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A Very High Order, Adaptable MESA Implementation for
Aeroacoustic Computations

Rodger W. Dyson and John W. Goodrich
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Since computational cfficiency and wave resolution scale with accuracy, the ideal would
be infinitely high accuracy for problems with widely varving wavelength scales. Currently.
many of the computational acroacoustics methods are limited to 4" order accurate Runge-
Kutta methods in time which limits their resolution and cfficiency. However, a new proce-
dure for implementing the Modified Expansion Solution Approximation (MESA) schemes.
based upon Hermitian divided differences. is presented which extends the effective accuracy
of the MESA schemes to 57 order in space and time when using 128 bit floating point
precision. This new approach has the advantages of reducing round-off error, being casy
to program, and is more computationally cfficient when compared to previous approaches.
Its accuracy is limited only by the Hoating point hardware. The advantages of this new
approach arc demonstrated by solving the lincarized Euler equations in an open bi-periodic
domain. A 300" order MESA schieme can now be crcated in seconds, making these schemes
ideally suited for the next generation of high performance 2536-bit (double quadruple) or
higher precision computers. This case of creation makes it possible to adapt the algorithm
to the mesh in time instcad of its converse: this is ideal for resolving varying wavelength
scales which occur in noise generation simulations. And finally, the sources of round-off
crror which cffect the very high order methods are examined and remedics provided that
offectively increase the accuracy of the MESA schemes while using current computer tech-
nology.

1 Introduction

Predieting the sources of jet noise requires computational methods that are orders of magnitude
more efficient and that provide very high resolution. This is accomplished numcrically with very
high accuracy. adaptable. explicit methods whose benefits are as follows:

e High accuracy methods are morce cfficient and provide finer resolution of the physics [5];

o Adaptable methods can adjust their accuracy to resolve steep gradients while avoiding the
complexitics of mesh adaptation;

o And. cxplicit methods permit highly parallel/scalable computations by minimizing inter-
processor communication [4].

The proposed approach cnables the MESA scheines [5] to accomplish those objectives by mak-
ing them simple to program. adapt. and compile while simultancously reducing floating point
operations and round-off error.

MESA schemes can be viewed as a multidilmensional. higher order extension of Lax- Wendroff
schemes that incorporate more of the physics (via cross-derivative information) necessary to more
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accurately propagate waves along their characteristic surfaces. The MESA schemes require es-
sentially two procedures; a spatial interpolation followed by a time advance. Previously. the
sccond step was implemented using a recursive definition [4] which cnabled arbitrarily high ac-
curacy in time. However. the spatial interpolation step required computer algebra [3] for the
svinbolic creation of one-dimensional interpolants. cffectively limiting the accuracy of MESA
schemes to 291 order because of the computational complexity in producing its symbolic form.
This final limitation is removed in this work by replacing the once-dimensional symbolic in-
terpolant with a simple and cfficient form of the Hermitian divided difference interpolant. A
key finding of this paper is that all the spatial derivatives of a Hermitian divided difference
interpolant. at the midpoint of a two-point. multidimensional stencil. have a simple algebraic
expression which climinates the need for computer algebra tools. Since small steneils have many
advantages [7] such as better resolution and case of boundary implementations. using this new
form of Hermitian divided differences with two-point Hermitian MESA schemes would appear
ideal.

Divided differences have been used to interpolate data for many years dating back to Isaac
Newton. [11] and [2]. With the advent of digital computers. divided differences have been re-
placed by splines since polynomial interpolations tend to oseillate at higher orders. In addition.
Hermitian methods have not been extensively used due to the difficulty of obtaining the deriva-
tives of the function being approximated [14]. However. in this work. polynomial oscillations
are climinated sinee only a single interval is used and the derivatives of the function at the end-
points of this interval are completely preseribed. Also. round-off error is reduced for high-order
interpolations since guard digits arc introduced into the tableau [13]. And Hermitian divided
difference interpolations coincidentally use the same data found in the stencil of a 2+ 5 ~ 1 order
MESA scheme (f. 2L Ch 2J&)y For these reasons. Hermitian (Birkhoff [10]) divided

ix ite= s
differences are used to great advantage here.

This paper first describes the new approach to spatial interpolation in one-dimension and
then extends it to 2 x 2 Hermitian stencils. Next. the linearized Euler equations are solved in
a bi-periodic open domain by applying this new interpolation method to the MESA schemes.
The crror and cfficiency of the new approach is then compared with the previously hest known
approach. And finally. various techniques are shown for improving the effective accuracy of very
high order methods (> 30) when computer precision is limited.

2 Two-Point One-Dimensional Hermitian Divided-Difference

Interpolation
We will now provide an overview of Newton's interpolation method based upon divided differ-
CNCes.
Let rii=0.10.. .. i be any (n+1) distinet points of [a.b] and let f be a differentiable

function. Ca.b). The coefficient of " in the polynomial p € P, that satisfics the conditions

Op(x;) — Of(ri)‘[:(].l ..... 1. (1)

i

Jr oz

is defined to be a divided difference of order n {13]. These divided differences. once deter-
mined. completely define the spatial interpolant satisfying equation 1.

A convenient mnemonic commnonly used to determine the divided differences is shown in
figure 3 and is referred to as a divided difference tableau. In this figure is the tableau for
a lifth order one-dimensional interpolant. When Hermitian data (the data and their spatial
derivatives) are used for interpolation [13]. the tableau is formed by inserting all the known data
into cach column of the tableau as shown in figure 4 for the case of a two-point Hermitian stencil
with three data clements per grid point (f{x.y). fo(z.y). fee(x.y)). In general. for a two-point

to
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Figurc 1: Two Point One-Dimensional Stencil
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Figurc 2: Two Point Two-Dunensional Stencil

.. - . 05 Fla.y) -
Hermitian stencil in which the data: f(z. ). fo(x.y). fou(z.y)o ... '—f—,;’i) is known at both
grid points (x=xrg and x=z) in figurc 1. the following procedure will correctly place this data

into the tableau.

