaned up to remove duplicate
points and non-PO segments) to define the probability density function pz(pm). The
probability density for the randomly selected values of W ~ fyy-(w) is uniform. fy-(w) = 1.0.
The radius ry- in Equation 5.16 has been set to ;- = 0.01. The validation sample size N has
been set to Ny = 21 and. according to the sampling theorem in Equation 5.19. ¢, = 0.0639
and ¢, = 0.2500. The scaling functions have been set to g3 = 1.0 and g, = 1.0. The
validation sample set has been formed through appeals to the simulation at each validation
point and the model prediction error Uz has been computed and found to be Uz = 0.02506.

It is immediately obvious that the model prediction error found in this section is sig-
nificantly smaller than the global validation error computed in Section 5.2.1. The primary
reason for the improvement is that the PO input manifold corresponds (through good for-
tune) to regions in the model design space {1, for which the surrogates do a very good job
of approximating the truth. There is no reason to expect an improvement in general, and
in fact, the opposite would more likely be true. The optimization process has the tendency
to find the regions of the design space for which the surrogate approximations are the most
poor. An example of this would be regions in which the surrogates have large undershoots
that are not physically justified. The optimization process would seek these regions out
and the surrogates would falsely indicate that they are PO. Therefore, the reduced error
for the PO validation of this section is mostly attributable to good fortune and should not
be expected in practice. The burden to construct accurate surrogates over the entire model

design space 1,, remains.

5.3 Surrogate Based Design

The goal of the design problem is to achieve lower values for the two performance metrics
Oy = 01($1(P}r), b2(Pln). P) : ' = R and &p = 03(41(ply), é2(ply), p/) : ¥ = R. In
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most design problems of relevance however, the metrics represent competing goals and can
not be simultaneously reduced to a single. optimal point. The purpose for pursuing the
Pareto optimization approach has been to maintain the maximum amount of flexibility as
to how to competing metrics will be prioritized during the design stage. The Pareto-optimal
solutions were shown to satisfy a wide class of multicriteria optimization formulations in
Section 2.4.2. Even with the design space reduced from € to E;"I, the solution to most
problems of interest are still available and any of the formulations given in Section 2.4.2
apply. Furthermore, the design problem, for the two performance metric case examined

here, is trivial to analyze as the Pareto analysis reduces it to a single tradeoff curve.

For the general, two performance metric problem. a constrained optimization problem
formulation is chosen. The optimal input points p?, ¢ € Q@ = (1.....Q). can be expressed

as

p? = arg _ min (@1 (a1(p))- Ba(p) ) Va€Q  (5:22)
{p'eQi®2(01(pm).02(Pm) P )< P2}

where 63 is the upper bound for the constraint metric. @g(&(p'm). %(p:n). p'). The opti-

mizers. p?. are casily obtained from the PO output manifold and the impact of a changing

. =q . .
constraint bound. ®,. is easily assessed.

For the eddy-promoter problem. the formulation that will be pursued will be to find
the Q@ designs with the best pressure performance and that achieve a prescribed tempera-
ture performance, 8%, g € Q@ = (1..... Q). The constrained optimization problem can be
expressed as

p? = arg min _ \D(‘%(pm).p). Vg e Q. (5.23)
{PEQ | ©(bo(pm).p)<8"}

where the different temperature performance bounds gq, € Q represent what. in practice
p p q p p

might. be evolving design goals or a tradeoff analysis.

Three values (Q = 3) of the temperature performance bgund in Equation 5.23 have been
chosen. For the first, the design goal is the find minimum temperature performance design
and. by inspection of the PO output manifold in Figure 5-1, §' = —2.2626. For the second
design. the temperature performance constraint has been relaxed and is 8* = —2.0239.
Finally, for the third design. §° = —1.7106. The optimal design point has been found
for each by finding the value of the scalarization parameter w that corresponds to each
design and then appealing to the PO input manifolds. The surrogate-predicted. optimal
input points are p! = (0.1008.0.2875,1.0000, 1.0000). p2 = (0.8080,0.7286.0.5448.0.1868).
and p3 = (0.8549,0.4729,0.6449,0.0000) and the corresponding surrogate. performance
metric pairs are TI(p') = (—2.2626.12.5137). [I(B%) = (—2.0239,10.6495). and [I(p*) =

(-1.7106,9.4801). The surrogate, performance metric pair at an input point p’ is defined
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(a) Design 1; p! = (0.1008,0.2875, 1.0000, 1.0000).

O

O

(b) Design 2: p2 = (0.8080. 0.7286.0.5448. 0.1868).

O O |

(c) Design 3; p? = (0.8549.0.4729.0.6449. 0.0000).

Figure 5-4: Eddy-promoter configurations of the surrogate-predicted. Pareto-optimal de-
signs used in the design study.

f(p) = (6(p")- ¥(p) = (OG0 (Pln).- P'). Uldo(P}n). P')) - (5.24)

The configuration for each of the surrogate-predicted optimal designs is plotted in Figure
5-4. From the results shown, it is evident that the topology-change capability does impact
the results. Depending on the preferences given to each performance metric, the optimal
geometry may consist of a single eddy-promoter inclusion as in Design 1, or two distinct
bodies as is the case for Designs 2 and 3. However, the results presented here are not
sufficient to assess whether the two-topology capability enables a significant improvement
in the optimal results. One way to determine the extent of the two-topology impact is to
pursue the Pareto analysis over the subset of the design space that corresponds to only
single-body geometries. By overlaying the single-body, restricted PO output manifold on
the PO output manifold plotted in Figure 5-1, the impact that the two-topology capability

has could be quickly assessed.
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5.4 A Posteriori Error Analysis

The a posteriori error analysis step of the surrogate-Pareto framework is identical to that
of the baseline framework described in Section 1.4. but for the predictability analyses,
the design space is restricted to narrow “tube” QF encompassing the surrogate PO input
manifold £A. Two error estimate formulations for the predictability analysis are examined
in this section: the proximal region analysis in which error bounds are valid for a finite
sized region near the surrogate-predicted optimizers and the proximal candidate analysis
in which the bounds are valid for a specific, randomly chosen design near the surrogate-
predicted optimizer. The optimality analysis proceeds very similarly to that of the the
baseline framework describe in Section 4.4.3 but is slightly modified to take into account
the full Pareto family of optimal designs.

The three analyses. proximal region. proximal candidate, and optimality are examined
in the following three sections. The format for each section is to present the theory for the
general. two output, two performance metric problem and then to give the corresponding

results for the two-body. eddy-promoter example.

5.4.1 Predictability — Proximal Region

To begin the predictability analysis. it is first assumed that a prediction region P; C Q<
has been defined that contains the surrogate-predicted optimizer p*. As was done for
the baseline analysis. the surrogate-predicted optimal input design vector p* has the form
P~ = (P.,.p.) where p;, is the vector of modeled inputs and p; is the vector of inputs for
which the performance metric response is known analytically. The prediction region can
similarly be expressed as PX = Py, x p;. The p-measure of the prediction region relative

to the PO design space Qi’ is computed as

Hoe (Prc,) =/ pL(Pm)dPm = <1. (5.25)

mezy

and, for the analysis to be valid, must be at least as large as £;. An example of how to
precisely define and measure the prediction neighborhood is given for the eddy-promoter
problem later in this section.

With the prediction neighborhood defined, probabilistic bounds on the truth output
values for inputs points that are in a finite-sized, subset of P, are developed. The resulting
predictability statement for the truth outputs follows: With probability of at least 1 — 3.
there will exist points p’ € I' C P, such that

[
]
[=2]

loy < &1 (Pln) < o, (

&3]
o
-

loy < 83 (Prm) < o, (
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where the truth-output bounds are based on the validation results and are

loy = {p,g;,ig“}[@ (Phn) = Ucdo, (Pin)]: (5.28)
o, = max | [91(Pn) + Ucdoy (o)l (5.29)
los = i |[62(pln) = Ucdo, (Pr)] (5.30)
ug, = {p,rgg;”}[&;(p:n) + Ucgoy (Pln))]: (5.31)

and U is the PO model prediction error computed from Equation 5.20. The bounds given
in Equations 5.28—5.31 can be computed entirely from the surrogate values, require no

additional truth calculations, and, therefore, are very inexpensive to evaluate.

Equations 5.26—5.31 effectively bound (within a confidence of 1 — ¢;) the surrogate
output error for points “near” the surrogate predicted optimizer in terms of the outputs. For
the bounds to be useful to the designer however, they need to apply to the truth performance
metrics. & (67 (pl,). 8% (pl,). P') and ©2(6T (p!,). #1 (pln)- P') The predictability statement
on the performance metrics reads: With probability of at least 1 — ;. there will exist a
region of non-zero measure [' C P? in the neighborhood of p* such that for all points
p el

Lo, < ©1(8] (1) 85 (P1n)-P') < Us, . (5.32)

Lo, < @2(¢7 (Pln). 1 (Pln)-P') < Us,. (5.33)

where the performance metric bounds are

Ly, = {p’epgl,zr?ci%;,:gezg} @ (z1,20.). (5.34)
Up, = {p’eP;l,glg)z(l.zgezg}(bl(zl’zz'p,)" (5.35)
L% - {p’EP;l,:I?ei%h:zEZg} @2(21,z2,p'), (5'36)
®: = {p'eP;, ,Zlgél,:zez;z} (21, 22.P'). (5.37)
and the output ranges, 2, and 2, are determined by Equations 5.28—5.31 and are
Zy={z|ls €£z< ug}, (5.38)
Zy= {2 |lp, < 2 S ugy). (5.39)

As was the case for the output bounds, the truth performance metric bounds given in
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Equations 5.34—35.37 require no additional truth calculations, and therefore, are inexpensive
to evaluate.

To define the prediction neighborhood P, precisely, the distance metric A(Pm1-Pm2)
used in Section 4.4.1 and given in Equation 4.31 has been used. With this definition for
the metric, the prediction neighborhood around the surrogate predicted optimal point p¥,

is then defined as that region R, of size €. that minimizes

= 5 5
ra = max A(Pm.Ph)- (5.40)

For the eddy promoter problem, the distance metric function has been defined based on the

outputs and is selected from the general form

Bo(Prm1) = O0(Pmo)| [¥o(Pm1) = %(pmz)\) (5.41)

A(Pm}-Pma) = max ( ho ‘ e

where hg and h,. are positive scalars. The pressure output scalar i, in Equation 5.41 has
been set sufficiently high so that the the neighborhood with minimum 6y sensitivity results.

