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Preface

The Computational Aeroacoustics (CAA) Workshops on Benchmark Problems have been organized to gauge the

technological advancement of computational techniques to calculate all aspects of sound generation and propagation in air directly

from the fundamental governing equations. The first Workshop, held in 1994, emphasized the basic technical challenges to accurate

CAA calculations. Some of these challenges were the extraction of small acoustic quantities from a large magnitude background

field, the sensitivity of propagating waves to dissipation and dispersion errors over large distances, the usually higher frequencies

of sound versus lower frequency unsteady events, the stability of the calculations over long times to enable spectral calculations,

the proper acoustic boundary conditions at open and solid surfaces, and the nonlinear effects at high Mach numbers. The benchmark

problems had the simple geometries and the idealized acoustic conditions necessary to test the accuracy and effectiveness of

computational algorithms and numerical boundary conditions. For the second Workshop in 1996, benchmark problems with more
realistic conditions were designed to show the applicability of CAA to solve practical problems, such as, two- and three-dimensional

scattering, radiation from a duct, and gust interaction with a cascade of flat plates. There was also the initial challenge to compute

the sound generated by a separating turbulent flow.

The Third CAA Workshop builds on the emphasis in the second Workshop of computing realistic problems. The Workshop

was held at the Ohio Aerospace Institute in Cleveland, Ohio, on November 8-10, 1999. This publication documents the numerical

predictions and comparisons with solutions to the benchmark problems. Fan noise was chosen as the theme for this workshop with

problems in four of the six benchmark problem categories representing issues involved in computing fan noise. Recognition is also

given to the fact that as problems become more realistic and more complicated, exact or asymptotic solutions become more difficult
to obtain. Thus, an initial step is made here to compare computational results to data from a well-documented experiment. The

benchmark problems encompassed the following six categories.

Category 1 - Internal Propagation. The propagation of sound through a narrow passage with flow exists in many applications. One

problem models the upstream propagation of sound through a nozzle with near sonic conditions. The computations must account
for a ten-fold change in wavelength and out-going waves at each end of the nozzle. In a second problem, a shock is present in the

nozzle making nonlinearities important.

Category 2 - Rotor Noise. The sound field generated by a rotor is affected by its environment. An open rotor will radiate noise. When

placed in a duct, conditions can be such that no noise is radiated; the cut-off condition.

Category 3 - Sound Generation by Interaction with a Gust. Sound is generated when a vortical gust interacts with an airfoil. This

noise source mechanism exists in lurbomachinery applications. The three problems in this category were designed to show CAA

calculations for a single thick airfoil, a single airfoil with sweep, and a cascade of swept airfoils. In all three cases, a steady mean
flow exists.

Category 4 - Fan Stator with Harmonic; Excitation by a Rotor Wake. Rotor-stator interaction is a large source of noise in turbofan

engines. The wakes from a rotor rotating in a cylindrical annulus are represented as a convecting wave of radial vorticity. This wave

interacts with a stator cascade of flat plates to create sound described by its modal content.

Category 5 - Generation and Radiation of Acoustic Waves from a 2-D Shear Layer. In high-speed jets, instability waves become

an important source of radiated noise. The problem was designed to show the ability of CAA to compute the source of this
radiated noise.

Category 6 - Automobile Noise Involving Feedback. Under certain conditions, the flow over a cavity generates acoustic tones. The

phenomenon depends on the thickness of the approaching boundary layer. Thus, viscosity is an important fluid property. The

challenge is to compute a sound source that is inherent in the fluid dynamics. Experimental data is provided for comparison to the

computed solution in this category.

Solutions are provided for the benchmark problems in Categories I to 5. Even though no CAA computations were

performed for comparison to the solutions of the Category 3, Problem 2, and the Category 4 problems, their solutions are provided

for completeness and in the hope that these problems will be tried in the future.
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Problem 1: Propagation of Sound Waves through a Transonic Nozzle

In a transonic cascade, the local Mach number of the flow in the narrow passages may be close to sonic. The computation of sound

propagating through such regions presents a challenging problem. To reduce the complexity of the problem, but retaining the basic

physics and difficulties, we will model such propagation problems by a one-dimensional acoustic wave transmission problem

through a nearly choked nozzle.

We will use the following as characteristic scales.

length scale = diameter of nozzle in the uniform region downstream of the throat (see figure), D

velocity scale = speed of sound in the same region, aM.

D
time scale = --

a_

density scale = mean density of gas in the same region, p .

pressure scale = p_ a2,,o.

Consider a one-dimensional nozzle with an area distribution as follows

A(x) =
0.536572- 0.198086e _,0.6] , x>0

(-In2X x-]2
1.0- 0.661514e _,0.6 ] , x<0

The governing equations in dimensionless form are,

3p 10puA
--+ -0
3t A 3x

( 3u 3u ) 3p

AO___p+_+(7 ,, 3(uA)
at ax - i)p_ = 0

The Mach number in the uniform region downstream of the throat is 7= 1.4.

Small amplitude acoustic waves, with angular frequency co-- 0.6rt, is generated way downstream and propagate upstream through

the narrow passage of the nozzle throat. Let the upstream propagating wave in the uniform region downstream of the nozzle throat

be represented by
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p" I x

where _ = 10 -5 . Use a computation domain of size 20, 10 upstream and 10 downstream of the nozzle throat, to calculate the

distribution of maximum acoustic pressure inside the nozzle.

This problem can, ofcourse, bc calculated accurately ifa very large number of mesh points is used. But this is not always practical.

It is recommended that no more than 400 mesh points be used. Report the locations of your mesh points and the pressure distribution.

Also report the total number of mesh points used.

x = O, throat

Propagation of sound through a transonic throat of a subsonic nozzle.

M=0.4

"_ xv
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Problem 2: Shock-Sound Interaction

In imperfectly expanded supersonic.jets, shock-cell structures are formed downstream of the nozzle exit. To simulate the shock-

sound interactions, the problem is simplified as a sound wave passing through a shock in a quasi- 1-D supersonic nozzle.

This problem uses the same geometry as Problem 1, but now there is a supersonic shock downstream of the throat.

In this problem, the quasi-1-D Euler equations are solved:

_-_(pA)+ _---_(puA):O

( _" _"'1 Op= 0

O_ct(Pm)+_-_(pua)+(T-I)P_x(Ua)=o

(1)

All quantities are nondimensionalized using the upstream values:

length scale = Dinle |

density scale = Pinlet

velocity scale = ainle t

2
pressure scale = Pinletainlet

time scale - Dinlet
ainlet

(2)

where D is the nozzle height and a is the speed of sound. T = 1.4

As before, the domain is - 10<x<10, and the area of the nozzle is given by:

A(x) =

(x) 2-(In 2) b_
0.536572 -- 0.198086e , x > 0

(0,1(-In 2) .6
1.0 - 0.661514e , x<0

(3)

At the inflow boundary, the conditions are:
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where:

u = + Esin o_ -t

p lit

= 1.0 x 10 -5

o_= 0.6x

Minle t = 0.2006533

The pressure will be set at the outflow boundary to create a shock:

(P)exit = 0.6071752

The data required for this problem is:

1. Grid used for the problem (i,x)

2. On the domain - 10.0<_c<10.0, give

a. Steady mean distribution (x,_(x),.i(x), if(x))
b. Perturbation at the start of a period (x, p(x) - _(x), u(x) - .i(x), p(x) - _(x))

3. Over the period of the perturbation, give:

4. Pressure perturbation at the exit plane through one period (t, p(t) - -fi(t))
a. The format in FORTRAN is:

format (4(3x, e 18.5))

(4)

(5)

(6)

Sound wave

Sound wave---normal shock interaction.
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Comparisonbetweenthesoundfieldgeneratedbyanopenrotorandthesoundfieldgeneratedbythesamerotorplacedinside
asemi-infiniteduct.

Thesoundfieldassociatedwithanopenrotorandthatassociatedwiththesamerotorplacedinsideasemi-infiniteduct(seefigures
attheendoftheproblem)canbeextremelydifferent.A goodunderstandingofthedifferencesisimportantinfannoisework.

Wewillusenondimensionalvariableswithrespecttothefollowingscales.

lengthscale
velocityscale

timescale

densityscale
pressurescale

bodyforcescale(perunitvolume)

= b (length of blade)

= aoo (ambient sound speed)

b

ao¢

= [3oo(ambient gas density)

= 2

= p_oa 2

A rotor exerts a rotating force on the fluid. As a model problem, we will replace the rotor by a distribution of rotating body force.

The governing equations are the linearized Euler equations. In cylindrical coordinates (r, q_,x), they are,

3u 3p

3t 3x

(1)

I 3(vr) I 3w 3u
 +TT+7G+G =°

where (F r, F¢, Fx) are the components of the body force.

For simplicity, we will let F r = 0 and

Fq)(r,_),x,t)]=ReI[Fo(r,x)]leim(_-flt)

Fx(r,O,x,t)J [[,_x (r, x)JJ

where Re{ } is the real part of. For computation purposes, we will use the following body force distribution in r and x.

(2)

NASA/CP--2000-209790 7



(3)

Fx(r'x)= { F(x)J''(X''N') r>lr<-I (4)

F(x) = exp{-(ln 2)(10x) 2} (5)

where Jm( ) is the ruth-order Bcssel function, _,,_, is the Nth root ofJ' m or,/' m (XmN) = O.

In this model, m is the number of blades, £2 is the angular velocity of the rotor. In the ducted case N is the radial mode number.
The choice of the Bcsse[ functions in (3) and (4) has no other significance than making the analytical solution simple.

It is possible to reduce the 3-D problem of (1) to a two-dimensional problem by factoring out the azimuthal dependence. Let

-,(r,,.x,q[Fr,x.,,]1
,,(r.,.x.,)l=
w(r,*.x.')/ //_(",x.'q /
p(r, (p.x.t) J |L [_(r,x.t)J j

(6)

The governing equations for (_, i_, _,, _) are found by substituting (2) to (6) into (1) and factoring out ei''_. They are

a_ a?

_t _r

O____'= _ira D + [7q_(r, x) e-i''nt
Ot r

a_ =_ ai,+ -F.o-,x)e-_''a'
at ax

1 a(_r)+intg, Ofi=O_+7- a,- --7-+57

(7)

For the open rotor case, it is only necessary to find the outgoing wave solution of (7) in the r-x-plane. In the case of the ducted

rotor, the solid wall boundary condition must be satisfied at the surface of the infinitesimally thin duct wall.

Calcul ate the directivity, D(0), of the radiated sound for a 8-blade rotor (m = 8). Set N= 1 (_8, I = 9.64742). In spherical coordinates

(R,0,_), with thc x-axis as the polar axis, the directivity is defined by, (for the ducted rotor, center the coordinate system at the end

of the duct)

NASA/CP--2000-209790 8



D(O) =

where is the time average.

Consider two rotational speeds in your computation.

(a) if2 = 0.85 (subsonic lip speed)

(b) _2 = !.15 (supersonic tip speed)

Report the values of D(0) at I degree intervals.

lira R2p2(R,O, dLt)
R-.-) oo

Axis of rotor

R

x axis

(a) Open rotor.

Semi-infinite duct

\\

0 . x axis

(b) Ducted rotor.
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Problem 1: Single Airfoil Gust Response Problem

The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and

aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.

Consider the airfoil configuration shown in Figure 1. The airfoil has chord length c and angle of attack (X.The upstream velocity

is:

U : Uj + acos[k.(x - iUoj)] (I)

where x = (x l, x2) denotes the spatial coordinates, a = (a I, a2) is the gust amplitude vector with a I = -E U_k2/] k ], a2 = E Uookj/

[ k I, k is the wave number vector, and 13is a small parameter satisfying e_ I.

The governing equations are the 2-D Euler equations

_t9+ 3-_r(pu)+ (Or)=0 (2)

_--_(pu)+_---_(pu2+p)+-_y(pUv)=O (3)

c_t(Pu)+_x(pUV)+-_(pv2, +p)=0 (4)

--+ (e,+p).]+ (e,+p),,]:0 (5)
0t

where p, u, v, p and E e denote the fluid density, velocity, pressure, and internal energy per unit volume.

Since the gust amplitude a satisfies ] a I ,,Uoo, one can alternatively solve the linearized unsteady Euler equations

DOP" + o'V. U 0 + V-(p0 u) = 0 (6)
Dt

po(--_ + u. VUo)+ P'U0 .VU. =-Vp' (7)

OoS' _ o (8)
Dt

where D_---'2-'= _ + Uo ' V is the material derivative associated with the mean flow, u = (u',v'), primed quantities are the unknownDt

perturbation variables, and 0 subscripts denote steady mean flow quantities which must be independently solved for and are assumed

to be known.
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NondimensionalizetheEulerequationsasfollows:

C

Xl, X 2 by
2

U = (u, v) by U_

c0(sound speed) by U_

p by p_

"9

p by p_U£

T by T_

C

t by
2Uoo
2Uoo

= klUo_ by
C

2
k I ,k2 by -

C

If solving the linearized unsteady Euler equations, nondimensionalize the mean flow variables as above, and the perturbation
variable as follows:

u = (u',v') by U_

p' by p=
p' _y p_u_

T" by r_

a by Uoo

For the following two eases, solve the gust response problem for a Joukowski airfoil in a two-dimensional gust with k2 = k I for

reduced frequencies k I = 0.1, 1.0, and 3.0. The nondimensional upstream velocity is U = i + ea cos (k • x-kit), where a = (al,a 2)

= ' _ , " .Take13=.02.

For Case I, the airfoil has a 12% thickness ratio, free stream Mach number M,,,, = 0.5, angle of attack 0¢= 0°, and a camber ratio
of zero.

For Case 2, change O_to 2° and the camber ratio to .02.

The airfoil geometries can be generated as follows. Set

NASA/CP--2000-209790 I I



_1= roeiO + _0" (9)

where

_o' = -_J + i£2 (10)

is a complex constant. Letting z = x + iy denote the airfoil coordinates in the complex z-plane, the transformation

(11)

transforms the _ circle defined by equation (9) into the desired airfoil shape.

For Case I, use r0 = 0.54632753, £ I = 0.05062004, £ 2 = 0, d2 = 0.24572591, O_= 0. Discretize the _j circle in 0, starting from

0 and going to 2%, and then apply equation (1 l) to get the airfoil coordinates. The values 0 = 0 and 0 = 2% map into the trailing edge

point.

For Case 2, use r0 = 0.54676443, £j = 0.05062004, if-'2 = 0.02 ! 85310, d 2= 0.2457259 I, @ = 0.034906585. Discretize the _] circle

in 0, starting from 0 = -9 and going to 0 = 2%-[3, _ = 0.039978687, and then apply equation (l I) to get the airfoil coordinates.

The values 0 = -[_ and 0 = 2/_-_, map into the trailing edge point.

The above procedure for generating the airfoil geometries will generate Joukowski airfoil of chord length 2, situated very nearly
between x = - 1and x = l, where x is the nondimensional horizontal spatial coordinate. The airfoil geometries for the two cases are

shown in figure 2.

For both Case 1 and Case 2, march the discrete equations in time until the solution becomes periodic. On the airfoil surface,

calculate the mean pressure P0 and the RMS pressure %/ip') 2. In the far field, calculate the intensity (p,)2 on a circle of radius R

= 8 (four chord lengths), centered at the origin (the airfoil center). State whether the solution is from the Euler equations or linearized

equations. Also state the grid dimensions for each calculation, the number of complete periods computed, the CPU time per period,

and the type of machine on which the calculations were run on.

Output Specification

Submitted solutions to the gust response problem will consist of six files. Each file will be presented in the following format. Line

1 will statc the problem number, followed by the name(s) of the submitter(s). Line 2 will state a point of contact, phone number,

and c-mail address. Line 3 will state, "Computed Airfoil Results for Case I, kl=freq, npoints = N", where

I = I or 2, freq = 0. I, 1.0, or 3.0, and N is the number of data points on the airfoil. Both mean and RMS pressure values will be given

as a function of fraction of airfoil chord, (x-x I.e)lc, where x I.e. is the x coordinate of the airfoil leading edge. Lines 4 through N+3
will be the airfoil results written out in a format of (f12.8,2x, el 6.8,2x, el6.8 ). The first number of each line will be thc

fraction of chord value, the second number the corresponding mean pressure, and the third the corresponding RMS pressure value.

Write out the upper surface values first, followed by the lower surface values, beginning each time at the leading edge and proceeding

to the trailing edge. LineN+4 will state "Computed Far-Field Results for Case I, kl=freq, npoints=181".

The next 181 lines will be the mean square pressure values as a function of polar angle 0 on a circle of radius four chord lengths

from the airfoil center (the point on the y-axis midway between the leading and trailing edges). The O values will begin with 0° and
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continueupto 360 ° in two-degree increments. (A different 0 discretization is acceptable so long as "npoints" is specified

appropriately in line N+4.) The far-field results will be written in an (fl0.2,2x, el6.8 ) format, where the first number is the

angle and the second number is the corresponding mean square pressure. The next five lines will state, in order, which equations

were solved, the grid dimensions (i.e., MxN), the number of periods computed, the CPU time per period, and the type of machine
on which the calculations were run on.

._1-- U--II_

UF_k 1/Ikl _ __--

x2

+ 1/2c

Figure 1.mAirfoil in a gust with parallel and vertical components.

02.5 f
y 00.0

-02.5
-1.5

(a)

02.5 f
y 00.0

-02.5
-1.5

(b)

I J I 1 I
-1.0 -0.5 0.0 0.5 1.0

I J I I I
-1.0 -0.5 0.0 0.5

X

Figure 2.---Joukowski airfoil geometry. (a) Case 1. (b) Case2.

1.0
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Problem 2: Unsteady Response of an Isolated Finite Span Swept
Airfoil to an Incident Gust

This problem is aimed at testing the ability of CAA methods to calculate the acoustic field generated as a result of the interaction

of a convected (i.e., frozen) harmonic gust with a finite span, swept, fiat plate airfoil bounded by two parallel walls.

The coordinate system is chosen so that the x-axis is aligned with the chord of the airfoil (denoted by c), they-axis is perpendicular

to it and the z-axis is normal to the bounding walls. The origin of the coordinate system is located as shown. The normal distance

between the walls is taken to be ,e. The sweep of the airfoil is measured by a, the angle between the z-axis and the leading edge of
the airfoil.

The mean flow is assumed to be uniform, unidirectional and aligned with the x-axis, i.e.,

U = (U 0, 0, 0), U0 = constant, Po = constant, Po = constant, (])

The appropriate physical scales arc: a0 (the speed of sound) for velocity, P0 for density, p 0a _ for pressure, c for length and c/a 0

for time. The evolution of small perturbations superimposed on the uniform flow is governed by the three-dimensional linearized

Euler equations which, in non-dimensional form, are given by:

u /Mou + P/ /0/
= 0 (2)

where p, p, (u,v,w) denote perturbations in density, pressure and velocity components. M o is the mean flow Mach number.

The incident gust is a small-amplitude harmonic velocity fluctuation of the form

(u, v, w) = (0, A cos (kxx + kyy + kzz - cot), O) (3)

where kx, kv, kz are the streamwise, transverse and normal gust wavenumbers and cothe harmonic frequency. The bounding walls
and the airfoil are assumed impermeable. These conditions are supplemented by the Sommerfield radiation condition. The non-

dimensional parameters of the problem are given by:

F

Wall spacing

Sweep angle
Mean flow Mach number

Gust amplitude

Frequency

Chordwise gust wavenumber

Transverse gust wavenumber

Spanwise gust wavenumber

e/c = 2.6

o_= 15°

M0= 0.5
A = 0.05

coc/a 0 = kxcM 0

= 5.5
k_,c = 0.0

kzc = 3.6m
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Threecases,correspondingtothreedifferentgustorientations,areconsidered:m = 0, m = 1, m = 2. For each case, determine the

rms acoustic pressure (i.e., Prms =/_') halfway between the two bounding walls and along a circle that is centered at the point

(0,0,,¢/2) and has a radius of 5c. The overbar denotes time-averaging over one time period 2rdm. Note that the long-time asymptotic

solution is required, so run your calculations for sufficiently large t for all the transients to die out. The appropriate FORTRAN output

statement should read "WRITE (IUNIT, *) x, y, Prms""

k = _k2x + k2

r Impermeable

•,o ,"/
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Problem 3: Unsteady Response of a Rectilinear Swept Cascade to an Incident Gust

This problem is aimed at testing the ability of CAA methods to calculate the acoustic pressure field generated as a result of the

interaction of a convected harmonic gust with a rectilinear cascade of swept flat plates.

All relevant geometric information is the same as problem 2 with the exception of the sweep angle o_which is now taken to be

a variable. Assume a cascade stagger angle of zero (with the x-axis aligned with the chord) and a gap-to-chord ratio of hlc = I. The

mean flow Mach number M 0 , gust frequency m, gust amplitude A and chordwise wavenumber kx are the same as in the previous

problem. But for the cascade problem take kv = gand kz = 0.

The appropriate physical scales are also the same as problem 2 as is the governing equation and boundary conditions. Naturally,

the impermeability condition now applies to the entire cascade.

