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Abstract

Since computational efficiency and wave resolution scale with accuracy, the ideal would

be infinitely high accuracy for problems with widely varying wavelength scales. Currently,

many of the computational aeroacoustics methods art, limited to 4 _' order aecm'ate Runge-

Kutta methods in time which limits their resolution and efficiency. However, a new proce-

dure for implementing the Modified Expansion Sohttion Approximation (MESA) schemes.

based upon Hermitian divided differences, is presented which extends the effective accuracy

of the MESA schemes to 57 _]' order in space and time when using 128 bit floating point

precision. This new approach has the advantages of reducing round-off error, being easy

to program, and is more _:omputationally efficient when compm-ed to prt vious approaches.

Its accuracy is limited only by the floating point hardware. The advantages of this new

approach are demonstrated by solving the linearized Euler equations in an open hi-periodic

donmin. A 5011t/' order MESA scheme can now be created in seconds, making these schemes

ideally suited for the next generation of high performance 256-bit (double quadruple) or

higher precision computers. This ea.se of creation makes it possible to adapt the algorithm

to the mesh in time instead of its converse: this is ideal for resoh,ing varying wavelength

scales which occur in noise generation sinmlations. And finally, the sources of round-oil

error which effect the very high order methods m-e examined and remedies provided that

effectively increase the accuracy of the MESA schemes whik' using current computer tech-

nology

1 Introduction

Predicting the sources of jet noise requires computational methods that are orders of magnitude

more efficient attd that provide very high resolution. This is accomplished numerically with very

high accuracy, adaptable, explicit methods whose benefits are as follows:

• ttigh accuracy methods are more efficient and provide finer resolution of the physics [5];

• Adaptable methods can adjust their accuracy to resolve sleep gradient s while avoiding the

complexities of mesh adaptation;

• An(t. explicit methods permit highly paralM/scalable computations by minimizing inter-

processor communication [4].

The proposed approach enables the MESA schemes [5] t.o accomplish those objectives by mak-

ing t.hem simple to program, adapt, and compile while simultaneously reducing floating point

operations and round-off error.

MESA schemes can be viewed as a multidmwnsional, higher order ext.ension of Lax-Wendroff

schemes that incorporate more of the physics (via cross-derivative information) necessary to more
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accurately propagate waves along their charaeterist.ic surfaces. The MESA schemes require es-

sentially two procedtlrcs; a spatial interpolation followed by a time advance. Previously, the

second step was implemented using a recursive deiinition [4] which enabled arbilrarily high ac-

curacy in rime. However, the spatial interpolation st.ep required computer algebra [3] for the

symbolic creatiou of one-dimensional int.erpolants, effectively limit.ing the accuracy of MESA
schemes to 29 th order because of the computational complexity in producing its symbolie fornl.

This final limitation is removed in this work by replacing the one-dimensional s,vmbolic in-

terpolant with a simpt(' and eflqcient fornl of the Hermitian divided difference interpolant. A
key finding of this paper is that all the spatial derivatives of a Hermitian divided difference

intcrpolant, at the midpoint of a two-point, multidimensional stencil, have a simple algebraie

expression which eliminat.es the need for computer algebra tools. Sine(' small stencils have many

advantages [7] such as better resolut.ion and ease of boundary imt)lenlentatio,ls, using this new

form of tterlnitian divided differences with two-point Hermitian MESA schemes would appear
ideal.

Divided differeuces have been used to interpolate data for many years dating back to Isaac
Newton. [11] and [2]. With the advent of digital computers, divided differences have been re-

placed by splines since polynomial interpolations tend to oscillate at. higher orders. In addition.
ttermitian methods have not been extensively used due to the difficulty of obtaiuing the d('riva-

rives of the fuzlction being approximated [14]. However. in this work. polynomial oscillations
are eliminated since only a single interval is used and the derivat.ives of the function at the end-

point s of this iut.erval are completely prescribed. Also. round-off error is reduced for high-order

interpolations since guard digits are introduced into the tableau [la]. And Herlnitian divided
difference interpolations coincidentally use the same data found ill the stencil of a 2. ,s - 1 order

MESA scheme (f. ;'/'t_) e_f(*) o'/(.r) _ For these reasons. Hermitian (Birkhoff [10]) divided
ditferences are use(l to great advantage here.

This paper first describes the new approach to spatial interpolation in one-dimension and

then extends it to 2 x 2 Itermitian stencils. Next.. the linearized Euler equations are solved in
a bi-periotlie open domain 1)3' applying this new interpolation method to the MESA schemes.

The error and etl_cieney of the new approach is then compared with the previously best known

approach. And finally, various teclmiques are shown for improving the effective accuracy of very
high order methods (> 30) when computer precision is limited.

2 Two-Point One-Dimensional Hermitian Divided-Difference

Interpolation

We will now provide an overview of Newton's interpolation method based upon divided differ-
('llCeS.

Le_ xi : i = 0, 1..... I, be any (n+l) disQnet point.s of [a.b] mid let f be a differentiable
function. Ca[,. b]. -fhe coetficient of z n in the polynomial p C P,, thai satisfies the eonditiollS

Op(xi) _ Of(xi)
.i=0,1 ..... _t. (1)

Ox cOx

is defined to be a divided difference of order n [13]. These divided differences, once de*er-
mined, completely ([(,finet he spatial interpolant satisfying equation 1.

A convenienl nulelllonic eo,nmonly used to (tetermine the divided (lifferences is shown in

tigure 3 and is referre(t to as a divided difference tal)leau. In this figure is th(' tableau for

a tifth or(ler one-dimensional interpolanl. When Herlnitian data (the data and their spatial

derivatives) at'(' used for interpolation [13]. the tableau is forme(t 1)3, inserting all the known data

inlo ('ach colulnn of the tableau as shown in figure 4 for the ease of a two-i)oint Hermitian stencil

with (hi'e(, data elements per grid point (f(x, y), f,.(x. Y). fxx(X, y)). In g(meral, for a two-point
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Figure1:TwoPointOne-DimensionalStencil

,T ---- X O 3" ---- () 3" = X l

Y = Yl Y = Yl

q_ I ()

y=O y=(} -

3" _ X 0 X : {} ,/" = X l

Y = !Jo !J .qo

Figure 2: Two Poin_ Two-Dimensional Stencil

°*f(x'Y) is kllowll a_ bothHcrmitian stencil in which thc data: f(x.y), f.(x,y).fx.(x.y) ..... _0:_

grid points (x=x0 and x=xl) in figur(' 1. the following procedure will correctly plat(' this dala
into thc tableau.

fa(xo);Q[i + ,_ _ l.jl = fJ(x_).,, {j,0. i}]. {i,().,s}]; (2)
Do[Do[Q[i, j] - j! j!