Do[Do[Q][i. j] =

filxo) 0 PR 22 € 70 DR )
7 QU +s+ 1 j] = i s 44003 {8008} (2)

With this initial data inserted into the tableau and the distance between both points defined
by Ah. the rest of the tableau is constructed using [2]:

Quo
Q1
Qro (Jan
Qg Q33
(020 3.2 Q1.4
3.1 213 ()55
Q30 1.2 (5.1
(1. Q5.3
Q10 s
(5.1
5.0

Figure 3: Divided-Difference Tableau for ¢202 MESA schemne
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Figure 4: Loaded Divided-Differenee Tableau for ¢202 MESA scheme. X-Direction

Qli.j—1]-Qli-1.j-1
DolDo[Q[i. j] = @l - 1] Ai[l J ]){Jl — s {ics+1.2x 5+ 1}]; (3)

And with this tableau. the interpolating Hermitian polynomial on a Hermitian stencil with
two points and s - 1 data clements (primitive variable and its spatial derivatives) per grid point
may be evaluated with Newton's interpolatory divided difference formula [2]:

2x(s+1)—1 i—1
Jo= Y Q@i][JE-x (4)
i=0 j=0
which may be rewritten as:
B _ 2stli—1
fa) =3 Qe —z0) = > QUii)(z - ag)* (x ~ zy) D (5)
=0 i=s+1

Hermitian MESA schemes require evaluating this polynomial at the center of cach steneil
to interpolate the solution data and their spatial derivatives. In the general case in which a
MESA scheme of arbitrary accuracy is used. the spatial derivatives of equation 4 become very
complicated and require computer algebra tools for their solution. This limits the accuracy and
adaptability of these methods.

For example. a 49t* order MESA scheme in one-dimension requires 25 data clements per grid
point. But to time advance all those clements requires determining the derivatives of equation 4
up to the 50" order. The product terms in that equation will double after cach differentiation
by the product rule of differentiation; this produces cquations with approximately 2% ~ 116
terms.  Besides quickly exhausting memory resources of most computers. this also takes too
much time to caleulate and makes it difficult to modify the accuracy of the numerical scheme
i real time to accommodate steep gradients.

Fortunately. by using a two-point stencil and a reformulation of cquation 5. it is possible to
cfficiently caleulate all the necessary spatial derivatives without the use of computer algebra.

3 Fundamental Result: Direct Interpolation of Spatial Deriva-
tives at Center of Two Point Hermitian Stencil
A 2xs+ L order Hermitian MESA scheme (labeled ¢20s) will contain (s—1).(s- 1)2. or (s +1)3 data

clements per grid point for cach primitive variable in one. two. or three-dimensions respecetively.
The MESA scheme requires all these data clements to be advanced in time. Accomplishing this

NASA/TM—2000-209944 4



requires interpolating 2(s + 1).4(s 4 1)%. or 8(s—~ 1)® spatial derivatives at the center of the steneil
for cach primitive variable in onc. two. or three spatial dimensions respectively. Each of those
interpolations normally requires evaluating the derivative of cquation 4 at x = . Because of the
product term in this cquation. higher order derivatives of this equation become complicated. as
mentioned. However. the following main result of this paper provides an alternative formulation
for the interpolation of the spatial derivatives at the center of a two-point Hermitian stencil.

2s+ 1)1

o4 f(xr =0 2 i i da N
—'{(}YT) = Zi [(2([.[) (m) (_IO)('_(LI):I —~ Z [(2([.l)Z(l.H.(lI.IU.I])] (G)
i=dx i=st1

where Z 1s defined as:

dx 1
Z{i.s.dr.xg.xy) = Z [<(—(—II—> (—zo) st = (—p U= Py (G s dr ) Pa(s.7)

dr — r)lr!
r=0
(7)
with Py and P> defined as:
dr—1—r
Pilics.drry= J[ li—(s~1) - (8)
c=0
and
r—1
Pysry=[]ls+ 1-4 (9)
k=0
respectively.
This form can be rewritten as :
ol fr=0) X
——{)—(%—) = 3" QUi.i)coe f(i.dx) (10)
T i=dx
where the function cocf(i.dx) is predefined as:
1 .
Do|Dolcoe f[i. dx] = (Tjtiif—)'(—fu)("d"'). {i.dz.s}]. {dx.0.(25 + 1)}]
Do|Do[
coe fli.dxr] =
S ol (=o)L T (U e (11

Product[(i —s — 1 —¢). {e.O.dr — 1 —r}]*
Product[(s + 1 - k}. {k.0.r — 1}]]
Aios~ 1,25 + 1} {dr. 0.(25 + 1)}

The function cocf(i.dx) in cquation 10 is independent of space and time and needs computed
only once. Thereafter only the divided difference terms (i) must be evaluated for cach stencil
at cach time step using equation 3.

4 Cost Comparison

As mentioned. this new approach climinates the need for using computer algebra to produce
high order MESA schemes; this reduces the initial cost of programmming the MESA schemes and
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increases its possible accuracy and adaptability. In addition. another unanticipated benefit of
this new approach is fewer floating point operations are required as compared to the best previous
approaches. For example. the total cost to evaluate all of the spatial derivatives required in a
2 x5+ ] order MESA scheme (c20s) is the suin of the cost to compute the divided difference
i fla=0)

—r—)

Fhped

terms, Qs using equation 3 and the cost of evaluating all of the spatial derivatives (
using cquation 10. Thercfore the total cost of the new approach is:

(1 +8)) = (3+55+285) =4+ Ts ~ 35~ (12)

multiplications.

In the previously best known procedure [4]. in which computer algebra is used to gencerate
the one-dimensional interpolant. cach spatial derivative required at most 2s + 2 multiplications.
and there were 25 + 2 terms to be evaluated in one dimension resulting in a total cost of:

(25 +2)7 =4+ 85 + 457 (13)

multiplications.
Therefore the new Hermitian (Birkhoff) divided difference form requires

s+ 87 (14)

fewer multiplications. However. the assumption that calculating cach spatial derivative under
the old approach required 2s ~ 2 operations is an upper limit and in practice certain algebraic
canccllations may reduce that number. At higher accuracy this upper limit is more likely since
the equations become large and cancellations are more difficult.

5 Two-Point Two-Dimensional Hermitian Divided-Difference
Interpolation

It is necessary to perform a multidimensional interpolation for the MESA schemes in two and
three dimensions. While this could possibly be accomplished using other multidimensional
divided difference techniques [12]. we will use the tensor product approach as in Dyson [4] since
this permits a detailed comparison of the new and old approaches.

5.1 Tensor Product Approach Overview

The tensor product approach interpolates all the spatial derivatives required for the MESA
schemes by performming a scries of one-dimensional interpolations [4].  Each one-dimensional
interpolation requires a new divided difference tableau to be generated using cquation 3. A set
of one-dimensional interpolations is first performed in the x-direction to interpolate the data
‘—;%%—U—”)‘v’z te=0.1..... soand j =0.1.2..... 25+ 1aty =y and y = y,. And then.
by interpolaring in the yv-direction using only these interpolated values. the following terms arce
found:

i flr=0.y=0)

riu Vi.g:ig=0.1.2...., 2x 5+ 1 {(15)
r'y

using the coordinate system in figure 2. These ternins are required for time advancing all the
data on cach grid point. naunely:

NitJ
STy i =019 s (16)
Oriyl
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at grid points (zg.yo). (To.y1)- (z1. o). and (x1.y1) as shown in figure 2.