For this problem, determine the amplitude of upstream-radiated rms acoustic pressure as a function of the sweep angle at the

specified frequency. Specifically, show the variations ofrms acoustic pressure amplitude at the upstream location (-5c, 0, C/2) for

sweep angle o_ in the range (0.0 °, 30.0°). Use sweep angle increments no larger than 2.5 °. Express the results in dB using the rms

pressure value for o_= 0.0 ° as the reference level. The appropriate FORTRAN output statement should read "WRITE (IUNIT, *)

a, 20 logl0 (Prms(_)/Prms(0))".

Mo

r Impermeable
It
_ walls

I/
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Theseproblemsaresimplerepresentationsofrotorwake/statorinteractioninaxialflowfans.Theyincludemuchofthe blade row

scattering/spinning mode propagation physics of the real problem but are still in the realm of Green's function/panel methods, so

that results can be checked. They are problems that anyone developing a CFD/CAA code for fans might do for code checkout and

should be doable with several codes in existence today. The vane/blade ratio of 3/2 will make the problems easier for codes based

on periodic boundary conditions.

The first cases are for excitation that is nearly 2D (constant along the span). Then, the problem is made progressively more

3-dimensional by varying the phase of the excitation along the span. This simulates the situation (typical of turbofans) where more
than one wake from the rotor intersects a vane at the same time. A high hub/tip ratio case has been added for a check against 2D (S.N.

Smith) theory.

3D results will be checked by comparison with one or more well known panel methods. In particular, Professor M. Namba from

Kyushu University in Japan and Dr. J.B.H.M. Schulten from the National Aerospace Laboratory NLR in the Netherlands will be

asked to provide results from their lifting surface codes.

B=16

V= 24

h/R = 0.5

(gap/chord)ti p = 1.0
M =0.5

i /_x=b

Mean Flow and Geometry

Assume standard day conditions for speed of sound a0 and pressure Po and uniform axial flow at Mx = 0.5. The duct is infinite in
both directions with constant outer radius R (which need not enter the calculations) and hub/tip ratio h/R. The stator consists of

constant chord, zero thickness vanes with chords parallel to the fan axis. (If zero thickness causes problems, use 10th standard cascade

airfoils with camber removed. Ordinate information is provided on the CD.) Gap/chord = 1.0 at the tip. Blade/vane counts are B =

16 and V = 24. The duct and the 24 vanes are the only surfaces.

Wake Representation

In the x, r, _ coordinate system, excitation for the problem is a convected wave of radial vorticity representing a harmonic rotor wake.

It produces a velocity perturbation in the _ direction given by (the real part of)

oo

U'_ V. e inB[_'-lx/U+_-O(')-_t]
v(r,O,x,t)= z.., n (I)

U is the axial flow speed aoM x and £"),is the rotor (and wake) angular velocity. Consider only the blade passing frequency (BPF)

fundamental, n = l, with upwash amplitude equal to 0.1 radian, V n = 0.1. Reduced frequency

OJb/U =nB £"_b/U is constant over the span. The function giving the radial dependence is
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0(r)= 2_q r-h (2)
B R-h

0(R) = -21Zq/B is the phase shift along the stator span. For q = 0, the excitation is in phase from root to tip of the stator. When q

= 2, there are 2 wakes intersecting each stator vane, on average. The minus sign leading (2) causes the wake at the stator root to lead

that at the tip as in typical fan designs. In the convention of(I), the inter-vane phase angle is 27tnB/V(counting vanes in the direction

of rotor rotation).

Cases for Computation

Some participants may want to test their codes in a narrow annulus mode first for comparison with the Smith code before moving

on to the 3D cases. Results from the Smith code are available on the CD. The appendix provides background from standard fan noise

theory (Tyler-Sofrin) that was used to determine the 3D cases.

Narrow Annulus

To approximate 2D, run hub/tip ratio h/R = 0.98 and no radial variation, 0(r) = 0. In this case the cutoffratio of the response waves

is given by

_nB m T (3)
m [3

where m =nB - kV is their spinning mode order and [32 = 1 - M_. Run a BPF (n = 1) series around cuton plus two cases well above

cuton as follows

0.9

1.0

1.1

1.5

M T Comments

0.3897

0.4330

0.4763

0.6495

cut off (sub-resonant

resonant

m = -8 is cut on

m = -8 is cut on

The chord-based reduced gust frequency O)b/U = nBf_ b/(aoM) = nB['2R/(aoM)blR = (21ZnBfV)(MrIM) where V = 24 is the vane

count. The duct radius-based acoustic reduced frequency OaR/a o = nBM T.

To present results, give the complex coefficients A,,, which are defined by the expression for the pressure perturbation

"_. . . i(mfp-nBglt)
p(x, 0_,t) = Po 2_, '%, tx)e (4)

k:--oo

Do this for axial locations one chord upstream and one chord downstream of the stator (x = -b and +2b) and present results by

filling in the following table with complex values ofA m.

m T

0.3897

0.4330

0.4763

0.6495

Upstream Waves, x = -b

m=40im=16 m=-8 m = -32

Downstream Waves, x = +b

m=40' =16 m=Im -8 m=-32
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Full Annulus

These are all for h/R = 0.5. The first series is for zero radial phase variation and has the same cutoff ratios as the narrow annulus

case above. They pass through cuton via increases in rotor speed.

q { a4_.
0 0.9 0.470

0 1.0 0.522

0 1. I 0.574

0 1.5 0.783

The second series starts with the _ = 1.5 case above and progresses through cutoff by increasing the phase variation of the

excitation along the radius. This represents the sweep of a rotor wake.

q _@[t : q M T

0 1.50 0.783

0.5 0.783

1.0 1.05 0.783

1.5 0.783

2.0 0.83 0.783

2.5 0.783

3.0 0.65 0.783

The middle column is the cutoff ratio of the acoustic mode with the same number of radial zero crossings as the excitation wave.

Present results as the complex coefficients Anm_l, which are defined by the pressure field modal expansion

"K"' i(mi_- nBflt )
pn(r, OO,x, t) = PO Z 2.., An,n_ {x )'rm_ ( r)e

k=--_ _=0

(5)

where qJ ia(r) is the radial mode shape (discussed below) and, again, m =nB - kV. Do this for axial locations one chord upstream
and one chgord downstream of the stator (x = -b and +2b). Present results in modal form by filling in tables like the following for

each condition run.

Radial mode order [t Upstream Waves, x = -b

m=40 m=16 m=-8 m=-32

Downstream Waves, x = +b

m=40 m=16 m---8 m=-32

0

I

2

3

4

For participants wishing to minimize the number of cases to run, the highest priority should be the q = 0 and q = 2 cases at Mr= 0.783

shown above in bold type.

The mode amplitudes wit1 depend on the convention used for the radial mode shapes Vttmg(r ). These are the duct eigenmodes
described by Tyler and Sofrin. However, for easy comparison with 2D results, a different normalization is used. The extreme value

of each mode is set to +1. The FORTRAN routine that allows Fourier analysis of the pressure perturbation in a constant x-plane to

determine the complex mode amplitudes Anm[l is available on the CD.
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AppendixmBackground from Spinning Mode Theory

In the traditional treatment of acoustic waves in annular ducts with uniform axial flow, the pressure disturbance at the n thharmonic

of blade passing frequency can be expressed in the following modal form

.... i(_,,,,,,,x+,,,,-,,Bnr)
pn(r, (_,x,t) = Po Z Z /b,,,,ta'r,ulj u')e

k

where the circumferential order of the spinning mode order is

m =nB- kV

(6)

(7)

is the angular speed of the rotor and _mtj(r) arc the radial mode functions, which are combinations of Bessel functions. From
the form of the exponential in (6), it can be deduced that the spin Mach number of the mode at the outer wall is

MS = JiB MT (8)
m

where M T = (£'_R/a o) is the rotor tip rotational Mach number. Since cuton is determined by the mode spin speed, we must identify
the most cut on mode. The following table, for n = 1 (BPF)

k m nB/m

-! 40 0.40

0 16 ! .00

I -8 -2.00

2 -32 -0.50

shows that the fastest mode is the fundamental interaction mode m = B - V. This is an 8 lobe pattern rotating in the direction opposite

the rotor at twice the rotor speed.

The cutoff ratio is the ratio of the rpm to the cuton rpm. This is given by

nB M T (9)
- m [3M,:,

' nwhich is also the ratio of the mode spin speed to the spin speed _M*,n at which the mode cuts on. M* m = k O',,p/ zcan be computed

by looking up k'Omp in the Tyler-Sofrin paper. The correction for axial Math number is [32 = l - M_. Note that M* m = ! .0 for 2D

cases. The required information for our situation at BPF with an m = -8 mode in a duct with 0.5 hub/tip ratio and 0.5 axial Mach
number is

where M* T is the rotor tip Mach number for cuton

[2 M* m _ M* m M* T

0 1.205 1.043 0.522

I 1.725 1.494 0.747

2 2.168 !.877 0.939

3 2.767 2.396 1.198

of the -8,[.t mode.
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Anacousticsourceinsideofa2-Djetexcitesaninstabilitywaveintheshearlayerresultinginsoundradiatingawayfromthe
shearlayer.SolvethelinearizedEulerequationstopredictthesoundradiationoutsideof the.jet.Thegoverningequationsare
givenby

ap' au" av'
, _anru,_,y__.__= 0

ap'at_u(Y)-_x +P(Yl-_x +P(Ylaj, +v by

Ou" v" OU(v) 1 Op'--+U(y) + " -
at by P(Y) ax

_v' _ _ I _p'-_t _-U(y) p(y) ay

OP' _-U(Y) O_P---_'+3tax 7P-_-x+Y3u' p Ov' = Aexp[_B(ln2)(x2 + r2)]cos(mt )_.577),

and the mean flow variables are given by

U(y)=U_ +(Uj-U_)exp -(ln2) -_- , y>h

=Uj 0_<y<h

The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary

condition along the x-axis.

The length scale is given by the half-velocity distance Ri/2. The velocity is scaled by the .jet velocity Uj, the density by pj, the

pressure by 0j U_, and the time and frequency by R i/2/Uj. The constants are given as: P = 101330 (kg/m s2), R = 286.8875 (m2/s2K),

Uj = 517.4569 (m/s), 7) = 166.6667 (K), U,,o= 0, Too = 300 (K), Mj = 2, Tjo/T_, = I, T= 1.4, Ri/2 = h + b = I (m), h = 0.6 (m), b =
3 9

0.4 (m), A = 0.001 (kg/ms-), and B = 8 (I/m-). Calculations are to be made at frequencies with St = 2fRi/2/U j = 0.14 and 0.6. The

physical domain is -5 <_x/Ri/2 < 50 and 0 <Y/R1/2 < 10.
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Calculate//2 ahmg the outer boundary at 101 evenly spaced points along the lineylR_n = 10 over 0 <-xlR m <- 50 and at 16

evenly spaced points along the line x/Rjj 2= 50 over 2 _<y/R,i, - <_9.5. Also, calculate p' at 101 evenly spaced points along the

line y/R_p_ = I over 0 -< x/R,n <- 50 at the start of a cycle. Output xlR,z z, y/R,z 2, l/2 or p' in FORMAT ( 3 (2X, lP, E14.5 ) ).

Specify the computer used, the total CPU time, the time step size, the total number of time steps, and the total number of grid

points.

Source

b

U h

X
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Calculate thc frequencies and the sound pressure level in dB of the tones at the center of the left wall associated wilh the flow of

air over a door gap cavity. Data exists for the geometry and velocities shown in Figure 1. It is known experimentally lhat two edgetone

frequencies occur between 0 Hz and 2000 Hz and frequencies associated with longitudinal cavity modes occur between 2000 Hz

and 4000 Hz. The boundary layer is turbulent. The boundary layer thickness at the mouth of the cavity is 1.6 cm for U = 26.8 m/s

and 2.2 cm for U = 50.9 m/s. For simplicity, you may use the one-seventh power-law velocity profile given by

where _ is the boundary layer thickness. You may do one or both cases.

%

D

//////!A _ C

Figure 1.
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Analyti,cal Solutions
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PROPAGATION OF SOUND THROUGH A TRANSONIC NOZZLE

CATEGORY 1: PROBLEM 1, ANALYTICAL SOLUTION

CHRISTOPHER K.W. TAM

Department of Mathematics

Florida State University

Tallahassee, FL 323064510

Email : tam@math, fsu. edu

Introduction

There are two primary objectives in formulating this benchmark problem. First, most aeroacoustics

problems have multiple-length scales. This problem is designed to test the workshop participants'

ability to deal with this type of problems computationally. When sound waves propagate against

a flow, their wavelengths decrease as they enter into regions with higher and higher subsonic Mach

number. In this problem, the Math nmnber at the nozzle throat reaches a value of 0.94. A simple

estimate shows that there is a reduction of acoustic wavelength by a factor of about 10 in propagating

through the nozzle throat.

The second objective of this problem is to test the fornmlation and implementation of numerical

boundary conditions. In this problem, there is an incoming sound wave from the downstream side

of the nozzle. Because of the constriction imposed by the nozzle throat, a part of the wave train

is reflected back. The remaining part propagates through and exits the upstream end of the nozzle

as the transmitted waa_e. Since the computation domain is specified to be from x = -10 to +10, a

radiation boundary condition is needed at the upstream end of the nozzle. At the downstream end of

the computation domain an inhomogeneous outflow boundary condition is required. The boundary

condition must generate the incoming acoustic wave and at the same time allow the reflected acoustic

wave and entropy waste to exit without reflection.

\Vithout solving the problem, the nature of the solution can be easily estaMished by sin:pie physical

reasonings. The problem asks one to find the nmxin-mn-i pressure envelope. Upstream of the nozzle

throat, essentially there is only the transmitted acoustic wave. So the maximum pressure envelope

should be a constant. At the throat., the nozzle area is the smallest and the propagation speed is the

slowest. By conservation of acoustic wave energy flux, the sound pressure level rnust be the highest.

One expects a sharp peak at the nozzle throat. Downstream of the throat, there is an upstream

propagating acoustic wave as well as a downstream propagating reflected wave. The two wave trains
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form an interference pattern. Let the maximum pressure level of the upstream propagating wave be

A and that of the reflected wave be B. Then the maxinmm and mininmm level of the interference

pattern is approxinmtely A + B and A - B, respectively. The average is A, which must be equal to

the maximum amplitude of the incoming wave. This is prescribed by the problem as e.

Exact Solution

The governing equations are the quasi-one-dimensional continuity, momentum and energy equations,

Op 10(puA)
0--_+ A cox - 0 (1)

(0,, 0,..5 0p
P\o_ +'_) + o.==o (2)

O(pu A) _, O(u A)A + 0-----_--_"+ ('7 - ±)P _ - 0 (3)

where "7 = 1.4 and A(x), the nozzle area, is given. The time independent mean flow solution of (1),

(2) and (3), denoted by an overbar, is

p u A = p,.u.,.A,. (4)

Pr- (5)

gz "7 p,, u_ "7 P ;

-ff + - _ V,-_ = -- + (6)"7 1p/ 2 "7- lpr

where subscript r denotes physical quantities in the reference station. In this case, we use the Mach

1_ and A_ = 0.536572.0.4 uniform region as the reference station. Thus p,. = 1, u_ = 0.4, p,. =

The acoustic disturbances in the nozzle are very small. A linear analysis will suffice. The linearized

forms of equations (1) to (3) are,

Op _ u dA Ou _ i7 dA d i-i OpOW+Wa_+pb-;:,. +_' +Ph---j;x +P_+u_ =0 (7)

Ou Ou d -i-i d -5 Op

_7 +_ + P_ +_'7x-x + o.,-o (s)

Op Op d -p A d A Ou d i-io_7+_+_,d_:+ (_,+p_)_ +"7_+_m_-=o (9)
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Interest is on time periodic solution of fl'equency,.,. Let the solution be of the form,

=Re _?(.,,) -i_, .
pj _(x)

(10)

On substitution of (10) into (7) to (9), the governing equations for the amplitude functions (_, {?,_)

may be found. They are,

dfi d_ A dA d_ dg_+_57 =i_- (_+_)2-_x -_ -_ _t:,,

d _ d _ i _fi_?_ __T d-ff _^di7 (11
-- - p u dx

d_? r_A
_/P-;- + -ff d__/_= i_z _-

d -fi

dxa,r

_, .. ^ dA ^ dg

In the uniform regions upstream and downstream of the nozzle throat, equations (11) reduce to a

system of equations with constant coefficients. Three exact solutions are easily found. They are the

upstream propagating acoustic wave, with solution in the form,

PJ

1

1

(_)
1

-_ ¢_--_-%) (12)

(where g = (:_)-} is the speed of sound), the downstream propagating acoustic wave,

1

1

c i (_r_+%_, (13)

and the entropy wave, which is convected downstream by the mean flow,

1

= 0

0

i _______
c _ . (14)

There is no simple analytical solution to equation (11). To find a. numerical solution to the benchmark

problem, one may integrate (11) numerically using the l:hmge-Kutta or similar method. Suppose (11)

is integrated numerically from :r = 10 to x = -10 using (12) as the starting solution. Let us label
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this solution as the incoming wave solution. Again, integrate (11) from z = 10 to z = -10 using

(13) and (14) as the starting solutions. We will call these two solutions as the reflected wave and the

entropy wave solution. The amplitude of the incoming wave solution is e as given by the benclmmrk

proMem. The amplitude of the reflected wave and the entropy wave are unknown. At z = -10 and

further upstream there is only one upstream propagating acoustic wave given by (12). This is the

transmitted wave. Now, the solutions at z = -10 must match. This yields,

c + clc + c2_ = c3er (15)

[ P J incoming reflected entropy transmitted

For the benchmark problem, we find Cl = -0.01615 - 0.t1636i, c2 = 0.0, ca = 0.49037 + 0.24309i. In

other words, there is negligible amount of entropy wave. Also about 10% of the incoming acoustic

wave energy is reflected back by the nozzle throat. The maxinmm pressure envelope is shown in

figures 1 and 2.

0 o

o

N
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EQ

o
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Figure 1. Maximum pressure envelope along the transonic nozzle
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Solution of Category 1 Problem 2

RAY HIXON

CAA Group, ICOMP
NASA Glenn Research Center

Cleveland, OH 44135

J. Wright

Massachusetts Institute of Technology

Cambridge, MA 02139

In Category l, the problems are solved using the quasi-l-D Euler equations, given in the con-

served variables as:

+ pu 2 +p

u(E + p) x

ou}+ 2

Adx l puu(E + p)

= o (1)

The nozzle is the same for both problems, extending from -10<x<10 with the distribution:

A(x) = {

0.536572 - 0.198086e -(_n2)(x/°6)2 x > 0

1.0 - 0.661514e -(In2)(x/°'6)2 x < 0

(2)

The problem to be solved is the downstream propagation of an acoustic wave through a shock

wave in a convergent-divergent nozzle. The mean flow is set as:

and

[0}f 1}= 0.2006533

inflow 1/7

(3)

Poutflow = 0.6071752

The acoustic wave is set at the upstream boundary as:

(4)
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I 1u' = t_ 1 sin co Mi,,flow _
p' 1

inflow

The variables are linearized about a steady mean flow:

O = P + _)eit°t

,, i03t
lg "- H+ue

itot
p = p+_e

The mean flow is given as a function of the local Mach number as:

(5)

(6)

= _o(1 +-('/2

1

e°(1 + (It- 1)M2) -_2

----2

p= 9c
Y

R=?M

(7)

The mean flow is marched in space using:

M(1 + (7-l)_2"]dA
L_ = g Jdx

dx a(,_ 2 - 1 )

(8)

The characteristic waves are defined as:

AI = ___.2[_

A 2 = ,b - pc'/'_

A 3 = _b+_'/)

(9)

where A I is the entropy wave, A 2 is the upstream-running acoustic wave, and A 3 is the down-

stream-running acoustic wave.

These waves are marched in space using the equations:
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'-0N + 1 A1

+

I --2dA }

dA 2 _ -M d-_ A l

dx (M- 1)2(_ + 1)A

I -- --3 dA'_io)Jl+(7-_-l)" 2 (-2+2M-(3+y)._2+(I+37)M)_-_]A2+ + ...........

-_-- /Uxx,

dA3 _ dx . Ai
_x (M + 1)2(_- 1)A

" )3-_x/

+ + I

4(M + 1 )2(_ _ ] )A I_o(M + 1) ......... A_
/

(10)

For marching in space, the 5-6 optimized fourth-order nonlinear Runge-Kutta method of Stanescu

and Habashi is used (ref. 1)

In this calculation, there are three regions to be solved: (I) upstream of the sonic point, (2)

between the sonic point and the shock, and (3) downstream of the shock. These regions are illus-

trated in Figure 1.

Region 1: Upstream of the Sonic Point

In this region, the solution is marched upstream from the sonic point to the upstream boundary. At

the sonic point, the equation for the Mach number changes to:
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l 2
(St+ 1) dA

d -- = _+ dx2 (1 1)
_x M 9= 1 4A

Since the flow goes from subsonic to supersonic at the sonic point, the positive value is used.