With this initial (tara inserted into th(' tableau and th(' distance b(,tw(,en both poims defin(,d

by _Xh. ID, rcst of the _.ableau is constructed using [2]:

Q0.0

QI.I

Q) 1.0

Q_.o
(_)3.1

Q3.0
Ql.l

Q) I.O

(_¢)5.1

Qs,o

{22,'-,
Q3.3

Q3,2
(21.3

Q1,2

Qs.a

Q)5,5

Figurc 3: Dividcd-Diffcrcnc(' Tableau for c2o2 MESA scheme
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f(xo.y)

o! f_,(xo.y)

f(xo,y) 1! f_(xo,y)
Oi _ , , -)i

• ]_ t,r0.y) -'(_

f(x0.y) 1![_ d3'3 (¢1 1,,!

ft.._3.1 (_,1.3

i(x,.,-27r.'
0! ix (X 1 ,y} 2!

f(xl,9) l!

o_

Q5,5

Fif4ure 4: Loaded Divided-Ditforence Tableau for c2o2 MESA SC|lenle, X-Direction

Do[Do[Q[i.j] = (q[i,j- 1} - Q[i- 1,j- 1])
Ah , {j,i - <s,i}], {i.,_-_ l.2,._ + l}]; (3)

And with this tableau, the interpolating Hernfitian polynomial on a Hermitian stencil witti

two points and ,s - 1 data elelllonts (prinfitive variable and its spatial derivatives) per grid point

tilay I)e evaltlat(,d with Newton's interpolatory divi(ted difference fornltlla [2]:

2*(s+l)--I i--I

f(x) = Z Q(i, i) II(x - xj) (-i)

i=0 j_0

which may be rewritten as:

s 2(_FI)--I

f(x) = Z Q(i.i)(x- xo) _ -_ Z Q(i'i)(x- xo)_+'(x- x_)i-(_+L) (5)

i=O i=s f-I

Hermit ian MESA schemes require evaluating this polynomial at the center of each stencil

to interpolate the sohition data and their spatial derivatives. In the general case in which a

MESA sc|lenie of arbitrary accuracy is used, the spatial derivatives of equation 4 become very

coniplicated and require computer algebra _ools for their sohition. This limits the accuracy and

adaptability of these methods.

For example, a 49 th order MESA scheme in one-dimension requires 25 data elements per grid

point. But to time advance all those ek'ments requires determining the derivatives of equation 4

up to the 50 th order. The product terms in flint equation will double after each differentiation

by the product rule of differentiation; this produces equations with approximately 25° _ 1016

terms. Besides quickly exhausting memory resources of most computers, this also takes to()

llltlC]l time to calculate and makes it diiticuh to lnodify the accuracy of the nuuierical schenie

in real t iine to accounnodate steep gradients.

_'ortunately. by using a two-point stencil and a reformulation of equation 5. it is possible to

etIicien_lv calculate all the necessary spatial derivatives without: the use of computer algebra.

3 Fundamental Result: Direct Interpolation of Spatial Deriva-

tives at Center of Two Point Hermitian Stencil

A 2._ , 1 order Ih, rmi_ian MESA scheme (labeled c2os) will contain (,s- 1).(,s - 1) _. or (.4 + 1 )3 data

elelnents per grid point for eacii primitive variable in one. two. or three-(timensions resl)(,ctively.

The MESA scheme requires all tiiese (tara elements to I)e advanced in time. Acconiplishing this
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requires imcrpolat, ing 2(_' + 1 ),4(,s + 1)2 or 8(.s _ 1)a spatial derivatives at the center of tit(' stencil

for each primitive variable' in one. two, or thr('c spatial dinwnsions rest)ectively. Each of those

interpolations normally requires evaluating the derivative of equation 4 at x = {). Because of the

product term in this equation, higher order deriw_fives of this equation become complicated, as

mentioned. However, the following main result of this paper provides an alternative formulation

for the imerpolatiou of tho spatial derivatives at the cenler of a two-poim ttcrmitian stencil.

Od* f(x = O)

_)ir dx

s 2(s+ 1)--1

Q(i, i) -;,x,,
i= ,' i _+1

[Q(i,i)Z(i,_',dx, xo. xj)] (6)

where Z is (tctin0d as:

Z(i..s, dx, xo,xl) = Z (-xo (-xl

(7)

with Pl and I2.2 d(,fined as:

dx-I --r

Pj(i..s, dx.,')= II [i - (.,. + l) - c] (8)
( =0

an([

respect iv(,ly.
This forln can be rewritt('n as :

7'--|

P.2((s.r) = H [.4'_ 1 - L'l
k 0

(9)

O"* f(x = o)
Oir dx

2s+l

Z Q(i. i) co, f(i. dx)
i=dx

(m)

where the function coef(i,dx) is predefined as:

Do[Do[cocf[i. dx] - (i -dx)i (-x°)Ii-ax)" {i" dx, ,_}], {dx, 0. (2.s + 1)}]

Do[Do[

cot f[i, dx] =

_a. r dx! _--X _(_+l--")(--xi)(i-*-l-dz+") *
r=()L (dx_r)b.! / O)

Produc't[(i - .s - 1 - #), {_, 0. dx - 1 - r}] *

Product[(.s + 1 -/_'), {k. t}, r - 1}11

, {i,.s + 1,2s- 1}]. {dx.0.(2.s + 1)}];

(11)

Th(' function cocf(i.dx) in ('quation 10 is ind(,p(,ndent of space and tim(' and needs computed

ouly once. Th(!r(,af_er only the divid(,d difference terms Q(i,i) must I)(, evaluated for each st(,ncil

at each tim(' st(,p using equation 3.

4 Cost Comparison

As ltl('lltiOll('(t, this n('w approach (,lilninates the n('ed for using conlputer alg0bra to I)ro(tuce

high ord(u' MESA sch(un(,s; this reduces the initial cost of programming the MESA sch('mes and
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increasesits possibleaccuracyandadaptabilily.In addition,anotherunanticipatedbenefitof
thisnewapproachisfewerfloatingpointoperationsarerequiredascomparedtothebestprevious
approaches.Forexample,the_otalcostto evaluateall of tit(,spatialderivativesrequiredin a
2* ._'+ 1orderMESAscheme(c2os)is thesumof thecostto computedwdivideddifference
terms,Q's,usingequation3 andthecostofevaluatingall ofthespatialderivatives(_,"_f(xo))

/i;F d_

using equation 10. Therefore the total cost of the new approach is:

• -)((1 +,_)2)+(3-5.s#2s 2)=4# 7_s_ 3_- (12)

multiplications.

in the previously best known procedure [4]. in which computer algebra is used _o generate

the one-dimensional interpolant, each spatial derivative required at most 2,s ± 2 multiplications,

and there were 2._ _ 2 terms to be evaluated in one dimension resulting in a total cost of:

(2,s + 2) 2 = 4 _ 8.s + 4,s 2 (13)

multiplications.

Therefore the new th,rmitian (Birkhotf) divided difference form requires

s-+ s_ (14)

fewer multiplications. However, the assulnption that calculating each spatial deriwttive under

the oht approach required 2a - 2 operations is an upper limit and in practice certain algebraic

cancellations may reduce that number. A_ higher accuracy this upper limit is more likely since
the equations t)ecome large and cancellations are more difficult.

5 Two-Point Two-Dimensional Hermitian Divided-Difference

Interpolation

It is necessary to perform a multidimensional interpolation for the MESA schemes in two and

_hree dimensions. While this coul(t possibly be accomplished using other multidimensional

divided difference techniques [12], we will us(, the tensor product approach as in Dyson [4] since
this permits a (totalled comparison of the new and old approaches.

