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NONDESTRUCTIVE EVALUATION USING A REDUCED ORDER COMPUTATIONAL
METHODOLOGY*

MICHELEL. JOYNERt, H.T. BANKS',BUZZWINCHESKI§,ANDWILLIAMP.WINFREE¶

Abstract. Thispaperuseseddycurrentbasedtechniquesandreducedordermodelingto explorethe
feasibilityof detectinga subsurfacedamagein structuressuchasair foilsandpipelines.To identifythe
geometryofa damage,anoptimizationalgorithmis employedwhichrequiressolvingtheforwardproblem
numeroustimes.Toimplementthesemethodsin apracticalsetting,theforwardalgorithmmustbesolved
withextremelyfastandaccuratesolutionmethods.Therefore,ourcomputationalmethodsarebasedon
thereducedorderKarhunen-LoeveorProperOrthogonalDecomposition(POD)techniques.Forproof-of-
concept,weimplementthemethodologyona2-Dproblemandfindthemethodsto beefficientandrobust
evenwithdatacontaining10%relativenoise.Furthermore,themethodsarefast;ourfindingssuggestwe
canreducethecomputationaltimeonaveragebyafactorof3000.

Key words, reducedordermodeling,nondestructiveevaluation,eddycurrentmethods

Subject classification. Applied &c Numerical Mathematics

1. Introduction and Problem Formulation. In the field of nondestructive evaluation, new and

improved techniques are constantly being sought to facilitate the detection of hidden corrosion and flaws in

structures such as air foils and pipelines. Many electromagnetic techniques and instruments already exist to

aid in the detection of hidden flaws and corrosion. Some of the devices and techniques in use today involve the

magneto-optic/eddy current imager [11, 28] in conjunction with eddy current imaging [12, 13], the self-nulling

eddy current probe [31] along with conformal mapping techniques [32], and the SQUID (Superconducting

Quantum Interference Device) through the use of either injected current methods or induced eddy current

methods [7, 9, 15, 25, 27, 30]. We attempt to contribute to these techniques already in use by decreasing

the computational time required to detect and explicitly characterize a damage in a material. In other

words, given data obtained from a measuring device, we seek to locate and parameterize the damage while

minimizing the amount of time required to complete this task. To this end, we formulate and develop an

appropriate inverse problem approach and present computational methods along with numerical results to

support the efficacy of our approach.

The proposed computational approach is based on approximation ideas from the Karhunen-Loeve or

Proper Orthogonal Decomposition (POD) reduced order methodology. Recently these techniques have been

successfully used in reduced order methodologies for feedback control design [1, 2, 8, 17, 20] as well as open
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loop control design [24]. Here we propose for the first time the use of such techniques in electromagnetic

based damage detection problems. Initial findings reported below are most encouraging.

The only other reference (to our knowledge) in which POD reduced order model techniques are used in

conjunction with inverse problems is [29] in which the authors seek to reconstruct distributed conductivities

from surface voltage measurements in the classical electrical impedence tomography problem.

1.1. Description of Problem. Depending upon the application, different measuring devices and tech-

niques are used in nondestructive evaluation. An advanced method of damage detection uses a device such

as the SQUID or self-nulling probe as the sensor for eddy current methods. One way in which the eddy

current method is implemented is by placing a thin conducting sheet carrying a uniform current above or

below the sample. The current within the sheet induces a magnetic field perpendicular to it that in turn

produces a current within the sample, called an eddy current. When a flaw is present within the sample,

the flaw disrupts the eddy current flow near the flaw and this disturbance is manifested in the magnetic

flux density detected by the measuring device. Using these measurements of the magnetic flux density, we

attempt to reconstruct the geometry and location of the flaw explicitly.

To test the feasibility of reconstructing the geometry of the damage, we consider a two-dimensional

problem in which the damage (which we shall refer to as a "crack") is rectangular in shape. In the two-

dimensional problem, we assume we have uniformity in the direction of the current flow in the conducting

sheet which we label the z direction, denoting the width of the sample. The x direction denotes the length of

the sample while the y direction denotes the thickness of the sample. To further simplify the test problem,

we disregard the boundary effects of the materials in the x direction (sample length) by assuming an infinite

sample and conducting sheet in that direction. If the conducting sheet and sample are not of infinite

extent, we have to take into account the discontinuities in the current flow at the boundaries. Because we

are considering materials of infinite extent, we will construct our forward problem by focusing on a small

"window". We will center this "window" such that the left boundary of the "window", at location x = 0,

is positioned in the center of the crack in the x direction, i.e., the crack is symmetric through the yz plane

at x = 0. Therefore, at both the left and right boundaries of the "window" we assume evenly symmetric

boundary conditions to account for the symmetry of the crack as well as the infinite extent of the sample

and conducting sheet in the x direction. A schematic of the resulting two-dimensional problem is depicted

in Fig. 1.1 where it is assumed that the sample (which is 20ram thick) is composed of aluminum and the

conducting sheet (which is O.lmm thick) is made up of copper and the crack is centered in the y direction

around the center of the sample (i.e., around y = -10ram).