There can be no perturbation of the Mach number at the sonic point; thus:

2 (-A +(3-7)A3)a21B = 1 = Y + 1 1

The perturbation equations at the sonic point are:

2

dA
7-77

2 Ad_---_..M] A

dA2 = ( dAll + (3-7)dA3] l3-; dx

2
dA

7dx2

2

dA

(7- 1) dx 2
1+

2 2 A ff---_._

(12)

=1

2

(A 1 -(7+ I)A 3) dx2

4

Initially, the A I wave is set to zero at the sonic point and the A 3 wave is set to one. After marching

upstream, the amplitude and phase of the A 3 wave at the sonic point is set such that the value at

the upstream boundary matches that of the A 3 wave imposed at the inflow boundary and the solu-

tion is then calculated.
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Region 2: From the sonic point to the shock

Once the conditions at the sonic point are known, the solution can be marched directly to the

shock location. Note that the second derivative of the area is discontinuous at the sonic point;

thus, the correct value changes depending on the marching direction.

Region 3: From the shock to the downstream boundary

At the shock itself, there are four specified quantities and three unknowns. The four specified

waves are the three upstream waves (A 1, A2, and A3) and the upstream-running acoustic wave A 2

from downstream of the shock. The three unknowns are the entropy and downstream-running

acoustic waves A I and A 3 behind the shock, and the velocity of the shock itself, V (ref. 2)

At the shock, mass, momentum, and energy must be conserved. The equations at the shock itself

are thus:

1 2 3
M<I M>I M<I

_X

_X

A I ×_××
XX

A2 A ×"
××_ 2xx
XX

A3 I-- A3
XX

XX

--.--,1_ A 1

A 2

A3

Ve io)t

Figure 1: Three Solution Zones of Category 1 Problem 2
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-_m_3(Al)3+/_3 I)(A2) 3 {'_3+1" +Iv 2_-33 ) (a3)3-_3£g =

-_/_2(A1)2 + (_2 I)(A2) 2 +_{M2+_ 1)(A3)2- P2f'

- M_(A 1)3 + (A2)3 +

-M_(al)2+ (a2)2 +

1 M3- l)(z  3
i M2-

_2(7_ 1)(A,)2-( 2_ 1)(A2)2

(-; ')(M 3 1) (A3)3_2_3/}39 =

(m2- + 1)(A3)3_2_39 -
+ iv 2p 3 - . .

+
+ 1,, 2_2 ])(A3)2 - 2fi2f/

(13)

(14)

(15)

where the subscript '2' refers to zone 2, upstream of the shock; the subscript '3' refers to zone 3,

downstream of the shock.

In zone 3, the upstream-running acoustic wave must be set. Since it is known that there is no

upstream-running wave from the downstream boundary, the wave is set such that the amplitude is

zero at the downstream boundary.

NASA/CP--2000-209790 39



Acknowledgment

This work was carried out under grant NCC3-531 from the NASA Glenn Research Center. Dr.
L. A. Povinetli was the Technical Monitor.

References

1) Stanescu, D. and Habashi, W. G., '2N-Storage Low Dissipation and Dispersion Runge-

Kutta Schemes for Computational Acoustics', J. Comp. Phys., Vol. 143, No. 2, 1998, p.

674-681.

2) Landau, L. D., and Lifshitz, E. M., Fluid Mechanics, Pergamon Press, New York, 1959.

NASA/CP--2000-209790 40



ROTOR NOISE: CATEGORY 2
ANALYTICAL SOLUTION
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Email : tam@math, fsu. edu

Introduction

The sound field of an open rotor and that of a ducted rotor can be extremely different. This provides

a good example to illustrate the important aeroacoustics principle that the environment, an acoustic

source is in, often exerts decisive influence on tile acoustic radiation from the source. This is especially

important to fan and turbomachinery noise.

A body moving at a constant subsonic velocity will not generate sound. On the other hand, a body

undergoing acceleration or deceleration will. In the case of an open rotor, although the force exerted

by the blades on the fluid is moving with constant speed yet, because of rotation, there is radial

acceleration. One, therefore, expects strong acoustic radiation in and around the plane of rotation.

When the rotor is housed inside a circular duct, acoustic disturbances are continuously reflected back

by the walls. This causes cancellations and reinforcements. The net result is that it is possible to

have complete cancellation resulting in no acoustic radiation. This is the case even when the blade

tip speed is slightly supersonic. The numerical values of the benchmark problem have been chosen so

that the ducted rotor effectively has no sound radiation. However, if the rotational speed increases

further, there will be sound radiation from the open end of the duct. This is the cut-off phenomenon

(see Ref. [1]). Exact solution of the radiation problem fl-om the open end of a long duct can be found

by the Wiener-Hopf technique and is well described in Ref. [2].

To compute the radiated sound from the open rotor, one should be aware of the difference in scales

between the noise source and the sound field. The source length scale is determined by the geometry

and loading of the blades. The length scales of the acoustic field is determined by the acoustic wave

length, which, in turn, is determined by the rotational frequency and the number of blades of the

rotor (the blade passage frequency). Appropriate spatial resolution nmst be used in the source region

and in the acoustic field to ensure a.n accurate and efficient numerical solution.
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Analytical Solution

The governing equations to be solved are,

Ot
im _+ __,o(r,.r)e_ima,

r

o_ of
m

Ot Oz
+ ?x(_,,_)c-_'''_'

(1)

0_ 1 0(_r) irn t'_ 0i7
0--T+ +--+--=0.7" 07" r O.r

The time period solution must have the same time dependence as the sources. Let

_] F_("'x),_ /._(,.,x) . (2)
p • I_g(,-,x)

Substitution of (2) into (1) leads to a problem in the x - r-plane. The equations to be solved are,

-irnf_- 0fi
07"

- imf_ (5 - im _ + _¢
r

0_
--imQu'= --07-- 2- +Fz

(3)

1 0 ^r)+ im ^ 0ff-- ?_U 71-
- imf_P+r _2r (v r

Solution to (3) satisfying the radiation boundary condition may

transform. Let the Fourier transform of f(x) be f(k). f(x) and f(k) are related by

O_ o_

- 1

.f(k) = _ / .f(x)c-ik_dx, .f(.r) = f -f(k)cik_dk.

--OO --¢'2_

=0.

be found by the method of Fourier

(4)

Upon taking the Fourier transform of (3), it is straightforward to obtain, after eliminating all the

other variables, a single equation fi)r _,

d 2_ 1 dp f_2 m 2 _ i ,_ ½ k_
d, "2 +_ +(m2 _k2)]5_._fi__.= [_-g(_) e-_(m+k)J,,(a,_Nr), r<:l (5)r -d-_-r 0, r>l
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For r > 1, the solution of (5), which satisfies the radiation condition at 7"--4 oc, is

;= A(_')H_d)(i(k _ -,,_2_2)_r) (6)

where H,_)( ) is tile mth order Hankel function of the first kind. Tile branch cuts of the square

root function (/,:2 _ .m2_22)½ are taken to be tle(k 2 -?n2ft2)½ > 0, if Re(k 2 -m2ft2)½ = 0 take

hn(k 2 - m2ft2) -} < 0. The branch cuts are shown in figure 1.

k-colltour

0-

-m_

Ira(k)

m _2 Re(k)

4. -->
ks= mf_ cosO

9 1

Figure 1. Branch cuts of (k 2 - m2f2-)_ in the k-plane

For r < 1, the solution of (5) consists of a particular solution and a homogeneous solution.

solution that is bounded at r = 0 may be written as,

P= B(k)J"(i(k2 -?n2f_2)_r) - _ lOOh-_2

The

where J,,,( ) is the mth order Bessel function.

m + k k=
 oo(,n (7)2

k2 + "\.,N - m2f_2

Now tile solution of (5) and its derivative nmst be continuous at r = 1. By imposing these continuity

conditions on (6) and (7), the unknown A(k) and B(k) are found. This gives,

i ( rr ) ½ _,2 (k2_ n,2f22)½(m + k)
A(k) = _ 100--In') c _oo(,.=) (k2 _ k 2 _ m2f22)

mN

J,,,(A,,,N)J',(i(k 2 - rn2f/2)½) (8)
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where J'(z) - dJ.(:)dz

By inverting the Fourier transform _, the pressure in the far field r --+ oc is obtained,

oO

p(r,x,t) = e -i''n' f A(1.')H[_l(i(k _ -m2f_z)½r)eik':dk.

-- OO

(9)

For large r, we may replace the Hankel function by its asymptotic form; i.e.,

oo 1

P(r'x'G_-_oo"" e-i"a' A(k) 7ri( kz _ m2fl_)½ r
--OO

¢-(k2-m2ft2)½"+ikx-i_--i-}dk. (10)

Let us now switch to a spherical polar coordinate systeln (R, 0, ¢) with the x-axis as the polar axis.

On noting that

x=Rcos0, r=Rsin0

(10) may be written as,

oo

,(..0..t i (:.I..
R--, oc

--OO

!

m2 f_2) ½R sin 0
(11)

• e-[(k 2-m2ft 2)½ sin O-ik cos O]R-- _(m+ ½)rrdk"

The k integral of (11) can be evaluated asymptotically by the method of stationary phase. The

stationary phase point is at k_ = raft cos0. A straightforward implementation of the method of

stationary phase yields the following expression for the acoustic pressure field.

2 i,,,_(R-t)- _(m+])_r
p(I<O,t) ... A(<

R--coo

12)

where

1 ( rr )½ ,n2(1 + f_cosO)f_sin __n'.'.o.'O
A(k.) : _ 10()h-_2 .\_----: -_-,.---_5si--_7_ oJ,.(,\.,N)J:,,(mRsino)e .oo(,.=)

13)

The directivity, D(O), is given by

D(O) : lira t72 7 = 2A2(k,).
R--+ oc

The directivities for the two cases f_ = 0.8,5 and 1.1,5 are shown in figures (2) and (3).

(14)
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Category 3, Problem 1

Single Airfoil Gust Response Problem

James R. Scott

NASA Glenn Researdl Center at Lewis Field

Cleveland, Ohio

The solution to this problem can be obtained by solving tile linearized unsteady Euler

equations. Let the unsteady flow field be given by

0(i, t) = C_o(e)+ _(e, t) (1)

p(e, t) = po(e)+ p'(i, t)

p(e, t)= po(_)+ p'(e, t)

s(e,t) = so+ s'(e, t)

(2)

(3)

(4)

where the entropy So is constant, and if, p', p', and s' are tile unsteady perturbation

velocity, pressure, density and entropy, respectively. Zero subscripts denote mean flow

quantities which are _sumed to be known.

Substituting (1) (4) into the nonlinem" Euler equations and neglecting products of

small quantities, one obtains the linearized equations

D°P---_+ P'V" Uo + V" (P0ff) = 0 (5)
Dt

Do_ _ _

;o(--_- + _. vu0) + p'r20.Gr2o= - Vp' (o)

Dos _
- 0, (7)

Dt

where D__a= ODt Ot + Uo V is the convective derivative associated with the mean flow.

If the mean velocity [_0 can be expressed ,as the gradient of a potential qs0, then

equations (5) - (7) can be reduced to a single, non-constant coefficient, inhomogeneous

convective wave equation [1,2]

= ±V. _Do( 1 Do¢)_l_.(po_¢) (pou ()), (8)
Dt Co2 Dt " Po Po

where the unsteady velocity is decomposed into a known vortical component if(R) and an

unknown potential component V¢,

_(e,_) = _(_ + _¢. (9)
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The unsteady pressure is given by

DoO
p' = - po( ) >7 (10)

An unsteady aerodynamic code, called GUST3D [3], has been developed to solve equa-

tion (8) for flows with periodic vortical disturbances. The code uses a fi'equency-domain

approach with second-order central differences and a Sommerfeld radiation condition in

the far field. It, has been extensively validated on model problems with analytical solutions.

CIUST3D requires as input certain mean flow quantities which are calculated sepa-

rately by a potential flow solver. This solver calculates the mean flow using a Gothert's

Rule approximation [3]. Oil the airfoil surface, it uses the solution calculated by the poten-

tial code FLO36 [4]. Figure 1 shows the mean pressure along the airfoil surface for Cases

1 and 2.

To calculate the unsteady pressure, GUST3D was run on systematically refined grids

to obtain a converged solution at each fi'equency. It was found that 24 points per wave-

length was sufficient for convergence. The location of the outer grid boundary was also

varied to check for sensitivity to the far-field boundary condition.

Flat plate results were calculated using the above approach to help assess accuracy.

Figure 2 shows the calculated RMS pressure versus analytical results for a flat plate in

a transverse gust. Two numerical solutions are shown per fi'equency, each corresponding

to grids with different far-field boundaries. The far-field boundary locations are shown in

number of chord lengths on each figure. The maximmn error for each case is also shown

(omitting the first 1% of chord near the leading edge singularity). The acoustic intensity

was calculated using a single-layer-potential Kirchoff method [5]. Kirchoff circles with

radii of 2, 2.25, and 2.5 chord lengths were used to propagate the pressure to the circle of

radius 4.0. The three Kirchoff calculations for each of the two different far-field boundary

locations resulted in six different intensity calculations for each frequency. Figure 3 presents

the most accurate and least accurate of the six calculations to give some indication of the

numerical uncertainty of the results.

The Joukowski airfoil results for Cases 1 and 2 were calculated in the same manner

as the flat plate results. Figure 4 presents the RMS pressures and Figure 5 shows the

corresponding intensity results. The relative nmnerical uncertainty of each calculation

is also shown. For the RMS pressures, this uncertainty determination did not include

pressure values in the first ½% of airfoil chord neat" the leading edge nor the last of

airfoil chord near the trailing edge. Note that there are no RMS results for Case 2, kl =

3.0, and no intensity results at this fi'equency for either Case 1 or Case 2. Work is still

ongoing to obtain an acceptably converged solution for these cases.
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ANALYTICAL SOLUTION OF THE CATEGORY 3,

BENCHMARK PROBLEMS 2 AND 3

EDMANE ENVIA

NASA Glenn Research Center

Cleveland, Ohio

Solution of Problem 2

The solution to this problem is most conveniently obtained by introducing an acoustic velocity potential and

eliminating all primitive variables from the governing equations. The end result is the convected wave

equation for the acoustic velocity potential ¢,

V2_a-2 0 "_=0,

0 Dt2 f _

Do- +Uo-:- (1)
Dt Ot Ox

with (u,v,w) : Vq_, P=-Po (Do(?/Dt) and p = p/a o . The corresponding boundary conditions in terms of

_p are given by

(3)

= 0 (4)

Eqs. (2) and (3) enforce the impermeability of the airfoil and bounding walls, while Eq. (4) stipulates the

continuity of pressure downstream of the airfoil trailing edge. Since ¢ is an odd function of y,

¢ (x,O,z,t)-0 upstream of the airfoil. Finally, since we have used an exponential representation for the

incident gust and, therefore, only the real part of the final solution is implied.

The analysis outlined here will follow closely that presented in ref. 1. For a convected gust k x = co/U. The

Sommerfeld radiation condition is enforced indirectly by assuming that k x has a small positive imaginary

part which is set to zero at the end of the analysis. Introduction of a reduced velocity potential via

¢ =_ e -'(k_A_2x/_2+_°'), the Prandtl-Glauert transformation x'=x/fl, and the non-orthogonal coordinate

system

= x'eosa'- zsintz', _" = z, tantx'= tan_/fl (5)
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leadsto
b 2 2 2 2 2 2 k_M 2 )-

+sy- _'_-_ +_ +--Y--J+--o

v=O, O-<_-<y2c'

-iKq_ + = 0

_).o.,=°

• I t

?', =slna, Y2 =cos_z,

A Fourier transform in _ reduces these equations to

/
)V ,.o,o__..:,.,- 4ii (_+_)

,,=o+
{),=o )¢>Y2c,, = 0

+ i?'_Aq_ = 0

.]_=O,t

Separation of variables in y and _" yields

q_ (,;I.,y,¢) = _C,, (A)Y,, (y)Z,, (5)
,'t=0

Y. (y)=sgn(y) e -r'_ b'l,

Z,, (¢) = e -raze cos (n/r_" / g)

x = kx / fl?'2, c'= c / fl

w =41¢2M 2 _n2_2 /?,2

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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2 will ensureoutgoingwavesat infinity. It is advantageousA properchoiceof thebranchcutsfor X/,t}- w,

to use the linear nature of the governing equation and the boundary conditions and introduce

• = • L+ • 2 +.-. where O_ 's represent successive terms in a leading-edge/trailing-edge expansion strategy

(see ref. 2). The resulting problems for individual O_ 's are then easier to solve.

Leading-Edge Problem." • 1

Ignoring the trailing edge allows for the chord to be extended to downstream infinity. Substituting for O_

from Eq. (15) in Eq. (12), and applying the orthogonality condition

yields

{!fIz. = e 2 if
0 if

n_k

n=kveO

n=k=0

2 +
Ae,,U,,(_.)

= D_, (_)+

(18)

(19)

T,,()1)=ife,O_cos(nlr_/g) d__O[ (-l)'' g°-l]_.
o (

(20)

=J2/g if n_O
e. [1/e if n=O'

O= y, (). + _c)+ kz (21)

where C,+ and D,], denote the unknown functions I_O, (X,0,_') Z.* (_')d_" and

I_00, (_.,O,¢)/3y Z.* (5)d¢, respectively. The superscripts + and - denote the regions of analyticity of

the functions defined according to

F+- (_) =--_ f(_)H(+_)e'X_d_
(22)

where H is the unit step function. It should be noted that for the leading-edge problem it is not necessary to

enforce Eq. (13). The region of analyticity of C_+,,is dictated by the requirement that the solution be an odd

function of y.

If the terms in Eq. (19) behaved algebraically at infinity (i.e., _]--+ _), Liouville's theorem could be used to

establish the most general function satisfying this equation. However, since C_+,, D_, and .T,, do not behave
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algebraicallyat infinity (seeref. 1),Liouville's theoremdoesnot apply.But, as it turnsout, the asymptotic
structureof Cm+,,and D_-, is similar to that of __,,. Thus, if it were assumed that both of these functions

contained E,, as a factor, and that their non-algebraic behavior was entirely due to it, then factoring out Z',

would make Eq. (19) amenable to the application of Liouville's theorem (see ref. 1 for a discussion of the

implications of this assumption). The solution of Eq. (19) is then given by

iA<,E,,(X)
C,+,,(_) = T2 2._.q/__ + w,, ,f._ + w,, (2 + _c) (23)

The corresponding pressure field, in the Prandtl-Glauert coordinates, is

, PoUoAe, cos (nzrz / g) e_,(r2,.A_'-x.+,o,)

p,,, (x ,y,z,t)=sgn(y) 2rc[3x/-_ + %

? Z;,,(_)t) e,r:(-ax'+,_ H)

x j 2x/_____w,, d;t. (24)

In the farfield, the integral can be evaluated explicitly via the method of stationary phase. The final form of

the leading-edge contribution is given by

p, (r',O',z,t)= PoUo A__e -_(n*'M2x'+_°'+'/4)cos(0'/2)

_ e,, E,, (-w, cosO')cos(nzcz / g) e,r2,°r.

tl=O

,.,=,Jx: / + y2, 0'= tan-' (fly / x) (26)

Trailing-Edge Problem: _2

Having solved for the leading edge contribution, we now let the leading edge move off to upstream infinity

and introduce a new coordinate origin via ._ = x - c. Continuity of pressure downstream of the trailing edge

(i.e., Eq. (13)) stipulates that, on a per mode basis, we must have

iAe,,E,,(_u,,)e-ir_A,_/ [I-G,(_)]e -'r_ac" (27)+ ×

(a)= r2 #+w,.

_,, ()_)=e. lerf (4-i()t + u., )(7_ + Y2c') )cos2 (nTr_ / g)d_

0

(28)
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err(z)= 2 r _,,,
---_je du

o

(29)

to ensure continuity of pressure downstream of the trailing edge. Furthermore, since it is necessary that

00 2/by y=0 = 0 for _ < 0 for Eq. (12) to remain true, we find that

, ,f_ 2{.;° +
O_,, = -Y2 - w,, + O2,,

c2.(a)

(30)

Substituting the expression for _,, in Eq. (30) leads to the following Wiener-Hopf equation for the trailing

edge field

p
+(it+ _:)'I'2,,

iAe,,Z'.'t-w. )e"-Jr_'_A'_c" _-w,,[1-G,,(it) ] e-'ry
4 x (31)

Splitting the mixed function and solving the "plus" side of the equation yields

...... ,,,.,.. _ )_,+( )' lAe,,z,,t-w,)e w,,Z,(it , it
0_,, = x

1 f _- u;, e -'r2'7_''"Y-/'_"+(it) = 2zr----7 .,f_ + w,, _, (r/) (r/- it)

(32)

drt (33)

where the contour f does not enclose the pole at r/= it. The appearance of Z',, (it) in Eq. (32) is consistent

with the assumption stated earlier in connection with Eq. (19). The expression for C2, , (it)is, therefore,

given by

C2,,(it ) = iAe"U'(-w")e-'r2'_A'2" x "T"'(it)-7-/_"+ (it) (34)
r22_+w. _-,,. (it+,,-)

The corresponding trailing-edge pressure field, in Prandtl-Glauert coordinates, is given by
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p2,,(x',y,z)=sgn(y)
pA Ue,,_, (-_%) e cos(,Trz/e)

2zr xr-_--+ w,,

xl Ze,,(_)_____,___(2)__.w,,(e,r,(-z(-e-c')+,_ N) d2 (35)

The expression for ._,q-/_,+(,;t,) can be computed by closing the contour in the lower-half-plane and expanding

near the branch point at 1"1= -w,,. The result is

• -i)q M"

ff-_,,+ (Z) _ 4y2(2+w,)c,:T,,,(_w,)L-erf(4-iy2(2t+w,,
(36)

Substituting in Eq. (35) and evaluating the remaining integral using the stationary phase method we find that

PoUo A -,(y2,_M2x'+o_,+,_/4)

p2 (r',O',z,t)=-sgn(%-O') fl_e

I /

e°z,, cosO)cos(,, rz/e)r
× ,r;+,;, [

11=0

erf(4-/),2w , (l-cos0')c')]e 'r'""/ (37)

Finally, the complete airfoil solution is given by

p(r',O',z,t)= Re(p, (r',O',z,t)+ P2 (r',O',z,t)) (38)

It should be noted that, in the expressions for pj and P2, only a finite number of terms in the infinite sums

contribute to the radiated field, n's for which w,, is imaginary produce evanescent waves and hence do not

contribute to the farfield radiation. The physical and geometric parameters of the benchmark problem are

such that only terms for which n _<2 need be accounted for.