5.1 Tensor Product Approach Overview

The tensor product approach interpolates all the spatial derivatives required for the MESA

schemes by performing a series of one-dimensional interpolations [4]. Each one-dimensional
interpolation requir(,s a new divided difference tableau to be generat, ed using equation 3. A set

of one-(tim('nsional interpolations is first performed in the x-(lirection to interpolal(, the data

"'' f('r-°'Y)gi : i = 0.1 ,,,', ,mtj = 0,1,2,. ,2 * a - 1 at y = yo an(t y = yj. And th('n.

by interpolating in tit(' y-direction using only these intcrpolat, e(l values, the following terms are
found:

Oi+J f(x (Ly
O)Vi.j : i,j = 0, 1,2 ..... 2.._ + 1 (15)

OxiyJ

using the coordina'te system in figure 2. These terms are required for time advancing all the

data on each gri(t point, namely:

O'tgf(x'Y)vi,j : i,j = 11.1,2 ..... ,s (16)
OxiyJ

NASAfFM--2000-209944 6



a_gridpoints(xo.Yo). (Xo, Yl ), (x_. yo), .l_d (xl. Yl) as shown ill figure 2.

This tensor t)ro(luct I)roce(tur( ' is ('xtensiblc to any size stencil, but the tlermitian (tivi(l('d

different(' on('-dimensional in'cerpolat ion as d(,velot)ed in this paper is limiI('(I to two-poinl inter-

polations.

5.2 Fifth Order Two-Dimensional Interpolation Example

The coml)ination of one-dimensional two-point Herlni_ian divided difference interpolation with

mul'cidimensiona] tensor product (,xtensions is best un(terstood with a silnple example. \V(, will

complet(,ly describe the process required to interI)olat(' the data on a two point two-(tim('nsional
stencil shown in figure 2 for th(, 5 th order MESA scheme, c2o2.

Tile c2o2 MESA scheme ill t,Wo dimensions, will contain the data: f. f_.f, rx. fu" f:J_'" fuxx.

fu_" fuy._'" f_ju.rx at all four grid point locations as shown in figure 2 for each primitive variable
(pressure, u-velocily, v-velocity). Using those 36 pieces of information for each primitive variable.

the two-dimensional spatial int (,rpolan_ of the form:

5 5

f(x, y) = _ ___ cf(i.j)x'y _
i_O j=O

(17)

is created by finding tit(' values of the cf(i,j) coefficients wh('re

f(i,jl

cf(i,j) - (18)
i!j!

These coefficients at'(, found by first performing on(,-dimcnsional interpolations of t h(' form:

5

f(x) = _ cf(i)x i
i=O

(19)

whcr('

of(i)- f(il(x=O'Y) - Off(x=O'Y) (_)i!Ox i (20)

By letting f(x) in equation 19 be replaced by f(x). f,j(x), and fyy(x), r(,spcctively, then

of(i) = OJf(i)(x=O'y) loyji! = O(i_J)'f(x=())_) (_) (21)

for j=0. 1, and 2. respectively; And. i=(1,1,2.3.4, and 5.

Thus. it is possil)lc to interI)olale all tit(' values, cf(i) for j=0.1, and 2 at the location

(x = (I. y = Y0) shown in figure 2 using the three Olw-dim('nsional interpohults of the' form
of equation 19. This is rep('ated for tit(' of(i) values at tit(, location (x = 0. y = Yl) for each j=0.

1. and 2 for a total of six on('-dimensional interpolations.

At this point, we have th(' two sets of int, erpolated vahles:

Oi+Jf(x = O. y)
(22)

for Y=Yo and Yt; and fl)r i=1).1.2,3.4.5; and j=(}.l, an(l 2.
This data may be used to evaluate the deriva_iv(,s in equation 1,5 at tit(' center of the s;encil.

This r(,quir('s a second set of on('-dimensional divi(ted ditfer(,nce interpolations in tit(, y-direction

using only this (tma.

NASA/TM--2000-209944 7



Wh(T('

Interpolating in the y-direction is accomplished with tile polynomial:

5

f(x = O. !/) = _ cf(j)!t j
j--O

(23)

of(j)= OJf(x={I'Y=O) (_.)OyS (24)

This t,ime however, we will interpolat, e tile functions: f.f_:.f._.,fxxx.f.._,xx, and fx***x by
tmrforming the following substitution into equat, ion 24:

,.:(x:..,l/(x = 0. y) - Ox- . (25)

Oi+Jf(x=().Y=(I) ( 1 )_.I(i ) = -ff:_Tb_ _ ('26)

for i=l}, 1.2.%1. and 5 so that

Tl)('refore this requires six more one-dimensional divided difference interpolations for a to_al

of twelve when including the six horizontal int, erpolations. The substitution of equat, ion 25 into

equation 24 reus(,s the data from the x-direction int,erpolation, thereby intro(tucinj4 efliciencies
no_ foun(t with other multidim(,nsional interpolation pro('e(tures. Not,e that this efficiency is

only possil)l(, if the data in equation 16 arc availabh, a_ each grid poim so _hat a symmetry of
the spatial derivatives exists in all dimensions because both the t,ensor product and Hermit|an

divid(,d (tiff(,rences require this complete set of derivative inforlnat ion. Fortunately. the two-point
Hermit|an MESA schemes (c2os) provide exactly this information.

5.2.1 Horizontal Interpolation Procedures

Apl)lying t h(' above concepts can be reduced to a few simple steps. Interpolat, ing t he intermediate
values a_ (0. !1o) and (I). Yt) in figure 2 is accomplished by:

• First, loading the known dat, a from the st,encil into the tableau shown m figure 4 to

in*('rI)olat, e the data at y = Y0. The _ableau is loaded with the function f. f.. and fx,,.
(lata conlained al the two grid point locations x0 and xt as indicated in figure 1.

• Second, buihl the divide(I difference tableau as describe(l in equation 3.

• Third. ('valua,(' the spatial derivatives "_'f(_ o.,_=,jo) for i=(I.1.2,3,4, and 5 using (,qua-

tion 10.

• Fourth. repeat these _hr(,e steps by substituting f(x) wi_h f -- f. f,_. and f,_j.

• Fifth. rep(,at these four steps at y = yj.

After these procedures, we hav(, calculated the data:

0 i+jf(x = 1).y)
Vi :i = 1.2,3.4.5(mdVj :j = 0.1.2 (27)

OxiOyJ

al grid coordinates ((). yu) aml (0. Yl) as labeled in figure 2.

NASAfI'M--2000-209944 8



fW..9o)

O! fu(O.yo)

f(o.,_o) L!

O! fu(O.yo) 2!(_

f(7:,!,,o_ 3'_ ._" ¢3.3

! Qa i Q 1 '_
f( .y_ " ,'l ""

o!f--_- ,, (o.,),q i,2 ,_

O! f,(O,yi) 2!

f(o.,,jL) l!
o!