Although certain simplifications are made in the two-dimensional case, the two-dimensional analysis is

relevant to special three-dimensional cases. In a "true" three-dimensional case, the sample will be of finite

length (finite in the x direction). However, if the crack is located "far enough" away from the boundaries

of the sample in the x direction, we can assume the boundary effects are not sufficiently significant to effect

the measurements taken by a SQUID (or similar device). Therefore, the infinite extent of the sample in the

test problem will fairly accurately portray the finite sample in the three dimensional case. Similarly, in the

two-dimensional test problem, we assume the sample along with the damage or crack to have an infinite

width. However, in the three-dimensional case, the crack will have a finite width. To account for this, we

assume that data will be taken by scanning along the length of the sample on a line fixed at a certain height

using a SQUID. If the line upon which we are scanning is fixed in the z direction (along the width of the

sample) so that the line is "far enough" away from the edges of the crack in the z direction (along the

width of the crack), we should still be able to use the two-dimensional analysis to determine the feasibility
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F_G. 1.1. 2-D Schematic of Problem

of identifying length, thickness and depth of the crack in the sample with SQUID data.

1.2. The Use of Phasors. As mentioned in the previous section, a conducting sheet (copper in our

example) carrying a uniform current is placed above the sample to induce eddy currents within the sample.

Without loss of generality, we assume the source current has the form

J8 = Acos(_t)k = ARe(ei_t)k.

This current produces a magnetic field H(x, y, t) described by Maxwell's equations. At the surface of the

sample, the magnetic field has the same time dependence as the source current,

_(x, y, t) = I:I(x, y)cos(_t).

However, as the magnetic field penetrates into the sample, a phase lag results due to the finite conductivity

of the sample (aluminum in our example). In other words, the magnetic field takes the form

H(x, y, t) = I=I(x, y)cos(wt + 0(x, y)),

where the term 0(x, y) takes into account the depth of penetration. Hence, I_I(x, y) is a vector field quantity

which keeps track of the magnitude and direction of H at each point in space while O(x, y) denotes the phase

shiR from the original cosine wave at the same point in space. Consequently, the quantities of interest are

I=I(x, y) and O(x, y). To keep track of these quantities, denoting the magnitude, direction, and phase lag, we

can use vector phasors.

A phasor [6, 26] is a complex quantity which completely defines the magnitude and phase shift for

H(x,y, t). Figure 1.2 illustrates how the magnitude and phase are defined through the complex number.

The magnitude is represented by the radius of the circle, and the phase is the angle which the complex

vector makes with the real axis. Thus, the vector phasor H and the explicit time dependent field H(x, y, t)

are related in the following way

(1.1) H(x, y, t) = Re(H(x, y)e i_t) = Im(H(x, y)e i(_t+_/2))
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in which all of the phase information and direction is captured in the complex vector phasor H. For this

reason, in the remainder of the paper we will assume no explicit time dependence in the fields examined,

but instead consider the fields to be complex vector phasors, denoted H, B, etc, and account for the time

dependence of the fields through phase shifts contained in the phasors.

1.3. Formulation of Forward Problem. Maxwell's equations are the basis of the derivation in the

forward problem. However, since we are expressing the various fields in terms of phasors which depend on

space coordinates but not explicitly on time, we want to express time-dependent Maxwell's equations in

terms of phasors. We first examine the explicit time-dependent Maxwell's equations. The usual system as

derived from first principles (e.g., Coulomb's law, the Lorentz transformation and relativity theory - see [10])

is written as

(1.2) V. B = 0,

(1.3) V. D = p,

-- 0--

(1.4) V × E = -_B,

and

(1.5) V×H=J+0t .

To examine the relationship between the explicit time-dependent Maxwell's equations and Maxwell's equa-

tions in terms of phasors, we examine the relationship in equation (1.1). Based upon this relationship, the

time derivative for H(x, y, t) (and similarly other fields) is given by

(1.6) _H(x,y,t)O-- = wRe(iH(x, y)e i_t) = wire(ill(x, y)e i(_t+Tr/2) ).

Substituting the appropriate form of equations (1.1) and (1.6) into equations (1.2) - (1.5), we obtain the

completely equivalent phasor form of Maxwell's equations

(1.7) V. B = 0,



(1.8) V. D -- p,

(1.9) V × E = -iwB,

and

(1.10) V × H = J + iwD.

Thus equations (1.7) - (1.10) hold for our entire "window", denoted ft.