This tensor product procedure is extensible to any size steneil. but the Hermitian divided
difference one-dimensional interpolation as developed in this paper is limited to two-point inter-
polations.

5.2 Fifth Order Two-Dimensional Interpolation Example

The combination of one-dimensional two-point Hermitian divided difference interpolation with
multidimensional tensor produet extensions is best understood with a simple example. We will
completely deseribe the process required to interpolate the data on a two point two-dimensional
steneil shown in figure 2 for the 5 order MESA scheme. ¢202.

The ¢202 MESA scheme in two dimensions. will contain the data: f. fz. fear fy fya- Syza-
fuy- fyya- fyyea at all four grid point locations as shown in figure 2 for cach primitive variable
(pressure, u-velocity. v-velocity). Using those 36 picces of information for cach primitive variable.
the two-dimensional spatial interpolant of the form:

flay) =Y cfipx'y’ (17)
i j=0
is created by finding the values of the ¢ f(i. j) cocflicients where

f(i-j)

cfli.j) === (18)
ity
These cocfficients are found by first performing one-dimensional interpolations of the {form:
5
fley =) cftor! (19)
=0
where o _
. fie=0.y) Oft(z=0.y) (1 .
eftiy= T2 ST (o (20)
i! Ox i
By letting f(x) in cquation 19 be replaced by f(x). fy(x). and f,,(x). respectively. then
W =0) 18Ut fx=0) (1
ey =80 =0p 107 =) (1 (21)
Oy’ il oridy’ i!
for j=0. 1, and 2. respcetively; And. i=0.1.2.3.4. and 5.
Thus. it is possible to interpolate all the values. cf(i) for j=0.1. and 2 at the location
(r = 0.y = yo) shown in figure 2 using the three one-dimensional interpolants of the form

of equation 19. This is repeated for the ef(i) values at the location (x = 0.y = yy) for cach j=0.
1. and 2 for a total of six onc-dimensional interpolations.
At this point. we have the two sets of interpolated values:

ot f(r=0.y) (1 N
Ox' Oyl (F) (22)

for y=y and y;; and for i=0.1.2.3.4.5; and j=0.1. and 2.

This data may be used to evaluate the derivatives in equation 15 at the center of the stencil.
This requires a second sct of one-dimensional divided difference interpolations in the y-direction
using only this data.
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Interpolating in the y-direction is accomplished with the polynomial:

flr=0.y) =) cfiy’ (23)
Jj=0
wheore 5 'f( ( )/
OV flx=0.y=0 1 o
of(j) = o (ﬂ> (24)

This time however. we will interpolate the functions: f.fo. fee Sree-fevrer and fopzer by
performing the following substitution into equation 24:

d = 0. 1
fa=iy=20E=0y /1 (25)
ox? 1!
for i=0.1.2.3.4. and 3 so that
L O flr=0y=0) /1
. = — —_— 26
/i Ox Oy’ (i!j!) (26)

Therefore this requires six more one-dimenstonal divided difference interpolations for a total
of twelve when including the six horizontal interpolations. The substitution of cquation 25 into
cquation 24 reuses the data from the x-direction interpolation. thereby introducing cfficiencices
not found with other multidimensional interpolation procedures. Note that this cfficieney is
only possible if the data in equation 16 arc available at cach grid point so that a symunctry of
the spatial derivatives exists in all diinensions because both the tensor product and Hermitian
divided differences require this complete set of derivative information. Fortunately. the two-point
Hermitian MESA schemes (c20s) provide exactly this information.

5.2.1 Horizontal Interpolation Procedures

Applying the above concepts can be reduced to a few simple steps. Interpolating the intermediate
values at (0. yp) and (0.y) in tigure 2 is accomplished by:

e First. loading the known data from the stencil into the tableau shown in figure 4 to
imcerpolate the data at y = yo. The tableau is loaded with the function f. f,. and f,,
data contained at the two grid point locations rg and xy as indicated in figure 1.

e Sccond. build the divided difference tableau as deseribed in equation 3.

— R . . O fle=0.y= . . , .
o Third. evaluate the spatial derivatives —&l—,—(}”—”—m for i=0.1.2.3.4. and 5 using cqua-
tion 10.

e Fourth. repeat these three steps by substituting f(x) with f= f. f,. and f,,.
o Fifth. repeat these four steps at y = .
After these procedures. we have caleulated the data:

DY f(r =0.y)

O Vi:i=1.23.45andvVyj:j=0.1.2 (27)
ur'oy

at grid coordinates (0.y0) and (0.yy) as labeled in figure 2.

NASA/TM—2000-209944 8



f10.y0)
0! £,(0.00)
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Figure 5: Loaded Divided-Differenee Tableau for ¢202 MESA scheme. Y-Direction

5.2.2 Vertical Interpolation Procedures

Next. the data shown in equation 27 is used to perform the Hermitian divided difference inter-
polation in the y-direction by:

e First loading that data into the tableau as shown in figure 5 to interpolate the intermediate

data of the last step along the line x = 0. The tableau is loaded with the function f. f,.
and f,, data contained at the two grid point locations (0. yo) and (0.y;) as indicated in
figure 2

e Sccond. build the divided difference tableau as described in equation 3.

e Third. cvaluate the spatial derivatives 220570 £6r 5=0.1.2.3.4. and 5 using cquation 10.

"U-‘

e Fourth. repeat these three steps by substituting f(z) with f = f. fo. fero frza. fezze-
and fyeeee which are the intermediate data previously evaluated using the horizontal
interpolation procedures.

After these steps. all the spatial derivatives of f(x.y) necessary for advancing the data on the

grid is available for the MESA scheme.