Q5.5

Figuro 5: Loadod Dividod-Difforencc Tabloau fl)r c2o2 MESA scheme. Y-Dirociion

5.2.2 Vertical Interpolation Procedures

Ncxt, tit(, data shown in oquation 27 is us('d to porform t h(, Hcrmitian divid('(t diffcr('nc(' intor-

polation ill t,hc y-direction by:

• First loading that dat, a into ttic tableau as shown ill figure 5 tO intorpolato tit(' inlorlnodiato

dat_a of the lasl st,c'p along the lino x = 1}. "i'ho tabloau is loadod witti the funclion f. f,a,

and fuu data contain('(t a_ tit(, :.wo grid point locations (0, yo) and (0, yl ) as ill(ticated in

figure 2.

• S('con(l, Imild the divided differenco tableau as doscritJ(,d ill o(tuat.ion 3.

• Third. ovaluato tho spatial dcrivafivos _,_/(z=o,,j=o) forj=O.1.2.3.4, and 5 using oquafion 10.
i _y.l

• Fourth. rop('at th('s(' thr('(' stops 1)v substiluting f(x) with f -- f. fx, fxx. fxxx. f.x.x-

and f**xx:,, which aro til(' imormcdialo data t)rcviously (,valuatod using tho horizontal

int('rI)olation proc(,dures.

Aftor thcsc stops, all the spat.ial dorivat.ivcs of f(x,y) necossary for advancing the data on the

grid is availabk' for tho MESA scheme.

6 Results

For tit(' purposes of COlnparing this new approach with tti(, old approach, it is noc(,ssary to divid('

ill(' rosuh,s from til(' ll(,w approacii by a factorial t('rm. This ix bocause t,he co(,tficients for Ill(,

provious method [4] wore oquival(mt t,o using the oquation:

2*s+l

f(z) = Z cf(i)xi (28)
i=O

ill whicii tho factorial torlIl is inchidcd in tticso cf(i) coofliciont, s inst,cad of ttic form:

_**+1 of(i) i (29)
f(x) = Z i-----_,x

i_O

in wiiicti til(' factorial form is not includod and ttwrofor(' of(i) = Wf(j.)

\Vittt _his corroction factor a diroct comparison is possibl(' I)etwoon bolti approach('s for v('ry

high accuracy by using automatic cod(' generation [6]. In particular, th(' rolativ(' (,tficioncy and

accuracy of apl)lying both im(,rpolat.ion methods to the sam(' wav(' propagation prol)l(,m ar('

m(,asur('d.
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6.1 Problem Definition

Wave prolmgation is described by the linearizcd Euler equations and its correct simulation in

time is importanl in many aeroacoustie applications. \V(, will solve the hi-periodic open domai,_

problem in which the physical domain is a unit square ([-1.1] x [-1. i] x [0. T]). The solution of

the lin('arized Euler equations in this cas(' is assumed to be y-periodic (top and bottom of box

repeat) and x-periodic (left and right sides of box repeat). Using s('paration of wlriables with

periodic boundary conditions, on the following linearized Euler equation systell:l wit h a constant

mean eonw,ct ion velocity v('ct or (Mx. M,j ):

Ou !V O. O. Op
-b--/-+_z:"O-J* +-'_z'a Oy 0:,- =0.

&' &' &' 8I,

O_ _ 3I* 07 ,- M roy Oy - 0.

Of Of 01., 0_ &,

0-7 + M'_"_x a Mv oy + Ox Oy - ()"

(30)

with the boundary conditions :

/,(1, y. g) = t,(-1, y, t)

u(1.y,t)=u(-1.y.t)

u(1.y.t) = u(-1.y.t)

p(x, 1, t) = p(x, - 1, t)

u(x. 1, t) = u(x, -1, t)

u(x. 1.t) = r(x,-1.t)

provides tit(' following analytical solution:

l,( x. y. t ) = eos(vtv/2) sin(=(- ( M_.t ) * x ) ) sin(rr (- (M,at ) .- y ))

('os(_ (- (M.I) . x)) sin(=tv/2) sin(_ (- (Mvt) - y))

cos(= (- (M,fl) - y)) sin(rrtv_) sin(r: (- (M.t) + x))

,.ix. y. t) = v'7

(31)

(32)

(33)

6.2 Numerical Results

The r(,sults of these numerical experiments with 8 grid points per wavelength are shown for

double-precision (64-bit reals) in tables 1 and 2 and for quadruple pr('cision (128-bit r('als) in

table 3. Tile time to compl(,te the simulation using ('ach approach is a measure of relativ(' efli-

ci(,ney and is shown for each MESA scheme tested. In addition, the results for both approaches

are plac('d abov(' and below each other for easy comparison. The seven column headings are
defined as:

N Numl)er of time steps.

T Total time ('lai)sed ill simulation.

maxperr The maximum absolute ('rror in tit(' pressure.

llperr A measure of the average error (L1 norm) .

phmax Maximum i)r(,ssure occurring in domain.
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phmin Minimum pressure occurring in domain.

'"" (should be onee-ratlo The change ill the "total energy contem of the svstenl as a ratio

for no change).

Despite the cost analysis in section 4 showing a sligh_ advantage t.o the new approach for
all MESA schemes, numerical experiments show the old approach is actually faster for methods

less titan about 15 th order. This is likely due _o the length of *.he one-dimensional equations

being less "than the worst case used in the analysis. However. for higher order me, hods the new

approach is modestly faster while using double-precision calculations and it is significantly faster

when quadruple-precision is used (see table 3).
Notice in table 1 that _he new approach begins demonstrating less round-off error at. ap-

proximately 11 tt' order accuracy. And at. 15*h order accuracy the new approach still maintains
essentially no growth in the energy compared to the old approach in table 2. And at 17 *_' order

both methods begin int.roducing significant round-off errors into lhe overall energy.

in quadruple precision, both ai)proaches appear similar at 1,_th order, however ,he new

approach is about 50 percent fast.er. And at 21 st order accuracy the round-off errors are higher
in the old approach while the new approach is more efficient. By the t.ime 27 th order accuracy

is reached, both approaches are showing significant round-off error in the total system energy.

It was uot. possible to create a 33'a order or higher MESA scheme using the ohl approach,
but the new approach appears to maintain accuracy up To 57 tt_ order in quadruple precision
before round-off error becomes t.oo excessive. The sources of this round-off error are explained

in the appendix A.
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N ] .[ maxperr llperr phmax phmin e-ra_io
OLDAPPROACHABOVE.NEWAPPROACHBELOW

c2o2:OldApproachTime=254.79,NewApproachTime=290.39
21)0 1.00000E+019.(17553E-041.36338E-038.95490E-01-8.95490E-019.97694E-01
200 1.00000E+019.07553E-041.36338E-038.95490E-01-8.95490E-019.97694E-01
2000 1.00000E_-022.06528E-033.24237E-032.40990E-01-2.40990E-019.79382E-01
2000 1.00000E-022.06528E-033.24237E-032.40990E-01-2.40990E-019.79382E-01
20000 1.()0(}00E+{)37.40171E-021.11612E-017.04408E-01-7.04408E-018.14061E-()l
20000 1.000(10Et(}3 7.40171E-02 1.11612E-01 7.04408E-01 -7.04408E-01 8.14061E-01

c2o3: Old Approach Timc=572.39, New Approach Timc=641.52

200 1.00000E+01 2.1}4781E-06 2.99855E-06 8.96396E-01 -8.96396E-01 9.99996E-01
200 1.00000E+01 2.()4781E-06 2.99855E-06 8.96396E-01 -8.96396E-()1 9.99996E-01