The distance metric in this case reduces to

Ut
[Ty
o

A(pml-pmz) = }%(pml) - %(sz)f ( A

The output bounds in Equations 5.28—5.31 have been evaluated for each of the three
designs found in Section 5.3. The output bounds have then been used to evaluate the bound
quantities given in Equations 5.34—35.37. The resulting predictability statements for the
truth values of the performance metrics are given below. For Design 1. the statement reads:

With probability of at least 75%. there will exist points in Il c ’Psll such that for p’ € T'!
12.1440 < ¥ (¢! (p),).p') < 12.5841 (5.43)

—2.2816 < (8! (pl,).p') < —2.2359. (5.44)

For Design 2. the statement reads: With probability of at least 75%, there will exist points
in [2 C P2 such that for p' € ['?

10.5211 < (47 (p),). p’) < 10.7510, (5.45)

—-2.0631 < 0(8f(pl,).p') < —1.9880. (5.46)

Finally, for Design 3. the statement reads: With probability of at least 75%. there will exist

points in ' C P2, such that for p’ € rs
9.1360 < (vl (p,).p') < 9.6281, (5.47)
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Figure 5-5: Output plane plot of the three design point. surrogate-performance pairs,

[I(p*). ¢+ = 1.2.3 (), and the proximal region predictability boxes for each design.

—-1.8010 < ©(8% (p!,).p") < —1.6361. (5.48)

The predictability statements are valid for each design for the corresponding prediction
neighborhood.

The results given above have been plotted in the output plane in Figure 5-5. In the
figure, the surrogate performance metric values for each design are plotted as solid dots,
the bounds on the truth performance metrics are plotted as boxes, and the surrogate PO
output manifolds for the eddy-promoter and the plane-channel heat exchanger are shown as
solid and dashed lines , respectively. This figure can be compared to the baseline surrogate
framework results given in Figure 4-3 in which the boxes were significantly larger. The
bounds in Figure 5-5 are quite sharp with a clear discrimination between each of three
designs in terms of both the pressure and temperature performance metrics. Additionally,
the surrogate predictability boxes indicate the the surrogates are accurate enough to clearly
show (with 75% confidence) that the eddy-promoter heat exchanger performance is better
than the plane channel performance for all three designs.

Several factors contribute to the improvement in the predictability boxes plotted in
Figure 5-5 relative to the baseline framework results plotted in Figure 4-3. First. the model
prediction error was significantly lower for the Pareto validation over Q% than for the
global validation over Q,,. This is mostly good fortune, as PO input manifold happens to

lie in regions of 2, for which the output surrogates are accurate. The second reason is

110



due to the increased predictability that can be contributed to reducing the dimension of
the validation space from three (the three model inputs of the model design space Q2,,) to
just a single input (the scalarization parameter w). A third and final contributor to the
sharp predictability boxes is the input p, = 1, for which the performance metric responses
are known analytically. This effect was present in the baseline results as well, but was

overwhelmed by the very poor model validation error computed in Section 4.2.

5.4.2 Surrogate Predictability — Proximal Candidate

The predictability can be evaluated in terms of a randomly selected design point near the
surrogate-predicted optimizer in much the same manner as it is for proximal candidate
analysis of the baseline surrogate framework. The only difference is that the prediction
neighborhood for the Pareto framework analysis is a subset of one-dimensional PO design
space QF instead of the full design space Q. The remainder of the analysis is identical to

that presented in Section 4.4.2.

Following the presentation of Section 4.4.2. a prediction region P; C QL' of p-measure
o and that contains the surrogate-predicted optimal point p~ is defined in a manner similar
to that presented for the Proximal Region analysis of Section 5.4.1. A sample candidate
design 13,’,1 is selected randomly according to 13;‘” ~ pp.(pm). The density function pp, {(pm)
is defined as

1 * -
PP, (Pm) = =—o(Pm)| . VPm € ’Pma' (5.49)
g P

where P},

and the full neighborhood is the tensor product P; = {P;, x p;}. The full candidate

C Qﬁl, is the sub-manifold of P} that corresponds to the model design space

design vector P~ is given as P = (13,‘,1. p.) where p; is the vector of analytic inputs of the
surrogate predicted optimizer p* = (P;,. P3)-
A second small parameter, e., is introduced and is related to the p-measure of P, 0.
by
€c = m(l—(l—a)xt'l). (5.50)
where 0 < ¢..0 < 1, and N is the validation sample size given in Equation 5.19.

Now, given the two inputs to the analysis ¢. and o, and the model prediction error Ue.
the following statement can be made: With probability of at least 1 — <, the truth output

values for the input vector f’;‘n are bounded by

¢ < o7 (Pr) <ub,. (5.51)
15, < ¢T(P) < ub,. (5.52)
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where the bound values are

15, = ¢1(PL) = Ucds, (Ph). (5.53)
u§, = $1(Py) + Usds, (Pr,), (5.54)
15, = $2(PL) = Usdo, (Pr), (5.55)
uS, = G2(Pr) + Urgo, (Br). (5.56)

Equations 5.51—5.56 bound the truth value of the outputs for the candidate design point
P:..

The analysis can be extended to the performance metrics the same way as it has been
in the previous sections. The following predictability statement results: With probability

of at least 1 — ¢, the truth performance metric values at input point 13;‘,1 are bounded by

o~

5, < @S] (P). 0] (P},). P7) < U, (5.57)

Gy S Pa(8] (Ph). 67 (Pr).P*) < U, (5.38)

where the performance metric bounds are

fbl={' min__ ®y(z.2. P). (5.59)

Us, = max Di(z1.20.P7), (5.60)

{:p’:‘Zf.:gEZS}

b, = min D,y(z1.22. P7). (5.61)

{:IEZf.:gEZS}

Usg, = max Do(zy,22.P7). (5.62)

* {n€2f 062
and the ranges for the outputs, Zf and Z5. at the candidate design point are obtained from

Equations 5.53—5.56 and are
Zi={z{ <z<uf}, (5.63)

Z5={z|l5, <z<u,}. (5.64)

The proximal candidate analysis has been carried out for each of the three eddy-
promoter, heat exchanger design points selected in Section 5.3. Given the N, = 21 vali-
dation points used for the PO design validation, the values of . = 0.2500 and ¢ = 0.1795
are obtained from Equation 5.50. The distance metric used to define the neighborhood P;
is identical to the one used for the proximal region analysis Section 5.4.1 and is given in

Equation 5.42. Monte-Carlo sampling has been used to obtain the three candidate designs.
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. (a) Candidate Design 1: P! = (0.1004.0.3018,0.9950, 1.0000).

O

O

(b) Candidate Design 2: P? = (0.8062.0.7290. 0.5434. 0.1868).

O E

O

(c¢) Candidate Design 3: P3 = (0.8083.0.7211,0.5527. 0.000).

Figure 5-6: Eddy-promoter candidate configurations for the three surrogate-predicted.
Pareto-optimal designs used in the design study.

A single periodicity cell for each of the three candidate designs is given in Figure 5-6. The
input values for each of the candidate designs are P! = (0.1004.0.3018.0.9950, 1.0000).
P? = (0.8062.0.7290. 0.5434,0.1868). and P3 = (0.8083.0.7211, 0.5527. 0.000).

The candidate design geometries plotted in Figure 5-6 can be compared to the surrogate-
predicted optimal design geometries plotted in Figure 5-4. The candidate and surrogate-
predicted geometries for Design 1 are very similar, but do differ slightly. For Design 2. the
candidate and surrogate-predicted geometries are nearly identical. There is a significant
difference between the candidate and surrogate-predicted geometries for Design 3: in fact.
the candidate geometry for Design 3 is almost identical to Design 2. The reason for the
apparent preference toward geometries similar to the surrogate-predicted Design 2 is a
consequence of using the scalarization parameter to randomize the design space in the
pc(pl,) definition. Because the model inputs p, remain nearly constant over a large portion
of the range of w (see Figure 5-3), the effective p.(p},) corresponding to this range is very
large. The Design 2 input point falls into the single geometry range of w and Design 3 is
near the. Because p.(p),) is very large over this range. there is a very high probability that

randomly selecting points near Designs 2 and 3 will result in the candidate designs that we
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Figure 3-7: Output plane plot of the surrogate response for the three candidate design points
(o), the surrogate-predicted optimizers {+), and the proximal candidate predictability boxes
for each design.

obtained. Design 1 is also very close to the Design 2 geometry in Figure 5-3 but the less
likely outcome of selecting a candidate similar to Design 1 occurred.

The results of the analysis are given in terms of the predictability statements. For
Design 1, the candidate predictability analysis reads: With probability of at least 75%, the

truth performance bounds for the randomly drawn candidate design point P! are
-2.2805 < ©(6F (PL). Pl) < —2.2433. (5.65)

12.4214 < (47 (P'), P1) < 12.5549. (5.66)

The surrogate-predicted performance metric values for P! are O} = ©(6y(P2,),P?) =
—2.2616 and \ié = \I'({/;)(lsQ)f’?n) = 12.4933. The bounds are plotted as predictability
boxes in Figure 5-7, along with the surrogate performance pair outputs at the optimal
design point II(p!) = (6, ¥!) (plus sign) and for the candidate design II(P,) = (61, %)
(open dot).

For Design 2, the candidate predictability analysis reads: With probability of at least
75%, the truth performance bounds for the randomly drawn candidate design point P? are

—-2.0630 < ©(6F (P2)), P?) < —1.9881, (5.67)
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10.5215 < U(yT (P?), P2) < 10.7484. (5.68)

The surrogate-predicted performance metric values for P? are (:)3 = @((;g(f’?n),f’?) =
—2.0240 and \-172 = \Il(w (Pz) 13?,1) = 10.6496. These results are plotted in Figure 5-7 as
well.

Finally. for Design 3. the candidate predictability analysis result reads: With probability
of at least 75%. the truth performance bounds for the randomly drawn candidate design
point P3 are

~1.8307 < ©(8F(P?,), P?) < —1.7322. (5.69)

9.4284 < T(yl (P?).P3) < 9.6568. (5.70)

The surrogate-predicted performance metric values for P3 are (:)g = @(0:)(13?"),133) =
—1.7786 and \IJE = \IJ(%(IA"")I?'?") = 9.5574. The results are plotted in Figure 5-7.

5.4.3 Design Optimality

The global validation results provide the information necessary to estimate the amount of
effort required to improve a design beyond a computable amount determined by the the
global model prediction error. Based on the global model prediction error, U. the maximum
absolute output error over a 1 — ¢; fraction of the design space is known with a confidence
level 1 — £,. For the error at a point to be worse than the model prediction error. the point
in question would have to lie in the uncharacterized region Y. This notion is used in the
development of the optimality estimates below.