6 Results

For the purposes of comparing this new approach with the old approach. it is necessary to divide
O -

the results from the new approach by a factorial term. This is because the coefficients for the

previous method [4] were equivalent to using the equation:

2x5+41

Jtey =) o’ (28)

=0

in which the factorial term is included in these cf(i) coefficients instcad of the form:

)*a+l
{(29)
=0
. . . . . . a T
in which the factorial term is not included and therefore e f (i) = —#

With this correetion factor a direct comparison is possible between both approaches for very
high accuracy by using automatic code generation [6]. In particular. the relative efficiency and
accuracy of applying both interpolation methods to the same wave propagation problem are
measured.
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6.1 Problem Definition

Wave propagation is deseribed by the lincarized Euler equations and its correet simulation in
time is important in many acroacoustic applications. We will solve the bi-periodic open domain
problem in which the physical domain is a unit square ([=1. 1} x [~1. 1] x [0. T]). The solution of
the lincarized Euler equations in this case is assumed to be y-periodic (top and bottom of box
repeat) and x-periodie (left and right sides of box repeat). Using separation of variables with
periodic boundary conditions. on the following lincarized Euler equation svstem with a constant
mean conveetion velocity veetor (M. M,):

du du du dp ,

iy VL V) :

ot " or J()y Or =0

v dv ov Op

LAY VRN VA

ot “Or Yoy oy ) (30)
Qf R 1’\1.1‘() Y Op du v -0

Or "oy " Br

Ay

with the boundary conditions :

plliy. )y =p(—1.y.t)
u(l.y. 1):1( l.y. t)
v(ly. t) =v(=1.y.t)
Mr 1.0t) = (.1‘ —1.t)
ulr. 1.t) = u(x.—1.t)
vix. L.ty = v(x.—1.t)

provides the following analytical solution:

plroy.t) = cos(rrt\/i) sin( (= (Mzt) + x)) sin(7 (= (AM,t) ~y)) (31)
iz y.t) = _(fos(“ (— (M, t) - sm(\,};\/—) sin(w (= (Myt) — y)) (32)
Clroy t) = _cos(w (= (M,t) ~y))sin “\/[2\/— sin(@ (— (M t) + 1)) (33)

6.2 Numerical Results

The results of these numerical experiments with 8 grid points per wavelength are shown for
double-precision (64-bit reals) in tables 1 and 2 and for quadruple precision (128-bit reals) in
table 3. The time to complete the simulation using cach approach is a measure of relative offi-
cieney and is shown for cach MESA scheme tested. In addition. the results for both approaches
are placed above and below cach other for casy comparison. The seven column headings are
defined as:

N Number of tine steps.

T Total time clapsed in simulation.

maxperr The maximum absolute crror in the pressure.
Ilperr A mcasure of the average error (L1 norm) .

phmax Maximun pressure occurring in domain.
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phmin Minimum pressure occurring in domain.

e
initial

e-ratio The change in the total energy content of the system as a ratio {(should be one

for no change).

Despite the cost analysis in section 4 showing a slight advantage 1o the new approach for
all MESA schemes. numerical experiments show the old approach is actually faster for methods
less than about 15t order. This is likely due to the length of the one-dimensional equations
being less than the worst case used in the analysis. However. for higher order methods the new
approach is modestly faster while using double-precision calculations and it is significantly faster
when quadruple-precision is used (see table 3).

Notice in table 1 that the new approach begins demonstrating less round-off error at ap-
proximately 11" order accuracy. And at 15t order accuracy the new approach still maintains
essentially no growth in the energy compared to the old approach in table 2. And at 17t order
both methods begin introducing significant round-off crrors into the overall energy.

In quadruple precision. both approaches appear similar at 15t order. however the new
approach is about 50 pereent faster. And at 215 order accuracy the round-off errors arc higher
in the old approach while the new approach is more cfficient. By the time 27t% order accuracy
is reached. both approaches arc showing significant round-off crror in the total system cnergy.

It was not possible to crcate a 33"¢ order or higher MESA scheme using the old approach.
but the new approach appears to maintain accuracy up to 57t order in quadruple precision
before round-off error becomes too excessive. The sources of this round-off error are explained
in the appendix A.
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N T Maxperr llperr | phmax [ phmin [ cratio
OLD APPROACH ABOVE. NEW APPROACH BELOW
c202: Old Approach Time=254.79 . New Approach Time=290.39

200 | 1.00000E+01 | 9.07553E-04 | 1.36338E-03 | 8.95490E-01 | -8.95490E-01 | 9.97694E-01

200 | 1.00000E+01 | 9.07553E-04 | 1.36338E-03 | 8.95490E-01 | -8.95490E-01 | 9.97694E-01
2000 | 1.00000E+02 | 2.06528E-03 | 3.24237E-03 | 2.40990E-01 | -2.40990E-01 | 9.79382E-(1
2000 | 1.00000E-02 | 2.06528E-03 | 3.24237E-03 | 2.40990E-01 | -2.40990E-01 | 9.79382E-01
20000 | 1.00000E+03 | 7.40171E-02 | 1.11612E-01 | 7.04408E-01 | -7.04408E-01 | 8.14061E-01
20000 | 1.00000E+03 | 7.40171E-02 | 1.11612E-01 | 7.04408E-01 | -7.04408E-01 | 8.14061E-01

c203: Old Approach Time=572.39. New Approach Time=641.52

200 | 1.00000E~01 | 2.04781E-06 | 2.99855E-06 | 8.96396E-01 | -8.96396E-01 | 9.99996E-01

200 | 1.00000E+01 | 2.04781E-06 | 2.99855E-06 | 8.96396E-01 | -8.96396E-01 | 9.99996E-01
2000 | 1.OO0OOE+02 [ 5.51277E-06 | 1.08654E-05 | 2.43050E-01 | -2.43050E-01 | 9.99952E-01
2000 | 1.00000E=+02 | 5.51277E-06 | 1.08654E-05 | 2.43050E-01 | -2.43050E-01 | 9.99952E-01
20000 | 1.00000E-+03 | 1.77378E-04 | 2.67937E-04 | 7.78247E-01 | -7.78247E-01 | 9.99543E-01
20000 { 1.00000E-03 | 1.77378E-04 | 2.67937E-04 | 7.78247E-01 | -7.78247E-01 | 9.99543E-01

c204: Old Approach Time=1108.65. New Approach Time=1311.10

200 1 1.OODOOE~01 | 2.86266E-09 | 4.24757E-09 | 8.96398E-01 | -8.96398E-01 | 1.00000E-+00

200 | 1.00000E-01 | 2.86266E-09 | 4.24757E-09 | 8.96398E-01 | -8.96398E-01 | 1.00000E-+00
2000 | 1.00000E—02 | 8.95464E-09 | 1.86641E-08 | 2.43055E-01 | -2.43055E-01 | 1.00000E~00
2000 | 1.00000E+02 | 8.95463E-09 | 1.86641E-08 | 2.43055E-01 | -2.43055E-01 | 1.00000E+ (X)
20000 | 1.00000E+03 | 245441E-07 | 3.84170E-07 | 7.78425E-01 | -7.78425E-01 | 9.99999E-01
20000 | 1.00000E+03 | 2.45441E-07 | 3.84169E-07 | 7.78425E-01 | -7.78425E-01 | 9.99999E-01