2000 1.000()0E+02 5.51277E-06 1.08654E-05 2.43050E-01 -2.43050E-()1 9.99952E-01

2000 1.00000E+02 5.51277E-06 1.08654E-05 2.43050E-()1 -2.43050E-(}1 9.99952E-01

200()0 1.00000E_ 03 1.77378E-04 2.6793TE-04 7.78247E-01 -7.78247E-01 9.99543E-01

2000(I 1.00000E- 03 1.77378E-04 2.67937E-04 7.78247E-()1 -7.78247E-01 9.99543E-(}1

c2o4: Old Approach Time= 1108.65, New Approach Tim('= 1311.10
200 1.00000E+01 2.86266E-09 4.24757E-09 8.96398E-01 -8.96398E-01 1.00000E-÷()0

200 1.00000E-01 2.86266E-09 4.24757E-09 8.96398E-01 -8.96398E-01 1.00000E+0()

2000 1.0(}000E-02 8.95464E-09 1.86641E-08 2.43055E-01 -2.43055E-01 1.00000E+00

2000 1.00000E-02 8.95463E-09 1.86641E-08 2.43055E-01 -2.43055E-01 1.0000()E+00

20(}0(l 1.000(}(}E+03 2.45441E-07 3.84170E-07 7.78425E-01 -7.78425E-01 9.99999E-()1

20000 1.O000(}E÷03 2.45441E-(}7 3.84169E-07 7.78425E-01 -T.78425E-01 9.99999E-(}1

c2o5: Old Approach Tim(,=2{)34.22. New Approach Time=2533.79
200 1.0(_(_00E_01 2.70040E-12 4.09499E-12 8.96398E-01 -8.96398E-01 9.99999E-(}1

20(i) 1.(}0(R}0E+(}l 2.69773E-12 4.09191E-12 8.96398E-01 -8.96398E-01 1.00000E-()(]

2000 1.00000E-_02 2.00462E-11 3.45419E-11 2.43055E-01 -2.43055E-(_1 1.00()00E+0()

21)00 1.00000E _02 2.00432E-11 3.45456E-11 2.43055E-01 -2.43(}55E-01 1.00000E*O0

200(}(} 1.00000E- 03 1.53291E-09 2.87923E-09 7.78,125E-{11 -7.78425E-01 l.()0000E - 00

2(I00() 1.00000E-(}3 1.53274E-09 2.87917E-09 7.78425E-(}1 -7.78425E-01 1.00(l(}(}E+(}0

Table 1: Cost and Round-off Error Comparison of N(,w and Old 2D In'L(,rt)olation Met ho(ls \Vi_h

8 C,rid Points P('r \Vav('l('ngth: Doubl(' Pr(,cision Compmations
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N [ T maxperr l lperr phmax phmin e-ra_io
OLDAPPROACHABOVE.NEWAPPROACttBELOW

c2o6:OldApproachTime=3372.85.NewApproachTinle=3978.52
2(1(i) 1.0()000E-01 4.72955E-145.58290E-148.96398E-01-8.96398E-011.(10094E+1111
2011 1.00000E-012.56462E-144.69778E-148.96398E-01-8.96398E-011.00002E-00
2000 1.00000E-021.47465E-112.62678E-112.43055E-01-2.43055E-019.98917E-01
2000 1.00000E+02 1.47443E-11 2.62938E-11 2.43055E-01 -2.43055E-111 1.00004E _(Jl)

20000 1.00000E _03 1.45736E-09 2.73856E-09 7.78425E-01 -7.78425E-01 1.00010E+01)

20000 1.(10000E_ 03 1.45717E-09 2.73851E-09 7.78425E-01 -7.78425E-01 1.110001E-00

c2o7: Old Approach Time= 6557.54. New Approach Tim(,=5824.79

200 1.110000E+01 7.13873E-14 1.17613E-13 8.96398E-01 -8.96398E-01 6.61955E+02
21111 1.00000E+01 2.69784E-14 4.96476E-14 8.96398E-01 -8.96398E-01 1.04582E+00

20(t0 1.000(10E+112 1.48251E-11 2.63057E-11 2.43055E-111 -2.43055E-01 7.81400E +02

2000 1.000()0E+02 1.47365E-11 2.62886E-11 2.43055E-01 -2.43055E-()1 1.08933E_ 00

200110 1.001100E+03 1.45761E-09 2.73870E-09 7.78425E-01 -7.78425E-111 6.05388E+02

20000 1.00000E_ 03 1.45698E-09 2.73832E-09 7.78425E-(11 -7.78425E-01 1.036(17E+00

c2o8: Old Approach Tim(,=7424.47, New Approach Time=6443.41
20O

200

200O

200O

201)00

2000(}

1.00000E+01

1.00()00E+01

2.19713E-13

2.47580E-14

1.001100E+02 1.46503E-11

1.00000Et02 1.47489E-11

1.00()00E+03

1.00000E+03

1.45885E-09

1.45711E-1)9

3.11883E-13

4.59314E-14

8.96398E-01

8.96398E-01

-8.96398E-01

-8.96398E-01

8.09897E-09

1.23692E _115

2.62826E-11 2.43055E-01 -2.43055E-01 8.25499E_ 09

2.63057E-11 2.43055E-01 -2.43055E-01 1.10213E+05

2.73874E-(19

2.73847E-09

-7.78425E-01

-7.78425E-01

7.78425E-01

7.78425E-01

7.70854E-09

1.38970E- (15

c2o9: Old Approach Time=10112.20, New At)proach Time=l1168.74

200

200

20011

2000

20001)

20000

1.00()00E+01

1.00000E+01

1.00000E+02

1.00000E+02

1.00000E+03

1.00000E_-03

8.13960E- 13

2.58682E- 14

1.52230E- 11

1.47471E-11

1.46161E-09

1.45712E-09

1.04409E- 12

4.62761E-14

2.65629E- 11

2.63039E- 11

2.73741E-09

2.73848E-09

8.96398E-01

8.96398E-01

2.43055E-01

2.43055E-01

7.78425E-01

7.78425E-01

-8.96398E-01

-8.96398E-01

-2.43055E-01

-2.43055E-01

-7.78425E-01

-7.78425E,-01

5.13309E- 17

2.81314E+ 11

5.115941 E+ 17

4.05821E- 11

4.91307E- 17

3.22536E- 11

c2o 10: Old Approach Tim('= 17783.09 . N('w Approach Time= 11433.52
2011 1.00000E+01