We could further simplify equations (1.7) - (1.10) in the example under investigation by making some

observations. First of all, since our system is considered to be electrically neutral, the internal electric charge

density p equals zero. Secondly, by examining the conductivity a of aluminum and copper and by using

Ohm's law

J z o-E,

we can argue J _ 107E. On the other hand, the constitutive law

(1.11) D = cE,

indicates D _ 10-11E. We are using a frequency of 60Hz in our problem which yields an angular frequency

of approximately 3 × 102rad/sec, and thus wD _ 10-9E. Consequently, in the sample and conducting sheet

J >> wD which implies we could assume wD _ 0 in both the sample and conducting sheet in equation

(1.10). In other words, the term wD on the right side of equation (1.10) is only significant in the air. Thus

the form of Maxwell's equations we will use in the computations are given by

(1.12) V. B = 0,

(1.13) V. D = 0,

(1.14) V × E = -iwB,

and

(1.15) V × H = J + iwD

where, as noted above, the term iwD is only significant in the air. However, we shall retain this term in all

of _ since this is done in the commercial simulator (AnsoR) that we employ below.

Based upon equation (1.12) and vector null identities, we can represent B as the curl of a vector

potential A, B = V × A, where A is referred to as the magnetic vector potential. The forward problem will

be formulated in terms of this magnetic vector potential from which we can derive both the magnetic field

H and magnetic flux density B. Accordingly, we want to combine Maxwell's equations to obtain equations

in conjunction with boundary conditions which completely determine the behavior of the magnetic vector

potential A in _ defined by

= {(x,y,z) E R 3 : Omm < x < 50mm,-35mm < y < 35ram}.



UsingtheidentityB = V x A inequation(1.14),wehave

VxE=-iw(VxA) or Vx (E+iwA)=0.

Againif oneusesvectornull identities,thecurlof E + iwA being zero implies E + iwA can be written as

the gradient of a scalar potential, denoted by ¢. As a result,

(1.16) E = -iwA - V¢.

Finally, we can use equations (1.15) and (1.16) in conjunction with Ohm's law, the constitutive law given

by (1.11) and the constitutive law H = 1B , to obtain

(1.17) Vx (1VxA) =(7(-iwA-V¢)+iwe(-iwA-V¢) Vx, yE_.

In the above equality, the right side represents the total current density J which is made up of the source

current density, eddy current density and displacement current density. The source current density Js is due

to differences in electric potential; therefore, Js is represented by the term -aVe. The term -iwaA repre-

sents the eddy current density, Je, produced due to a time-varying magnetic field. Finally, the displacement

current density, Jd, due to time-varying electric fields is given by the term iwe(-iwA - V¢).

Since equation (1.17) contains two unknowns, A and ¢, we need an additional equation to uniquely

determine solutions of the system. In the literature [6, pp. 327-328],[14, pp.219-221] a "gauge" is commonly

chosen which allows one to uniquely determine both A and ¢. In time-varying problems a gauge satisfying

the Lorentz condition

(1.18) V. A + #¢_ = 0,

is most often imposed. However, based upon the geometry in our test problem, V • A can be seen to be

zero. This follows since the only nonzero component of A is A3, the component of A in the z direction (the

direction of the current density J). Therefore, V. A = _ = 0 since we have uniformity in the z direction.

Indeed, this is the Coulomb gauge [14, pp. 221-222] and with this we only need impose an initial condition

or an equivalent integral constraint. For this we take the relationship

(1.19) I = f J. nda = f (a(-iwA - V¢) + iw¢(-iwA - V¢)). nda
J_ C8 Jc8

between the total current I flowing in the conducting sheet (cs) and the total current density J within

the conducting sheet. This is the second equation used in the software package Ansoft Maxwell 2D Field

Simulator which we use in our computational efforts. Therefore, we have two coupled equations (1.17)

and (1.19) in which the magnetic vector potential A can be uniquely determined if appropriate boundary

conditions on A are specified. We remark that the imposition of a gauge often decouples the equations for

the potentials A and ¢ [14, p.220-222]. In our case, the equations (1.17) and (1.19) remain coupled even in

the presence of a Coulomb gauge.

Recall, from Section 1.1 that we assume evenly symmetric x boundaries due to the symmetry of the

crack and the infinite extent of the materials. In other words on the x boundaries, we assume the fields on

both sides of the boundary oscillate in the same direction. To account for the even symmetry, we assign

Neumann boundary conditions to these boundaries. In a similar manner, we assume the y boundaries are

"sufficiently far" away from the sample and scanning area to not effect the overall measurements. Indeed,



asonemovesfartherawayfromthesampleandconductingsheet,themagneticvectorpotentialA tends
to zero.Therefore,onthey boundaries, we assign Dirichlet boundary conditions to indicate the boundary

is "sufficiently far" away from the materials so that A _ 0. Therefore, the magnetic vector potential A is

determined according to

and

with

= a(-iwA - V¢) + iwe(-iwA - V¢) Vx, y • ft.