¢205: Old Approach Time=2034.22. New Approach Time=2533.79

200 | 1.00VDVDE-01 | 2.70040E-12 | 4.09499E-12 | 8.96398E-01 | -8.96398E-01 | 9.99999E-01

200 | 1.00000E+01 | 2.697v73E-12 | 4.09191E-12 | 8.96398E-01 | -8.96398E-01 | 1.00000E~00
2000 | 1.00000E-+02 | 2.00462E-11 | 3.45419E-11 | 2.43055E-01 | -2.43055E-01 | 1.00000E+00
2000 | 1.00000E--02 | 2.00432E-11 | 3.45456E-11 | 2.43055E-01 | -2.43055E-01 | 1.00000E-+00
20000 | 1.00000E - 03 | 1.53291E-09 | 2.87923E-09 | 7.78425E-01 | -7.78425E-01 | 1.00000E - 00
20000 | 1.00000E~03 | 1.53274E-09 | 2.87917E-09 | 7.78425E-01 | -7.78425E-01 | 1.00000E~00

Table 1: Cost and Round-off Error Comparison of New and Old 2D Interpolation Methods With
8 Grid Points Per Wavelength: Double Precision Computations
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N T mMaxperrs 11pery l phmax l phmin | c-ratio
OLD APPROACH ABOVE. NEW APPROACH BELOW
¢206: Old Approach Time=3372.85. New Approach Time=3978.5:
200 | 1.OOOODDE—01 | 4.72955E-14 | 5.58290E-14 | 8.96398E-(1 | -8.96398E-01 | 1.00094E~00
200 | 1.00000E~01 | 2.56462E-14 | 4.69778E-14 | 8.96398E-01 | -8.96398E-01 | 1.00002E~ 00
2000 | 1.00000E-02 | 1.47465E-11 | 2.62678E-11 | 2.43055E-01 | -2.43055E-01 | 9.98917E-01
2000 | 1.00000E+02 | 1.47443E-11 | 2.62938E-11 | 2.43055E-01 | -2.43055E-01 | 1.00004E~00
20000 | 1.00000E+03 | 1.45736E-09 | 2.73856E-09 | 7.78425E-01 | -7.78425E-01 | 1.00010E~00
20000 | 1.00000E+03 | 1.45717E-09 | 2.73851E-09 | 7.78425E-01 | -7.78425E-01 | 1.00001E - 00
¢207: Old Approach Time= 6557.54. New Approach Time=5824.79
200 | 1.00000E+01 | 7.13873E-14 | 1.17613E-13 | 8.96398E-01 | -8.96398E-01 | 6.61955E+0)2
200 | 1.00000E+01 | 2.69784E-14 | 4.96476E-14 | 8.96398E-01 | -8.96398E-01 | 1.04582E+00
2000 | 1.00000E-+02 | 1.48251E-11 | 2.63057E-11 | 2.43055E-01 | -2.43055E-01 | 7.81400E : ()2
2000 | 1.00000E-+02 | 1.47365E-11 | 2.62886E-11 | 2.43055E-01 | -2.43055E-01 | 1.08933E+ 00
20000 | 1.00000E+03 | 1.45761E-09 | 2.73870E-09 | 7.78425E-01 | -7.78425E-01 | 6.05388E+(2
20000 | 1.00000E+03 | 1.45698E-09 | 2.73832E-09 | 7.78425E-01 | -7.78425E-01 | 1.03607E+ 00
c208: Old Approach Time=7424.47 . New Approach Time=6443.41
200 | 1.00000E—01 | 2.19713E-13 | 3.11883E-13 | 8.96398E-01 | -8.96398E-01 | 8.09897E~+(9
200 | 1.00000E-~01 | 2.47580E-14 | 4.59314E-14 | 8.96398E-01 | -8.96398E-01 | 1.23692E ~05
2000 | 1.00000E+02 | 1.46503E-11 | 2.62826E-11 | 2.43053E-01 | -2.43055E-01 | 8.25499E~ (9
2000 | 1.00000E+02 | 1.47489E-11 | 2.63057E-11 | 2.43055E-01 | -2.43035E-01 | 1.10213E~05
20000 | 1.00000E+03 | 1.45885E-09 | 2.73874E-09 | 7.78425E-01 | -7.78425E-01 | 7.70854E~09
20000 | 1.00000E+03 | 1.45711E-09 | 2.73847E-09 | 7.78425E-01 | -7.78423E-01 | 1.38970E~ 05
¢209: Old Approach Timme=10112.20 . New Approach Time=11168.74
200 | 1.00000E+01 | 8.13960E-13 | 1.04409E-12 | 8.96398E-01 | -8.96398E-01 | 5.13309E~17
200 | 1.00000E+01 | 2.58682E-14 | 4.62761E-14 | 8.96398E-01 | -8.96398E-01 | 2.81314E-11
2000 | 1.00000E+02 | 1.52230E-11 | 2.65629E-11 | 2.43055E-01 | -2.43055E-01 | 5.05941E~17
2000 | 1.00000E+02 | 1.47471E-11 | 2.63039E-11 | 2.43055E-01 | -2.43055E-01 | 4.05821E - 11
20000 | 1.00000E+03 | 1.46161E-09 | 2.73741E-09 | 7.78425E-01 | -7.78425E-01 | 4.91307E~ 17
20000 | 1.00000E+03 | 1.45712E-09 | 2.73848E-09 | 7.78425E-01 | -7.78425E-01 | 3.22536E—~11
c2010: Old Approach Time=17783.09 . New Approach Time=11433.52
200 | 1.00000E+01 | 2.76479E-12 | 4.08680E-12 | 8.96398E-01 | -8.96398E-01 | 3.58499E- 25
200 | L.OODODODE+01 | 2.62013E-14 | 4.66777E-14 { 8.96398E-011 | -8.96398E-01 | 2.85350E~ 18
2000 | 1.00000E+02 | 2.05443E-11 | 2.66944E-11 | 2.43055E-01 | -2.43055E-01 | 2.286G14E~25
2000 | 1.00000E-+02 | 1.47421E-11 | 2.63037E-11 | 2.43055E-01 | -2.43055E-01 | 3.55611E+ 18
20000 | 1.00000E~03 | 1.47549E-09 | 2.73275E-09 | 7.78425E-01 | -7.78425E-01 | 2.72428E+ 25
20000 | 1.00000E+03 | 1.45712E-09 | 2.73848E-09 | 7.78425E-01 | -7.78425E-01 | 3.55940E+18
c2011: Old Approach Time=1803.33 . New Approach Time= 1869.41
200 | 1.000DD0E-01 | 9.20091E-12 | 1.09857E-11 | 8.96398E-01 | -8.96398E-01 | 1.76527E+ 32
200 | 1.00000E=+-01 | 2.85327E-14 | 4.66790E-14 | 8.96398E-01 | -8.96398E-01 | 7.71540E+ 24
2000 | 1.00000E+02 | 3.32458E-11 | 4.56052E-11 | 2.43055E-01 | -2.43055E-01 | 6.81984E+32
2000 | 1.00000E~02 [ 1.47503E-11 | 2.63034E-11 | 2.43055E-01 | -2.43055E-01 | 9.88028E + 24