To find the effort required to improve upon a design, an expanded achievable set A° is

first introduced

A ={seR*|3p €Q'.z1 € Zp,,22 € Zp, s.t. 1(21.22.P ") < sy, ®a(z1.22.p') < -5'2}..
T

(5.71)
where
Zp, ={z€ R} <z<ug)} (5.72)
e ={z€R|IJ <z<ul, (5.73)
and
oy = {;nelg}(bx(pm) Ugo, (P)- (5.74)
ug, = max G1(pm) + Ugo(P). (5.75)
lo, = {;}yg}cba(pm) Ugo, (P'). (5.76)
ug, = max 6a(Pn) + Ugo (P): (5.77)
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The boundary of A° is denoted J.A° and is the expanded, Pareto-Optimal output manifold.
The interest is in how much effort it would take to find a point p’ that has performance

metric response not in A°. For a point p’ to exist such that

(©1(¢1(Pl)s #2(Pn)s P')s B2(B1(Pl)- $2(Pl), D)) & A°, (5.78)

it would have to lie in the uncharacterized region T.

The remainder of the analysis is similar to the baseline surrogate optimality analysis that
was presented in Section 4.4.3. A sequence of N°P', independent, identically distributed,
randomly selected inputs, f’ml, e ,f’m‘\_op‘, is drawn according to the probability density
function p(pm): ISml ~ p(Pm),i=1,..., N The optimality statement then follows that,
the probability that at least one of the randomly selected design points will have truth
performance values that lie in AY"" is less than 1 — ¢;. The number of random input

vectors drawn, N°P' is computed as

NOPL < N (i - l) . (5.79)
€L

where the parameter 7 €]0, 1] is set independently. The optimality result states that, with

a confidence of less than 1 — ¢, NoPt additional truth evaluations at randomly selected

points will produce a design better than the surrogate selected design. This is an estimate

of how much work would have to be expended to improve the design beyond a given amount.

The optimality analysis has been performed for the eddy-promoter problem. The PO
boundary of the expanded achievable set. A°, has been computed and is plotted as a dashed
line in Figure 5-8 and the surrogate PO output manifold is plotted as a solid line. The
parameter £ in Equation 5.79 is set to £; = 0.333 and, given the V = 24 validation points
that have been sampled in Section 5-8, the value for for N°P' is N°P' = 48. The optimality
statement follows: If an additional 48 input points are drawn randomly according to p(p),
f’mi ~ p(pm).7 = 1,...,48, the probability that at least one will have truth output pair
07 (P,) = (YT (P, ), Pi), 06 (Pr,), P;) ¢ A° is less than 66.7%.

What the optimality statement gives is an estimate to how much additional work (48
additional truth evaluations in this case) would be required to have at least one point that
achieves a performance better than A° with confidence of 1 — ¢;. For the eddy-promoter
example, the distance between 0.4 and 9.A4° is very large, suggesting that the potential
improvement is likely worth the additional computational effort. Secondarily, the wide gap
between 0.4 and JA° indicates that the output surrogates are not performing well enough
to provide meaningful results in terms of global optimality. Although the predictability
for the family of points selected by the Pareto optimization were acceptable according the
predictability analyses in Sections 5.4.1 and 5.4.2, the surrogate predicted PO family of

input points are not likely close (in performance) to the truth PO family.
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Figure 3-8: Output plane plot of optimality results for the surrogate Pareto framework.

For a final estimate of the surrogate performance. a hypothetical optimality analysis can
be performed to determine the magnitude of the global model predication error U that would
be necessary to achieve acceptable results. This has been performed for the eddy-promoter
problem by assuming a model prediction error Uy, that is lower than U = 0.0968 by a
factor of 5. Uy, = U/5 = 0.0968 = 0.0193. With the hypothetical model prediction error
Uhyp = 0.0193. the associated expanded achievable set A% has been defined as in Equation
5.71 and the expanded PO output manifold A},

this analysis are plotted in Figure 5-9. In Figure 3-9. true expanded PO output manifold.

o)
hyp
has been determined. The results from

DA°. is plotted as a dashed line, the hypothetical expanded PO output manifold. 9Aj, .
is plotted as a dashed-dotted line, and the surrogate PO output manifold OA is plotted

as a solid line. The very narrow gap between JA}, ~ and dA suggests that if the output

hyp
surrogates were improved by a factor of 3, the surrogate designs may be close enough to
the truth optimal designs to be acceptable.

The optimality analysis highlights how poorly the surrogates approximate the truth
outputs for the eddy-promoter. The construction point density should be sufficient to
approximate relatively smooth, well-behaved outputs: N = 256 translates roughly to 6
points in each of the 3 input directions for a full factorial design. However. the truth out-
puts are far from smooth for the eddy-promoter: in fact. for changes in the model input
variables. the outputs undergo subcritical bifurcations in which the output is. possibly. dis-

continuous. The discontinuities in the input-output function are very difficult to precisely
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Figure 5-9: Output plane plot of hypothetical optimality results (dotted line) for a factor of
five improvement in the model prediction error. the actual optimality bound {dashed line)
and the surrogate Pareto output manifold (solid line).

isolate in three input dimensions and produce large surrogate dispersions from the truth
output. No effort has been made in the global surrogate construction step to account for the
possibility of discontinuous outputs and the radial basis interpolation method exacerbates
the difficulties in these regions. A significant improvement in the surrogates (comparable
to what was assumed for the hypothetical analysis above) would likely require that discon-
tinuity locations be determined precisely, and accounted for separately. One approach is
use linear interpolation across the discontinuities as has been done for the lift coefficient

surrogate described in Section 6.4.1.
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Chapter 6
Experimental Airfoil Optimization

In this chapter. the application of the baseline surrogate framework to the experimental
optimization of a multielement airfoil is presented [54]. Although the application discussed
in this chapter is experimental and. therefore. has a zero-mean. measurement error associ-
ated with the outputs. the errors are assumed to be small and the outputs are treated as
noise-free. The surrogate framework has been extended to correctly handle noisy outputs
[78]. but these techniques are not used here.

The model has been developed. and the data generously provided. by Landman and
Britcher at Old Dominion University (ODU) [44. 45]. The motivation for the development
of the experimental model central to this chapter is the inherent difficulty in examining many
design points experimentally, The model is a three-element airfoil model with internally
embedded actuators (Figure 6-1). It has a nested chord of ¢ = 18 in., a span of b = 36
in.. and was designed for low-speed testing in several wind tunnels. including the NASA
Langley Research Center 2- by 1-foot tunnel and the ODU 3- by 4-foot low-speed facilities.
The main element chord is ¢main = 14.95 in.. and the flap and slat chords (expressed as a
percentage of the nested chord) are 30 and 14.5 percent, respectively. The flap and slat are
both deflected to 30° for all tests. The particular model used for the test reported here has
been developed for low Reynolds number testing to prove the experimental testing concepts.
However, the techniques that have been developed should be applicable to higher Reynolds
number testing as well.

The flap actuators are computer controlled and position the flap horizontally and ver-
tically (z and y. respectively). The model has been used in the ODU tunnel to compile
baseline values for lift coefficient C; versus flap gap and overhang at fixed angles of attack
and slat riggings. A first-order optimizer that uses a variant of the method of steepest
descent [24. 10] has been demonstrated in real time[43].

The capability of the computer controller to automatically take data at a prescribed set
of (z,y) trailing edge flap coordinates makes the airfoil model setup ideal for application

of the surrogate methods to an experimental problem. Additionally, the opportunity to
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Figure 6-1: Three-element model with internal flap actuators.

compare the surrogate results to those obtained with in on-line optimizer is unique to this
experimental test.

The baseline. nonparametric-validated surrogate framework presented in Chapter 4 is
applied to the airfoil optimization problem. The problem examined here is a single output
problem that is a function of only two inputs; the (z.y) coordinates of the trailing edge flap.
The baseline surrogate framework provides a practical means to incorporate experimental
data directly into the design optimization process. The off-line surrogate approach to
the design optimization has several advantages to on-line optimization [48. 79]. First. by
coustruction. surrogates are computationally inexpensive and are thus easily incorporated
into optimization procedures. Additionally, the low computational requirements create a
highly interactive and flexible design environment. which allows the designer to easily pursue
and examine multiple design points. Second, the number of appeals to the experiment or
simulation is known a priori. which ensures that the design can be accomplished without
exhausting available resources. Third the surrogate approach offers a natural means to
incorporate data from previous runs and/or other sources.

As regards disadvantages, the primary drawback is that in high dimensional design
spaces. surrogate construction is dificult and design localization is poor. The poor design
localization has been demonstrated for the baseline surrogate framework optimization of the
eddy-promoter heat exchanger in Chapter 4. A second limiting factor in the application of
the surrogate approach to experimental tests is the need to validate the surrogate at input
points chosen randomly in the design space. This capability. present in the experiment
central to this work, is not typical of most experimental tests. Finally, surrogate-based
optimization introduces a new source of error. The surrogate validation strategy and error
norms discussed in this paper seek to quantify the discrepancy between the surrogate and

the experiment by providing estimates to the system predictability and optimality.
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Figure 6-2: Definition of gap and overhang.

In this Chapter. the experimental model and testing methods used are briefly described
first. Second. the optimization problem that is central to the work is presented. Third.
the three steps steps of the baseline surrogate framework (i.e.. construction/validation.
surrogate-based optimization, and a posteriori error analysis) are presented. the inputs
to the framework are summarized. and an overview of the more sophisticated surrogate
algorithms is provided. Finally. sample results obtained from the surrogate framework for
output maximization and multiple-target designs are presented. and a comparison between

the surrogate approach and direct insertion results reported previously[43] is provided.

6.1 Experimental Testing Methods

An important practical problem encountered in wind-tunnel testing of multielement airfoils
is the need to test a range of configurations to ensure that the optimum is selected. Un-
fortunately, this testing can be prohibitively time consuming if one considers all possible
variables. such as flap position and deflection. slat position and deflection. overall angle
of attack. and Reynolds number. For example, a range of flap locations and orientations
relative to the main element is typically tested. In a cryogenic or presSﬁrized facility, model
geometry changes necessitate large delays in testing. These delavs often result in investi-
gators choosing a sparse test matrix and an optimum that is based on only a few points.
The ability to move the flap under computer control provides a unique opportunity to ex-
plore the entire range of useful gap and overhang values (Figure 6-2). Two typical pressure
distributions are shown in Figure 6-3, where the ordinate is the pressure coeflicient C}, and
the abscissa is distance from the leading edge expressed as a percent of the nested chord.
The data for Figure 6-3(a) represents a point near the peak C) for this configuration. and
the plot in Figure 6-3(b) indicates full separation over the flap.