A(x,-35) = 0 = A(x, 35)

VA.nl(0,_ ) = 0 = VA.nl(50,_ ).

2. Computational Method. Our goal here is to characterize the geometry of a hidden, i.e., subsurface,

crack within a sample. To achieve this goal, we must develop fast and efficient forward computational

methods to be used possibly numerous times in the inverse problem formulated below. To this end, we

examine reduced order Karhunen-Loueve or Proper Orthogonal Decomposition (POD) techniques.

The POD technique is an attractive order reduction method, because basis elements are formed which

span a data set consisting of experimental or numerical simulations in an "optimal" way. Since the POD

basis is formed such that each basis captures important aspects of the data set, only a small number of

POD basis elements are needed in general to describe the solution [24]. Consequently, the POD method will

enable us to formulate a fast forward algorithm which still describes the solution accurately with only a few

basis elements.

2.1. The POD Method. We summarize the use of the POD method in the context of the least squares

inverse problem described in detail in the next section. For further details on the general POD method, we

refer the reader to [2, 4, 5, 8, 16, 18, 19, 20, 21, 22, 23, 24] and the extensive list of references contained

therein. The first step in forming the POD basis is to collect "snapshots" or solutions across time, space

or a varied parameter. In our case, we let q be the vector parameter characterizing physical properties

of the damage, for example, the length, thickness, depth, center, etc. of the damage. For an ensemble of

q N N_damages { J}j'_l, we obtain corresponding solutions, {A(qj)}j=l , of (1.17), for magnetic vector potentials
N_

which we call our "snapshots". Alternatively, from the solution set {A(qj)}j=l , we can obtain the magnetic

fluxes {B(qj)}____l and instead use these as our "snapshots" if we wish to treat magnetic fluxes as our

basic state variable. However, for our explanation, we will consider snapshots on A -- (0, 0, A3) and hence

our explanation will be for the scalar case. For the vector case, we would simply proceed componentwise

[2, 8, 24]. Without loss of generality, we will denote the vector A by its scalar nonzero component A, i.e.,

the A3 component of A.

As explained in [24], we seek basis elements of the form

N_

(2.1) _i = E Vi(j)A(qj)
j=l

where the coefficients Vi(j) are chosen such that each POD basis element _i, i = 1, 2, ..., Ns, maximizes

I(A(qj), _i)L:(_,e)12
j=l



subject to (¢i, ¢i>L2(a,C) = II¢ ll2= 1. it is thus readily seen using standard arguments that the coefficients

V/(j) are found by solving the eigenvalue problem

CV = AV

where the covariant matrix C is given by

[C]iy = _ (A(qi), A(qj))n2(a,C).

Since the matrix C is a Hermitian positive semi-definite matrix, it possesses a complete set of orthogonal

eigenvectors with corresponding nonnegative real eigenvalues. We order the eigenvalues along with their

corresponding eigenvectors such that the eigenvalues are in decreasing order,

A1 k A2 k "'" k AN_ k O.

We then normalize the eigenvectors corresponding to the rule

Then the i th POD basis element is defined by (2.1) where V/(j) represents the jth component of the i th

(I) N =eigenvector of C. It can also be shown that { i}i:l are orthonormal in L2(_,_) and span{¢i}N:l

span{A(qj)}_g 1. Indeed, given any A(qj), we have

Ns

A(qj) = E ak(qj)¢k
k=l

where

ak(qj) = (A(qj), Ck)L_(a,C).

We remark that if any of the Ai's are zero, say Ai = 0 for i = K+I, ..., Ns, then even though the corresponding

17/ are orthogonal (and of course linearly independent), we will have span{qN}K1 N_= 8part{_i}i= 1. Hence in

this case we will only generate K < N8 linearly independent POD basis elements. We refer the reader to a

discussion of the relation between POD basis element formation and the popular singular value decomposition

(SVD) methods in linear algebraic methods given in [20], for example.

To determine the reduced number, N, of POD basis elements required to accurately portray the ensemble
N_

of "snapshots" {A(qj)}j=l , we compute

N N_

j=l j=l

which represents the percentage of "energy" in 8pan{A(qj)}?ff___l that is captured in span{¢j}N_l . The

reduced basis consists of only the first N elements ¢i, i = 1, ..., N, where N is chosen according to the

percentage "energy" desired. From these N POD basis elements, we obtain the approximation A N (qj) for

A(qj) such that

N

A(qj) _ AN (qj) =_ E ak(qj)_2k.
k=l



q NTo approximate AN(q) where q is a given parameter not in the set { J}j'_l, we extend the approximation

formula to obtain

N

AN(q) = E ak(q)¢k
k=l

where ak (q) is evaluated through interpolation methods. Various interpolation methods may be chosen to

evaluate ak (q) such as linear interpolation, cubic interpolation, cubic spline interpolation or nearest neighbor

interpolation. In the one-dimensional parameter case presented numerically in this paper, we use a Matlab

interpolation function interpl in which the linear interpolation method is chosen. In other words, for q = q

(the scalar case)

_k(q) - _k(qj) + (_k(qj+l) - _k_qj_q-:--qj+ - j

where there exists j in {1, ..., N8 - 1} such that qj < q < qj+l.