21)t) 1.00000E-_01

20()() 1.001100E+02

21100 1.()0000E=02

20000 1.00000E_03

20000 1.00000E+1)3

2.76479E-12

2.62013E- 14

2.05443E- 11

1.47421E- 11

1.47549E-09

1.45712E-09

4.08680E- 12

4.66777E- 14

2.66944E- 11

2.63037E- 11

2.73275E-09

2.73848E-09

8.96398E-01

8.96398E-01

2.43055E-01

2.43055E-01

7.78425E-01

7.78425E-01

-8.96398E-1)1

-8.96398E-01

-2.43055E-01
-2.431)55E-1)1

-7.78425E-01

-7.78425E-01

3.58499E-. 25

2.85350E- 18

2.28614E_ 25

3.55611E + 18

2.72428E _ 25
3.55940E_ 18

c2ol 1: Old Approach Time=1803.33 . New Approach Time= 1869.41
200 1.()0()()0E_01

20() 1.00000E-01

2000 1.0()01111E_02

2000 1.11110110E- 02

9.20091E-12

2.85327E-14

3.32458E- 11

1.475(13E- 11

1.09857E- 11

4.66790E-14

4.56052E- 11

2.63034E- 11

8.96398E-01

8.96398E-01

2.43055E-01

2.431155E- 01

-8.96398E-01
-8.96398E-01

-2.431155E-1)1

-2.43055E-01

4.76527E + 32

7.71540E +2.t

6.81984E+32

9.881128E +24

Table 2: Cost an(t l{ound-off Error Comparison of New and Old 2D Interpolation M(,fllo(ls \Vilh

8 Gri(l Points Per \Vavel(,ngth: Double Precision Colnputations

NASAfrM--2000- 209944 13



NI T maxperr t lperr phmax phmin

OLD APPROACH ABOVE, NEW APPROACH BELOW

('-ratio

2

2

20

2O

c2o7: Old Approach Time= 127.48
1.00000E-01 2.09573E,-20 3.26076E-20

1.0¢)000E-{)I 2.09573E-20 3.26076E-20

1.00000E+00

1.00000E + 0(/
9.75947E-20
9.75947E-20

1.53880E-19

1.53880E-19

• New Approach Time=89.34
8.53711E-01 -8.53711E-01

8.53711E,-01 -8.53711E-01

2.64616E-01 -2.64616E-01

2.64616E-01 -2.64616E-111

1.00000E+00

1.00000E_ 00

1.00000E_O()

1.00000E+00

c2o10: Old Approach Time=359.67, New Approach Time= 230.74
2 1.00000E-01

2 1.00000E-1)1

20 1.00000E+(I0

20 1.00000E+00

1.76261E-30

5.54668E-31

3.00584E-29

4.39112E-30

1.51294E-30

8.26561E-31

4.99977E-29

8.13865E-30

8.53711E-01

8.53711E-01

2.64616E-01

2.64616E-01

-8.53711E-01

-8.53711E-01

-2.64616E-01

-2.64616E-01

9.99954E-01

1.00000E- 00

9.99980E-01

1.00000E _ 00

c2o13: Old Approach Time=806.21. New Approach Time= 376.07
2 1.00000E-01 2.87010E-29 4.01517E-29 8.53711E-01 -8.53711E-01 1.88808E_ 16

2 1.00000E-01 3.38964E-32 4.22501E-32 8.53711E-01 -8.53711E-01 4.69234E+06

20 1.00000E+00 1.53766E-27 1.79257E-27 2.64616E-01 -2.64616E-01 4.68978E+16

20 1.00000E+00 9.39854E-32 1.21469E-31 2.64616E-01 -2.64616E-01 8.267112E_-06

c2o16: Old Approach Time=NA. New Approach Time=686.30

2 [.00000E-01 4.31408E-32 3.50760E-32 8.53711E-01 -8.53711E-01 8.95892E_ 28

20 1.00000E+00 1.17097E-31 1.35263E-31 2.64616E-01 -2.64616E-01 1.74818E_29

c2o19: Old Approach Time=NA, New Approach Time=1439.74

:0 [ 1.00000E-01 3.69779E-32 4.17927E-32 8.53711E-01 -8.53711E-011.00000E+0() 1.21719E-31 1.51134E-31 2.64616E-01 -2.64616E-01

8.808(}5E_ 51

1.46755E+52

c2o22: Old Approach Time=NA, New Approach Time=2195.83

£20 ] 1.00000E-01 5.54668E-32 4.66316E-32 8.53711E-01 -8.53711E-()11.00000E+00 1.21719E-31 1.30786E-31 2.64616E-,)1 -2.64616E-01

2.19468E+ 76

4.81574E, 76

c2o25: Oht Approach Time=NA, New Approach

2 [ 1.00000E-01 4.93038E-32 4.33575E-32 8.53711E-01

20 I 1.00000E+0() 1.37126E-31 1.55859E-31 2.64616E-01

Time= 2605.29

-8.53711E-01 1.21860 + 101

-2.64616E-01 5.71654+ 101

Time= 3653.88c2o28: Old Approach Time=NA, New Approach

20 1.O0000E-O1 5.23853E-32 5.09168E-32 8.53711E-01 -8.53711E-01 2.81365,1261.00000E+00 7.85779E-32 1.28541E-31 2.64616E-01 -2.64616E-01 1.62764_-127

c2o31: Old Approach Time=NA, New Approach Time= 4826.52

£2( I 1.0()00(}E-01 6.77927E-32 5.62612E-32 8.53711E-01 -8.53711E-01 3.49609+152) 1.00000E+()(} 7,43198E-27 4.69403E-27 2.64616E-(}1 -2,64616E-01 3.6(1786+168

c2o34: Old Approach Time=NA, New Approach Time= 42884.60
2 1.0{)000E-01 6.77927E-32 6.47594E-32 8.53711E-01 -8.53711E-01 [.62494- 179

l0 5.{10000E-()l 1.255(16E-16 5.60704E-17 6.01971E-01 -6.01971E-01 1.1971()+ 2[6

12 6.00000E-01 Infilfity NaN 1.08423E-01 -Infinity NaN

Table 3: Cost and Round-off Error Coml)arison of N(,w and Old 2D interpolat ion Methods \Vii it

8 Gri(l Points P(,r Wav('l('ngth: Quadruple Precision Computations
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7 Conclusions and Future Research

it is now possible _o develop 20() tj' order or higher wave propagation algorithms whose practical

utilily is limited only by the precision of the computer. This is made possible by a change in Ill('

proc(,dure used to implelnem the spat, ial interpolation step of the MESA schemes. With this new

approach, tit(' MESA schemes are far simpler to program, more efficient, and incur less round-off

error. Automation is no longer necessary for algorithm development, but is still necessary for

testing the MESA schemes and for applying multidimensional wall 1)oun(tary condit.ions [4].

This new implement.at.ion of tit(, MESA schemes mak(,s it possible to adapt the method to

the mesh instead of the common approach of a(lapting the mesh to the method which adversely

effects the CFL constraints an(t complicat.es grid generation. By adapting tit(, metho(t using

estimates of the gradient.s from the divi(ted difference tableau, an efficient procedure for resolving

many different wavelength scales may be possible. In particu|ar, problems which contain a wide

range of wavelengt, h scales, such as fan and jet uoise generation, may benefit from a(laptive

algorithms such as these.
In short, this new approach is an improvement t,o the implementation of tit(, MESA schemes

in every regard for methods of 15 th order or higher, and has many advantages for tit(, lower order

methods as well. Two-poim tterlnitian stencils have many desirable properties [4], [7] such as:

• They simplify boundary treatment, s;

• They are more computationally efficient;

• And, they provide higher resolution.