In this experiment (performed by Landman and Britcher). the flap actuators. tunnel flow

setting, and data acquisition were controlled by a personal computer running Lab View (50}
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Figure 6-3: Experimental pressure data.

software. A program was written to allow any number of flap positions (in z and y) to
be sampled in any order. Wind tunnel power was controlled such that at the beginning
of each test the tunnel was restarted to avoid hysteresis effects [45]. The experimental
setup allowed the user to start the program. which at each location in turn automatically
measured the free-stream properties. sampled and recorded pressures around the centerling
of the model. and then calculated lift coefficients for the three-element airfoil. This process
required approximately 2 min. for each data point.

Test matrices were developed to survey flap positions. which ranged from approximately
0.8 - 3.5 percent (gap) and —0.4 - 3.4 percent {overhang) relative to the nested chord ¢. Two
angles of attack and two slat geometries were selected. An angle of attack o of 8° was chosen
as representative of an approach value. An a of 14° represented the limit of good-quality
two-dimensional flow for the ODU tunnel installation without tunnel wall boundary-layer
control. Two slat settings were chosen: a slat gap of 3.03 percent with an overhang of 2.46
percent and, for a smaller gap setting, a slat gap of 2.17 percent with a slat overhang of
—1.46 percent.

Positional accuracy was enhanced by requiring that the flap move to a reference point
above and behind the desired evaluation points (Tref > Teval, Yref > Yevar ) and then
back to the evaluation point. This eliminated any effect of backlash in the mechanical
drive-train. Two simple tests provided an indication of the inherent collective error due
to instrumentation and positioning. The first test involved two separate evaluation points;
the first point was in a region in which the flow was known to be fully attached to all
elements, and the second point was chosen in a region in which flow over the flap was fully
separated. The positioning program was used to move the flap between a reference point
and one of the evaluation points. The tunnel was restarted before every evaluation, and the
test was repeated 30 times in each case. The standard deviation of C; was found to be 0.004

for the separated case (0.16 percent) and 0.0118 for the attached case (.36 percent). For
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the second test. the program automatically sampled 29 points over the entire test region
for two different trials. The error in C; between the two runs averaged 0.71 percent with
a standard deviation of 0.75 percent. Although these tests are not exhaustive. they do
provide a benchmark for the C; error.

The turbulence intensity in the ODU tunnel was measured at less than 0.2 percent.
Flow quality over the model was monitored through 12 spanwise taps: 6 on the flap. and
6 on the main element. The flow was considered to be two-dimensional if the magnitude
of the spanwise nonuniformity was less than 5 percent of the total C, variation over the
entire model [49]. The data presented are uncorrected for boundary effects were taken at a

Reynolds Re number of 1 x 10°% based on the nested chord.

6.2 Optimization Problem

We begin by introducing a vector p of Al design inputs that lie in the input (or “design™)
domain © ¢ R, an input-output function S(p) : @ — IR, and an objective function
T(S(p).p. A) that characterizes our design goals. where X is a vector (or possibly scalar)
design parameter. For the work presented here. we set p = (z.y) (the z- and y-positions
of the flap) as the M = 2 inputs and restrict ourselves to an input domain € of reasonable
flap positions (described in more detail in the results section). The output of interest is the
lift coefficient. S(p) = Cy(r.y). The objective function is U(S(p). p. A) = |S(p) — Al which
has been referred to as the “discrimination”™ problem [62].

*

With the above terms defined. the minimizer p* = (z*,y*) to the exact optimization
problem is given by

* = argmin|S(p) — Al . 6.1
P axoglelgi (p) — Al (6.1)

In this formulation, the goal is to find that (or “an™) input vector p* = (z”.y") that achieves
as closely as possible the target lift coefficient value A. If the target lift coefficient A is set
sufficiently small (large), the formulation describes the output minimization (maximization)
problem, assuming that S(p) is bounded from below (above).

In the on-line approach. the experiment is invoked at every optimization step needed to
solve Equation (6.1). In the off-line approach. a surrogate. g(p) =~ S(p). for the experiment
is inserted into the optimization problem. The minimizer. p* = (Z*,y"). for the resulting.

surrogate-based. discrimination problem is then given by

p’ =arg glelng(p) — Al (6.2)

Here, the optimization proceeds exactly as it would for the on-line approach. but the lift
coefficient surrogate S(p) is invoked instead of the experiment. The surrogate problem that

corresponds to Equation (6.1), but with a general objective function ¥(S(p). p- A). has been
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reported by Yesilyurt [77] and Yesilyurt and Patera [79].

6.3 Surrogate Framework

The surrogate approach is broken into four steps. In the first stage, surrogate construction,
experimental results and/or prior information are used to construct the approximation,
g(p) ~ S(p). In the second step, surrogate validation, additional queries to the experiment
are used to validate the approximation. In the third step of the process, surrogate-based
optimization. solutions to surrogate optimization problem of Equation (6.2) are obtained.
In the fourth and final step, a posterior:i error analysis, the results of the validation are
used to analyze the consequences of the surrogate-for-simulation substitution. In the fol-
lowing subsections, the four steps of the baseline surrogate framework are presented and

the designer inputs to the framework are summarized.

6.3.1 Surrogate Construction

A lift coefficient surrogate S(p) = A(X) =~ S(p) is constructed using an approximation

scheme, A: (RY.R)N” — L>() and a construction sample set of input-output pairs
X = {(p;. Rp).i=1.....N} (6.3)

where Ry = Cj(r;.y;) is a realization of the experimentally measured lift coefficient for
the input flap position p; = (r;.y;). and N is the number of input-output pairs in the
construction sample. Although the general surrogate framework can handle noisy outputs
[78]. the noise contribution is neglected in the work presented here. Information from prior
studies, outside sources, or asymptotic behavior can also be incorporated into the approx-
imation process either through the definition of the approximation scheme or by including
the input-output pairs in the construction sample. As already stated, the surrogate frame-
work makes no assumptions in regard to the approximation technique and will accept,
and assess. any approximation A(X). Also, no restriction is placed on either N or the

distribution of the construction sample.

6.3.2 Surrogate Validation

To proceed with the description of the surrogate validation, and importance function p(p)
is first introduced. The importance function serves as a probability density function for the

selection of the validation points:
/Qp(p)dp =1 (6.4)
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The importance function also leads to the notion of a p-measure associated with p(p): for

any subdomain D C (,
4o(D) = [ plp)dp < 1. (6.5)

The p-measure of D is simply the weighted relative M-volume of D.

With the importance function p(p) defined, the validation sample set is formed
X% = (P, Rp,).i=1,....N"}. P, ~ p(p). (6.6)

where the input flap positions P; for the validation sample set arc drawn randomly according
to the probability density function p(p). In Equation (6.6), the ~ is as “is drawn according

to the probability density function.” The validation sample size N"* is given by

(6.7)
and ¢, and ¢» are the two uncertainty parameters described below. The model prediction
error U is computed from the validation sample set X" as
i Rp, - S(P))]
U = max LP_,__L:_% (6.8)
PiEtg  g(P))
where Xp? denotes the input points of the validation sample set and ¢(p) is a strictly

positive. error-scaling function described in more detail below.

The result of the construction/validation process is a probabilistic statement that de-
scribes the global quality of the surrogate g(p). The validation statement can be compactly

written as

Priuo(T) <e1} >1-ea. (6.9)

where Pr{event} is the “probability of event™ and T C € is the uncharacterized region

defined as
T ={peQlIStp) - S(p)| > Ug(p)} - (6.10)

The p-measure of the uncharacterized region is bounded by €. and the significance level of
the nonparametric statistical bound is 3. This result can be readily proved [77] with order

statistics [15] and is included in Appendix B.1.

For the simple case of §(p) = 1. Equation (6.9) states that. with probability greater
than or equal to 1 — &2, the surrogate error is bounded by U over a region of {2 of p-measure
greater than 1 —e;. Although this statement is suggestive, it gives neither an indication as

to the location of T nor the magnitude of the surrogate error in Y.
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6.3.3 Surrogate-Based Optimization

For the optimization problem, it is assume that the design is given Q target drag coefficient
values MY, ¢ € @ = {1,...,Q}. The goal of the optimization is to find the surrogate-

predicted flap positions that minimize the objective function.
P’ =p'(\) = argmin|S(p) - X|, Vg€ Q. (6.11)
P

The Q targets could represent different target lift coefficients during the flap deployment

schedule. or reflect the goals at different flight conditions (e.g.. take-off and landing).

6.3.4 A posteriori Error Analysis

To present the predictability results. the notion of a prediction neighborhood is first in-
troduced. A distance metric A(a,b) is defined for all (a.b) € Q x Q, which determines a
“distance” between two input points a and b. Then for any subdomain D C Q the radius
of D about a point p is defined as rp(p) = maxyep A(p. p’). The prediction neighborhood
located at point p with a p—measure of z. P(p. z), is that (or a) region D C Q of p-measure z
that minimizes rp(p). It is assumed that p lies inside P(p. z) and that P(p.z;) C P(p. 22)
for z; < z,. It can then be stated that. with probability greater than 1 — 2. for all g € Q.

regions I'? C P(p?.z,) of nonzero measure exist such that for all p’ € T'9.
S(p) = S(p7)] < e(p?). (6.12)

It now remains to bound e(p?) and make precise the extent of I'?,

Several bounds are possible on e(p?), which is denoted the predictability gap. The

predictability of each design can be bounded individually, to obtain

e(p?) < &(pl.e1), Vge Q. (6.13)

where, forpe Qand 0 < z < 1,
E(p.z) =Ug(p.z) +4(p. 2). (6.14)

and
.2) = max ¢(p'), 6.15
9(p. 2) p,Ep(p.z)g(p ), (6.15)
5(p,z) = max |S(p')—S(p)l. (6.16)
P'EP(p.z)

and U is the model prediction error from the validation step. Equation (6.8).

In addition to the joint estimates to the bound on e(p?), the the average error over

126



the Q target designs can be bounded. In particular, if it is assumed that the P(p7.<,) are

mutually disjoint, it can be shown that

Q Q
1 1
= q - q -
QqEZIe(P ) < gé%g quzlf(P Ba€1) | - (6.17)
where 8 = {81,...,8¢}. and
L
CL={feR-O<B<Li=1..LY 8=1}, (6.18)

=1

is the set of convex L-tuples. The “nonparametric average” is relevant to multiple-target
designs and represents the average, as opposed to the worst-case. estimate of the predictabil-
ity. Also, it is important to note that this predictability bound is calculated entirely in terms
of the inexpensive surrogate, S(p).