Finally, it is worth noting that if sweep is set to zero (i.e., o: = 0), Eqs. (25 & 37) reduce to the well-known

solution of the 2D gust-airfoil interaction problem (see ref. 3).
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Results

The solutions corresponding to the flow and gust parameters defined in the problem statement are

summarized in the figure below. The figure shows the analytically predicted rms pressure directivities on a

circle centered at (0,0,_/2) and a radius of 5c as computed from Eq. (38) and normalized by their

respective maximum rms pressures.

m=O m= l m=2

(Note the change in scale in each figure).
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Solution of Problem 3

For the cascade problem, the governing equation and the imposed boundary conditions are the same as those

for the isolated airfoil problem except for Eq. (2), which now should read

(3-_yy--Ae'(k_x+k'Y-°"))_ =0
,q =0, O<_xq -z tan a<-c

(39)

xq = x - qs, Y,i = Y - qh (40)

where integer q=0, -+1, +2, ... indexes the airfoils in the cascade and s and h denote the cascade

stagger and spacing, respectively. For the sake of generality, the solution will be developed for non-zero

stagger. The solution to the benchmark problem can be recovered by setting s = 0 in the final formula.

Owing to the linearity of the problem we envisage _ = _ 0 (q) , where _(q) is the solution in the q,h strip
q=_

defined by qh < y < (q + 1)h. Since the incident gust in the q'" strip is related to the gust in the 0" strip

iq(k,.,.+k,h)
through the phase shift e - , we stipulate an identical relationship between the solutions in the q,h and

0 'h strips;

i,xq,yq,z,t)e (41)

Therefore, once the solution in the 0'" strip (i.e., ¢(0) ) is found, the solution everywhere can be obtained via

Eq. (41). Following the procedure established for the previous problem, we introduce a reduced velocity

potential via ¢ = q_ e -_(k,'_¢2x/a_+'°'), the Prandtl-Glauert transformation x'= x/_, and the non-orthogonal

coordinate system given by Eq. (5). The phase shift in Eq. (41) when re-expressed in the non-orthogonal

coordinates is given by e_'_h where 01"= y2u:s'/h + kj,. In view of this, we find that the solution of the wave

equation for the cascade problem (in the transformed plane) is given by

q=_ n=0

(42)

Yq,,, = sgn(y - qh ) e -r: _ lY-qhl e iq(ro_'+r2"_'') (43)

where Z,, and w,, were defined in Eqs. (16 & 17) and s'=s/_.

Again, we take • = _l + _2 +"" and solve for leading-edge and trailing-edge responses separately. For the

cascade problem, however, we only account for the leading-edge response. This is because, at the reduced

frequencies of interest here, the trailing-edge response is quite small upstream of the leading edge (compare
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Eqs. (25 & 37)). As a result, in the subsequentdevelopmentthetrailing edgeis ignoredandthe chord is
assumedto besemi-infinite.

After afair amountof algebraicmanipulations,Eq. (39) leadsto thefollowing Wiener-Hopfequationfor the
cascade

where

-flU,,(_(°)+,,-,-,,, (;l)=D_O_-(St)+A_°a,(_)
2,/77(_+_:)

(44)

(45)

where the subscript "1" emphasizes that this equation holds for the leading-edge response only. The cascade

kernel function .Y(,,, enforces periodicity of the cascade solution. Note that, if the term in the curly bracket is

set to unity, ..7(,, reduces to the kernel for the isolated airfoil (see Eq. 19).

Performing a multiplicative split of the kernel function into terms that are analytic in upper-half-plane (i.e.,

a "+" function) and lower-half-plane (i.e., a "-" minus function), and assuming that the entire function Z',

is a common factor on both sides of Eq. (44), we find a solution for c'(°)+ given by

where

A_,,_,,(;l)
C_°; (;L)= 2,/_-(-_:)ac,, +(s0(st+_:)

fl(1- X/r,,_j)

(,-

(46)

(47)

]/2% sin ()'2hw,,)

_, (0)= cos(r,hw,,)-cos(_h)
(48)

Z(2)=Y2[s'(1/2+qJ'lsr)-(hlsr)iog(2sinqJ')])t, q_'=tan-'(h/s') (49)

+ (2jzr -fi)h)7'2s'_+ A,, j ±

°"" - (r:d')'- " _°"=+_/'' - (J_/r:h>_
(50)
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_,,,,=r2h_/(r2.,,,d')2-(2j_-o,h) =, a'=4s '_+h_ (51)

± and ±where o',,,j v,,j are the roots of the numerator and the denominator in Eq. (45). These correspond to

acoustic modes (both propagating and evanescent) generated upstream, downstream and between the plates.

The decomposition of the kernel function is achieved through the use of Weiestrass's factor theorem which

allows for infinite product representations of the functions involved. The exponential factor 2' (2), derived

by analyzing the asymptotic behavior of the infinite products involved, ensures the convergence of the

infinite products at infinity (see ref. 4).

Substituting for c'(°)+ in Eq. (42), applying an inverse Fourier transform, and reverting to the Prandtl-
_J t_

Glauert coordinates, leads to a representation of the leading-edge pressure field for the cascade given by

p,,, (x',y,z)= ----ip°U°Ae" e-'(n_'M'"'+°_')
2_ yc,,-(-_:)

cos(nrcz/t)

× ?.._/_ (_)f,, _(A.)e_,r,a x, dit (52)

d x;,: (z)

cosh (?' 2 (y-h)_)-e_(_h+'_z"')cosh(_'2y4X 2 -w2.)
%(_t)= (53)

Well upstream of the 0 'h airfoil (i.e., x'< 0) the contour in Eq. (52) can be completed in the upper-half-

plane and the integral evaluated using the residue theorem. Only a.+m that are real contribute to the integral.

After a fair amount of algebra, the result is

where

, iPoUoA2e,,cos(nrcz/g)_(2mlr-A,,..,)E,,(a.+.,)
p, (x,y,z,,)- -_ J C,,,-(-t¢) A,,,.,.7(,,+ (a+.,.,. )

rt=O m=[t4 I

x e -@ (%" +"_"?).,'+(2,,,,_-^._,,)v,,_+o,,]

A,,,m = fiIh + 'Y2s'o'.+.,

(54)

(55)

M, =min[int((alh-)'2d'w,,)/2zr ) , int((alh+ y2d_',,)/2lc)] (56)

M 2 =max[int((Orh-?'2d'w,,)/2rc), int((alh+ y2d'w,,)/2n')] (57)
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Recall that due to the periodicity of the solution in y, one need only consider ye (0,h) in Eq. (54). As in

the previous problem, only a finite number of terms in the sum over index n contribute propagating waves

to the farfield. When computing the infinite products implied by the terms .X',,-(-I(') and .7(,, + (or,,+,,,),

however, it is necessary to include a sufficiently large number of evanescent modes in order to ensure

convergence of the infinite products.

Finally, the solution for the benchmark problem is given by

p(x'y,z,t)= Re(p, (x',y,z,t)) (58)

It is worth noting that if sweep is set to zero (i.e., _ = 0) the 2D-cascade response developed in ref. (5) is

essentially recovered from Eq. (54).

Results

The solution corresponding to the flow and gust parameters defined in the problem statement are

summarized in the figure below. The figure shows the sound pressure level reduction (in dB) due to

introduction of sweep at the upstream location: (-5c,0, _/2) as predicted by Eq. (58).

......... :,......... , ........ _......... _......... _......... _......... "_.........

-25
0 i0 15 20

Sweep Angle or, deg.
25 3O

NASA/CP--2000-209790 71



References

1. Envia, E.: Influence of Vane Sweep on Rotor-Stator Interaction Noise, Ph.D. Thesis, The University of

Arizona, 1988.

2. Landhal, M.T.: Theoretical Studies of Unsteady Transonic Flow - IV. The Oscillating Rectangular

Wing with Control Surface, Aeronautical Research Institute of Sweden (FFA), Report 80, 1958.

3. Matinez, R. and Widnall, S.E.: Unified Aerodynamic-Acoustic Theory for a Thin Rectangular Wing

Encountering a Gust, AIAA Journal, Vol. 18, no. 16, 1980, pp. 636-645.

4. Noble, B.: Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential

Equations, Chelsea Publishing Company, 1988.

5. Peake, N.: The Interaction between a High Frequency Gust and a Blade Row, Journal of Fluid

Mechanics, 232, 1991, pp. 285-309.

NASA/CP--2000-209790 72



Category 4--Fan Stator with Harmonic Excitation by Rotor Wake

NUMERICAL RESULTS OF LIFTING SURFACE THEORY
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Kumamoto Institute of Technology
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and
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Introduction

The Category 4 problem of the 3 rd CAA Workshop is concerned with the noise resulting from rotor wakes

impinging on a stator. Traditionally, the solution of the rotor-stator interaction noise problem is obtained by the

application of a lifting surface method. These methods are based on the flow equations linearized about a
uniform mean flow and have become a well-established technique. A strong point of lifting surface methods is

the absence of numerical dissipation and dispersion errors, which prevent the application of regular CFD

methods so often for noise problems. Therefore lifting surface results are very suitable as a benchmark test for
CAA methods.

This paper gives the outline of the analytical methods based on the linearized lifting surface theory applied to

Category 4, and the resulting numerical data. Unfortunately no CAA results for this problem were officially
submitted at the 3rd workshop. It will be shown that this problem is worth to be retained as a test case for future

CAA work.

Outline of Lifting Surface Theory

The original lifting surface theories by Namba (refs.l,2) and Schulten (refs.3,4) are formulated for a rotating

annular cascade of straight or swept blades. Just to avoid unnecessary complexity we describe here the

formulation applied to the present problem, i.e., a stator cascade of straight flat plates at zero stagger angle

interacting with oncoming sinusoidal gust. We also use the same notations as those used in the problem

description by Hanson.

Interaction of the stator vanes with an oncoming sinusoidal gust with a circumferential velocity

v(r, O, x, t) = UV Ie iBlnx/u+¢-°°)-n'] (1)

produces an unsteady blade loading. The pressure difference across the v-th blade surface can be expressed as

A "" t x -ioJt+i2zrvB / V...po Uz _p_r,x)e "v=O,1,...,V-1. (2)

Here P0 is the ambient air density and aJ = Bf_. Then the wave equation for the acoustic pressure generated

from the blades is given by

__+Uox p(r,c_,x,t)=_p,,U 2 1 0 _(r_ro)dro
r be _=o,, r
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h

x IACp (r0, x o) e-"°'+ie_vB/VS(x - Xo) dx o 8(q) - 21rv / V).
o

The boundary condition at the duct walls is

_)p/0r=0 at r=R and r=h.

The formal solution can be expressed as

1 -iogt R b

p(r, gp,x,t)= PoU2---_-e IdrofACv(ro,xo)Kv(r,¢,X-Xo[ro)dxo.
h 0

Here the kernel function is obtained as the solution of the following equations:

e 2 v-1

- -Xo)_e o (¢-2zv/V),r 2 5(r_ro)5(x .,z, a_,,_.'_,
v=O

OKp/_r=O at r=R and r=h.

The solution is expressed as follows:

V _j, °0 im
Kp(r,(_,xlro)- 4zf12 _ _7 ---dO''_(r) _.,_(lb)

=---0o p=0 * )'rob

xexp[m¢- i(M 2 / fl2)ogx/U- A.,, Ixl/R]

Here

(3)

(4)

(5)

(6)

(7)

(8)

m=B-kV M_ =U/a o, 1_2=1-M2

Further A,,,,, is defined by

A .,_ = I _/-_ " A > O1 A = {k,2 _ (oo R / U)2 M2 / f12 ) f12 (9)

[-isgn(co)_-A A < 0 J'

Here k,,,v and _,,,_ (1") • (p = 0,1,2,...) are radial eigenvalues and eigenfunctions respectively of the following

Sturm-Liouville boundary value problem.

t + k,,,_ r 2 ,,,,,(r) = 0, (10)i" dr" dr

dO,,,_(r)/dr=O at r=R and l"=h. (11)

The eigenfunctions are normalized as follows:
R

I irdO,,_(r)dO,,,v(r)dr=Sv_. (12)
"'" R 2

h

Therefore the mode shape function W_,_ (r) defined in the problem description is given by

...... W,,,_ (r) = O,._(r)/_I),._(r)l,a . (13)

The blade loading function ACo (r, x) can be determined from the flow tangency condition on blade surfaces,

which can be expressed by

1 R b VI et°_x/U-iB°(') ,
•.. R---;f d,'of AC_(ro,xo)K,(r,O,x-xolro)dxo=- 04)

h 0
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whereK,,(r, dp,x I r0) is the upwash velocity kernel function given by

Kv(r'c_'xlr°) =-e'_"'_' i e-'_'"¢v 1 a Xp(r,¢,xlro)dx
-. r

_ V R _ _ m 2 )¢_.) ..... im(_-J6l_l_2)_.'/U-A..,lx[/R4n'fl z r k=-= _=o A,,,_(iwR/([32U)+A,,,p sgn(x) "_tr)w"'"tr°)e

2 m2 uy (15)
- _:0 k.,_ +(wR/

The integral equation (14) for ACp(r,x) should be solved numerically. Various methods are available. The

methods used for the present problem by Namba and by Schulten are described in Appendix A and B

respectively.

Finally the modal pressure amplitude A,,_ (x) defined by

p(r,(p,x,t)= Po _ _ A,,,_(x)Ufl,,,_(r) e'(''_-Bn'', (16)
k=_ /_=0

can be calculated from

2imV _/),,,v (r)],_x
Ainu (x) = 7 M ,_ 4rc[J 2A.,v

XR-T o

where y(= 1.4) is the specific heat ratio of air.

Numerical Results

Numerical values of the modal pressure amplitude A,,u (x) calculated by Namba and Schulten are given in

Table 1 and Tables 2.1 - 2.10. To save space, circumferential wave numbers are confined to the smallest two;

m=16 and m=-8. The other modal pressure amplitudes are extremely small. The agreement between Namba's

and Schulten's data is fairly good. The discrepancies will come from various numerical processes in solving the

integral equation (14) and computing integrals in equation (17). In particular the exceptional large discrepancy

observed for Mr = 0.433 of the narrow annulus (Table 1) is due to the fact that the condition is very close to the

resonance (A,,_ = 0)of the mode ofm = -8,/.t = 0.

Table 3 and Figure 1 show a comparison between the unsteady lift coefficient CL (= j'] ACp(r. x)dx I(bVi ))

at mid-span of the narrow annulus cascade and that of the corresponding 2-dimensional cascade. It is clear that

the flow field of the narrow annulus cascade is nearly two-dimensional. On the other hand the validity of the 2D

code used to compute the two-dimensional problems was ascertained from the fact that it exactly reproduces

Figure 5(a) of Hall and Verdon (ref.5), which was computed with Smith's code.
It should be noted that in the full annulus cases, all modes are cut-off for Mr=0.470, only one mode (m=-8,

_=0) is cut-on for Mr =0.522 and Mr =0.574, and two modes (m=-8,/1 =0), (m=-8, _ =1) are cut-on for Mr

=0.783. Certainly the amplitudes of cut-off modes are smaller than those of cut-on modes, but they are not

extremely small. This is because the axial positions one chord away from the leading and trailing edges are not

far enough for the cut-off modes to decay out. Therefore at more distant positions the difference in the

magnitude between cut-on and cut-off modes will be more pronounced. However to compute pressures at such

distant positions by CAA methods may worsen the problem of numerical dissipation and dispersion.
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In Figure2 a comparisonis madebetweentheresultsof Namba and Schulten. The pressure jump distribution

(ACp based on poU/2) at mid-span for the full annulus is compared for the highest tip speed of the rotor

investigated in the present study (MT = 0.783). It is clear that the agreement between both methods is very good.

Only in the aft portion of the chord some small discrepancies are visible.
A three-dimensional view on the pressure jump distribution over the whole reference vane is given in Figure 3.

In this case the incident velocity field is in phase along the span (q = 0.0) which is clearly reflected by the

behavior of the pressure jump in the vicinity of the leading edge. In the aft portion of the vane some mild

spanwise variation is discernable which results from the three-dimensionality of the stator.

As shown in Figure 4 the response of the stator is quite sensitive to the spanwise phasing of the impinging

field which is characterized by q = 1.5 in this case. This spanwise periodicity is only recognized in the pressure

jump distribution in the immediate vicinity of the leading edge. Further downstream, the spanwise response is

closer to one full wave length. But the most remarkable observation is the very large amplitude of the response,

which points to some kind of near-resonance behavior. This may have to do with the (intentional, see problem

description) similarity of the excitation with the acoustic radial mode shapes for _ = 1 (cut-on) and/l = 2 (cut-

off) (m = -8).
The contrast with the results for q = 3.0, presented in Figure 4, is striking. It is hardly imaginable that the only

difference in the incident field is a spanwise phasing twice as high as in Figure 3. This phasing can still be

observed in the leading edge portion of the vane but vanishes downstream. It is reconfirmed even stronger that

the spanwise phasing is crucial to the stator response.

The q = 3.0 case was taken for another comparison between Namba's and Schulten's results. In Figure 5 the

pressure jump is compared along a spanwise line located at 6 percent of the chord. The agreement is quite
satisfactory but some slight discrepancies near the hub and the casing can be observed. Figure 6 gives the results

along a spanwise line at 20 percent of the chord. Here some more discrepancies are visible, not only at hub and

casing but also in the mid-span region. However, it should not be overlooked that the scale is four times larger

than in the previous figure. It seems as if the spanwise waviness first starts to disappear in the mid-span region.

Note that the pressure jump should have a zero derivative at hub and casing due to the hard wall boundary

conditions [Eq.(4)]. Relatively large discrepancies are observed along the 50 percent line in Figure 7. Only one

full spanwise wavelength can be observed here. Finally, in Figure 8 the pressure jump along the 90 percent line

shows a better, although not a perfect, agreement. In general, it seems that closer to the leading and trailing edges

the agreement is better than in the inner portion of the vane. It is noted that seemingly small discrepancies in the

pressure jump can affect the modal amplitudes more seriously. This may be the reason that, occasionally, the

agreement in the modal amplitudes is not as good as was expected by the authors on beforehand.

Concluding remarks

The Category 4 benchmark problem was successfully computed by two lifting surface methods. The problem

definition was well chosen to include some interesting near-resonance effects.

Comparison of the results of both methods showed good agreement on the whole. It appeared that relatively

small discrepancies in the pressure jump distribution could lead to relevant discrepancies in the modal

amplitudes. It would be helpful if in future CAA benchmarking of the rotor stator interaction problem, attention

will also be paid to the prediction of the pressure jump distribution rather than only to the modal amplitudes.
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Appendix A Namba's Method

The kernel function of the integral equation (14) contains singularities of 1/(X-Xo) and log Ix-x 0 ]. It is

desirable to calculate the principal values analytically rather than numerically. To do so it is necessary to extract

the singular parts from the kernel function. But it is not easy because the eigenfunctions Om,(r ) do not

approach to definite values as m goes to infinity.

To cope with this difficulty Namba (refs.l,2) developed the method of finite radial mode expansion. The

essence of the method is to approximate the eigenfunction by a finite series expansion of the form:
L-I

O,,, (r) : Z R_"aO-,_ 0,(r) (al)
f=0

RO,)
Then the coefficients -_, can be determined as eigenvectors of a real symmetric matrix, and we can calculate

ROn) (_)the limit values of lim __, = Bur . Therefore the approximate eigenfunctions have definite limit functions of

O=,, (r). Expressing the kernel function in terms of O0_ ' (r) or O,, (r), we can easily extract the singular parts

of the kernel function.

The unknown blade loading function is expressed in terms of double mode function series:

I }ACp(r,x)=____ O_(r) A_ocot __A, jsin(j_) , x=(1-cos_)b/2, (12)
e:0 2 j=l :

and the principal values can be analytically calculated. The problem reduces to algebraic equations for the

coefficients A,j. This formulation also enables us to calculate the integrals in equation (17) analytically.