Once we have the solution AN(q), we can recapture the explicit time dependence by referring to the

formula (1.1) in Section 1.2 given by

A(x, y, t) = Re(A(x, y)ei_t).

2.2. Inverse Problem. Using the methodology presented in the previous section for calculating the

magnetic vector potential A given specific crack parameters, we shall try to identify these crack parameters.

In identifying the geometry of a crack, we would like to estimate the length, thickness, center and depth of a

crack within a sample. To determine the feasibility of this task and to illustrate the use of the reduced model

methodology, we first try to estimate a single parameter, say length or thickness, while assuming the values

of the other parameters are known quantities. If this can be successfully done, further efforts at estimating

two or more parameters can be pursued in a similar manner.

2.2.1. Least Squares Criterion. In our trial runs, we assume we have access to various types of data,

such as the A field or the B field, in various points (xi,yi) of space, which we call the set _. We compare

and contrast the accuracy to which we can estimate the given parameter or parameters based upon the field,

i.e., A or B, to which we have access as well as what an appropriate choice of the points in • should be.

For example, we assume first that the unknown parameter set contains only values of the parameter

lengths l. That is, we want to estimate only the length of the crack assuming the thickness, center, and depth

are fixed quantities. Given an arbitrary length l, we can generate a solution AN(l), the computed solution

A N as described in Section 2.1. We can compare the computed solution to the experimental or simulated

data A(l*) for the exact parameter value l*. For the examples presented here, we choose the parameter

values for equations (1.17) and (1.19) given in Table 2.1. However, for the system values given, the order

of magnitude of A is 10 -s W b. therefore it is desirable to scale both the data and the computed solution to
iTS

achieve a more accurate estimation. If the data is below the desired tolerance of the optimization routine

used (the Matlab-based routine nelder in our case), the converged estimated value will be the initial guess.

Therefore, in this case, we want to minimize the least squares criterion

(2.2) J(l) = I10SA N (xi, yy, l) - 10SA(xi, yy, l*)l

i=1 j=l

over the set of all possible length values l where (xi,Yj),i = 1,...,n;j = 1,...,m are points in the set _.

The set _, in our trial runs, varies from a set of points uniformly discretizing all of f_ to simply one line of



TABLE 2.1

Parameters Used in Equation (1.17) for Computational Results

Parameter Value

w 2_f

f 60Hz
S

3.72 × 107_(7 al

S
5.80 × 107mO'cu

(Tai r 0 S
m

I 1A

sample points above the conducting sheet or one line below the sample with a grid spacing of 0.5ram in both

the x and y direction. If we assume we have access to the values of A in all of _, in other words, values in

the conducting sheet and the sample as well the air above the conducting sheet, below the sample, and in

between the sample and conducting sheet, the set • is thus given by

= {(xi,yj) E _lxi = (0.5i)mm, i = 0, ..., 100;

yj -- (0.5j - 35)mm,j -- 0, ..., 140}.

If instead we (more realistically) assume we only have access to values on a line 1ram above the conducting

sheet, the set • is given by

= {(xi,y) E _lxi = (0.5i)mm, i = 0, ..., 100; y = 2ram}

(the top of the conducting sheet is at y -- 1ram). We can describe • similarly for other choices of data sets.

In most experimental settings, we do not have access to measurements of the magnetic vector potential

A, but instead to those of the magnetic flux density B. In this case, we first compute AN(l) for a given l in

the manner described in Section 2.1. To find the computed magnetic flux density BN(/), we simply use the

definition

BN(I) = V × AN(l).