Finally. for a successful validation (i.e.. p,(T) < €1). the expectation of the size of I'? can
be bounded with respect to the validation sample joint probability density. The resulting

bound is. Vq € Q,

E(“"(rq) | 1,(T) <51> Cley (6.19)
£ Inga (1 —22)

The expression in Equation (6.19) bounds the average p-mneasure of the region I'?. with

respect to z;. for many validations.

Several advantages to bounding the errors only to within a finite uncertainty exist [57].
First. a sense of stability is obtained in that the estimates apply not only to a single point.
but to regions I'? of nonzero measure, assuring that many input points p? exist that satisfy
the error estimates. Second, for the multiple-target case the estimates become sharper
because there is only a single uncharacterized volume of measure ;. Equation (6.17) is the
upper bound for the distribution of the single €,-sized uncharacterized region among the Q
designs. This analysis results in a bound on the average error which is less than the average
of the individual predictability gap bounds £(p?¢;). Finally. because the predictability
analysis is not premised on any particular set of points. the designer has flexibility in the

choice of the metric A(a.b) (discussed further in the next section).

6.3.5 Summary of Surrogate Inputs

To summarize the surrogate framework description. and to highlight the flexibility of the
environment, we note that four inputs to the process are determined by the user. These are
listed below:

i. An importance function p(p) : 2 = R..

127



ii. An error-scaling function g(p) : @ = R..
iii. Two uncertainty parameters, £; and €, that satisfy 0 < e1.¢5 < 1.
iv. A pseudometric A(a,b).

Each input provides the designer with flexibility. and allows the designer’s experience to
impact and improve the final surrogate-predicted designs. Although poor choices for the
inputs do not influence the validity of the surrogate results, they greatly reduce the sharpness
of the results. A short description and explanation of each input follows.

The importance function p(p) reflects the designers prejudices in regard to the regions
of Q2 that are more likely to contain optimizers. In this context, p(p) is essentially a “prior”
on p*. To serve this purpose, p(p) is used as the probability density function in the random
selection of validation points in Equation (6.6). A judicious choice of p(p) (one that is large
in the regions of the final designs and small elsewhere) can siéniﬁcantly increase the sharp-
ness of the a posteriori error bounds. The increased sharpness is a consequence of much
better physical localization (in terms of input variable extent) of the prediction neighbor-
hood P(p*.¢1), which in turn reduces the surrogate sensitivity contribution J(p*.£;) to the
error bound in Equation (6.14).

The error-scaling function g(p) can be used by the designer to reduce the impact of
localized surrogate errors on the error bounds of the final design. Because the model
prediction error U in Equation (6.8) is global. a large value of g(p) in regions for which
the approximation is poor will result in a reduced value of the first term on the right-hand
side of Equation (6.14), provided that the final design does not lie in a region where g(p)
is large.

The uncertainty parameters €; and ¢; are related to the number of validation points
through Equation (6.7). This formula allows the precise budgeting of resources and ensures
that useful solutions can be obtained. In effect. Equations (6.7)-(6.10) describe what is
known in a continuous sense about a function based on discrete sampling. Analysis of
Equation (6.7) shows that, asymptotically for small ¢; and 5, N*® increases linearly as ¢,
decreases and only logarithmically as €, decreases. This relationship suggests that although
we can easily (in terms of validation sample size) increase our confidence in the results
(smaller ¢3), refining the localization of our results (through smaller ¢;) is much more
difficult. The localization has a direct impact on the final error analysis through d(p, ;)
in Equation (6.14). The relative difficulty in further refining the localization illustrates the
need to intelligently select p(p) and where appropriate, A(a.b). both of which can have
similar effects on the localization error.

The final input to the surrogate approach is the pseudometric A(a, b). Because A{a. b)
can be chosen post-validation. various metrics can be examined. and the most appropriate

selected. One possible trade-off is between design localization (in terms of input variable
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extent) and predictability in terms of 5(p. €,) in Equation (6.14). An example of the extreme

of this trade-off is the sensitivity minimizing metric
A(a.b) = |S(a) — S(b)] (6.20)

used for the single-point design study of the results section. This metric gives the lowest

possible d(p.e1).

6.4 Results

To demonstrate the surrogate framework, it has been applied to the experimental design
of multielement airfoils: specifically, the interest is in in the determination of the optimal
location for the trailing edge flap. based on the lift coefficient C; in low-speed. high-lift flight
regimes. The M = 2 design inputs to the problem p = (z.y) are the and y positions
of the flap. measured from the leading edge of the main airfoil element and normalized by
the main element chord ¢an = 14.95 in. The output of interest is C;. In addition. several
other configuration and flow condition parameters are fixed for the study. These parameters
are listed in Table 6.1 and are the Reynolds number Re. the airfoil angle of attack a. the
flap and slat deflection angles 1., and d,q¢. respectively. and the gap and overhang of the
slat (expressed as a percentage of the nested chord ¢ = 18.0 in.).

In this section. the method used for the surrogate construction and the validation re-
sults are reported first. Second. the single-point design problem of output maximization is
presented. Third. multiple-target design study is pursued that demonstrates the increased
sharpness of the nonparametric average error results. Finally, the results of on-line opti-

mization studies are given and are compared to the off-line, surrogate results.

6.4.1 Surrogate Construction/Validation

The construction sample set X consists of 119 input-output pairs that are uniformly
p p put p

spaced on a 17 x 7 grid. The (z.y) flap positions for the construction sample are plotted as

Re 1. 000. 0600
a 14°
5f[ap 30°
651(18 -30°
gapslat 2.17%
overhangsq | —1.46%

Table 6.1: Fixed design study parameters.
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Figure 6-4: Surrogate construction points and the input (“design™) domain.

circles in Figure 6-4. The input domain is divided into three subdomains, Q@ = 2, UQ,UQ;3,
based on the flow conditions over the flap. In the first subdomain Q, the flow over the
flap is attached, with the exception of the extreme aft positions in which some trailing-
edge separation may be present (and desirable). In this region. a radial basis function [18]
(described in Appendix D.1) serves as the approximation method. which yields the surrogate
Sl(p). In Q3. the flow over the flap is fully separated. and a second radial basis function
fit serves as the surrogate gg(p). In Q5. the resolution of the construction points is not
sufficient to determine the precise location of the separation line. In this region, a simple
linear triangulation between 5‘1(p) and gg(p) is used as the surrogate, 5’2(p). The error
function. §(p). is set to unity in € and 3, and §(p) = 50 in Q,. reflecting our uncertainty
in regard to the location of the separation line and, hence, the lack of confidence in the
quality of the surrogate in this region of the input space. A three-dimensional surface plot
of the surrogate is shown in Figure 6-5.

To validate the lift coeflicient surrogate, a set of random input points in Q is first
selected and the experiment is conducted at each of these points to form the validation
sample set A¥. The input points are confined to the design space Q described in the
previous paragraph and shown in Figure 6-4. Because the construction data were obtained
simultaneously with the validation data. there was no expectation in regard to those regions
of the input space that would be of most interest; thus, a uniform probability density
function p(p) was used for the selection of the validation points. The number of points
budgeted for the validation was N*® = 45 and, using the relationship in Equation (6.7).
€1 = 0.03 and €2 = 0.25 were set. If the form of the surrogate had been known prior to
taking the validation data. the design space could have been restricted to a more feasible

region and a importance function p(p) that would have concentrated validation points close
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Figure 6-3: Three-dimensional mesh plot of the lift coefficient surrogate S(p).

to potential designs could have been used. Both of these changes would have improved the
predictability results for the designs. The scaled model prediction error computed according
to Equation (6.8) is U = .0482. The maximun un-scaled error does in fact occur in Q, as
was presupposed and has a value of 0.4824. If g(p) = 1 had been used everywhere (instead
of as described above). the model prediction error would have been approximately one order
of magnitude larger. and would have overwhelmed the results.

The surrogate just described and the related validation results serve for all of the designs
discussed in the remainder of this paper. One primary advantage to using the surrogate
approach is the fact that no additional experimental data are required to bound the errors
of future designs that are pursued with the surrogate. This characteristic. combined with
the negligible computational time required for each surrogate evaluation. yields a highly

flexible design environment that does not sacrifice predictability.

6.4.2 Single-Point Design, Surrogate Maximization

For the first study. single-point design is pursued that maximizes the surrogate output.
The parameter X is set sufficiently large in Equation (6.2) and the resulting function is
minimized. To accomplish the optimization, an unconstrained quasi-Newton optimizer that
is included in the optimization toolbox of Matlab [47] is used. The resulting surrogate-
based optimizer is located at p* = (z*,y*) = (.997,.036), and the surrogate-predicted lift
coefficient value at this point is g(f)") = 3.388. The optimizer was started with an initial
guess at pg = (.987,.033) and required 44 surrogate evaluations to arrive at p~. Because
the surrogate is inexpensive to evaluate (and because there are only two inputs and the
results can be easily visualized graphically), it can be verified that a surrogate-predicted.

global maximum is indeed achieved. This verification is more difficult in a purely on-line
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Figure 6-6: The surrogate-predicted optimizer, p*, and the associated prediction neighbor-
hood, P(p*.¢1).

optimization setting without restarting the optimizer at multiple initial points pg until there
is sufficient confidence that a global maximum has been obtained.

Finally, the sensitivity minimizing metric A(a.b) = |6~'(a) - §(b)| in Equation (6.20)
is selected and the a posteriori error analysis for a single-point design is performed. The
prediction neighborhood P(p*.<;) is constructed around p* and the surrogate sensitivity
parameter J = .0328 is found. The optimal point p* and the associated prediction neigh-
borhood P(p*.¢;) are plotted in Figure 6-6. The resulting predictability statement reads as
follows: with confidence level greater than .75, a region I’ C P(p*.<,) of nonzero measure

exists such that for all p’ € T
S(p) = S(B")| < e(B”) . (6.:21)

where
e(p") <Ug(p~.c1) + 46 = .0810. (6.22)

The predictability is relatively good with respect to the surrogate-predicted maximum lift
coeflicient, but quite poor with respect to the range of lift coefficients of interest (i.e.,

corresponding to flap positions in ;).

6.4.3 Multiple-Target Designs

For the second design study. a multiple-target design is pursued. The motivation for such
a study might be an interest in examining the lift coefficient at more than one point of
the deployment of the flap. Specifically, the goal is to to obtain two target lift coefficients:
Al = 3.31 and A? = 3.25. Isocontours of the surrogate indicate that a locus of points in
exists for each target that exactly satisfies the design goals. One input point for each design
is arbitrarily selected: p! = (z{U,yl) = (.987,.033) and p? = (z@,y?) = (.979,.033).