In addition, they may now enable adaptive algorithm implementations and be implemented in

arbitrarily high accuracy using the key resuh from this paper, equation 10..ltowever, a limit

to the effective accuracy is encountered with this ilnplementation (luc t,o the round-off errors

incurred from subt racrive cauce|lation as discussed in the appcudix A. Some different approaches

for reducing roun(t-off error include:

• Reformulate the time advance st,ep of the MESA schemes to eliminate tit(' factorial term

correction discussed in section 6 which muhiplies the round-off errors.

• Modify the divided differences to central differences to avoid the divisions by grid point

distance, h, in each column of the tableau which also magnifies round-off error [11]

• Reformulate the MESA schemes to propagate complex variables in titlxc and calculate

(terivat ives wit hour subtractive cancellation [15]

• Use divided difference pipelining [1].

• Use t,he Stirling or Bessel forln of the central differences to lninimize the coefficients in

Newton's interpolatory equation 4.

• Predim roundoff error using the relationship between cohmms of the tableau (sum of

cohmm j = diiference of first and last _erms in colulnn j-l) [11], an(l then set lo zero all

higher order divided (tifferences in the tableau.

The last item limits the accuracy of the MESA scheme, I)ut prevents contain|nation froln

round-oil error. This also imI)roves etficiency since it prevems umleeessary calculations which

will only introduce error and computat, ional overhea(t. The abiliD" t,o detect roun(|-off error is

a unique a(tvantage of this new approach that may make using very high order metho(ts on

available technology pract, ical.
it is necessary to use Hermit|an stencils for very high order algorithms since traditional

Lagrangian stencils become excessive|y large in the limit. This paper has provided one approach
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for thi._.In addition,i_hasprovidedsomeof thetoolsnecessaryfor exploringthecapabilities
of adaptivealgorithmsfor adaptiveresolutionofsteepgradients(shocks).

in thefu_ure.asveryhighprecision,large-scaleparallelsystemsbecomecommon.Hermitian
divideddifferenceimplememationsof theMESAschemeswill beveryusefulsincetheyoffer
minimalin_erprocessorcommunications[4]andaccuracylimitedonlybymachineprecision.For
practicalapplications,thisplacesa greaterneedondevelopingveryhighorderwallboundary
andradiationconditions.
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A Sources of Round-off Error

The benefit,s of very high order accuracy begin to diminish as round-off error grows. The

predolninant source of this round-off error is subtract|re cancellation error which occurs when
|,we lmlnl)ers (:los(, ill value are sul_t,racte(t from one another, This result,s in a loss of most of

the significant digit, s in the mantissa.
The subtractive cancellation errors will occur in the construction of the tlivided difference

tableau as the standard deviation of the values iu each column decreases. Each eohunn, num-

bered j, in figure 3 is constructed for all i using:

()i,j _- ()i,j--I -- (2i--l,j--I (34)

Xi -- Xi-j

where for a two point Hermit|an spatial int, erpolalion, this relation re(hlces to dividing by x, -

Xi_ j = h, which is the dis_,anc(' between both grid points in figure I.
Each divided difference terlll Call t)(' proved using the generalize(l Rolle theorem to be equiv-

alem to [2]:
fg(_,.j) -h h

Qi4 - j! 2 < (_J -< 2 (35)

That is. each divided difference j-cohnnn coma|us data representing the jth derivative at

some point on the int,erval bet, ween both points. If we knew i_ applied at _he center (x=0) of

the stencil, we coul(t us(' it (lirectly ill the MESA scheme. However, the exact location of _he
function is not known.

From equations 34 an(t 35, the following is aclually being calculated in each column of the
lableau:

fj(_i.j) = fJ-J ((i,j-l) - fj-t ((i-14-1) (36)
h

where _i.j-I and (,-l.j-I are contained within the interval between both grid points, ie. x0 _<

(i.j-l,4i-l.j-I <_ xl •
Now let j=l and apply the mean vahle theorem of calculus to this equation, then it must be

the case |.hal:
h h

-- = (i-Lo < (i,l < (i.o = - (37)
2 2

Next, lel j=2, _hen "loosely" applying _he mean vahle theorem again to equation 36 resuhs in
the relat.ion:

i_ h
---- _- (i--l,O < _i--lA < _i.;2 _ _i.l < _i.0 : -- (38)

2 2

This ternl "'loosely" is used since the denominator in equation 36 (lees no_ change as add|-

|,lena[ columns at'(' processed and the IIleaIl vahl(' theorem eouht only be directly applied if its

size was (i.t - (i-Ll. However. on average, t,he interval will decrease for most functions since

tiler(' will b(' one or more critical points (_i.j) between (i.j-i and (i-l.j I when simulating the
oscillating functions _ha)occur in acoustical applicat, ions.

Therefore as j is increased, the imerva] in whicil _i.j can occur decreases. This has the effect

of compressing all the data ill column j closer together. In fact. by definition, the [as_ column

of the lableau contains a single elemem representing tilt' center of tilt' s_encil with an interval

length of z('ro for the cohmm. As the points, _i--l.j add (i.j become closer ill equal|on 36, the
su])tracl ix,(' cancellation errors increase.

For exanlple, suI)pose there are 10 grid points I)cr unit interval, then th(' th'st colunm has an

interval length of h = 1/1{}. hi addition, suppose the interval length is halved in each column,

th('n cohmnl j will have length (½)J-_. With a 21 _t order MESA me, hod (c2ol(I) vh('re will be

21 columns with t,he intervals (lecreasing by six or(lers of nlagnitu(le ill _he lasz _hree columns.
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hi fi_ct, by thc 5 th column thor(' is very liul(' separation between I)odl data poims (.00625 units)

r('slllling ill Slll)traClillg two ntllllbcrs lhat arc very clos(' ill wdue.

This subtracliv(' cancellation error is then uiagnified by th(' division of the small number.

h. in ('quation 36. i1 is a simpk' inatt('r to cliininate this division by using th(, forward, back-

ward. or cent ert,d-difft, rence forms [i 1] of th(' Newton interpohmt, tlowever, (,v(,n wi_hom this

miprovcment, tit(' r('sults of this pap(,r show using tlermitian divid(,d diff(,r(,nces wit h two-point

ttermitian MESA sch(,lnes results in less subtractiv(' canc('ltafion allan previous methods.
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B Fortran90 Implementation

' This routine will calculate the spatial derivatives for the MESA scheme

' Using the data fdata(dx,dy,x,y) = D[f[x,y],{x,dx},{y,dy}]

v It applies only to a c2os scheme, where the s=O,l,2, ...

' 0 ...... I...... 0 y=yl

' I I

, I I

' - + - y=O

, I I

, I I

' 0 ...... I...... 0 y=yO

' x=xO x=O x=xl

' INPUT: fdata(dx,dy,x,y) , x=xO,xl, y=yO,yl , dx=O,s , dy=O,s

' OUTPUT:cf(dx,dy,O) , dx=O,l, ..., 2*s + i , dy=O,l, ..., 2*s+l

!

program multidimensional

implicit none

!