Table 2: Cost and Round-off Error Comparison of New and Old 2D Interpolation Methods With
8 Grid Points Per Wavelength: Double Precision Computations
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N [ T L maxperr ] Hperr I phinax ] phinin ] c-ratio
OLD APPROACH ABOVE. NEW APPROACH BELOW
c207: Old Approach Time=127.48 . New Approach Time=89.34
2 | 1.00000E-01 | 2.09573E-20 | 3.26076E-20 | 8.53711E-01 | -8.53711E-01 | 1.00000E-+00
2 1.00000E-01 | 2.09573E-20 | 3.26076E-20 | 8.53711E-01 | -8.53711E-01 | 1.00600E+ 00
20 | 1.00000E+00 | 9.75947E-20 | 1.53880E-19 | 2.64616E-01 | -2.64616E-01 | 1.00000E~00
20 | 1.00000E+00 | 9.75947E-20 | 1.53880E-19 | 2.64616E-01 | -2.64616E-01 | 1.00000E+ 00
¢2010: Old Approach Time=359.67. New Approach Time= 230.74
2 | 1.00000E-01 | 1.76261E-30 | 1.51294E-30 | 8.53711E-01 | -8.53711E-01 | 9.99954E-01
2 | 1.00000E-01 | 5.54668E-31 | 8.26561E-31 | 8.53711E-01 | -8.53711E-01 | 1.00000E~ 00
20 | 1.00000E+00 | 3.00584E-29 | 4.99977E-29 | 2.64616E-01 | -2.64616E-01 | 9.99980E-01
20 | 1.00000E+00 | 4.39112E-30 | 8.13865E-30 | 2.64616E-01 | -2.64616E-01 | 1.00000E-+00
c2013: Old Approach Time=806.21. New Approach Time= 376.07
2 | 1.00000E-01 | 2.87010E-29 | 4.01517E-29 | 8.53711E-01 | -8.53711E-01 | 1.88808E +16
2 | 1.00000E-01 | 3.38964E-32 | 4.22501E-32 | 8.53711E-01 | -8.53711E-01 | 4.69234E+06
20 { 1.00000E+00 | 1.53766E-27 | 1.79257E-27 | 2.64616E-01 | -2.64616E-01 | 4.68978E- 16
20 | 1.00000E+00 | 9.39854E-32 | 1.21469E-31 | 2.64616E-01 | -2.64616E-01 | 8.26702E+06
c2016: Old Approach Time=NA. New Approach Time=686.30
2 | 1.00000E-01 | 4.31408E-32 | 3.50760E-32 | 8.53711E-01 | -8.53711E-01 | 8.95892E~ 28
20 | 1.00000E+00 | 1.17097E-31 | 1.35263E-31 | 2.64616E-01 | -2.64616E-01 | 1.74818E-+29
c2019: Old Approach Time=NA, New Approach Time=1439.74
2 | 1.00000E-01 | 3.69779E-32 | 4.17927E-32 | 8.53711E-01 | -8.53711E-01 | 8.80805E~+ 51
20 1 1.00000E~+00 | 1.21719E-31 | 1.51134E-31 | 2.64616E-01 | -2.64616E-01 | 1.46753E+52
c2022: Old Approach Time=NA. New Approach Time=2195.83
2 | 1.00000E-01 | 5.54668E-32 | 4.66316E-32 | 8.53711E-01 | -8.53711E-01 | 2.19468E~76
20 | 1.00000E+00 | 1.21719E-31 | 1.30786E-31 | 2.64616E-01 | -2.64616E-01 | 4.81574E - 76
c2025: Old Approach Time=NA, New Approach Time= 2605.29
2 | 1.00000E-01 | 4.93038E-32 | 4.33575E-32 | 8.03711E-01 | -8.53711E-01 | 1.21860 + 101
20 | 1.00000E+00 | 1.37126E-31 | 1.55859E-31 | 2.64616E-01 | -2.64616E-01 | 5.71654+101
¢2028: Old Approach Time=NA. New Approach Time= 3653.88
2 1.00000E-01 | 5.23853E-32 | 5.09168E-32 | 8.53711E-01 | -8.53711E-01 | 2.81365- 126
20 | 1.00000E+00 | 7.85779E-32 | 1.28541E-31 | 2.64616E-01 | -2.64616E-01 | 1.62764~127
c2031: Old Approach Time=NA. New Approach Time= 4826.52
2 | 1.00000E-01 | 6.77927E-32 | 5.62612E-32 | 8.53711E-01 | -8.53711E-01 | 3.49609+ 152
20 | 1.O0DOVE+00 | 7.43198E-27 | 4.69403E-27 | 2.64616E-01 | -2.64616E-01 | 3.60786+ 168
¢2034: Old Approach Timme=NA. New Approach Time= 42884.60
2 1.00000E-01 | 6.77927E-32 | 6.47594E-32 | 8.53711E-01 | -8.533711E-01 | 1.62494-179
10 | 5.00000E-01 | 1.25506E-16 | 5.60704E-17 | 6.01971E-01 | -6.01971E-01 | 1.19710+ 216
12 | 6.00000E-01 Infinity NaN 1.08423E-01 -Infinity NaN

Table 3: Cost and Round-off Error Comparison of New and Old 2D Interpolation Methods With
8 Grid Points Per Wavelength: Quadruple Precision Computations
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7 Conclusions and Future Research

It is now possible to develop 200M% order or higher wave propagation algorithins whose practical
utility is limited only by the precision of the computer. This is made possible by a change in the
procedure used to implement the spatial interpolation step of the MESA schemes. With this new
approach. the MESA schemes are far simpler to program. more cfficient. and incur less round-off
crror. Automation is no longer necessary for algorithm development. but is still necessary for
testing the MESA schemes and for applyving multidimensional wall boundary conditions [4].