Around each optimizer, a prediction neighborhood chosen from the family of ellipses that
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Figure 6-7: The surrogate-predicted optimizers and the associated prediction neighbor-
hoods (shaded).

have area equal to €, and centered at p? is constructed. The neighborhoods are oriented
such that they minimize surrogate sensitivity d(p?.e1). The optimizers and associated
prediction neighborhoods are plotted in Figure 6-7.

For each of the designs (¢ = 1.2). it can be stated with confidence level greater than

0.75 that a region I'7 C P(p?.2;) of nonzero measure exists such that for all p' eI

S(p?) ~ S(p')} < e(p?). (6.23)
where
e(p!) = U +d(p'.<1) = .0482 + .0198 = .0680. (6.24)
and
e(p?) = U + 6(p. ;) = .0482 + .0201 = .0683. (6.25)

The above bounds jointly hold on each design. A slightly sharper bound on the average

error of the two designs is obtained:
1 .
5le(p') +e(p)] < U +.0149 = 0631. (6.26)

The increased sharpness results from an analysis of the worst-case distribution of the unchar-
acterized region between the two prediction neighborhoods. Because of the low sensitivity
of the surrogate in each of the prediction neighborhoods relative to model prediction error

U, the improvement is slight.

6.4.4 Comparison with Direct Insertion

Cases at identical flow conditions have not been examined with both on-line (the method
of steepest ascent) and off-line (the surrogate approach) optimization methods. However.

rough comparisons of the resource requirements are of presented and are of guarded use.
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The on-line results have been reported in an earlier paper by Landman and Britcher [45].
In that effort. they found the optimizer to be very robust (successful in 6 out of 6 attempts)
and insensitive to the initial guess. For each case, they started the optimizer at in initial flap
position with a low C; value and obtained a final value within approximately 0.7 percent
of the maximum Cj value in approximately 20 optimizer steps, requiring approximately 60
experimental data points (3 points per step). With the surrogate method, 119 points were
required to construct the surrogate and an additional 45 were used for the validation, for a
total of 164 experimental data points. For the maximization problem, the a posteriori error
bound was 2.4 percent of the maximum surrogate value.

While the surrogate approach seems to compare unfavorably to the on-line method,
several subtleties lie in its favor. First, for designs chosen with the validated surrogate in
the future (e.g., the multiple-target design examined in this paper). similar error bounds still
apply and do not require additional experimental data. In contrast. the on-line approach
would require additional experimental results. Second. a total of 60 evaluations to obtain
an optimal point with the on-line method can be deceptive: to be assured that the result is
indeed optimal, additional information is required. The additional information for the study
cited was in the form of contour plots of a matrix of data. If visualization is not possible,
a number of optimizer restarts would be required to be assured of a global optimal. Third,
in cases for which the objective function is less forgiving. restarts of the on-line optimizer
would be unavoidable. which would further increase the required experimental data to a level
surpassing that of the surrogate approach. Finally. the obvious difficulty in pursuing on-line
optimization is related to the ultimate application: if the intent is to incorporate the data
as a portion of a larger optimization study. no alternative is available other than to store
the experimental data for later use and extract with some form of an approximation. If one
is restricted to a purely experimental setting, then the ability to quickly, and automatically,

find optimal operating points with the on-line optimizer is highly advantageous.
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Chapter 7
Concluding Remarks

The work presented in this thesis represents several significant contributions. First. the
level -set based geometry description provides a unified means to describe a family of
shapes that encompasses multiple topologies. Second, several theoretical extensions to the
nonparametric-validated surrogate framework have been derived and demonstrated. Third.
the synergy that results from the marriage between the surrogate framework and a Pareto
formulation of the multicriteria design problem have been documented.

The level-set based geometry definition presented in Section 2.5 represents a way to
describe a family of shapes that encompasses multiple topologies and that is applicable
to surrogate-based optimization approaches. The shape description is consistent regard-
less of the topology of the geometry (single or two bodies) and requires no additional
logic for the different topologies. The critical characteristic of the method for its appli-
cation to surrogate-based optimization is that, as shown empirically in Section 2.5.4. the
input-output functions are continuous across the topology change. Continuity is required
if interpolatory surrogate models are to be readily fitted through a collection of input-
output points. The family of shapes defined by the level-set based geometry description
includes cylindrical eddy-promoter configurations that have been examined previously. al-
lowing improvements gained by a richer family of shapes to be identified. Additionally.
the method uses a function superposition technique to define the geometries. It therefore
can be extended in a straightforward manner by the superposition of additional functions
to define richer families of geometries with more complex single body configurations, and
configurations with more than two distinct bodies.

The surrogate framework has been extended in a number of ways. The formulation
given in the thesis is applicable to a general, two performance metric. two output design
problem. The performance metrics can be explicit functions of some or all of the inputs as
well as of both outputs. The input variables that enter into the performance metrics only
explicitly (i.e. the inputs that do not enter into the outputs) are handled independently from

the modeled inputs (the inputs that enter through the outputs) so that as much analytic
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information as possible is used. By validating the outputs instead of the performance
metrics, flexibility is afforded the designer in that the validated outputs can be used any
time in the future for other design problems using different performance metrics. If the
performance metrics are validated, the designer is restricted to those functions for any

future design studies.

A new formulation for the a posteriori error analysis, proximal candidates, has been
derived. Previously, the proximal region error bounds similar to those given in Sections
4.4.1 and 5.4.1 were used. The proximal region error analysis bounds the truth values
on points in a finite-sized subset of the prediction neighborhood. The proximal candidate
error analysis bounds presented in Sections 4.4.2 and 5.4.2 apply to a randomly drawn input
points selected from the prediction neighborhood according to the scaled validation sampling
density. While the proximal region analysis provides a sense of stability to the results (not
just one. but many designs near the surrogate predicted optimizer satisfy the bounds). the
proximal candidate analysis gives a probabilistic bound on the truth performance for an
actual design. If the designer determines the proximal candidate bounds to be satisfactory.
the design process can be considered a success. In general, the proximal candidate bounds

are likely to be sharper than those for the proximal region analysis.

Finally. by combining the surrogate optimization framework with a Pareto analysis for
a two-criteria design problem. several benefits are realized. First. the Pareto analysis pro-
vides a great deal of information to the designer as to trade-offs and the results that is gives
can be rapidly assessed. Little generality. in terms of applicability to other multicriteria
formulations. is lost as was demonstrated in Section 2.4.2. Second, a full Pareto analysis
is only possible under the best of circumstances. To be practical. the cost each evaluation
of the performance metrics must be trivial. This qualification almost never applies for the
truth (the simulation or the experiment) necessitating a surrogate approach. The combined
surrogate-Pareto framework takes advantage of the inexpensive surrogates by using them to
screen out uninteresting (non-Pareto-optimal) regions of the design space. The remaining
space of surrogate-predicted. Pareto-optimal designs is used for any future design studies.
Third, and finally, the Pareto analysis improves that predictability of the surrogate frame-
work, error analysis. The scalarization procedure reduced the effective dimension of the
design space from the number of inputs (M), to one less than the number of outputs. For
the two-criteria eddy-promoter problem, the surrogates are validated for the predictability
analysis over only a single dimension. This greatly increases the predictability of the results

that suffers rapidly with increasing input dimension as demonstrated in Section 4.5.

The primary weakness of the surrogate framework is that the sharpness of the validation
results suffers greatly as the input dimensionality increases. This weakness has been de-
scribed in Section 4.5. For problems in which there are several performance metrics and in

which there is a large number of inputs, it may be more practical to formulate the problem in
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a Pareto sense. The Pareto formulation reduces the effective dimension of the problem and.
provided there are only a few performance metrics, the predictability is greatly improved as
was shown in Chapter 5. The baseline surrogate framework has been shown in prior work
[77, 79] to be very efficient for problems with several inputs and a large number of outputs.
The surrogate-Pareto approach provides a strategy for approaching problems with a large
number of inputs and only a few outputs. Between the two surrogate frameworks, the only
problems that are completely out of the question are those with a large number of inputs

and a large number of outputs.
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Appendix A

Plane Channel Heat Exchanger

In this appendix. the solution to the plane Poiseuille problem is presented. The channel
problem can be solved exactly, and serves as a comparison to the eddy-promoter exchanger
results presented in Chapter 5. The plane-channel can also be interpreted in a Pareto sense
as a (admittedly trivial) trade-off problem with a single design variable n; = {T" The
geometry for the plane channel is shown in Figure A-1. The lower wall of the channel is at

y = —1 and the top wall at y = 1.

The nondimensional flow rate in the plane channel
1
o Q= [ e =0ty (A1)
e L. —1
will be enforced to Q@ = % With the flowrate fixed. the exact flow solution is
uPPz,y) = (1-47), (A.2)

vPP(z.y) =0. (A.3)
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Figure A-1: Plane-Channel Heat Exchanger Geometry.
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8PP (z,y) = > (y—2 - i) - (A4)

where the superscript ‘PP’ indicates the plane Poiseuille solution. The plane Poiseuille

solution is steady and also invariant in the z-direction. The pressure forcing term on the

right hand side of the z—momentum equation required to achieve the flowrate Q = 3 is
g
pp 2
= — A5
f Re (A-5)

With the exact solutions given above, the plane Poiseuille outputs, analogous to 6y(pm)
and ¥o(pm) for the eddy-promoter, can be obtained analytically. The temperature output

can be written as
05" =T = Tm. (A.6)

where T, is the wall temperature and T}, is the mixed mean temperature

T, Q/ V)PP (y)dy. (A7)

The over-bar in A.6 means to average spatially over the periodicity cell length [ = 6.666.

The channel flow result for the temperature output is

A
0 16 360 35 (4.8)
The pressure output ¢} is identically given by Equation A.5
2
PP
= —. A9
Yo Re (A.9)

The performance metrics can be formed by substituting the exact outputs in Equations
A.8 and A.9 into the performance metric expressions in Equation 2.97 and 2.98. The

resulting, exact performance metrics for the plane-channel heat exchanger are

1 1
PP PP

= 1 I
© (77[4) 0810 [RBPT +90 n

log [ 1 +261}
S0 RePr " 357

(A.10)

0PP(ny) = logy (47 Re’n}]
= log;, [QReQn%]. (A.11)

For the problems studied here, the Reynolds number has been fixed to Re = 250. The

only remaining independent variable for the heat exchanger is the inverse height parameter
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nr. In this case, the Pareto-optimal output manifold dAFP is identically the achievable
set APP. 1t is obtained by evaluating equations A.10 and A.1l for a range of n, € JV =
(7L min: Mmaz)- This has been done for 7z p;, = 20.0, 7L me, = 500.0 and the results are
plotted in Figure A-2. At the top of Figure A-2, the Pareto output curve with the pumping
power metric ¥¥P(n,) plotted versus the temperature performance metric OFF is given.
Directly below the Pareto curve is the inverse height parameter i, plotted versus err.