The accuracy of the numerical solution essentially depends on the numbers of retained terms L and J. To

solve the present problem L=21 and J=ll are adopted. It takes about 65 seconds to compute one case on PC of
Celeron 350 MHz.
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Appendix B Schulten's Method

The first step to the numerical solution of Eq. 14 is the representation of the unknown ACp. The chordwise

expansion is identical to Namba's given in Eq. (A2). However, for the spanwise direction a Chebyshev (1 Stkind)

series is adopted. This series can be considered as a Fourier cosine series in the variable gt where

cosN = 2(r - h)/(R - h) - 1 (BI)

To solve the integral equation (14) numerically, a Galerkin procedure is followed. This means that both sides

of the equation are projected on a set of orthogonal basis functions. The advantage of a Galerkin method over a

collocation method is that the number of points on the vane surface can be taken (much) larger than the number

of unknowns . The Galerkin method yields the least squares fit to the point values on the vane. The Galerkin

basis functions used are Chebyshev 1$1kind for the spanwise direction and 2 nd kind for the chordwise direction.

Gauss-Lobatto integration formulae (ref. 6) are used to evaluate the integrals.

The number of required projections is taken to be sufficient to capture the right hand side to a preset accuracy.

In the present study an accuracy of 0.004 relative to the largest right hand side term was adopted throughout.

Further, the expansions are taken sufficiently large to resolve the shortest acoustic wave lengths upstream and

downstream as well as in spanwise direction. The final criterion is that also the hydrodynamic wave is accurately

resolved. For the most demanding case (Mr = 0.783, q = 3.0), the maximum number of required projections was

17 spanwise x 9 chordwise. These numbers were also taken for J and L respectively in the expansion of ACp.

After taking the Galerkin projections the integral equation turns into a matrix equation the left hand side of

which contains a series in k which essentially is a Fourier series in the circumferential coordinate. This is a

slowly convergent series with terms behaving as 1//fl asymptotically. To obtain an accuracy of, say, e = 0.004

with respect to the largest element in its row of the matrix would require something in the order of 1/e = 250

terms. This would be very hard computationally. Therefore a 2 nd order Richardson extrapolation (ref.7) is

applied to the k-series. For the most demanding case (see above) this limits k,,,,,.,,to 18. Nevertheless, the total

computing time for this matrix is about 40 hours on a 300 MHz PC.

In the present method the evaluation of the infinite radial series over /1 as occurring in Eqs. (8) and (15) is

handled quite differently from Namba's method. As described in ref.4, the series can be replaced by an integral

in the complex a-plane, where a is the wave number in x-direction. By deforming the contour of integration

away from the poles, a smooth integrand is obtained that can be accurately integrated numerically. The only

difficulty is encountered for a case very close to duct mode resonance (cut-on) when the path of integration has

to pass two poles very closely. This integral representation is especially advantageous for vanes of arbitrary

shape. For the unswept vanes with constant chord of the present configuration it is considerably more time

consuming than Namba's method.
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Tables

Table 1. Narrow Annulus q =0

M=16

MT Real
Namba Schulten

0.3897 -2.422E-05 -1.930E-05
0.4330 -9.952E-05 -8.599E-05
0.4763 -1.043E-04 -1.033E-04
0.6495 -8.334E-05 -1.074E-04

Upstream Waves: x=-b

Ima9 Real
Namba Schulten Namba

9.174E-06 8.120E-06 -5.067E-03
-1.874E-05 -5.001E-06 -1.142E-03

-7.110E-05 -6.823E-05 -7.603E-03
-4.261E-04 -4.033E-04 7.577E-03

Downstream Waves: x=+2b

rn =-8

Ima9
Schulten

-5.407E-03
2.083E-03

-7.538E-03
7.364E-03

Namba

1.924E-03
-2.170E-04

1.837E-03
-1.814E-03

Schulten

2.231E-03
3.459E-04
2.055E-03

-2.453E-03

MT

O.3897
0.4330

0.4763
0.6495

Real

Namba
-6.945E-05
-5.302E-05

-3.587E-05
2.529E-05

m =16 m =-8

Real

Schulten

-7.063E-05
-4.718E-05

-3.619E-05
1.903E-05

Imag
Namba Schulten

3.666E-05 3.999E-05
1.641E-05 8.436E-06
1.999E-05 2.090E-05

1.282E-05 5.809E-06

Namba Schulten
8.584E-03 8.734E-03

1.715E-02 3.410E-03
1.050E-02 t.061E-02

-1.120E-02 -9.946E-03

Imag
Namba

-4.532E-03

-5.298E-03
1.604E-02
5.684E-03

Schulten
-4.943E-03
-6.981E-04

1.556E-02
5.870E-03

Table 2.1 Full Annulus ' q=0, Mr =0.470

Namba
Real

= 0 -6.635E-05
p = 1 -7.690E-06
p = 2 -1.500E-06
p = 3 -3.851E-07
p = 4 -4.975E-08

Upstream Waves, x=-b
m =16

Imag
Schulten Namba Schulten

-5.482E-05 1.687Eo05 1.047E-05
-8.411E-06 -5.077E-06 -3.579E-06
-1.950E-06 -1.921E-06 -1.272E-06
-5.237E-07 -5.331E-07 -4.021E-07
-7.115E-08 -7.526E-08 -6.257E-08

m =-8

Real Ima9

Namba I Schulten Namba
-2.073E-03 -2.881E-03 -1.955E-03
1.894E-04 2.546E-04 4.300E-04
2.341E-05 3.635E-05 6.261E-05
1.312E-06 1.958E-06 2.356E-06
5.220E-08 8.742E-08 1.119E-07

Schulten
-1.456E-03
2.595E-04
4.026E-05
2.221E-06

1.097Eo07

Downstream Waves, x=+2b

Real

Namba

= 0 -7.287E-05
p = 1 -2.814E-06
p = 2 -7.340E-08
p = 3 3.477E-09
p = 4 3.018E-09

m=16

Schulten

-6.680E-05
-3.457E-06
-3.810E-07
-5.530E-08
-2.657E-09

Imag
Namba Schulten

3.060E-05 3.998E-05
3.402E-06 3.081E-06]

6.725E-07 4.967E-07
1.562E-07 1.054E-07
1.857E-08 1.123E-08

Real
Namba

9.484E-03
-3.249E-06
-1.264E-05
-1.534E-07
-1.415E-08

m =-8

Schulten

9.296E-03
9.737E-05

-1.055E-07

-1.315E-07
-1.294E-08

Imag
Namba

-4.826E-03
-2.600E-04
-2.353E-05
-8.371E-07
-2.883E-08

Schulten

-5.798E-03
-1.776E-04
-1.290E-05
-4.555E-07
-1.219E-08

Table 2.2 Full Annulus : q =0, Mr =0.522

m=16

Real

Namba Schulten

= 0 -1.224E-04
p = 1 -3.614E-06

p = 2 1.995E-07
p = 3 5.952E-08
p = 4 9.765E-09

Namba

Upstream Waves, x=-b

-1.190E-04
-6.159E-06
-5.846E-07
-4.987E-08
5.772E-09

Imag
Namba Schulten

o8.522E-05 -5.906E-05
-7.968E-06 -1.302E-05
-1.308E-06 -3.141E-06
-2.994E-07 -8.420E-07
-3.386E-08 -1.138E-07

Downstream Waves, x=+2b

Real

Namba Schulten
1.792E-02

-4.648E-04
-5.493E-05
-1.006E-06
-4.796E-08

m =-8

1.529E-02
-1.110E-05
-1.412E-05
-9.035E-07

-5.519E-08

Imag
Namba I Schulten
1.153E-02 5.181E-03
4.768E-04 1.032E-03
3.837E-05 1.073E-04
1.465E-06 4.692E-06
4.262E-08 1.867E-07

Real

= 0 -6.237E-05
= 1 -2.969E-06

p = 2 -2.241E-07
= 3 -3.758E-08

p = 4 -2.497E-09

m =16

Schulten

-7.757E-05
-7.565E-07

4.121E-07
1.651E-07
2.756E-08

Ima 9
Namba Schulten

1.613E-06 2.344E-05
6.235E-06 4.294E-06
1.726E-06 9.459E-07

4.150E-07 2.376E-07
5.147E-08 3.011E-08

Real

Namba Schulten

3.928E-02
6.465E-05

-3.234E-06

1.173E-07
-3.218E-09

m =-8

4.724E-02
-3.512E-04
-4.480E-05
-1.916E-06

-8.002E-08

Imag
Namba Schulten
-5.248E-03 -9.905E-03
-8.589E-04 -4.707E-04
-8.308E-05 -4.237E-05
-2.440E-06 -1.623E-06
-9.167Eo08 -5.717E-08
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Table 2.3 Full Annulus, q =0, MT =0.574
Upstream Waves, x=-b

Real

Namba

//= 0 -8.222E-05
,u = 1 -7.084E-06
p = 2 -1.488E-06
//= 3 -4.026E-07
#' = 4 -5.554E-08

m=16

Schulten

-9.639E-05
-5.057E-06
-8.443E-07
-2.110E-07
-2.855E-08

Imag
Namba

-1.274E-04
-8.093E-06
-1.246E-06
-3.127E-07
-3.953E-08

Schulten
-1.175E-04
-6.979E-06
-9.783E-07
-1.884E-07
-1.787E-08

Real
Namba

-1.970E-02
-t.293E-05
1.088E-05
1.214E-06
5.876E-08

m =-8

Schutten

-1.725E-02
-4.105E-04
-2.539E-05
-4.166E-07
7.636E-10

Ima 9
Namba Schulten

7.111E-05 4.671E-03
1.297E-04 1.377E-04
9.418E-06 4.041E-06
1.065E-06 7.052E-08
3.681E-08 -5.059E-09

Downstream Waves, x=+2b

m--

//=0
p=l
p=2
p=3
//=4

m=16
Real

Namba Schulten

-4.189E-05 -4.431E-05
-4.419E-06 -3.181E-06

-8.140E-07 -4.852E-07
-1.816E-07 -9.871E-08
-2.087E-08 -1.003E-08

Imag
Namba

1.166E-05
5.204E-06
1.313E-06
3.064E-07
3.725E-08

Schulten

1.088E-05
6.692E-06
1.633E-06
4.253E-07
5.548E-08

m =-8

Real

Namba Schulten
6.598E-03 5.028E-03
4.831E-04 2.696E-04
3.338E-05 1.562E-05
1.042E-06 4.736E-07
3.322E-08 1.101E-08

Ima£
Namba Schulten

2.515E-02 2.561E-02
-8.430E-04 -1.146E-03
-6.704E-05 -9.173E-05
-1.848E-06 -3.356E-06
-6.705E-08 -1.176E-07

Table 2.4 Full Annulus q =0, MT =0.783

Upstream Waves, x=-b

//=0
//=1
p=2
/.t=3
//=4

m=16

Real

Namba I Schulten

2.541E-04 1.486E-04
6.726E-06 6.191E-06

I. 188E-06 8.004E-07

2.634E-07 1.324E-07

2.739E-08 1.044E-08

Imag

Namba

-6.945E-04

-2.322E-05
-3. 107E-06

-7. 104E-07

-8.201E-08

Schulten

-6.906E-04
-2.409E-05

-3.231E-06

-7.178E-07

-8.572E-08

m =-8

Real

Namba

3.493E-03
-6.674E-03

- 1.816E-04

-3.028E-06

-6.474E-08

Schulten

5.140E-03

-7.631E-03

-8.145E-05

- 1.370E-06

-2.451E-08

Imag

Namba Schulten

1.125 E-02 1.056E-02
-1.811E-02 -I.747E-02

1.243E-04 1.072E-04
4.329E-06 4.021E-0(
1.053E-07 1.271E-03

Downstream Waves, x=+2b

Real
- Namba

//=0 2.088E-05
/1= 1 -1.025E-05
//=2 -1.824E-06
p=3 -3.404E-07
U=4 -3.730E-08

m=16

Imag
Schulten Namba

-3.081E-05 -1.024E-04
-8.833E-06 5.674E-06
-1.898E-06 1.295E-06
-4.196E-07 2.745E-07
-4.788E-08 3.130E-08

Schulten

-1.007E-04
5.207E-06
1.428E-06
3.240E-07
3.878E-08

//1 =-8

Real

Namba

-1.707E-02
7.702E-03
1.022E-04
1.589E-06
6.709E-08

Schulten
-1.497E-02
8.603E-03
1.729E-04
3.048E-06

8.474E-08

lma 9
Namba Schulten
-1.594E-03 -2.731E-04
1.731E-02 1.564E-02

-1.558E-04 -2.034E-04
-2.310E-06 -3.024E-06
-6.732E-08 -8.943E-08

Table 2.5 Full Annulus q =0.5, Mr =0.783

u=O
p=l
/1=2
/.t=3
//=4

Reai

Namba

2.295E-04
1.703E-05
3.463E-06
8.275E-07

5.814E-08

Upstream Waves, x=-b
m=16

Schulten

2.607E-04
2.046E-05
3.173E-06
6.741E-07
6.093E-08

Imag
Namba Schulten
5.566E-04 5.036E-04
5.059E-06 1.080E-05

-2.646E-06 -3.587E-06
-8.096E-07 -1.316E-06
-9.399E-08 -1.778E-07

Real
Namba

-7.152E-03
1.109E-02

-5.908E-04
-8.793E-06
3.554E-08

m =-8

Schulten

-7.285E-03
1.241E-02

-2.929E-04
-5.157E-06
-4.438E-08

Imag
Namba Schulten

1.333E-05 2.304E-05
-1.667E-02 -1.951E-02
5.684E-04 9.876E-04
8.222E-06 1.661E-05
1.225E-07 3.835E-07

Downstream Waves, x=+2b
m =16 m =-8

_t=0
p=l

p=2
p=3
u=4

Real

Namba

-1.625E-05
-1.517E-05
-1.591E-06
-1.457E-07
-1.139E-08

Schulten

-1.893E-05
-7.840E-06
-2.141E-06

-5.001 E8007
-5.981E-08

Imag
Namba Schulten

-3.463E-05 -2.728E-05
8.852E-06 1.166E-05

-5.765E-07 -8.008E-07
-4.244E-07 -5.714E-07
-5.678E-08 -8.514E-08

Real

Namba

1.132E-02
5.529E-03

-1.701 E-04
-2.808E-06
-2.334E-09

Schulten

8.825E-03
8.351E-03
2.677E-04
4.390E-06
1.255E-07

Ima£
Namba Schulten

-1.370E-02 -1.405E-02
2.134E-02 1.706E-02
5.495E-04 7.376E-04
9.158E-06 1.251E-05
1.476E-07 2.690E-07
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Table 2.6 Full Annulus q =I.0_MT =0.783

Upstream Waves x=-b
m =16 m =-8

Real Real

/.t=0
p=l
.u=2
p=3

p=4

Namba I Schulten
-2.151E-04 -2.711E-04
-1.491E-05 -2.915E-05
5.645E-06 7.245E-06

7.557E-07 1.952E-06
-6.994E-09 1.789E-07

Ima 9
Namba Schulten Namba

1.063E-03
8.336E-03

-1.471E-03
-4.147E-08
2.238E-07

Schulten

3.948E-03
1.860E-02

-2.266E-03

-1.947E-05
-2.077E-07

Namba
Imag

Schulten

-2.391E-04 -3.082E-04
3.802E-06 1.870E-05
1.242E-06 -1.626E-09
5.352E-07 -1.631E-07
8.519E-08 -1.049E-09

Downstream Waves x=+2b

1.310E-03
1.009E-02

-7.834E-04
-1.607E-05
-3.766E-07

1.371E-03
1.338E-02
3.048E-04
1.823E-07

-1.231E-07

Real

Namba Schulten

m=16

/_=0 1.419E-04 3.216E-05
.u=l -3.118E-05 -3.213E-05
p =2 1.238E-06 1.370E-06
p=3 1.155E-06 1.267E-06
ju =4 1.567E-07 1.764E-07

Imag
Namba

-1.141E-04
-1.251 E-05
-4.899E-07

1.501E-07
2.462E-08

Schulten

-1.743E-04
7.415E-06

-2.064E-06
-8.691 E-07
-1.140E-07

m =-8

Real

Namba

11987E-03'
-1.679E-02
-1.635E-03
-2.597E-05
-4.218E-07

Schulten

4.907E-03
-5.257E-03
-1.746E-03
-2.838E-05
-4.800E-07

Imag
Namba Schulten

9.959E-03 8.607E-03
2.178E-02 2.413E-02

-4.069E-04 8.727E-04
-6.972E-06 1.425E-05
-9.487E-08 2.750E-07

Table 2.7 Full Annulus q =1.5, MT =0.783
Upstream Waves, x=-b

m =16 m =-8

Real

Namba Schulten

/J=0 2.151E-04
/J= I 1.652E-06
p =2 1.008E-06
# =3 7.308E-08

=4 -2.661E-07

3.234E-04
-1.293E-05
2.192E-06
7.286E-07

-1.646E-07

Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten

1.990E-04
-1.816E-05
5.194E-06

-5.011E-07
-1.873E-07

1.278E-04
-2.847E-05
6.159E-06
4.380E-07

-3.530E-08

-3.762E-03
-8.479E-03
3.715E-04
1.778E-05
1.840E-06

-4.124E-03
-1.073E-02
-6.205E-04
2.586E-06
1.473E-06

Downstream Waves x=+2b

-2.203E-04
-3.723E-03
-1.112E-03
2.463E-05
2.679E-07

2.379E-03
5.808E-03

-1.650E-03
8.658E-06

-7.326E-08

/J=0 7.441 E-05
p = 1 1.771E-06

p =2 -4.071E-07
p =3 -1.939E-07
u =4 -2.658E-08

m=16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

1.266E-04
-2.379E-05
1 695E-06
1.080E-06

2.861E-05
-2.232E-05
1.643E-06
1.071E-06

-1.104E-03
-1.290E-02
2.264E-04
4.634E-06

1.431E-07 1.454E-07 8.860E-08

1.402E-04
-1.460E-05
9.430E-07
6.728E-07
9.155E-08

-1.276E-03
-1.342E-02
-8.604E-04
-1.351E-05
-2.293E-07 -3.754E-07

-4.053E-03
-1.786E-03
-1.431E-03
-2.161E-05

-1.952E-03
7.195E-03

-1.384E-03
-2.156E-05
-3.841E-07

Table 2.8 Full Annulus q =2.0, Mr =0.783
Upstream Waves, x=-b

m =16 m =-8

Real Real

/J=0
p=]
,u=2
p=3
p=4

Namba

-1.655E-04
7.105E-06

-2.101E-06
1.139E-06
1.707E-07

Imag
Schulten Namba Schulten

Namba

-1.630E-04 -5.795E-05 -3.128E-05
6.334E-06 -1.076E-06 -3.142E-06

-1.869E-06 9.234E-07 1.126E-06
1.113E-06 5.017E-07 5.386E-07
1.548E-07 -3.971E-07 -3.633E-07

Namba

8.854E-04
4.251E-03

-1.020E-06
-2.845E-05
4.429E-07

Schulten

8.971 E-04
3.284E-03

-4.847E-05
-2.699E-05
4.618E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Real
Schulten

/.1=0 -9.715E-06 -6.093E-06
,u= I -8.477E-07 -2.302E-06
p=2 -6.190E-07 -5.247E-07
p=3 -1.372E-07i -8.094E-08
,u=4 -1.550E-08 -7.661E-09

Namba
1.026E-03

-4.846E-03
1.139E-04
5.670E-07
3.488E-08

Imag
Namba Schulten

-1.819E-05 -8.570E-06
-3.636E-06 -4.420E-06

-2.135E-07 -1.204E-07
-6.714E-10 5.737E-08
-5.687E-10 8.106E-09

Imag
Namba Schulten

-9.089E-05 -2.980E-04
-2.294E-03 -1.984E-03
-1.195E-04 -2.211E-04
9.511E-06 8.071E-06
2.714E-06 2.503E-06

Imag
Schulten Namba Schulten

1.317E-03 3.203E-03 2.805E-03
-5.003E-03 3.659E-03 4.453E-03
3.086E-05 -7.585E-05 -1.458E-04

-5.327E-07 -3.561E-07 -1.646E-0_
1.104E-08 1.259E-08 -1.193E-0_
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Table 2.9 Full Annulus q =2.5, MT =0.783

Upstream Waves, x=-b
m=16

Real

Namba

/./=0 1.120E-04
u= ] 2.381E-06
p=2 3.718E-07

p=3 -3.968E-07
p =4 2.676E-07

Schulten

1.587E-04
-2.963E-06
7.788E-07

-1.115E-07
2.871E-07

Imag

Namba

8.099E-05
-3.944E-06
3.257E-07
4.161E-07
9.914E-09

Schulten

5.307E-05
-8.550E-06
8.292E-07
7.756E-07
5.259E-08

Real

Namba

-2.015E-03
-2.597E-03
1.562E-04
6.050E-07

-1.620E-06

rn =-6

Imag

Schulten Namba

-2.228E-03 2.092E-05
-3.704E-03 -1.874E-03

-2.159E-04 -4.155E-04
-5.117E-06 -5.274E-06

-1.612E-06 9.243E-07

Schulten

1.137E-03
1.704E-03

-6.501E-04
-1.060E-05
8.243E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

/_=0
p=l
p=2
p=3
,u=4

3.383E-05
6.928E-07

-2.515E-07
-9.519E-08
-1.124E-08

6.089E-05
-5.671E-06
2.610E-07
2.353E-07
3.304E-08

4.788E-05 9.554E-06
-9.390E-06 -9.323E-06
5.447E-07 5.622E-07
4.061E-07 4.230E-07
5.430E-08 5.849E-08

-4.152E-04 -5.593E-04
-5.606E-03 -6.059E-03

1.079E-04 -3.089E-04
1.625E-06 -5.251E-06
2.289E-08 -9.597E-08

-2.263E-03
-4.126E-04
-5.412E-04
-8.799E-06
-1.397E-07

-1.433E-03
3.095E-03

-5.530E-04
-9.154 E-06

-1.539E-07

Table 2.10 Full Annulus q =3.0, MT =0.783

U=0
U=I
H=2
p=3

/_=4

m=16
Upstream Waves, x=-b

m =-8

- Namba--- Schulten

-9.928E-05 -1.031E-04
3.082E-06 2.825E-06

-4.728E-07 -3.774E-07
3.721E-07 3.761E-07

4.869E-08 5.559E-08

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten

-1.889E-05
-1.612E-06
7.317E-07
1.822E-08
1.860E-08

5.764E-04 6.058E-04
2.669E-03 2.213E-03

-9.207E-06 -3.803E-05
-1.089E-05 -1.089E-05
-4.233E-07 -4.470E-07

-3.509E-05
-3.724E-07
6.002E-07

-2.232E-08
1.652E-08

Downstream Waves, x=+2b

-9.392E-05
-1.441 E-03
-6.399E-05
3.008E-06
1.647E-07

-2.580E-04
-1.365E-03
-1.247E-04
2.595E-06
1.683E-07

m=16

Real

Namba Schulten

u=0 -5.613E-06 -3.755E-06
.u= I -5.973E-07 -1.508E-06
p =2 -3.657E-07 -3.265E-07
p=3 -8.694E-08 -5.794E-08
p=4 -9.828E-09 -6.417E-09

Imag
Namba Schulten

-1.069E-05 -4.942E-06
-2.136E-06 -2.709E-06
-1.472E-07 -9.456E-08

-3.965E-09 3.026E-08
9.234E-11 4.465E-09

Real

Namba
6.404E-04

-2.955E-03
6.815E-05

5.958E-07
1.807E-08

m =-8

Schulten

8.712E-04
-3.133E-03
2.212E-05

-7.943E-09
8.769E-09

Ima 9
Namba

1.947E-03
2.274E-03

-4.114E-05
-3.561E-07
-1.317E-09

Schulten

1.768E-03
2.865E-03

-8.419E-05
-1.068E-06
-1.267E-08

Table 3. Comparison of lift coefficient between 3D cascade (narrow annulus)
at mid span and corresponding 2D cascade.