This new implementation of the MESA schemes makes it possible to adapt the method to
the mesh instead of the common approach of adapting the mesh to the method which adversely
offeets the CFL constraints and complicates grid gencration. By adapting the method using
estimates of the gradients from the divided difference tableau. an efficient procedure for resolving
many different wavelength scales may be possible. In particular. problems which contain a wide
range of wavelength scales. such as fan and jet noise genecration, may benefit from adaptive
algorithms such as these. .

In short. this new approach is an improvement to the implementation of the MESA schemes
in every regard for methods of 15 order or higher. and has many advantages for the lower order
methods as well. Two-point Hermitian stencils have many desirable properties [4]. [7] such as:

e They simplify boundary treatmoents;
e They arc more computationally cfficient;
e And. they provide higher resolution.

In addition, they may now cnable adaptive algorithm implementations and be implemented in
arbitrarily high accuracy using the key result from this paper. equation 10. However. a limit
to the effective aceuracy is encountered with this implementation duc to the round-off crrors
incurred from subtractive cancellation as discussed in the appendix A. Some different approaches
for reducing round-off crror include:

e Reformulate the time advance step of the MESA schemes to eliminate the factorial term
correction discussed in scetion 6 which multiplies the round-off errors.

e Modify the divided differences to eentral differences 1o avoid the divisions by grid point
distance. h. in cach column of the tableau which also magnifies round-off crror [11]

e Reformulate the MESA schemes to propagate complex variables in time and caleulate
derivatives without subtractive cancellation [15]

e Usc divided difference pipelining [1].

e Usc the Stirling or Bessel formn of the central differences to minimize the cocflicients in
Newton's interpolatory equation 4.

e Predict roundoff error using the relationship between columns of the tablean (sum of
column j = difference of first and last terms in columnn j-1) [11]. and then set 10 zero all
higher order divided differences in the tableau.

The last item limits the acceuracy of the MESA scheme. but prevents contamination from
round-off crror. This also improves cfficicney sinee it prevents unnecessary caleulations which
will only introduce crror and computational overhead. The ability to deteet round-off crror is
a unique advantage of this new approach that may make using very high order methods on
available technology practical.

It is necessary to use Hermitian stencils for very high order algorithins since traditional
Lagrangian stencils become excessively large in the limit. This paper has provided one approach
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for this. In addition. it has provided some of the tools necessary for exploring the capabilitics
of adaptive algorithins for adaptive resolution of steep gradients (shocks).

In the future. as very high precision. large-scale parallel systems become comon. Hermitian
divided difference implementations of the MESA schemes will be very uscful sinee they offer
minimal interprocessor communications [4] and accuracy limited only by machine precision. For
practical applications. this places a greater need on developing very high order wall boundary

and radiation conditions.

NASA/TM—2000-209944 16



A Sources of Round-off Error

The benefits of very high order accuracy begin to diminish as round-off crror grows. The
predominant source of this round-off crror is subtractive cancellation crror which occurs when
two numbers close in value are subtracted from once another. This results in a loss of most of
the significant digits in the mantissa.

The subtractive cancellation errors will oceur in the construction of the divided difference
tableau as the standard deviation of the values in cach column decrcases. Each column. num-
bered j. in figure 3 is constructed for all i using:

Qi —Qiy e
(sz— J.J 1 l,) 1.y—1 (34)

Ty = Ti—j

where for a two point Hermitian spatial interpolation, this relation reduces to dividing by r; —
x;i—; = h. which is the distance between both grid points in figure 1.

Each divided difference term can be proved using the generalized Rolle theorem to be equiv-
alent to [2]:

J . —_
Qi.jzf——(-.g,'—d—)- Tlfﬁfi.JS{—l (35)
gt 2 2

That is. cach divided difference j-column contains data representing the j% derivative at
some point on the interval between both points. If we knew it applied at the center (x=0) of
the stencil. we could usce it directly in the MESA scheme. However. the exact location of the
function is not known.

From cquations 34 and 33, the following is actually being caleulated in cach column of the

tablcau: - -
; ST = (&G -1)
. _ J—1 i—~1.j—1
&) = ; (36)
)
where & ;1 and £, j_; are contained within the interval between both grid points. e, 1o <
SijoiCimrjo1 Lxy
Now let j=1 and apply the mean value theorem of caleulus to this cquation. then it must be
the case that:

h h
—s=&im0<&u1<&o=35 (37)
2 2
Next. let j=2. then “loosely™ applyving the mean value theorem again to equation 36 results in
the relation:

h ! h
-3 = Eito<&i11 <&a2<&y <&o= 5 (38)

This term “loosely™ is used since the denominator in equation 36 does not change as addi-
tional columns are processed and the mean value theorem could only be dircetly applied if its
size was &, — &_1.1- However. on average. the interval will decrcase for most functions since
there will be one or more critical points (& ;) between & j—; and &_; j_; when simulating the
oscillating functions that occur in acoustical applications.

Therefore as j is increased. the interval in which & ; can occur decrcases. This has the effect
of compressing all the data in coluinn j closer together. In fact. by definition. the last column
of the tableau contains a single clement representing the center of the steneil with an interval
length of zero for the column. As the points. &y ; and & become closer in equation 36, the
subtractive cancellation crrors increasc.

For example. supposce there are 10 grid points per unit interval. then the first column has an
interval length of i = 1/10. In addition. suppose the interval length is halved in cach column.
then column j will have length (%)J_l. With a 21* order MESA method (¢2010) there will be
21 columns with the intervals (l({‘r('asing by six orders of magnitude in the last three columns.
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In fact. by the 5 column there is very little separation between hoth data points (00625 units)
resulting in subtracting two numbers that are very closc in value.