In Chapter5, the plane-channel heat exchanger is used as a reference case for evalu-
ation of the eddy-promoter heat exchanger performace. Included on the Pareto-output
plots presented for the eddy—promoter heat exhanger is the plane-channel Pareto curve.
This curve has been obtained by by solving Equation A.10 for n; over the range of tem-
perature peformance metric values achieved by the eddy-promoter heat echanger. This 5
result is the inverse height value required by the plane-channel exchanger to achieve the
given temperature performance which is then substituted into Equation A.11 to obtain the
plane-channel exchanger pressure metric value that corresponds to the same temperature

performance as the eddy-promoter heat exchanger.
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Figure A-2: Pareto-optimal output manifold (top) for the plane-channel exchanger and the
channel inverse height versus the exchanger temperature peformance (bottom).
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Appendix B

Surrogate Proofs

B.1 Baseline Surrogate Validation Proof

The relationship between the validation sample size theorem given in Equation 4.5 and the
resulting validation statement given in Equation 4.8 can be proved using order statistics
[15). The proof of this result has been given previously in {36. 37. 77] and is included here
for convenience. The proof is given for the most simple. single output function case. without
error scaling functions is given in detail first. Finally. the generalization to the two output.

scaled error analysis cases used throughout the thesis is given at the end of this appendix.

It is fist assumed that there is an input-output function S(p) : €& — IR and a cor-
responding surrogate g(p) : Q0 = IR to S(p). No assumptions are made as to the form.
smoothness. or continuity of either S(p) or S(p) and. although in practice it is preferred
that S’(p) approximate S(p) as well as possible. the results are valid regardless of the quality

of approximation. The model prediction error function £(p) : @ — IR is defined as
£(p) =1S(p) - S(p). (B.1)
A function Z(z) : [0.2c) — [0.1] is introduced and is defined as
Z(z) = p,({p € 2| E(p) > z}). (B2)

The function Z(z) gives the measure of the subset of the input domain €2 for which E(p) is
strictly greater than z € [0.oc). For situations in which there are regions of finite measure.
0, C Q. for which £(p) is constant, {£(p) = z..Yp € Q}. it is necessary to define the jump
in Z(z) as

lim(Z(ae — 9) = Z(z) = 1y(0). (B.3)
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Figure B-1: Plot of the measure function Z(z) versus the surrogate error level z.

The model prediction error U is computed as

U= max |S(P)- S(P,)| (B.4)
where the input points P, ..., Py are drawn randomly according to the probability density

function p(p) : @ —» R. P; ~ p(p). The random. uncharacterized region is defined as
T={peQ|&p) >U}. (B.5)

Next. a random variable Z € [0, 1] which is the measure of the random set T is introduced

and defined as
Z = pu,y(7T), (B.6)

and the goal is to determine the cumulative distribution function for Z, fz(z) = Pr{Z <z},

from which the desired validation statement will follow directly.

If a variable z, is introduced for z € [0, 1] and defined as

T, = min T, (B.7)
{ref0,2¢c)|Z(x)<z}

it follows that
Pr{Z(U) <z} = Pr{U > z.}. (B.8)

Introducing a set D C €2 defined as
D={peQjé(p) 2z}, (B.9)

144



then the measure of the set D, is given as

po(D) = inf Z(z) (B.10)
{z<z:}
and can be bounded as
no(D) 2 z. (B.11)

From the definition for the model prediction error, the following statement can be made

Pr{U>z} = Pr{3je(l,....N)| P, €D}
= 1-Pr(P,eQ\D,Vje(l.... N)}. (B.12)

By making use of the relationship that the validation points P, are i.i.d., the probability

that they will all lie outside of D can be evaluated as

(Pr{P, € Q\D})"

(o (N D)
(1= po(D)). (B.13)

Pr{P,e Q\D.Vj€(1.....N)}

From B.10. it is known that (1 — g,(D)) < (1 — z). which gives
Pr{P, € Q\D. Vj € (1...... Vi} < (1=2)". (B.14)

and the cumulative distribution function F.(z) can then be bounded by ﬁ’:(z) as

F.(2) 2 Fi(2). (B.13)
where
F(z)=1-(1-2)". (B.16)
For cases in which Z(z) is continuous. F.(z) = A:(z). Note that, even with the strict
inequality, Pr{Z < z} satisfies
Pr{Z < z} > Pr{F.(2)} (B.17)

although Pr{Z < z} > Pr{F:(z)} can be false for Z(r) discontinous.

Recognizing that £, can be substitued for z in Equation B.16 and that e2 =1 — F.(z2).

and the solving for the sample size V. the validation sampling theorem follows

(B.18)

N = [ ln&‘Q “

11’1(1 —51) '
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where [z] is the smallest integer that is greater than z.
The extension to the two-output analysis cases examined in the body of this thesis
is straighforward. By redefining the error function £(p) to be identical to the function

validated in Equation 4.6

161 (Prmi) = é1(Prmi)| 6] (Pri) = &(Pmm) , (B.19)

&(p) = max < 9o, (Prmi) 9o, (Pm:)

the remainder of the analysis follows exactly as has been outlined above.

B.2 Predictability Analysis: Proximal Region

The proof of the predictability results given in Section 4.4 is based on the validation result

in Equation 4.8. For a point p/, to exist such that at least one of the outputs bounds
lO] S (b{(plm) S Uy (B‘ZO)

lo‘l S (Pg(p;n) < Uy (B?l)

are not valid, the point would have to be in T. This follows from the result that if p], €
Q' \T. then 4.8 holds, and the bounds given in Equations 4.16—4.19 hold as well.

The prediction region P’ is selected by the designer. The worst case scenario in terms
of the error bounds is for the prediction to fully contain the uncharacterized region Y. If
this is the case, then the region I'" € P will exist given the strict inequality on the size
of T in Equation 4.8. This result highlights the necessity of having a prediction region P},
that is of at least p-measure ¢,.

The proof of the performance metric bounds in Equations 4.22—4.27 is similar. Because
the output have been shown to be correctly bounded by 4.16--1.21 for p}, € I'},,. then for
points p’ € I, the metric bounds will hold as well.

B.3 Predictability Analysis: Proximal Candidates

The proof of the proximal candidate predictability result begins by considering the the error
function £(p) : 2 — IR defined as

E(p) =|S(p) — S(p)|- (B.22)

The validation sample set is formed by selecting N points, Py.... Py. randomly according

to probability density function p(p). The validation sample set X2 is

X' = {(P;,S(P1)),..-.(Pn,S(Px)).}, P;~ p(p). (B.23)



and the model prediction error is computed as

U= max_ &(P,)= max IS(P;) — S(P;)|. (B.24)

Next, the random variable Z is introduced and is

2= [ op)dp (B.25)

where
Z={pecQ|E&(p) <U}. (B.26)

The cumulative distribution function for Z. F5(Z). is

F(z) =72V, (B.27)
which can be easilv shown by order statistics [15]. The complement to z, z = 1 —Z is

introduced and it follows that it has cumulative distribution function

The random variable z is the p-measure of the uncharacterized region Y. Next. consider
a prediction region P,, of p-measure o. The expected fraction of designs P, for which

E(p) < U can be bounded by

g —_
0> / (" z) fu(2) dz (B.29)
0 o
where f.(z) is the probability density function for z and is
dF. :
f:(z) = d“z(z) =N(Q1-z)" "L (B.30)

The integration in Equation B.29 gives the conditional expectation for the uncharacterized

region completely inside of the prediction neighborhood. Substituting B.30 into B.29 gives

a > /OU (1-—2) N(1-2)V"1dz (B.31)
= 1—;@[171)(1—(1—0)-\'*1). (B.32)

Finally, recognizing that a = 1 — ¢, the expression in Equation 4.37 and given in Section

4.4.2 is obtained )

— _ _ N+1
= gt (B.33)

¢
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Figure B-2: Schematic of the input domain §2. prediction region P,, and uncharacterized
region T which is contained completely inside of P,.

B.4 Optimality Analysis

For a sequence of identically distributed. randomly selected inputs 131 ..... f’j, is drawn

according to the probability density function p(p;,). The random variable
L = minj such that &,(P;) < ®1y;n, and &3(P,) < Somin, (B.34)

is introduced. It can then be shown that [36], for the validation sample size N, that

N
Pr{L>1} > ——. .
r{ >}‘N+l (B.35)
It follows that, for £, €]0, 1], that if m is set such that
1
EL
that the probability of drawing a sequence of random input vectors P,,....P, according
to p(pm) and finding a point such that both
¢1(¢1(§m1)7¢2(ﬁm1‘)7f’j) S (I)lmine (B37)
®2(¢1(Pm,): 62(Prm, ), Bj) < o, (B.38)
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is less than 1 — ¢7. The lower bounds on the performance metrics are given by

Pl min = min . ®(z1,22.p'), (B.39)
(P’ 21€ 2P 22 237"}

Domin = min ®(2y.20.D). (B.40)
(p'e 11 €277 20 257"}

where Z, and 2Z; are

ZP = (2| VDl € U [81(P1n) = U, (Pln)] < 2 < [61(P) + Udo, (PRI} (B41)

ZP = {2 |Vp, € V. [$2(Pn) = Udoy (P1n)] € 2 < [d2(Pn) + Udor (Pia)}} - (B42)
For a point p’ to have truth peformance metrics such that the lower bounds @), and
®9min in Equations B.37 and B.38 do not hold. the point must lie in Y. If p" € T, then the

output bounds
(61(Ph) = Ugoy (PL)] < 61(P) < [01(Pm) + Udo, (Pin)] (B.43)

[62(P'n) = Ul ()] < d2(ply) < [62(P) + Udo, (Pl)] (B.44)

embedded in Equations B.41 and B.42 will not hold. and the performance metrics evaluated
at p’ can satisfv Equations B.37 and B.38. Note that if the point p’ is in T. there is no
guarantee tliat the performance metrics will satisfy B.37 and B.38. only that the possibility

exists. and the confidence level 1 — £; represents an upper bound.