3D (Narrow annulus) 2D

MT Real Real Imag

0.3897

0.4330

0.4763

0.6495

-2.263E-01

-4.209E-02

1.273E-02

8.959E-02

Imag

1.825E-01

1.064E-01

1.453E-01

1.806E-01

-2.336E-01 1.971E-01

-4.030E-02 1.039E-01

1.816E-02 1.413E-01

9.709E-02 1.586E-01
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Figure 1 Comparison of lift coefficient between 3D cascade (narrow annulus) at mid span and

corresponding 2D cascade. Reduced frequency =(2_BIV)(MrlM)
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Figure 2 Real (left) and imaginary part of midspan ACp, full annulus, q = 0, Mr = 0.783.
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Figure 4 Real (left) and imaginary parts of z_Cp,q = 1.5, MT = 0.783
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Figure 5 Real (left) and imaginary parts ofz_Cp, q = 3.0, Mr = 0.783
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SOLUTION TO THE CATEGORY 5 PROBLEM:

GENERATION AND RADIATION OF ACOUSTIC WAVES FROM A 2D SHEAR LAYER

MILO D. DAHL

NASA Glenn Research Center

Cleveland, OH

A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable.

Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination

of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations

of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the down-

stream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic

relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic.

Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional

noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of

noise.

The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at

a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness

is constant. With the source amplitude small enough, the problem is governed by the following set of linear

equations given in dimensional form.

a# _ au' 3¢ _y)O---t+ U(y) +p(y)_x +p(y)-_y +V'OP(Oy
_ O (1)

a,' u___f vtaU (y) 1 c3p' (2)a---t-+ U(y) + _ =" p(y) c3x

av' c3v' 1 ap' (3)
-_ + U(Y)-_x - O(Y) ay

au' 2V
a#at+ _-aexp [-Bln2 2+y2)] cos(coO (4)

We begin the analysis to solve for the pressure disturbances by nondimensionalizing the above set of

equations. The physical coordinates are scaled by the half-velocity distance Rl/2. The velocity is scaled

by the jet velocity Uj, the density by p j, the pressure by f)jU 2, and the time and frequency by RI/2/Uj.

The equations are then combined into a single, nondimensional, third-order, inhomogeneous differential

equation.

1 --
2_yy a--f_-yJ

c3p

0 ay

(5)

If the source term in equation (5) is defined as

S(x,y,t) = A* e -B* In2(x2+y2) e_iO_, (6)
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whereA* = ARj/z/pjU2 and B* = 2BRI/2, then the solution to equation (5) is given by the real part of the

complex disturbance pressure p. (Note that the real part of equation (6) is the source term in equation

(4).) The approach that follows constructs an integral equation using a Green's function that solves for p in

equation (5).

Assume that the solution is harmonic with the source term. After differentiating with respect to time and

dividing through by e -i_, equation (5) becomes

where

p -- m

1

_MZ [(-i°3+ff_x) {32p\-_x2+_y2j32p)---

3a
-OZP] = -(--i03+ u

3

t , t 2 t,2
SI (x,y) = (-i03- 2B xa(y))a e -8 x e-B_

and B t = B* In 2.

Defining the Fourier transform of the x variable as

1//5(k,y) = -f_ p(x,y)e-ilCrdx,

the transform is applied to equation (7) and the results rearranged to obtain

3 [ 1 3/5] k 2 ',(k,y)3)_ 0M_(d-_k)2_ +fi-0,V/_(_0-,_1,)2/5- (c0-,_k) 2"

Equation (10) has the form of a Sturm-Liouville equation.

-_y a + b t_ - B.c/5 = f (k, y )

The solution of this equation is expressed as the integral

/5(k,y) = f f(k,yo)G(k,y;yo)dyo

3p

3y

(7)

(8)

(9)

(lO)

(11)

(12)

where G(k,y;yo) is the Green's function that solves

[ 3yJ +bG-B_cO=5(y-yo) (13)

subject to the same boundary conditions as apply to/5 in equation (11). These conditions are symmetry at

y -- 0 and outgoing waves as y _ _,.

The Green's function derived from equation (13) has the form

Ao(k,yo) [_2(k,yo)_l(k,y)H(yo-y) + _l(k,yo)_2(k,y)H(y- yo)] (14)
G(k,y;yo)- A(k, yo)
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where

A(k,yo) _l(k,yo)_)_2_, y°) _2(k, ,a_l(k,yo)= Yo) -_y
_ 9

= Ao(k)O(yo)(m-U(yo)k)-, (15)

and H is the step function defined as

Ao(k,yo) = lS(yo)M} (¢o- ff(yo)k) 2, (16)

I' z>0
/-/(z) = _,z=0

0, z<0.

From the boundary condition at y = 0, a_l lay = 0 and as y --, 0% 42 _ exp(ivy) where v = _- k 2 and

k_ = O=M}o32. The branch cuts associated with v are chosen such that -rt/2 < arg(v) < rt/2 to insure

outgoing waves.

It is now a matter of substituting both f(k,yo) and (_(k, Y;Yo) into equation (12) and applying the inverse

Fourier transform
oo

= f ff(k,y)ei'_dk (17)p(x,y)

--oo

to get the general integral solution for the disturbance pressure

pg(x,y) --

X

+

2rt

;2!k,yo) e-B'v2 d eikxdk
e-k2/4B';l(k,y) _(yo)(m-g_(yo)k) A(k,yo) " Yo

{/ }f e k2/4B'¢2(k,y) p(yo)(03 _, ,,,¢l(k, yo) ," e&,.dk-U_yo)r) A(k-k_o) e-B Yodyo
--co 0

(18)

To obtain this equation, equation (8) was used to complete the integration in f(k, Yo).

f(k, yo) =
Sl(k,yo)

(¢o-_(yo)k) 2

, 72rc( - a(yo)k)2

iA* ./--_e_B,y_e_k2/4 B, (19)

One major goal of this problem is to compute the pressure disturbance generated by a growing instability

wave excited in the shear layer by the acoustic source. The instability wave comes from the homogeneous

solution to equation (10). Hence, we have an eigenvalue problem where a nonzero solution exists at k equal

to the eigenvalue c_ and p has the form of the eigenfunction _. In the limit as k _ a, both _l and _2 _
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giving the result in equation (15) that A(k, yo) = Ao(k) = 0 for all Yo. Thus, a simple pole exists at k = o_in

equation (18) and the solution for the inverse Fourier transform can be determined by residue theory. The

instability wave solution for the pressure disturbance is

pa(x,y) = A*Mj2 /_

e -_2/4B'¢(O_,y) f p(yo)(_ -/ '-" ¢(o_,yo) -B',,_-, I
x o - Utyo)_X ) OA_oye " ayo _ eira

(20)

The total solution for the pressure disturbance with a growing instability wave is the sum of pg(x,y)

and pu(x,y) given by equations (18) and (20). Outside of the jet, this represents the pressure disturbances

generated by the instability wave and the disturbances that are generated directly by the source and propagate

outward through the jet flow. If the pressure was to be computed in the far field, then the inverse Fourier

transform in equation (18) could be found by using asymptotic methods. But the solution is desired close to

the jet flow, hence the integrals must be computed numerically.

Solution for St = 0.14

The path of integration to numerically solve for the inverse Fourier transform in equation (18) is shown

in Figure 1. The horizontal path slightly deviates from the real axis to avoid the branch cuts and insure that

the outgoing wave boundary conditions are satisfied. In addition, this path also attempts to avoid the real

axis where ¢o- ti(yo)k = 0. The vertical portion of the path is traversed twice in opposite directions resulting

in no contribution from the integration along this section of the path. Thus, the total solution is the sum of

the numerical integration of equation (18) along the horizontal path plus the residue solution at k = o_ given

by equation (20).

The problem statement asked for the computed pressure disturbance in the x-direction at y/Ri/2 = 1. As

of the workshop, the method of numerically integrating equation (18) has not been proven to converge to a

reliable solution. Hence, Figure 2 shows only the growing instability wave solution. The eigenvalue for this

instability wave is o_ - 0.61489 - i0.067236.

Outside of the jet, the numerical integration converged to a consistent solution. The computed mean

square pressures are shown in Figure 3 in the x-direction at y/Ri/2 = 10 and in the y-direction at x/R1/2 = 50.

Solution for St = 0.60

At a Strouhal number of 0.60, the flow conditions and the shear layer width do not support a growing

instability wave. Thus, only equation (18) is used to compute the pressure disturbance outside of the jet and

only the horizontal path of integration is followed in Figure 1. The result for the mean square pressure are

shown in Figure 4.
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Figure 1: Path of integration in the k-plane for computing the inverse Fourier transform.
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CATEGORY 6

AUTOMOBILE NOISE INVOLVING FEEDBACK -

SOUND GENERATION BY LOW SPEED CAVITY FLOWS

BRENDA HENDERSON

Kettering University

Mechanical Engineering Department
Flint, MI

Abstract

The category 6 problem involves the calculation of interior sound pressure levels produced by the flow

of low speed air over a deep cavity. The cavity geometry is similar to the one occurring in vehicle door

gaps. The velocity of the approach flow ranges between 26.8 m/s and 50.9 m/s. In this study, experimental
data is obtained for comparison with numerical results. Multiple discrete frequencies occur for a range of

approach flow velocities and for both "thick" and "thin" boundary layers. These tones appear to be

associated with both fluid dynamic and fluid resonant oscillations.

Introduction

The discrete frequency sound produced by the flow of air over cavities is part of a feedback loop. The

oscillating shear layer crosses the cavity mouth, impinges on the trailing edge of the cavity, and causes an

oscillating mass flow rate in the region of the cavity mouth. Sound is produced by the interaction of the

shear layer with the trailing edge wall or by the oscillating mass flow rate in the cavity mouth region. The

sound feeds back to the cavity entrance and excites the oscillations of the shear layer, thus closing the

feedback loop.

The oscillations occurring in cavity flows can be categorized as fluid-dynamic, fluid-resonant, or fluid-
elastic _, Fluid-dynamic oscillations arise from the instability of the shear layer in the cavity mouth. Fluid-

resonant oscillations are the result of, or are enhanced by, resonant waves within the cavity. Depending on

the cavity geometry, either longitudinal waves (waves traveling between the leading edge and trailing edge

walls) or transverse waves (waves traveling between the cavity floor and mouth) can be excited _. Fluid

elastic resonance occurs when fluid resonance is enhanced by oscillations of the cavity surfaces.

The type of fluid resonant behavior displayed by cavity flows depends on the cavity geometry (see

Fig. 1). Shallow cavities, cavities with depth to length ratios less than one (D/L < 1), can produce

longitudinal waves. These cavities often produce flow that separates from the leading edge, and reattaches at

the base of the cavity z3'4. Deep cavities, cavities with a depth to length ratio greater than one (D/L > 1), can

produce transverse waves 3. For the case of steady flow in deep cavities, the separated flow no longer
reattaches to the cavity floor and a general vortex system exists in the cavity 2.

A number of models exist for predicting the frequency of discrete tones in cavity flows L'4'5'6.The

agreement between experimental data and predictions based on these equations depends on the speed of the

approach flow. Some experiments also indicate that the frequency of tones can be somewhat dependent on
boundary layer thickness 7.

The benchmark problem for category 6 is the numerical simulation of flow for a deep cavity with an

overhang at the cavity entrance. The numerical results are to be compared to experimental results obtained

in this study.
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Problem Statement

The geometry used for the category 6 problem is shown in Fig. 2. The boundary layer is turbulent with

a boundary thickness of 1.6 cm at an approach velocity of 26.8 m/s, and 2.2 cm at an approach velocity of

50.9 m/s. A one-seventh power-law velocity profile may be used for simplicity. Compare numerical results

for sound pressure level values at the center of the left wall with experimental values for approach flow
velocities between 26.5 and 50.9 rrds.

Experiment

The cavity studies were conducted in a recirculating wind tunnel with an 18"x18"x48" test section. The

tunnel is equipped with silencers before and after the fan to reduce sound pressure levels in the flow.

For the experiments in this investigation, the top surface of the wind tunnel test section was replaced

with a cavity assembly containing the cavity shown in Fig. 2. The width of the cavity was 25 cm. Two 1/4"

type TMS140BP and TMS 140BF G.R.A.S. condenser microphones were mounted flush with the left wail.
The signals from the microphones were analyzed on an HP 35670A dynamic signal analyzer. A flat top

window was used for the FFT analysis.

Prior to acquiring the sound-pressure level data, a boundary layer study was conducted with a hot-wire
anemometer. Based on the results obtained, two streamwise locations in the test section were chosen for the

cavity experiments to determine the effect of boundary thickness on the onset of instability. The boundary

layer thickness at the first location was 2mm at 30 m/s, and 1.2 cm at 50 m/s. For the second location, the

boundary-layer thickness was 2 mm at 30 m/s, and 1.2 cm at 50 m/s. The boundary layer values at the

second location were close to those given in the problem statement. It was not possible to obtain the exact

boundary layer thickness prescribed in the problem statement without artificially increasing the roughness
of the tunnel surfaces. These two studies are referred to as "thick" and "thin" boundary layer studies in the

following sections.

Results

The sound pressure levels associated with the thin and thick boundary layer studies are shown in Figs. 3
and 4. As often occurs for cavities with entrance overhangs 8'9, multiple discrete tones are observed in the

spectra. The number of discrete tones produced by the cavity flow depends on the flow speed and the

boundary layer thickness. One tone is often associated with fluid-dynamic oscillations while other tones are

likely the result of resonance within the cavity. In addition to the expected transverse waves in the cavity,

an additional type of tone occurs that does not appear to be related to fluid-dynamic oscillations, expected

frequencies for transverse waves, or expected frequencies for longitudinal waves 8. These tones may be the

result of longitudinal wave motion restricted to the cavity mouth region or other cavity modes that are

unique to this type of cavity geometry.

The discrete frequencies for the spectra of Figs. 3 and 4 are shown in Tables 1 and 2. The tones have

been categorized by resonance mode. Fluid-dynamic tones and transverse wave frequencies have been

identified by comparison with other published data and analytical results. Correlation studies were not

performed in this investigation.
For the tones associated with fluid-dynamic resonance, the convection speed of the disturbances in the

cavity mouth were determined using a simple hydrodynamic model resulting in 5

wherefis the measured frequency of sound, n is the mode number, b is the length of the cavity mouth, ¢ is a

phase angle which accounts for the possibility of a phase shift between the interaction of the disturbance
with the edge and the response of the shear layer to the encounter, and c is the convection speed of the
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disturbancesin the cavity mouth. For low speedflows, good agreementbetween this equation and
experimentalvaluesis obtainedwhen ¢ = 0. The values for c in Table 1 and 2 range from approximately

43% to 50% of the mean stream velocity. The theoretical value for the convection speed of the disturbances

is 50% of the mean stream velocity but experimental values are usually slightly lower. This is an indication

that these tones are likely the result of fluid-dynamic oscillations. The slightly higher value for c associated

with the thick boundary layer and an approach flow velocity of 40 m/s is probably due to breadth of the

peak around 1760 Hz. For the thin boundary layer at the same speed, a double peak occurred in the

spectrum with frequencies that were quite close together. The broad peak for the thick boundary layer may

have masked the double peak and resulted in slightly higher calculated convection speed.

The peaks associated with transverse waves have been identified by comparison with published data 3.

f wave D D
The critical dimensionless numbers for this type of tone are and --, where fwave is the

a L

frequency of the discrete tone, D is the cavity depth, and L is the cavity length. Good agreement between

these experiments and other published data is obtained when the cavity mouth opening is used for L.

One additional consideration should be made when directly comparing numerical results to experimental

results. When multiple tones occur in the spectrum, the preferred or dominant mode often changes

randomly. This can result in a change of 3 dB or more in the peak sound pressure levels.

It is possible to determine some of the effects of boundary layer thickness on the production of discrete

tones by comparing Figs. 3 and 4 as well as Tables 1 and 2. For the thin boundary layer study, well defined

discrete frequencies occur consistently for approach flow velocities greater than or equal to 30 m/s. For the

thick boundary layer study, well defined discrete frequencies do not appear consistently until the approach

flow velocity reaches 35 m/s. The magnitude of the discrete peaks and the shape of the spectra are also

somewhat affected by the thickness of the boundary layer.

Conclusions

Multiple discrete frequency tones often occur for cavities with overhangs at the mouth entrance. The

tones can be associated with fluid-dynamic resonance and transverse modes within the cavity. An additional

discrete frequency tone has been identified and may be the result of other cavity modes unique to this cavity

geometry.
The thickness of the boundary layer at the cavity entrance influences the onset of instability. Thinner

boundary layers produce resonance at lower approach flow velocities than thick boundary layers. The peak

sound pressure level and the shape of the spectra are also somewhat affected by boundary layer thickness.
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Table 1. Peak sound-pressure levels measured for the thin boundary-layer studies. Bold numbers

are associated with fluid-dynamic resonance and italic numbers are associated with transverse

cavity waves. The origin of the other tones is unknown.

Approach Velocity (U.) Frequency Amplitude

(m/s)

60

50

40

30

20

(Hz)

2096

2288

1824

3648

1760

1264

1664

3520

768

1872

2368

2864

(dB)

137

123

144

111

126

105

95

90

83

89

89

82

Convection Speed (u)

I o)
0.45 Uo

0.43 Uo

[ 0.52Uo

0.49 Uo

0.45 Uo

Table 2. Peak sound-pressure levels measured for the thick boundary-layer studies. Bold numbers

are associated with fluid-dynamic resonance and italic numbers are associated with transverse

cavity waves. The origin of the other tones is unknown.

-Approach Velocity (Uo) Frequency

(m/s)

60

50

40

30

26.8

Olz)

2000

2288

1824

2016

2848

3552

1520

1632

400

No well defined

peaks
928

1168

1890

1984

Amplitude

(dB)

144

121

134

113

106

111

110

112

103

97

99

103

101

Convection Speed (u)

0.45 Uo

0.43 Uo

0.44 Uo

or 0.48 Uo

0.51Uo
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DISCONTINUOUS SPECTRAL ELEMENT SOLUTION
OF AEROACOUSTIC PROBLEMS

Patrick Rasetarincra, DAVID A. KOPRIVA I and M.Y. Hussaini I

Program in Computational Science and Engineering

The Florida State University, Tallahassee, FL 32306

1 Introduction

In this paper, we present sohttions to the Problem 1, Category 1 and Problem 1, Category 3

benchmark problems. Both problems are characterized by multiple length scales. The first describes the

propagation of acoustic waves in a nearly choked quasi-one-dimensional, converging-diverging nozzle.