This subtractive cancellation crror is then magnified by the division of the small number.
h. in cquation 36. It is a sitnple matter to climinate this division by using the forward. back-
ward. or centered-difference forms [11] of the Newton interpolanmt. However, even without this
improvement. the results of this paper show using Hermitian divided differences with two-point
Hermitian MESA schemes results in less subtractive cancellation than previous methods.
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B Fortran90 Implementation

! This routine will calculate the spatial derivatives for the MESA scheme
! Using the data fdata(dx,dy,x,y) = D[f[x,y],{x,dx},{y,dy}]
! It applies only to a c2os scheme, where the 5=0,1,2,

INPUT: fdata(dx,dy,x,y) , x=x0,x1, y=y0,yl , dx=0,s , dy=0,s
QUTPUT:cf(dx,dy,0) , dx=0,1, ..., 2*xs + 1 , dy=0,1, ..., 2%s+1

! 0------ |-~=--- 0 y=y1
! | |

! [ |

! - + - y=0
! I l

! | |

! 0------ | -===-- 0 y=y0
! x=x0 x=0 x=x1

1

]

1

program multidimensional
implicit none

integer :: digits, e,i,j,k,s,n, dx, dy,r, yp, AllocateStatus

real (kind=selected_real_kind(30)) :: z, deltah, prodl, prod2, sum, innersum
real (kind=selected_real_kind(30)) :: h, x0,xl

real (kind=selected_real_kind(30)), DIMENSION(:,:,:,:), ALLOCATABLE:: fdata
real (kind=selected_real_kind(30)), DIMENSION(:,:), ALLOCATABLE:: coef,Q

real (kind=selected_real_kind(30)), DIMENSION(:,:,:,:), ALLOCATABLE:: cf,cfdata
integer, parameter :: Prec30 = Selected_Real_Kind(30)

print *,"Enter the degree, c2os”
read *, s

ALLOCATE (coef(0:2%(s+1),0:2%(s+1)), STAT = AllocateStatus)

If (AllocateStatus /= 0) STOP ’**x Not Enough Memory *x*’

ALLOCATE (cf(0:2%(s+1),0:2%(s+1),0:0,0:0), STAT = AllocateStatus)

If (AllocateStatus /= 0) STOP ’**x Not Enough Memory *xx’

ALLOCATE (cfdata(0:2*(s+1),0:2%(s+1),0:1,0:1), STAT = AllocateStatus)
If (AllocateStatus /= 0) STOP ’x**x Not Enough Memory x*x*’

ALLOCATE (Q(0:2%(s+1),0:2%(s+1)), STAT = AllocateStatus)
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If (AllocateStatus /= 0) STOP ’#*x Not Enough Memory **x’
ALLOCATE (fdata(0:2x(s+1),0:2%(s+1),0:1,0:1), STAT = AllocateStatus)
If (AllocateStatus /= 0) STOP ’x*x Not Enough Memory #xx’

deltah = x1-x0

! THIS SECTION NEEDS COMPUTED ONLY ONCE AND ITS RESULTS CAN BE REUSED AT EACH !
! STENCIL -- SIGNIFICANT COMPUTATIONAL SAVINGS !
! The variable array, coef( , ) is assigned next and does not depend on the !
! stencil data, only upon the MESA scheme employed !

outerloopl: do dx=0, 2 * s + 1

do i=dx, s
coef(i,dx) = ( Fac(i)/Fac(i-dx) )* (-x0)#*x(i-dx)
end do

csetloop: do i=s+1, 2 * s + 1

sum = 0.0
sumloop: do r=0, dx

prodi=1.0
do e=0, dx-1-r
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prodl = prodl * (i - s -1 - e)
end do

prod2=1.0

do k=0, r-
prod2 =

end do

1
prod2 * (s + 1 - k)

sum = sum + ( Fac(dx)/(Fac(dx-r)*Fac(r)) ) * (-x0)*x(s+l-r) * &
( -x1)**(i-s-1-dx+r) * prodl * prod2
end do sumloop
coef (1,dx)=sum
end do csetloop
end do outerloopl

| ==r=———————======—s=z=——=============———==c—==========x
! This section is repeated for each stencil in the domain

do dx=0, s

do dy=0, s
fdata(dx,dy,0,0)= STENCIL DATA AT LOWER LEFT
fdata(dx,dy,0,1)= STENCIL DATA AT UPPER LEFT
fdata(dx,dy,1,0)= STENCIL DATA AT LOWER RIGHT
fdata(dx,dy,1,1)= STENCIL DATA AT UPPER RIGHT
end do

end do

lastloop: do yp=0, 1
do dy=0,s
do 1=0, s

do dx=0, i
RQ(i,dx)= fdata(dx,dy,0,yp) / Fac(dx)
Q(i+s+1,dx) = fdata(dx,dy,1,yp) / Fac(dx)
end do
end do

! Next perform algorithm 3.2 in Burden to construct Divided Difference Tableau
| o e ——————————————————————— i —————— — — —

n=(2 * (s+1))
do i=s+1, n-1
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do j=i-s, 1
Q(i,j) = (Q(i,j-1) - QGi-1, j-1))/ (deltah)
end do
end do

do dx=0, 2 * s + 1

sum=0.0

do i=dx, 2 * s + 1

sum = sum + Q(i,i) * coef(i,dx)
end do

cfdata(dx,dy,0,yp)=sum

end do

end do

end do lastloop

! Repeat this process for the y-direction, only using the cfdata( , , ,)
! as developed by Goodrich

! Load table for Y interpolation

D e e

dxloop: do dx=0, (2%(s+1)-1)

do i=0, s

do dy=0, i
Q(i,dy)= cfdata(dx,dy,0,0) / Fac(dy)
Q(i+s+1,dy) = cfdata(dx,dy,0,1) / Fac(dy)

end do

end do

! Next perform algorithm 3.2 in Burden to construct Divided Difference Tableau
b e e e e e e
n=(2 x (s+1))
do i=s+1, n-1

do j=i-s, i

Q(i,3) = (Q@i,3-1) - Q(i-1, j-1))/ (deltah)

end do

end do
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do dy=0, 2 * s + 1

sum=0.0

do i=dy, 2 * s + 1

sum = sum + Q(i,i) * coef(i,dy)

end do

cf(dx,dy,0,0)=sum/ (fac(dx)*fac(dy))
end do

end do dxloop

! The spatial derivatives for the c2os MESA scheme at the center of the
! 2 by 2 stencil are stored in the cf(dx,dy,0,0) variables

! May need to use cf(dx,dy,0,0)/(dx! dy') depending upon how the exact
! local propagator is evaluated

do dx=0,2*s+1
do dy=0,2%s+1
print *, "cf(",dx,",",dy,",0,0)=",cf(dx,dy,0,0)
end do
end do

! Factorial Function
t In more efficient implementations, can precalculate all the factorial
! results and store as an array

FUNCTION Fac(N2)

REAL (kind=selected_real_kind(30)) :: Fac
INTEGER, INTENT(IN) :: N2
INTEGER :: I2

Fac = 1.0
DO I2 = 2, N2
Fac = Fac * I2
END DO
END FUNCTION Fac
end
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