In general, it is not necessary to use the entire B field, but instead we can use only one component of the B

field, either the x component, B1, or the y component, B2. If we are using the x component of B, our least

squares criterion would be

(2.3) J(l) = _ _lloSBiN(xi,yj,l)- loSj_l(Xi,yj,l*)12;

i=1 j=l

whereas, if we use the y component of the B field, the criterion would be

(2.4) J(l) = E IIoSBN(xi'Yj'I) -- lOSB2(xi'Yj'l*)12
i=1 j=l

where (xi,Yj) • _. We minimize one of the three criteria, (2.2), (2.3), and (2.4), along various sets • and

determine which criterion allows us to most accurately determine the unknown parameter l while allowing

for the limitations of the given set _. We can estimate other unknown parameters in a similar manner by

replacing l by q in the above equations where q represents the entire set of unknown vector parameters.
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2.2.2. Noise Generator. In the samples provided, simulated data was used to represent experimental

data A, /_1, or /_2, depending upon the specific trial run. To obtain the simulated data, we specified

the parameters q* for a crack and generated the solution based upon these exact parameters using the

commercial software Ansoft Maxwell 2D Field Simulator. Again, the goal is to recapture these parameters

by minimizing one of the cost functions given above. However, when using actual experimental data, we

most often have random error in the measurements taken. To simulate this random error, we add random

noise to the simulated data to test our methodology in the presence of noise and to give a more reasonable

demonstration of how our algorithm might perform on experimental data.

To generate the noise, we use the Matlab function randn which generates a normally distributed set of

random numbers with mean 0 and variance 1. A normally distributed set of random numbers has a 65%

certainty of being within 1 standard deviation, 95% certainty of being within 2 standard deviations and

99.7% certainty of being within 3 standard deviations of the mean. In other words, there is a 65% chance

the Matlab function randn will return a number in the interval (-1, 1), 95% chance of returning a number

in the interval (-2, 2) and a 99.7% chance of producing a number in the interval (-3, 3). Therefore, we can

control the amount of noise in the simulated data by scaling the certainty intervals.

For example, assume we have generated the solution A(q*) given exact parameters q*. Furthermore,

assume we desire to be 95% certain that the noise generated to be added to this solution is within 1% of the

actual data A(q*). At this level of noise, we want to scale the interval (-2, 2) to (-0.01, 0.01). Therefore,

letting

(_1 = 0.005 * randn,

the data, A, is given by

A(q*) = A(q*)(1 + (_1).

Similarly, if we instead want to be 99.7% certain of noise within 1% of the simulated data, we scale the

interval (-3, 3) to (-0.01, 0.01) or let

e2 = 0.0033 * randn.

As previously, the data at this noise level is given by

A(q*) = A(q*)(1 ÷ e2).

In the trials we performed, we simulated corrupted experimental data by generating noise at a 1% relative

noise level with both 95% certainty and 99.7% certainty as discussed above as well as noise at a 5% and 10%

relative noise level with both 95% certainty and 99.7% certainty.

2.3. Results with Test Examples. In determining the geometry of the crack in our simulations, we

focus first on determining the length of the damage and then separately the thickness of the damage. Various

trials are performed in each case. In a specific trial run, ten different data sets (exact data with ten different

sets of added random noise) are used where the relative noise is chosen either at a 10%, 5%, or 1% noise

level with a confidence level of either 95% (2 standard deviations) or 99.7% (3 standard deviations). Details

of each trial run can be found in [3]. A summary of the results will be given in this section.
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2.3.1. Determining the Length of the Damage. The first step in determining the length of the

damage is to generate an ensemble of damages with various crack lengths {lJ}_--_l to be used in forming the

POD basis. In generating the damages for the examples reported on here, we used crack lengths varying from

Omm to 4ram in increments of 0.2ram while keeping the thickness of the crack fixed at 2ram (N8 = 21). We

then used the commercial software Ansoft Maxwell 2D Field Simulator to generate the snapshots {A(lj)}j=l.21

Based upon the calculations discussed in Section 2.1, 99.99% of the energy of the system was captured with

a single basis element. Table 2.2 gives the amount of energy captured when using N basis elements up to

N -- 10.

TABLE 2.2

Energy Captured with N Basis Elements using Snapshots of A on Length

N Energy Captured

1 0.99999469355655

2 0.99999998707290

3 0.99999999918539

4 0.99999999978293

5 0.99999999987493

6 0.99999999990451

7 0.99999999992129

8 0.99999999993439

9 0.99999999994409

10 0.99999999995308

To test the inverse methodology, we first try to identify the length of the damage, l* -- 1.3ram, by using

the criterion given in expression (2.2). We ran the inverse problem using 1, 2, 3, 4 and 5 reduced POD basis

elements with data containing no noise taken over the entire discretized region _. There was no noticeable

difference between using 4 and 5 basis elements; hence we chose to use 4 POD basis elements in our solution

approximation.