In the throat portion of the nozzle the acoustic wavelengths are an order of magnitude smaller than

elsewhere. The second problem models the acoustic response of an airfoil to a gust where the scales

include the airfoil cord length, the incident gust wavelength and the extent of the mean flow.

We solve these multiple scale problems with a discontinuous spectral element method (DSEM). Spectral

element methods in general are high order, flexible extensions of the spectral collocation method [2].

Like finite volume or finite element methods, complex geometries are subdivided into multiple elements.

Within each element, the solution is approximated by an orthogonal polynomial expansion. Local

resolution of the solution can bc increased either by decreasing the size of the elements or by increasing

the order of the polynomials. The particular method used here is a high order spectral element version

of the discontinuous Galerkin method.

For the benchmark problems, discontinuous spectral element methods have practical advantages over

high order finite difference methods. They are designed to handle complex geometries, and can

use unstructured element grids generated by commercial mesh generation codes [4]. Though block

structured finite difference methods permit solutions in complex geometries, DSEM's are not restricted

to meshes with smooth metrics. Also, DSEM's approximate boundary surfaces to the same high order

as the solution. Cartesian mesh finite difference methods, for instance, do not.

Unlike high order finite difference methods, spectral element methods are compact. Their stencil resides

within an element, independent of the approximation order. This means that there are no ghost point

issues to complicate the approximation and implementation of boundary conditions. Also, elements

can be sized according to the needs of the solution without regard to the size of neighboring elements.

1Also Department of Mathematics and SCRI.
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This gives comI)leteflexibility for changingelementsizes,unlike high order finite differencemethods
for which changesin meshsizesby factors of two aremost convenient.

Spectral element methods are robust. Unlike centeredfinite differencemethods, they do not require
the addition of specially tuned artificial dissipation. Also, the discontinuousspectral elementmethod
describedheredoesnot requirespecialtreatment of cornerpoints. This meansthat specialprogramming
is not neededfor colnplex grid topologiesor for sharp edges.

Finally, spectral element methods have spectrally small phase and dissipation errors. Waves can
propagateover a largenumber of wavelengthswith a minimal number of points per wavelengthwhile
keepingthe flexibility describedabove.Examplescan be found in the first and secondCAA workshop
papers [5],[1]. An analysisof the phaseand dissipation errors of the discontinuousGalerkin method
hasalso beenperformedrecently in [3],[8]. In the first paper it wasshownthat for polynomial orders
of six to eight, only five to six points perwavelengthareneeded.If oneusespolynomial ordersbetween
8 and 16,only four to five points per wavelengthareneeded.

2 The Solution Approach

2.1 The Equations

To solve the benchmark problems, we approximate the nonlinear compressible Euler equations of gas-

dynamics in conservative form. For the Category 3 problem, the equations solved are

Explicitly, we have

Qt +_7. F = Qt + F_ + G_ = S (1)

u pu 7v
F p+pu2= G = puv

Q = pv puv p + pv 2

_ "_(pe+ p) v(_ + p)

We assume an ideal gas with pe = P/(7 - 1) + (u 2 + v2)/2 and "7 = 1.4. The quantity S right hand side

of (1) represents a source term.

In the one space dimension Category 1 problem, eq. (1) reduces to

where

Q_+ F_= s (2)

Q= puA F=

LpeA J
 uA1[0](_u _+p) A] S= -

(pe+ p) A 1 PoAx
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2.2 The Discontinuous Galerkin Spectral Element Method

In two space dimensions, tile region under consideration is divided into non-overlapping elements. Tile

elements can have a general quadrilateral shape to permit the accurate resolution of curved boundaries

with a minimum number of elements. Each element is mapped individually onto the unit square by an

isoparametric transformation. (See, e.g. [6].)

On each element, the mapping transforms eq. (1) to

O,+ = 0, + Pc+ d,, =

The new variables are Q = JQ, S = JS and

(3)

_" = y,_F - x,_G G = -y_F + x_G

J(X, Y) = x_y,_ - x,y¢

(4)

The discontinuous Galerkin version of the spectral element method approximates the solution and the

fluxes by the N th order polynomials

=
N N

p,v=O p,v=O

where ¢_,,_ = f_, (_)g, (r/). The Lagrange interpolating polynomials, C_, are defined at the Legendre

Gauss quadrature points. The nodal values of the flux are computed from the nodal values of the

solution, i.e. _'ij = _" (t_id). No assumptions are made about the continuity of the sohltion, (_, across
element boundaries.

In this approximation, the residual is required to be orthogonal to the approximation space within an

element, so

((_t,¢ij)+(V_'_',¢i,j) = (S,¢i,j) i,j=O,l,...,N (6)

where (-, .) represents the usual L 2 inner product.

Integration of (6) by parts gives

OE

where cgE represents the boundary of the element.

(S,¢_,3) i,j=O, 1,...,N (7)

To obtain equations for the nodal values of the solution, (_i5, the integrals in (7) are replaced by

Legendre-Gauss qua dratures, which have the property that

1 N

f v((,z])d(d_]= _ v(_i, Tlj) wiwj Vv e P2N+L2N+I (8)
i,j=O-1
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The replacement is exact provided that the element sides are straight. If the sides are curved, however,

an additional quadrature error is incurred, just as in the C o spectral element method [7]. The advantage

gained by using quadrature is that the mass matrix remains diagonal and trivially invertable. This

makes the use of high order elements practical and efficient for wave-propagation problems.

After some manipulation, the final approximation in two space dimensions is

__d_)iddt+ [p (1, r/J) gi(1)wi F(O,r/j) fi(O)wi _O(f'i'f")Nu wi +

[d({i,1) fa(1) d({_,0) ej(0)wj wj _ O.j
P

where the discrete inner product is the Gauss quadrature

N

(U, V)N _ E ?li?2iWi"

i=0

Note that if the approximating polynomial order is zero,

method.

(9)

(10)

(9) reduces to a first-order finite-volume

The flux quantities F (1, r/j), F (1, r/t), G ({_, 1), G ({_, 0), in (9) represent the element boundary fluxes.

As in a finite volume approximation, the sohltions are discontinuous at element faces. A Riemann

solver is used to compute a continuous flux at the element faces from the discontinuous solution values.

For the computations presented here, we have used Roe's approximate Riemann solver [9].

The semi-discrete approximation, (9), is integrated in time by a low storage Runge-Kutta method.

Both third and fourth order methods are used.(ef. [6])

2.3 Steady-State computation

For both the Category 1 and Category 3 problems, the steady solution is computed first. Once the

steady solution is found, the incident waves are imposed as boundary conditions. The splitting permits

the use of convergence acceleration techniques to get the steady-state. Here we use local time-stepping

[4]. We estimate that on the Category 3 problem, the computation of the steady-state is accelerated

by a factor of 30 using local time stepping.

2.4 Boundary Conditions

The use of the Riemann solver at element faces makes the imposition of boundary conditions simple.

Boundary conditions are implemented by specifying the external state as the input for the Riemann

solver [6].

In the two-dimensional problems, it is also necessary to implement radiation boundary conditions. In

this paper, we treat the outgoing pressure waves through a dmnping-layer procedure, which is easy to
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apply and inexpensive.Tile damping-layerapproachsetstile sourceterm on the right of eq. (1) sothat
soundwavesaredamped ill time as they propagate toward the outer boundaries. Only the radiating
soundwavesaredamped,sothe damping term is written as

[°1(7 0 (11)S-
-_-1 0

P - Pss

where p_s is the steady-state pressure. The quantity (7 is a ramp fimction that grows smoothly from

zero as the outer boundary is approached. We use two such ramp fimctions. The first increases the

damping radially as

a(r) =/3 ( r--__ro _ (12)
\ Pmax -- T O /

where r is the radial direction, measured from the center of the airfoil. The rate at. which the ramp

function increases, u was chosen to be either one or two. Tile second ramp function replaced the radial

direction with tile boundary-normal direction within an element along the outer boundary. Using two

different ramp functions and varying r0 and R.,_a_ pernfitted us to assess any contamination of the

solution by spurious reflected sound waves.

3 Solutions of the Workshop Problems

3.1 Category 1, Problem 1

Fig. 1 shows the distribution of the maximum acoustic pressure inside the nozzle. The solution was

computed with two meshes. The coarse mesh used 16 elements at eighth order in each for a total of

144 collocation points. A fine mesh solution with 300 points is used for comparison. The inlet portion

shows that there is only the transmitted wave, and that the wave amplitude is 5.47 x 10 -6. In the

throat section, we find a peak amplitude of 1.03 x 10 -4. Finally, the exit section of the nozzle shows

reflected and incident waves. The mean value of the coarse grid solution in the exit portion of the

nozzle, which should be the incident wave amplitude, is within 0.4% of the exact.

At the top of Fig. 1 we show the distribution of the elements. The ability to adjust the element size

according to the resolution needs of the problem is an important feature of the method. It permits the

use of a minimum number of degrees of freedom to solve the problem accurately.

3.2 Category 3, Problem 1

For Category 3, Problem 1, we compute the unsteady aerodynamic and aeroacoustic response of a

single airfoil to a two-dimensional, periodic vortical gust. In this problem, the incident gust propagates

from infinity with the mean flow to the airfoil. At the airfoil surface, sound and vorticity are generated.
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Figure 1" Maximum acoustic pressure amplitude for Category 1, Problem 1. Plotted are coarse and

fine grid solutions. The element boundaries are marked at the top of the figure by vertical bars.

The sound propagates outward in all directions from the airfoil, while the vorticity propagates as a

vortex street off the trailing edge of the airfoil. We solve this problem in the total-field formulation: We

impose the gust. as an external boundary condition and compute the time dependent flow as a periodic

steady-state of the full nonlinear Euler equations.

Two important computational issues for this problem are the choice of mesh topology and the size of

the mesh. First, the mean flow must be well-resolved in the neighborhood of the airfoil. Unlike a pure

CFD calculation, however, it is also necessary to have uniform resolution in the far field with which to

represent the incoming gust, the expanding sound wave and the vorticity advected downstream from

the airfoil. These needs indicate that a grid formed by a conformal mapping would not be efficient, since

the conformal grid will produce large elements in the far field. For this reason, we use unstructured

grids. Figs. 2 and 3 show representative examples of meshes used about the airfoils.

The distance of the external boundaries from the airfoil also affects the solution. As in a CFD

calculation, the outer boundary nmst be far enough away so that the surface pressure is not affected.

An additional constraint is that the velocity in the external regions must be close enough to the uniform

free-stream value so that the assumption of setting the gust at the outer boundm'y as a plane wave is

accurate. For instance, we find that the mean flow velocity is within 2.5 % of the free-stream velocity

at about 7.5 chord lengths from the non-lifting airfoil. For the lifting case, on the other hand, it is

necessary to extend the mesh to 22.5 chord lengths in each direction to get a solution independent of

the outer mesh distance.

Two independently written DSEM codes were used to compute the solutions presented here. Code 1

uses elements with straight sides except on the airfoil surface. It parameterizes the airfoil by polar

angle 0, whidl gives better resolution in the neighborhood of the trailing edge. The damping layer in

Code 1 has a ramping function that grows in the element normal direction. Code 2 has the ability to
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Figure 2: Mesh topology for the non-lifting airfoil

/

\

Figure 3: Closeup of a mesh in the neighborhood of the airfoil.

use curved element boundaries on M1 elements, as shown in Fig.3. It parameterizes tile airfoil surfaces

by arc length except near the leading edge, where polar angle 0 is used. The damping layer in Code 2 is

circular, as described in eq. (12). Both codes permit the use of variable order meshes so that the order

of the approximating polynomials can be adjusted locally to provide the desired resolution. The use of

the two codes permitted the assessment of the effects of the radiation boundary conditions, resolution

along the airfoil surface and element, shape.

NASA/CP--2000-209790 109



.4 -_ I I I I

(1)

00
00

¢-

0)

3.2

3

2.8

2.6

_ Code 2 Fixed Order
u Code 2 Var. Order
^ Code 1 Var. Order

FL036

24. , , , 1 ..... I._, , , I , , , I , , ,

0 0.2 0.4 0.6 0.8 1
(X-Xle)/C
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scaled to the chord length.

3.2.1 Nonlifting Airfoil Solutions

The steady pressure on the surface of the synnnetric airfoil is shown in Fig. 4. The grid used for these

calculations extended 7.5 cord lengths from the airfoil. The fixed order computation used 11 °_ order

polynomials in all elements. The variable order computations used polynomials between six and 11,

arranged to approximate a uniform eight points per wavelength of the incident gust. The fixed order

calculation put 95 points along the airfoil surface. For the variable order cases, the Code 1 solution

used 59 points and the Code 2 solution put 55 points along the surface. The computed solutions are

compared to the FLO36 solution used in the workshop overview comparisons. Note particularly that

the DSEM's have no problem approximating the solution near the sharp trailing edge of the airfoil.

We first show solutions to the nonlifting airfoil for wavenumber k = 3. The acoustic response along

the surface is shown in Fig. 5. We find that the three solutions are consistent with each other except

near the leading edge. There, the peak pressure is sensitive to the resolution. In particular, the three

curves show that the lower the resolution, the lower the peak amplitude.

The computed acoustic intensity is shown in Fig. 6. Shown are the solutions corresponding to the

three solutions in Figs. 4 and 5 plus an additional solution computed on a mesh that extended 11.5

chord lengths in each direction. The damping layer in the larger calculation extended three wavelengths

beyond the others. The directivity patterns indicate that the radiation boundary conditions are not

significantly affecting the solutions. The small difference in the peak values, with variation of 7 % or

less, can be attributed to tile difference in the peak values at the leading edge of the airfoil.

The Figures 4-6 show that the solutions, computed with different codes and different meshes give

consistent results. It is interesting to note, however, the different computational costs between using

the variable order and the fixed order meshes. For instance, Code 2 required 6.4 hours on an SGI
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Figure 5: RMS surface pressure for the s3nnmet.ric airfoil and gust wavenumber k = 3.
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Figure 6: Acoustic intensity at radius eight, for the symmetric airfoil and for gust wavenumber k = 3.

Origin 200 to compute both the steady and time dependent parts of the solution using the variable

order mesh. The fixed order solution required 19 hours. The factor of three difference between the

two can be attributed to the factor of three larger time step that could be used by the variable order

approximation. The variable order approximation used lower order approximations in the smaller

elements found in the neighborhood of the airfoil, thus pernfitting a larger timestep.

Finally, we present results for the k = 1 case. The RMS surface pressure is shown in Fig. 7. The

acoustic intensity at four chord lengths is shown in Fig. 8. In both figures, we show solutions computed

using the requested gust amplitude of c = 0.02 and an amplitude of _ = 0.002 scaled to the amplitude
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solution is shown for comparison.
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Solutions shown for the requested gust amplitude and one tenth the requested amplitude scaled by 100.

The reference solution is shown for comparison.
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Figure 9: Steady surface pressure for tile lifting airfoil as a function of distance along the horizontal,

scaled to the chord length.

of the requested solution. Also included on each figure is the reference solution used in the workshop

overview. There is a significant difference between the reference solution and the solutions computed

here. The fact that the nonlinear computations at the two gust amt)litudes match exactly indicates
that the differences are not due to nonlinear effects.

3.2.2 Lifting Airfoil Solutions

Finally, we present solutions t.o the lifting airfoil case for wavenumber k = 1. Figs. 9-11 show the results

compared to tile reference solution. As above, the mean and RMS pressures along the airfoil surface

are in good agreement with the reference solutions. Again, as before, there are significant differences

in the acoustic intensity at a radius of four chord lengths.

4 Conclusions

In this paper, we have used two discontimlous spectral element codes to compute two of tile acoustic

workshot) benchmark problems. Practical features of the method used are the ability to vary the mesh

size and approximation order to resolve local solution features. The method is compact and robust,

and does not need the addition of artificial damping in the presence of sharp edges.

For Category 1, Problem 1, solutions were obtained by using small elements in the neighborhood of

the throat and larger ones away from the throat. This flexibility permitted an accura.te solution with

only 144 collocation points, when compared to a reference solution with 300 points.
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Figure 11" Acoustic intensity at. radius eight for the lifting airfoil with gust. wavenumber k = 1.

Category 3, Problem 1 solutions were computed for k = 3 and k = 1 for the non-lifting airfoil, and for

k = 1 for the lifting case. Solutions using different meshes and damping layers were consistent with

each other, as shown in tile k = 3 non-lifting case. Surface quantities were in good agreement with

the reference solutions for both airfoils at k = 1. The intensities at four chord lengths, however, differ

significantly from the reference solution. This difference cannot be accounted for by nonlinear effects.
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Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows

With Complex Geometries

RAY HIXON and Reda R. Mankbadi

CAA Group, ICOMP
NASA Glenn Research Center

Cleveland, OH 44135

Abstract

Three benchmark problems are solved using a sixth-order prefactored compact scheme (ref. 1)

employing an explicit 10th-order filter (ref. 2) with optimized fourth-order Runge-Kutta time

stepping (ref. 3). The problems solved are Category 1, Problems 1 and 2; and Category 3, Prob-
lem 1.

In the Category 1 problems, the spatial accuracy of the scheme is tested on a stretched grid, and

the effectiveness of boundary conditions is shown. The solution stability and accuracy near a

shock discontinuity is shown as well. Also, I-D nonlinear characteristic boundary conditions will

be evaluated. This work will follow the work in ref. 4.

In the Category 3 problem, a nonlinear Euler solver will be used that solves the equations in gen-

eralized curvilinear coordinates using the chain rule transformation. This work, continuing earlier

work on flat-plate cascades (ref. 5) and Joukowski airfoils (ref. 6), will focus mainly on the effect

of the grid and boundary conditions on the accuracy of the solution. The grids were generated

using a commercially available grid generator, GridPro/az3000 (ref. 7).

1) Category 1 Problems

In Category 1, the problems are solved using the quasi-l-D Euler equations, given in the con-
served variables as:

pl}+ Ou2+p +aTx Ou2

E u(E+p) u(E+p)l x

= 0 (1)

The nozzle is the same for both problems, extending from -10<x<l 0 with the distribution:

A(x) = f

0.536572 - 0.198086e -(ln2)(x/0"6)2 x > 0

1.0 - 0.661514e -Cjn2)(x/°'6)2 x < 0

(2)
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Boundary conditions are set using characteristics at the inflow and outflow:

L I

, L 2 . =

L3

XX-- ( 1/C2)_XX

3p 3u
3 x p c-g-_

3p Ou
Uxx+ Pc-o--_x

(3)

which propagate at the speeds:

speed (4)Llfu}L 2 1' = u-c

L 3 u+c

Note that in this formulation, the characteristics are not linearized about the mean flow.

1.1) Category 1. Problem 1

The problem to be solved is the upstream propagation of an acoustic wave through a transonic,

nearly choked nozzle flow. The mean flow is set as:

fl}
[ fi ]outflow 1/7

(5)

The acoustic wave is set at the downstream boundary as:

fplu' = E -I

p' 1
outflow

cos 03 1-Moutflo w
(6)

or
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( L2) ,,.tftow = -2e(. 1 _ M o,,tftow) - M ,,.¢h, w

In this problem, the initial condition is set as the exact solution for isentropic flow at each grid

point, with the perturbation starting from the boundary at time = 0. The solution is run through 40

cycles of the perturbation, when the data is taken.

Initially, the problem was run with a uniformly-spaced grid until grid convergence was obtained

in order to determine the necessary spacing at x=0 (the nozzle throat). This was obtained at 3201

equally-spaced points, or a Ax of 0.00625. The minimum spacing was then set, and the grids were

stretched algebraically to a maximum Ax of 0.1 and were uniform to the boundary. The stretched-

grid solutions were then compared with the 3201-point solution for accuracy.

Figure 1 compares the solution obtained on the 251 point stretched grid with that of the exact

solution, while Figure 2 shows the grid spacing distribution as a function of x for the various

grids. The solution on this relatively coarse grid agrees very well with the exact solution.

r--
O
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t_
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D

o'J

E

E
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x

E
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X

]
(251 points)

Figure l" Comparison of Maximum Pressure Distribution for 251 point Stretched Grid with

Exact Solution
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1.2) Category. 1, Problem 2

The problem to be solved is the upstream propagation of an acoustic wave through a shock wave

in a convergent-divergent nozzle. The mean flow is set as:

[°}Ill/i = 0.2006533

P inflow 1/7

(8)

and

Poutflow = 0.6071752

The acoustic wave is set at the upstream boundary as:

(9)

X
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f
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I
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J
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I
i
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i 1

L ;
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X

Figure 2: Grid Spacing Distribution for Various Numbers of Grid Points
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u' = e 1 sin _ (1 +Minf/ow )
p' 1

inflow

(lO)

or

+,])(L3)inflow = 2e 1 + Minflow (1 +-Minflow)
(11)

In this problem, the initial condition is set as the exact solution for isentropic flow at each grid

point, with the perturbation starting from the boundary at time = 0. The solution is run through 40

cycles of the perturbation, when the data is taken.

As before, a uniform grid solution of 3201 points was run as a reference solution. The solution

that is presented has 201 points in the grid. Figure 4 compares the mean pressure with the exact

solution. Figure 5 compares the pressure perturbations between the stretched 201 point grid and

the exact solution. Figure 6 compares the outflow pressure history with the exact solutions. Note

t-
O

.m

-e

1=:

t-,,

t_

19..