' Define variables to be used

!

integer :: digits, e,i,j,k,s,n, dx, dy,r, yp, AllocateStatus

real (kind=selected_real_kind(30)) :: z, deltah, prodl, prod2, sum, innersum

real (kind=selected_real_kind(30)) :: h, xO,xl

real (kind=selected_real_kind(30)), DIMENSION(:,:,:,:), ALLOCATABLE:: fdata

real (kind=selected_real_kind(30)), DIMENSION(:,:), ALLOCATABLE:: coef,O

real (kind=selected_real_kind(30)), DIMENSION(:,:,:,:), ALLOCATABLE:: cf,cfdata

integer, parameter :: Prec30 = Selected_Real_Kind(30)

! Select the c2os MESA scheme desired. Order of scheme will be 2 * s + 1

!

print *,"Enter the degree, c2os"

read *, s

!...........................................................

! Dynamically allocate memory space for array

!

ALLOCATE (coef(O:2*(s+l),O:2*(s+l)), STAT = AllocateStatus)

If (AllocateStatus /= O) STOP '*** Not Enough Memory ***'

ALLOCATE (cf(O:2*(s+l),O:2*(s+l),O:O,O:O), STAT = AllocateStatus)

If (AllocateStatus /= O) STOP '*** Not Enough Memory ***'

ALLOCATE (cfdata(O:2*(s+l),O:2*(s+l),O:l,O:l), STAT = AllocateStatus)

If (AllocateStatus /= O) STOP '*** Not Enough Memory ***'

ALLOCATE (Q(O:2*(s+l),O:2*(s+l)), STAT = hllocateStatus)
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If (AllocateStatus /= O) STOP '*** Not Enough Memory ***'

ALLOCATE (fdata(O:2*(s+1),O:2*(s+1),O:1,0:1), STAT = AllocateStatus)

If (AllocateStatus /= O) STOP '*** Not Enough Memory ***'

! Spacing between adjacent grid points, assume same in x and y direction
!

h=dble(1._Prec30/4._Prec30)

! .............................................

! Location of right grid point as shown at top
! .............................................

xl=h/2. Prec30

| ............................................

' Location of left grid point as shown at top
!

xO=-h/2._Prec30

!

! Spacing between grid points xO, xl , usually same as h
!

deltah = xl-xO

t !

! THIS SECTION NEEDS COMPUTED ONLY ONCE AND ITS RESULTS CAN BE REUSED AT EACH !

! STENCIL -- SIGNIFICANT COMPUTATIONAL SAVINGS

' The variable array, coef( , ) is assigned next and does not depend on the '

' stencil data, only upon the MESA scheme employed

outerloopl: do dx=O, 2 * s + 1

Compute the first set of coefficients, coef(i,dx)

do i=dx, s

coef(i,dx) = (Fac(i)/Fac(i-dx) )* (-xO)**(i-dx)

end do

Compute the other set of coefficients, coef(i,dx)

csetloop: do i=s+l, 2 * s + 1

sum = 0.0

sumloop: do r=O, dx

prodl=l.O

do e=O, dx-l-r
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prodl = prodl * (i - s - I - e)

end do

prod2=l.O

do k=O, r-I

prod2 = prod2 *

end do

(s + i - k)

sum = sum + (Fac(dx)/(Fac(dx-r)*Fac(r)) ) * (-xO)**(s+l-r) * &

(-xl)**(i-s-l-dx+r) * prodl * prod2

end do sumloop

coef(i,dx)=sum

end do csetloop

end do outerloopl

' This section is repeated for each stencil in the domain
I

| ........................................................................

' Assign known data and its derivatives from the MESA c2os 2 by 2 stencil
!

do dx=O, s

do dy=O, s

fdata(dx,dy,O,O)= STENCIL DATA AT LOWER LEFT

fdata(dx,dy,O,l)= STENCIL DATA AT UPPER LEFT

fdata(dx,dy,l,O)= STENCIL DATA AT LOWER RIGHT

fdata(dx,dy,l,l)= STENCIL DATA AT UPPER RIGHT

end do

end do

! ................................................................

' Calculate the tableau by first inserting the known data into it
!

lastloop: do yp=O, i

do dy=O,s

do i=O, s
..............................

' Load table in for x-direction

! ..............................

do dx=O, i

Q(i,dx)= fdata(dx,dy,O,yp) / Fac(dx)

Q(i+s+l,dx) = fdata(dx,dy,l,yp) / Fac(dx)

end do

end do

I .............................................................................

' Next perform algorithm 3.2 in Burden to construct Divided Difference Tableau
! ............................................................................

n=(2 * (s+l))

do i=s+l, n-I
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do j=i-s, i

Q(i,j) = (Q(i,j-l) - Q(i-l, j-l))/ (deltah)

end do

end do

! Evaluate the spatial derivatives at center using short form
!

do dx=O, 2 * s + I

sum=O.O

do i=dx, 2 * s + 1

sum = sum + Q(i,i) * coef(i,dx)

end do

cf data (dx, dy, O, yp) =sum

end do

end do

end do lastloop

! Repeat this process for the y-direction, only using the cfdata(

' as developed by Goodrich
!

, , ,)

t .........................

' Compute Y-Direction interpolation
t

' Load table for Y interpolation
!

dxloop: do dx=O, (2*(s+l)-l)

do i=O, s

do dy=O, i

Q(i,dy)= cfdata(dx,dy,O,O) / Fac(dy)

Q(i+s+l,dy) = cfdata(dx,dy,O,l) / Fac(dy)

end do

end do

i Next perform algorithm 3.2 in Burden to construct Divided Difference Tableau

| ............................................................................

n=(2 • (s+l))

do i=s+l, n-I

do j=i-s, i

Q(i,j) = (Q(i,j-l) - Q(i-l, j-l))/ (deltah)

end do

end do

' Evaluate the spatial derivatives at center using short form
| ............................................................
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do dy=O, 2 * s + I

sum=O. 0

do i=dy, 2 * s + 1

sum = sum + Q(i,i) * coef(i,dy)

end do

cf (dx, dy, O, O) =sum/(fac (dx) *fac (dy))

end do

end do dxloop

' The spatial derivatives for the c2os MESA scheme at the center of the

! 2 by 2 stencil are stored in the cf(dx,dy,O,O) variables

! May need to use cf(dx,dy,O,O)/(dx! dy!) depending upon how the exact

' local propagator is evaluated
| ......................................................................

do dx=O,2*s+l

do dy=O,2*s+l

print *, "cf(",dx,",",dy,",O,O)=",cf(dx,dy,O,O)

end do

end do

!This process is repeated for the p, u, and v variables
| ......................................................

CONTAINS

!

' Factorial Function

' In more efficient implementations, can precalculate all the factorial

' results and store as an array
!

FUNCTION Fac(N2)

REAL (kind=selected_real_kind(30)) :: Fac

INTEGER, INTENT(IN) :: N2

INTEGER :: I2

Fac = 1.0

DO 12 = 2, N2

Fac = Fac * 12

END DO

END FUNCTION Fac

end
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