NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mechanical Design of High Lift Systems for High Aspect Ratio Swept WingsThe NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that higher lift is achieved with the deployed slat with no increase in angle of attack. The layouts demonstrate that these slat systems can be designed with no need for slave links, and an experimental test program is outlined to experimentally validate the lift characteristics of the shallow slat.
Document ID
19980021287
Acquisition Source
Ames Research Center
Document Type
Contractor Report (CR)
Authors
Rudolph, Peter K. C.
(PKCR, Inc. Seattle, WA United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1998
Subject Category
Aircraft Design, Testing And Performance
Report/Patent Number
NASA/CR-1998-196709
A-989497
NAS 1.26:196709
Funding Number(s)
CONTRACT_GRANT: NASA Order A-49736-D
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available