Based upon the results ([3, Appendix A.1]), we can conclude that under the assumption that we have

access to the magnetic vector potential A in all of _, we did a good job of estimating the crack length even

when the data contained 5% relative noise. When no noise is added, we obtained an estimated length of

1.2999mm. At the 99.7% confidence level with 5% random relative noise, we obtain an average length, l, of

1.3160mm with variance 0.0019ram 2. (Here and in all results given below, the reported results involve the

length or thickness estimates averaged over 10 trial runs.) In actuality, however, we only have access to data

in the regions of air above the conducting sheet or below the sample. Therefore, the inverse problem was

next carried out using "data" in just these regions. The results ([3, Appendices A.2 _z A.7]) illustrate that

we still do a reasonable job estimating the crack length. For example, assuming we have access to data in the

air above the conducting sheet, we obtain an average length of I = 1.2504mm with a variance of 0.0094ram 2

when 5% relative noise is added at the 99.7% confidence level. With no noise added, the estimated length is

1.2997mm.

Although technically it is possible to have access to data in the entire region of air, typically data is

taken on only one or two lines above the conducting sheet or below the sample. When running the inverse

problem on just a few lines above the conducting sheet or below the sample, the inverse algorithm did not

perform well, especially for data containing noise at the 5% level. The results ([3, Appendices A.3-A.6,
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A.8-A.11]) indicate that if there is a considerable amount of noise (5_ noise level in our case), it is not

feasible to accurately estimate the crack length using the magnetic vector potential A. For example, if we

have access to data on just one line above the conducting sheet, we obtain a good estimate of 1.3008mm

when no noise is added; however, when 5% relative noise is added at the 99.7% confidence level, the average

estimated length is 1.3873mm with a variance of 0.7655mm 2. When adding only 1_ relative noise at the

99.7_ confidence level, we obtain an average estimated length of 1.2804mm with a variance of 0.0272mm 2.

Although we obtain better results at a smaller noise level, the results are not as accurate as one would like

and the method would be unacceptable in practice.

As we have already noted, in experimental situations one does not have access to the magnetic vector

potential. Instead, one only has access to the magnetic flux density or the magnetic field. With this in mind,

we repeated the computational tests reported in [3, Appendix A] with the exception of using the criteria

given by expressions (2.3) and (2.4). Using B1 data or the criterion (2.3), the results ([3, Appendix B]) were

no better than when we used the magnetic vector potential. Using data on one line above the conducting

sheet, the average length obtained was 1.2223mm with a variance of 0.4715mm 2 at the 5_ noise level with

99.7_ confidence. On the other hand, when we used B2 data ([3, Appendix C]), criterion (2.4), the inverse

problem produced remarkably accurate results; estimated lengths were accurate to an order of 10 -3 even

with 5_ relative noise. However, the most notable observation in using B2 data is the low variation in

results even at the 5% and 10% relative noise level. Using data on a single line above the conducting sheet

with 10_ relative noise at a 99.7_ confidence level, an average estimated length of 1.2977mm was obtained

with a variance of 0.3237 x 10-4ram 2. Based upon these results, we could quite accurately estimate a given

length of a crack even if the data contained a considerable amount of noise. Therefore, we concluded that

even when scanning along a single line, when using the y component of the magnetic flux density, we can

accurately recapture the length of a crack within a sample. Scanning along multiple lines or over the whole

region provided only marginal improvements in the estimated length; the improvements were not sufficiently

substantial to warrant the extra time or money required to obtain the extra data.

The results above were produced using snapshots of the magnetic vector potential. We also took snap-

shots (with which we formed POD basis elements) on the y component of the magnetic flux density, B2, and

performed the analysis again using the criterion (2.4) ([3, Appendix D]). Although there was a quite notable

difference in the energy captured in N basis elements (see Table 2.3), the inverse problems still exhibited

the same consistency and accuracy as seen previously. One comparison we can make between using POD

elements resulting from snapshots of A versus snapshots of B2 in the inverse problem is that when using the

snapshots on A, the estimated length was normally an overestimate. Conversely, using the POD elements

resulting from snapshots on B2 usually yielded an underestimate of the length. For example, when taking

snapshots on A to generate the POD basis elements, we estimated an average length of 1.3014mm with vari-

ance 0.9653 x lO-Smm 2 in the inverse problem when using data on a single line above the conducting sheet

with 5_ relative noise. On the other hand, if we again use data on a single line above the conducting sheet

with 5_ relative noise added, we estimate an average length of 1.2999mm with variance 0.1017 x 10-4ram 2

when the POD basis elements are generated with B2 data. Despite this fact, there seems to be no other

apparent difference in using the snapshots on A to generate the basis elements as opposed to using the

snapshots on B2 to generate the basis elements, as long as one uses the criterion (2.4) in the inverse problem

calculations.