A random variable z = p,(T) is defined as the p-measure of the uncharacterized region

T. It follows that |
Pr{L>1) =/ Pr{L>1|z}dF>. (B.45)

0

It is assumed that the point p’ € R C T and that the measure of the subset R is given as
h(z) = pp(R) < z. The probability that of the [ randomly drawn points that none of them
lie in R is given by

Pr{P, ¢ R(z). j=1..... I} = (1-h(z)" (B.16)

which is then substituted into Equation B.45 to obtain

Pr{L>1} = /lPr{L>l|z}sz (B.A7)
0
= /1(1—h(z))1sz (B.48)
0
> /1(1—2)1(11?2 (B.49)
01 )
> /(l—z)[sz. (B.50)
0
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The step in B.49 follows from the relationship that ~A(z) < z, and B.50 uses the results given
in Equations B.15 and B.16. Finally, substituting Equation B.16 into Equation B.50 and

evaluating the integral gives

Pr{L>1} >

S~

1
0
N
. (B.52)

(1-2)!N(1 -2V, (B.51)
+1

At this point, all that is left is to recognize that Pr{L > [} = ¢; and to substitute into
Equation B.52 to get the expression in Equation B.36.
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Appendix C

Numerical Methods

C.1 Gaussian Quadrature

The general formula for the Gaussian quadrature used to evaluate the elemental matrices is
detailed below. To approximate the integral of a function g(x) : 0% — R over a triangular
element. Q% . the following quadrature rule is used

A4

o ot dx = AR S glx(e) )

=1

Oke . . . .
where A% is the area of the element. = is the quadrature weight at that point, and x(§,)
is the quadrature point position in terms of the barycentric coordinates §. A Gaussian
quadrature integration scheme that can exactly integrate a 5'"_order polynomial requires

N9 = 7 quadrature points. The weights w@; and weight-points &§; = (&1,,£2,-§3;), 1 =
1., N¢ are listed in Table C.1 [39].

@, §1; | &1 | &3

0.225 1/3 [1/3 | 1/3
0.1323941527 a b b
0.1323941527
0.1323941527
0.1259391805
0.1259391805
0.1259391805

EN B S, B S JUR NI N
a0 o o
a0 8 o
0 R o

Table C.1: Fifth-order, Gaussian quadrature points, N9 = 7: a = 0.0597158717, b =
0.4701420641, ¢ = 0.7974269853, d = 0.1012865073.
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Figure C-1: Uniform-in-time difference mesh

C.2 Variable Time-Step, 3“~Order Adams—Bashforth

C.2.1 Fixed Time-Step Schemes

The Adams-Bashforth difference schemes are a family of explicit, multipoint integration
methods [11, 27]. In general, a k'"-order Adams-Bashforth scheme requires & function

evaluations at time-steps n,n — 1,...,n — &k + 1. The general problem
u'(t) = f(u(t).t) (C.2)

will be central to the discussion of this section.

The uniform, finite difference grid upon which the derivation is based is given in Figure
C-1. To derive the 3*¢-order Adams-Bashforth scheme for fixed time-step. At. the general

form of the resulting scheme is assumed to be

Up+] = Un + At(B(]fn +Bifar + B1fn). (C3)

where the u,, = u(mAt), fm = f(u(mAt),mAt), and 8;. i = 0,...,2 are the unknown
coefficients that must be determined to yield a 3"9-order scheme. Next, each term is ex-
panded about time-step n with a Taylor series, noting that from Equation C.2 u = f’, and
u' = f”. The Taylor series are substituted into Equation C.3, and the expressions for the
coefficients are solved that eliminate 2"d-order and lower error terms. The result is the

familiar 3"-order, fixed At, Adams-Bashforth scheme [27].

At

75 (23fn = 16fa_1 +5fn). (C.4)

Unp+] = Up +

Because, the 3"d-order Adams-Bashforth scheme is fully explicit and has a very good
combination of accuracy and stability properties, it is an attractive choice to advance the
nonlinear convective part of the Navier-Stokes equations. The intersection of the region of

stability with the Imaginary axis is 0.723. For the pure convection equation u; = uu,, the
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Figure C-2: Variable time step size difference mesh
stability limit is thus given as
h
At < 0.723 ———. (C.5)

max (u)

The stability limit is known as the Courant condition.

C.2.2 Variable Time-Step Schemes

For problems in which the convective velocity varies significantly over time. a fixed time-
step scheme is impractical. A solver constrained by a fixed step would require that the user
be able to anticipate maximum convective velocity a priori so that the time-step could be
set at the beginning of the run according to C.5. Not ouly is it difficult to anticipate the
maximum convective velocity, for problems in which it varies significantly. such a restriction
greatly increases the required number of steps and hence. the required compurational time
to obtain a solution. For these reasons. a variable time-step size version of C.4 is derived.
In the following section. an Adams-Bashforth scheme consistent with the 274 _order time
advancement is derived.

To proceed. the non-uniform finite difference grid shown in Figure C-2 is considered.
Using the method of undetermined coefficients. the terms in Equation C.3 are first expanded

about time-step n with a Taylor scries:

2 3

Upo1 = Up + aul, + %u'r: + %u;{' + O(a?) (C.6)
! b2 n b'} " 4 e d
Un—1 =un—bun-+—?un— 5 Un + O(b%) (C.7)
fa=uy (C.8)

f o b "o b2 " b3 " 4
n-1 = Up = buy + Uy — FUp + O(b%) (C.9)

f L " c? " c3 1 1
n-2 = Up = CUp + Uy — ey + O(c) (C.10)

where. in the interest of brevity, a = At,. b = At,_;. and ¢ = At,_, + At,_>. If Equa-

tions C.6—C.10 are substituted into C.3. and like terms are collected. the following set of
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equations that must be satisfied to obtain a 3'4-order accurate scheme are obtained;

101 1 ][5 ] [ e]
a'Z

0 b —c||8|l=]%]. (C.11)
b2 C2 a3
0 — =— . a
L 2 2-.ﬁ2. L 6 A

The matrix Equation C.11 is solved for 3y, 5;, and (. Substituting for a. b, and ¢, and

simplifying gives the variable time-step size, 3*-order Adams-Bashforth scheme (28]

2
Un+] = Up T+ Z,Bifn—i (C-J-Q)
1=0
where,
4 = Aty [12At, 1 (Aty_) + Atya) + 6A8 (2 + At,_2) + 1AL (C.13)
° 7 12| Atn_1(Atn_1 + Atnr_a) e
Aty [6A1,(Atyoy + Atyn) + 4A82
ST | Aty 1Aty ' (C.14)
Aty [ 6At, At + 1A¢2
3, = n 15
o2 12 _Atn—'l(-’ﬁtn—l +Atn—2) (C D)

As expected. when At,_» = At,,_; = At, = At; the scheme 4n-Equation C.4 is recovered.

The derivation of the 3"-order Adams-Bashforth scheme consistent with the 2"-order.
backward difference, time advancement of the velocity is similar to the derivation just

described. In this case, the resulting scheme must satisfy the difference form
A1Upel + QUL — A UR—] = IBOfn + Blfn—l + 62fn—2- (CIG)

where

2A¢t, + At,_ o At, + At Aty
Atn(Atn + Dtn1) 2 At Aty 37 Atn_1(Atn + Dtny)

(C.17)

y

Again, the Taylor series substitution into Equation C.16 is made and solved for 3;,

i =0....,2 that eliminate all errors that are 27d_order and lower. The resulting coefficients
are
b = Aty [ 1288, 1Aty + Aty—) + 671, (248, -1 + Atn_3) + 4At2 (C.18)
° T 12 At 1 (Atn_y + Aty_o) P
Aty [6At(Atyoy + Atp_p) + 4A82
= 4 [ Y (C.19)
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Aty [ 6At,Atn_ + 4482
= _ C.20
b 12 | Aty_o(Dtaoy + Atn_d) (C.20)

For the fixed time-step case in which At,_» = At,_; = At, = At, the coefficients reduce

to
At, At, At,

Bo = — 51=—1§"7

=, (C.21)
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Appendix D

Surrogate Models

D.1 Radial Basis Function

We use a radial basis function model as a surrogate. Radial basis functions are a well
known class of fuctions used in a number of applications [18]. We begin the description of
the surrogate used by assuming that we want to construct a surrogate model valid in the
design space Q € IRM for the general function f(p) : @ — IR. f(p) ~ f(p). The radial
basis function surrogate has the general form

Neo

Zaz% "'Pm( ) (Dl)

where @;(r;(p)) is the radial basis function and Py, (p) is the polynomial of degree m—1. For

a d-dimension input space. we use the notation p = {p;..... pq} and pf° = {pfg.....p{%}

Given this notation. the radius 7;(p) is simply the Euclidean distance from construction

point ¢

34—

d
[Z pl’j—-pj } s 1= l,...,)\'co. (D2)

For the surrogate used in the work reported here, we have used the radial basis function
o(r) = r%m=Dlogr and have set m = 2. The coeflicients a; of the general form (D.1) are

determined from

Neo
S awpi(ri(pi)) + ZbJQJ pi) = f(pi), k=1....N%, (D.3)
; o
Neo
Y aiq;(p®) =0. j=1.... d+ 1. (D.4)
The polynomial contribution for m = 2 is q(p{°) = {1.p{9..... po}r.
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Appeals to the simulation provide f(pj"). The solution for the unknown coefficients

a={ay...,axc}T and b = {b,....bg.1}7 is the solution to the following matrix equation
A E a f

fBF RBF _ . (D.5)

where f = {f(p$°),...,(P%%.)}7 is the solution vector at the construction points. There is

a very real possibility that the matrix equation (D.5) could be ill-conditioned [18], but for
all of the models generated here for a modest number of construction points (on the order of

a couple of hundred), we have not experienced any difficulties with the required inversion.

D.2 Orthogonal Arrays

A critical consideration in approximate optimization approaches is how to best select con-
struction points from the input domain Q in order to extract as much information as possible
without having to sample at an inordinate number of points. The method used to select
points for the output surrogates constructed in Sections 4.1 and 5.1.1 is based on the work
of Bose [8. 9]. The methods have formulated and coded into C-routines by Owen [58], and
are part of a very useful package for generating experimental designs.

The array that has been generated for the eddy-promoter surrogate construction point
selection has £ = 3 columns. strength ¢t = 2. and g = 11 levels [58]. An orthogonal array of
strength ¢ is a matrix with n rows and A& columns such that for any n x ¢ sub-matrix. the ¢!
possible rows occur the same number of times. The strength & = 2 array with ¢ = 11 levels
has N°rth = ¢f = 121 rows (input points). The rows were permuted and the construction

points were selected from the N°** = 121, randomly permuted. orthogonal array points.
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