2.3.2. Determining the Thickness of the Damage. Proceeding as we did in estimating the length

of a damage, we generated an ensemble of crack thicknesses (with crack length fixed at 2ram) ranging from
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TABLE 2.3

Energy Captured with N Basis Elements using Snapshots of B2 on Length

N Energy Captured

1 0.95752844126957

2 0.98938760682215

3 0.99515414870549

4 0.99680555604825

5 0.99749219883487

6 0.99789119249012

7 0.99822617546932

8 0.99853187498393

9 0.99871258779223

10 0.99888757131260

Ornrn to 4rnrn in increments of 0.2ram, 21 21{A(hj)}j=l Similar to our findings{hj}j=l with associated solutions

when taking snapshots on the length of a damage, 99.99% of the energy was captured in a single basis element

(see Table 2.4).

TABLE 2.4

Energy Captured with N Basis Elements using Snapshots of A on Thickness

N Energy Captured

1 0.99999446453503

2 0.99999999666469

3 0.9999999993584

4 0.99999999961479

5 0.99999999972048

6 0.99999999980054

7 0.99999999984470

8 0.99999999987779

9 0.99999999990521

10 0.99999999992316

Based upon the results on characterizing the length of the damage, we only considered snapshots of

the magnetic vector potential A with B2 data in the inverse problem. When estimating the length of the

damage in the previous section, only 4 basis elements were required to achieve an estimate with an accuracy

of order 10-3ram. However, even though 99% of the energy is captured in a single basis element regardless

of whether we snapshot on A or B2 (Tables 2.4 and 2.5), more basis elements (at least 8) were required

to achieve the same level of accuracy when estimating the thickness of the damage. Therefore, we used 9

POD basis elements. Although more basis elements were used, the total time required to recapture the true

thickness (1.3ram) of the crack was still only 8 seconds. Furthermore, the results ([3, Appendix E]) when

using 9 POD basis elements were still accurate even in the presence of 10% noise. For example, an average

thickness of 1.3041ram with variance 0.2883 × 10-4ram 2 was estimated at the 10% relative noise level at a

99.7% confidence level. Thus, just as in estimating the length of a crack, we can also recapture the thickness
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TABLE2.5
Enemy Captured with N Basis Elements using Snapshots of B2 on Thickness

N Energy Captured

1 0.99488023435913

2 0.99728234129540

3 0.99799825670140

4 0.99836722535293

5 0.99870058186819

6 0.99896958827131

7 0.99911070207772

8 0.99923141472559

9 0.99934263323537

10 0.99944776176825

of a crack quite accurately and emciently.

3. Conclusion. In this paper, we began by formulating a two-dimensional test problem to be used in

locating and characterizing the geometry of a subsurface damage within a sample of material. This two-

dimensional problem was argued to be a reasonable approximation to a typical three-dimensional problem

under certain assumptions. We then explained the forward problem describing the behavior of the magnetic

vector potential in this test problem and discussed computational methods to be used in solving the forward

problem. In order to quickly and emciently obtain results in the inverse problem, the computational methods

for the forward problem must be fast and accurate. Therefore, we chose to use the reduced order POD

technique in the forward problem, allowing us to use less than 10 basis elements in each of the examples

tested to date. Consequently, we were able to provide a fast forward algorithm. Moreover, the POD basis

elements were formed so that we captured at least 99_ of the energy in these few basis elements, making

the forward algorithm accurate as well as fast.

We then outlined the implementation of the inverse problem and results. While the methods did not seem

to be robust when using A data or B1 data in the inverse algorithm, the methods were robust, even in the

presence of 10_ relative noise, when using B2 data regardless of whether we snapshot on the magnetic vector

potential or the magnetic flux density. Furthermore, performing multi-line scans or using full region data

improve results only marginally over a single line scan and hence do not warrant the extra effort and time in

collecting more extensive data sets. A significant finding regarding reduction in computational time can be

summarized as follows. If one were to use a software package such as Ansoft's Maxwell 2D Field Simulator

to calculate the forward problem each time it is required in the inverse problem, it would take approximately

5-10 minutes for a single forward solve and hence any inverse algorithm based on this forward solver would

require hours of time for the optimization problem. In using the reduced order POD methodology for the

forward problem, the entire inverse problem takes approximately 8 seconds, less than 1 the time required

for a single forward simulation using Ansoft. As a forward algorithm is called numerous times, this is a

substantial reduction in time required. Most of the extensive computational time is required only in the

initial collection of snapshots. Hence, all of these computations would take place prior to implementation

in a practical setting. Therefore, using data collected on a single line above the conducting sheet or below

the sample, we are able to estimate the length or thickness of a damage in a small amount of time. This
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suggests that a portable SQUID type sensing device, when coupled with reduced order modeling in the

inverse problem, might be plausible in practical damage detection applications.

The results summarized in this note suggest that use of the POD based approximation methods in

electromagnetic eddy current technique inverse problems for damage is a viable approach. We are therefore

continuing our efforts with damages requiring more than one-dimensional parameterization. Our earlier

findings in this direction are most encouraging. We are also exploring use of these techniques in geometries

requiring 3D formulations.
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