0.00000

• 1

• , / \,

.... , ,..j

............ exact !
I

---- Hixo n and Mankbadi (251 points) i

r

-0.00010 _ ........
-10.0 0.0 10.0

X

Figure 3: Comparison of Instantaneous Pressure Perturbation for Category 1 Problem 1
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Figure 7: C-Grid used for Joukowski Airfoil (433 x 125)
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that, while there are oscillations around the shock, the filtering keeps this from contaminating the

solution downstream.

2) Category 3 Problem 1

2. l) Problem Description

In this set of problems, a two-dimensional

thick Joukowski airfoil. The gust has the distribution:

Here, e = 0.02 and k = 0. I.

simple-harmonic vortical gust convects past a 12%

Ugust = -eM(_-)cos(2k(x + y-Mt))

Ygust = eM(_-)cos(2k(x+ y-Mt))

(12)

(13)

Figure 8: Closeup of Cambered Airfoil Grid
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Themeanflow at infinity isdefinedas:

_=1
fi=M

_=0

1 -_
_-

(14)

where M = 0.5 and T= 1.4.

In the first test, a symmetric airfoil is used at a zero degree angle of attack. The second test used a

cambered airfoil (camber ratio = 0.02) at a two-degree angle of attack.

2.2) Mathematical and Numerical Formulation

In this work, the nonlinear Euler equations are solved. In Cartesian coordinates these equations

are written as:

OQ DE _9F

+_+_ = o

i
m

i m

Figure 9: Effect of Trailing Edge Singularity on

(15)

Instantaneous Pressure Contours (Cambered Airfoil).
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where

where

Q

E _.

F

phi

2
pu +p

puv

u(E + p)_

f3v

_LlV

2
pv +p

y(E + p).

(16)

(17)

(18)

( 1 2 )p = (7-1) E-_2p(u +v 2) (19)

Since the Joukowski airfoil has a complex geometry that does not lend itself to Cartesian grids,

the equations were recast in generalized curvilinear coordinates. From previous numerical tests

(ref. 8), the chain-rule formulation was chosen as the most accurate form of the equations in three

dimensions. The chain-rule curvilinear Euler equations are written as:

OQ , O_OE Orl3E . _OF _q_F _

* - o (20)

The time stepping method used was the low storage fourth-order nonlinear extension of Hu's 5-6

Low Dispersion and Dissipation Runge-Kutta scheme (ref. 9) by Stanescu and Habashi (ref. 3). A

time step of CFL = 1.5 was used for all calculations, giving 911 time steps per cycle of vorticity

for the medium-frequency case and 9110 time steps per cycle of vorticity for the low-frequency

case.

The spatial derivatives are calculated using the prefactored sixth-order compact scheme and

explicit boundary stencils of Hixon (ref. 1). At block boundaries, an 11-point explicit stencil was

used. A 10th order explicit filter (ref. 2) was used at every stage of the Runge-Kutta solver to pro-

vide dissipation.
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The grid used was a C-grid topology (Figure 7), extending at least five chord lengths away in each

direction. The grid had 221 points on the airfoil and 106 points along the wake cut. In the normal

direction, 125 points were used. The grid was generated using the commercial package GridPro 7.

For the calculation, the grid was split into three blocks: an airfoil block and upper and lower wake

blocks• The grid was clustered algebraically in the normal direction (An = .01) and near the trail-

ing edge point (Ax = .01), as shown in Fig. 8. A stretching ratio of 1.05 was used to a far-field

spacing ofAx = Ay = 0.106.

2.3) Initial and Boundary Conditions

For both cases the flow was initialized to the mean flow with the vortical gust superposed:

p(x, y, O) =

u(x, y, O) = ?_+ Ugust(X, y, O)

v(x, y, O) = Vg,st(X, y, O)

p(x, y, O) = fi

(21)

At the wall, Hixon's inviscid curvilinear wall boundary condition (ref. 10) was used, modified to

set the normal momentum to zero at the wall at each Runge-Kutta stage.

Symmetric

k=0.1

Cambered

k= 1.0

• °Figure 1 R S Pressure Disturbance Contours
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At the inflow boundary, the acoustic radiation condition of Tam and Webb (ref. 11) was used on

the outgoing perturbations. For example, the outgoing u-velocity perturbation was defined as:

Uoutgoing = UBC - U - Ugus t (22)

At the outflow boundary, Tam and Webb's radiation outflow condition (ref. 11) was used with no

correction for the outgoing vortical gust.

At the trailing edge point on the airfoil, the C-grid topology defines the airfoil geometry incor-

rectly, causing numerical inaccuracy. While an O-grid geometry would define the trailing edge

geometry properly, the C-grid was chosen due to the excessive number of grid points that the O-

grid would require to accurately resolve the sharp trailing edge.

At the trailing edge, an upper and lower wall condition is calculated, and averaged to make the

trailing edge point single-valued. This averaging, and the discontinuity in the boundary condition

on the surface line as it enters the wake, causes a loss of accuracy near the trailing edge. To reduce

the effect on the global solution, points were clustered near the trailing edge as shown in Fig. 8.

Figure 9 shows the effect of the averaging on the pressure contours near the trailing edge of the

cambered airfoil. The effect was much stronger on the cambered lifting airfoil than on the sym-

metric nonlifting airfoil.

2.4) Results

The compact code was run until the lift coefficient settled to a simple harmonic state, correspond-

ing to a nondimensional time of 210, requiring 72 hours on a 2-processor SGI Octane. As

expected, the nonlifting airfoil case converged faster; the lifting airfoil case results are still chang-

ing very slightly.

The mean pressures on the airfoil are shown in Figure 10. The effect of the trailing edge condition

is apparent in both figures; however, the effect is localized near the trailing edge. In both figures,

some oscillations are seen near the peak of the pressure curve; this is due to marginal resolution of

the high gradients in both the flow properties and the change in grid spacing in the tangential
direction. However, the effect on the mean solution is minimal. It is seen that the lifting airfoil

peak pressures are consistently overpredicted; this is attributed to the relatively small computa-
tional domain.

Figure 11 shows the RMS pressure disturbance distribution on the airfoil. Again, some oscilla-

tions due to marginal resolution can be seen near the peaks of the pressure disturbance, and the

trailing edge condition has some effect on the solution on the airfoil. However, the code is pre-

dicting the changing pressure distributions due to the two geometries and different frequencies

very well.

Figure 12 shows the amplitude of the RMS pressure perturbation at a distance of four chord

lengths away from the centerpoint of the airfoil. Here the comparison is not as good as on the air-

foil surface; however, the results compare well qualitatively and the magnitudes are in the correct

range.
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Figure 13 shows the distribution of the mean pressure throughout the computational domain.

Note the lack of reflections at the boundaries. Figure 14 shows the RMS pressure perturbation

distribution. In this case, it is seen that the boundary conditions work well for the low-frequency

case, but there are reflections for the high-frequency case. It is not certain whether the degrada-

tion in dispersion performance near the boundaries due to the one-sided boundary stencils is con-

tributing to these reflections.

33 Conclusions

Four benchmark problems of the Third CAA Workshop were solved using a prefactored sixth-

order compact scheme with 10th order filtering. These problems tested the accuracy of the code

on stretched, curvilinear grids with nonlinear flows. In all cases, the code was robust and con-

verged well. In the one-dimensional problems, the code proved very accurate even in the pres-

ence of unresolved shock waves. In the more realistic Category 3 problem, the solution shows the

correct trends for the different airfoil geometries and vortical frequencies.
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Abstract

The problems 1 and 2 in Category 1 (Internal Propagation), problem 3 in Category 3 (Fan Noise), and

problems 2 and 3 in Category 3 (Turbomachinery Noise in the Second CAA Workshop) are solved using

the space-time conservation element and solution element (CE/SE) method. The problems in Category

1 address the propagation of sound waves through a nozzle. Both the nonlinear and linear quasi 1D Euler

equations are solved. Numerical solutions are presented and compared with the analytical solution.

Problem 3 in Category 3 concerns the effect of the sweep angle on the acoustic field generated by the

interaction of a convected gust with a cascade of 3D flat plates. A parallel version of the 3D CE/SE

Euler solver is developed and employed to obtain numerical solutions for a family of swept flat plates.

Numerical solutions for sweep angles of 0 °, 5 °, 10 °, and 15 ° are presented. Problems 2 and 3 in Category

3 from the Second CAA Workshop describe the interaction of a 2D vortical gust with a cascade of flat-

plate airfoils with/without a downstream moving grid. The 2D nonlinear Euler Equations are solved

and the converged numerical solutions are presented and compared with the corresponding analytical

solution. All the comparisons demonstrate that the CE/SE method is capable of solving aeroacoustic

problems with/without shock waves in a simple and efficient manner. Furthermore, the simple non-

reflecting boundary condition used in the CE/SE method which is not based on the characteristic

theory works very well in 1D, 2D and 3D problems.

1. Introduction

The method of space-time conservation element and solution element (abbreviated as the CE/SE

method) is an innovative numerical method for solving conservation laws. It is designed to be a

numerical method in the field of computational fluid dynamics (CFD). Computational aeroacoustics

(CAA) is one of its applications.

The space-time CE/SE method is distinguished from other methods by its very conceptual basis -- flux

conservation in space and time. Simplicity, generality and accuracy are weighted in the development of

this method. Its salient properties are summarized briefly as follows. First, both local and global flux

conservations are enforced in space and time instead of in space only. Second, all the dependent variables

and their spatial derivatives are considered as individual unknowns to be solved for simultaneously at

each grid point. Third, every CE/SE scheme starts fi'om a non-dissipative scheme and numerical

dissipation is flflly controllable, which result in very low numerical dissipation. Fourth, the flux-
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basedspecificationof the CE/SE schemesgive rise in a natural fashionto extremely simpleyet highly
effectivenon-reflectingboundary condition which is an important issuein CAA. This canbecontrasted
to the complexity of nonrefiectingboundary conditions necessaryfor traditional numerical methods. A
detailed description of this method and the accompaniedanalysiscan be found in [1-4].

A variety of numerical testshave beenperformedi)reviously to illustrate the accuracyof this method.
For the CE/SE Euler solver, highly accuratenumerical solutions have beenobtained for various flow
problemsinvolving discontinuitiessuchasshockwaves,contact surfaces,and eventheir interactions[2].
Moreover,applicationsof the sameEuler solverto computational aeroacoustics(CAA) problemsreveal
that tile accuracyof the results is comparableto that of a 4th-order compact differenceschemeeven
though the current solver is only 2nd-orderaccurate,and tile nonreflectingboundary condition canbe
implementedin a simpleway without involving characteristicvariables. Resultsshowthat the present
solvercan handle both continuousand discontinuousflowsvery we1115-13].

In this paper, a quasi 1-D CE/SE Euler solveris usedto solvetile benchmarkproblem in Category 1
(Internal Propagation). Among the two proposedproblems,one addressesthe propagation of sound
wavesthrough a transonicnozzleand anotherconcernsshock-soundinteraction in a supersonicnozzle.
For problem1,both uniform mesheswith constantnumericaldissipationmodelsand nonuniformmeshes
with variable numerical dissipation modcls are used. Numerical results are presentedand compared
with the analytical solution. A good agreementis achievedby using 401 stretched meshpoints. For
problem 2, 101 and 201 point uniform meshesare used and excellentagreementswith the analytical
solution are obtained. Further, tile numerical solutions obtained by solving the linearized equations

are compared with those obtained by solving the nonlinear equations for both problems.

A parallel version of the 3D CE/SE Euler solver for tile nonlinear equations is developed and employed

to obtain numerical solutions of problem 3 in Category 3. The acoustic field generated by the interaction

of a gust with a 3D cascade of swept fiat plates is simulated at different sweep angles for the cascade.

Numerical solutions for sweep angles of 0 °, 5 °, 10 °, and 15 ° are presented.

The vectorized 2D CE/SE Euler solver for the nonlinear equations is employed to solve problems 2

and 3 in Category 3 in the Second CAA Workshop. Tile acoustic field generated by the interaction of

a vortical gust with a cascade of fiat-plate airfoils is simulated. For problem 2, numerical solutions at

both low and high frequency cases are presented. For problem 3 which has a sliding grid downstream

of the cascade, only the low frequency case is solved.

The CE/SE Euler solvers are explicit time-marching schemes. They are second-order accurate in both

space and time. The scheme has a 3-point stencil for 1D, 4-point stencil for 2D, and a 5-point stencil

for 3D. The 1D and nmltiple dimensional solvers share identical features. In the Euler solver, three

parameters a,/3, and e are used to specify tile numerical dissipation. When a =/3 = e = 0, the Euler

solver has no numerical dissipation.

2. Category 1: Problems 1 and 2

For the two problems in Category 1, the CE/SE quasi 1D Euler solver described in [13] for the nonlinear

equations is used to compute the steady-state solution of the nozzle flowfield. For the simulation of

acoustic wave propagation, both the linear and nonlinear quasi 1D Euler solvers are used under the
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same computational conditions. The two solvers are constructed for tile linear and nonlinear quasi 1D

Euler equations in conservative form. They have the identical formulation except the time-marching

variables are different. Both the linear and nonlinear numerical solutions are presented. Numerical

solutions of the acoustic wave plotted in all figures are non-dimensionalized by its amplitude :. In the

computations using a uniform mesh, the constant numerical dissipation model with e = 0.2, c_ = 0, and

fl = 1 is used for both problems.

Prob. 1: Propagation of Sound Waves through a Transonic Nozzle

The first problem addresses the propagation of sound waves in a transonic nozzle, in which tile local

Mach number of the flow near the throat may be close to sonic. The computation of sound propagating

through such regions presents a challenging problem. The area of the nozzle is

/ 0.536572-O.198086exp[ r ,ix,'_(-(ln2)(°-_)2)' x>0 (1)
1.0- 0.661514exp t-tln2jkb--_j2}, x < 0.k

In the uniform region downstream of the throat, the diameter of the nozzle is D and the main flow is

uniform with Mach number, M¢_, of 0.4, speed of sound, a_, and static density, p_. Flow variables are

non-dimensionalized by using ao_ as the velocity scale, D as the length scale, D/a_ as the time scale,

poc as the density scale, and p_a_ as the pressure scale. Thus the mean flow in the uniform region

downstream of the throat is

p=l, v=0.4, p=1/1.4. (2)

The acoustic wave, with angular frequency w = 0.67r, is described as

p'=p'=:cos W(l_Mc¢ +t) , v'=-:cos W(l_-_ll_ +t) (3)

where : = 10 -4. It is generated downstream and propagates upstream through the narrow passage of

the nozzle throat. The computational domain is -10 _< x _< 10. It is recommended that computations

use no more than 400 mesh intervals.

First, the steady-state solution of the nozzle flow is computed. The initial conditions are specified using

flow properties in the uniform downstream region. The back pressure (Pback = 1/1.4) is specified at the

outlet, and the total pressure and total density are specified at the inlet. The other needed information

at both the inlet and outlet are obtained using extrapolation from their neighboring mesh points. The

steady-state solution obtained using a 401 point uniform mesh with CFL = 0.847 is shown in Fig. 1

and compared with the exact solution represented by solid lines. It can be seen that flow properties

are uniform in most region of the nozzle, but change dramatically near the nozzle throat.

After the steady-state nozzle flowfield is computed, the acoustic wave propagation can be simulated

using the same nonlinear Euler solver. The initial conditions are specified using the steady-state

solution of nozzle ttowfield. The exit boundary condition is different from that used for computing the

steady-state solution. At the outlet, the time-marching variables are specified as

(Ul)2=p+p', (u2)2=(p+p')(v+v') (4)
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u n p +pl 1 v,)2"
( 3)j -- 7 - 1 + -2(P + p')(v + (5)

At the inlet, the non-reflecting boundary condition is enforced by setting

(u,,_)y+l/2- - (Um)j_+l/2, ('Um_)_ +'/2 =0, m---- 1,2,3. (6)

A detailed analysis of this nom'eflecting boundary condition for 1D case is given in [6]. It is based on

flux extrapolation.

Different mesh sizes are tested in the current computation. First, uniform meshes with Ax = 0.05 and

0.025 in the computational domain of -10 < x _< 10 are used. Numerical solutions of the acoustic

pressure at t = 20T are shown in Figs. 2 and 3, respectively and compared with the analytical solution.

It can be seen that the peak values near the throat and the wave pattern upstream of the throat can

not be captured correctly using 401 uniform grid points, while a greatly improved result is produced

using an 801 point uniform mesh. The amplitude of the acoustic wave upstream of the throat however

is lower than that. given by the analytical solution. Further, the corresponding solutions obtained

with Ax = 0.0125 in the computational domain of -5 _< x _< 5 are shown in Fig. 4. Although the

peak values are still not the same as the analytical solution, the profiles of the p_ both upstream and

downstream of the throat agree very well with the analytical solution.

In order to reduce the number of grid points, a 401 point nonuniform mesh that clusters near the throat

is used. The ratio of the largest to smallest mesh interval is around 10 with AX_in = 0.0047. The

variable ¢] and fl_ described in Eq. (52) in [13], and constant a = 0 are used in the computation. The

acoustic pressure obtained at t = 20T with CFL = 0.9084 is shown in Fig. 5 which is nearly similar to

that obtained using an 801 point uniform mesh in the domain of -10 _< x _< 10. Further improvement

can be made in the fnture by reducing the numerical dissipation or using a more stretched mesh. Its

convergence to the time-periodic solution is shown in Fig. 6. Under the same computational conditions

and mesh, the corresponding solution obtained using e = 10 -a is plotted in Fig. 7 showing skewness

upstream of the throat. It can be concluded that the amplitude of the acoustic wave should be small

enough to avoid the nonlinearity when a nonlinear scheme is used to obtain a solution in the linear

regime. In the present computation using the nonlinear solver, the steady-state solution is converged

to 10 -7, and e = 10 -4 is used.

For the linear solver, the amplitude of the acoustic wave is set to 1, and the steady-state solution

obtained by the nonlinear solver is used in the computation. The same three uniform meshes used

for the nonlinear solver described above are tested with the linear solver. The linear solutions are

very similar to the nonlinear solutions. The solution obtained using an 801 point uniform mesh in the

domain of -10 _< x < 10 is shown in Fig. 8 as an example. The nonlinear solution is slightly better

than the linear solution under the same computational conditions.

Prob. 2: Shock-Sound Interaction

In this problem, the same nozzle geometry from the previous problem is used, but here there is a

supersonic shock downstream of the throat. All quantities are non-dimensionalized using the upstream

values. The Math number at the inlet, M_, is 0.2006533 and the back pressure, Pba_k, is 0.6071752.

Following the same steps described in the first problem, the steady-state nozzle flowfield is computed
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and used as tile initial condition for tile sound-shock interaction sinmlation. The acoustic wave is

described as

p' = p' = v' = _ sin co( 1 + JlI_ + t (7)

where c and co have the same values as that in the first problem. At the inlet, the time-marching

variables are specified using Eqs. (4) and (5), while at the outlet, for m = 1, 2, g,

( m)J = = o (s)

are used as tile non-reflecting boundary conditions.

Uniform meshes with 101 and 201 grid points arc used for this problem. The steady-state solution

obtained using a 101 point uniform mesh is shown in Fig. 9 and compared with the analytical solution

represented by solid lines. Numerical solutions of the acoustic wave obtained using 101 and 201 point

uniform meshes are shown in Fig. 10 in which only the analytical solution of p' is plotted for a

comparison. The analytical solutions of the density and velocity are not available. It can be seen that

the solution obtained on a 101 point uniform mesh is very close to the analytical solution and that

obtained on a 201 point uniform mesh appears to graphically match the analytical solution. A very solid

convergence to the time-periodic solution is demonstrated in Fig. 11 for the coarse mesh. Further, the

acoustic pressure at the outlet in one tilne period is plotted in Fig. 12 along with the analytical solution

showing an excellent agreement. The linear solution is almost identical to the nonlinear solution which

is shown in Fig. 13 for a 101 point uniform mesh.

3. Category 3: Problem 3

This problem concerns the effect of the sweep angle of the flat plate on the acoustic field generated by

the interaction of a convected gust with a 3D cascade of flat plates. Consider a rectilinear cascade of

swept flat plates. The mean flow is assumed to be uniform and aligned with the x-axis. The mean flow

variables are inflow velocity, U_, static density, p_, and static pressure, p_. The inflow Maeh number,

Moo, is 0.5. The chord length of each plate is c, and the gap-to-chord ratio, s/c, is 1.0. Flow variables

are non-dimensionalized by using aoo(the speed of sound) as the velocity scale, c as the length scale,

c/aoo as the time scale, p_ as the density scale, and paca_ as the pressure scale. Thus the mean flow

is described in dimensionless variables as

p=l, u=0.5, v=0, w=0, p=1.0/1.4. (9)

The incident gust carried by the mean flow has x, y, and z velocity components given by

u'= -(vak_/kx) cos(kxx + k_y + k_z-cot)

and

respectively, where va =

(10)

v'= vacos(k_x + kyy + kzz-cot), w' = 0 (11)

10 -4 and k_ = 5.5, k_ = 7r, k_ = 0, and co = 0.5k_, respectively. The

corresponding period of the gust wave is T = 2r@o. It is assumed that p' = p' = 0 which enable

the gust to satisfy the linearized Euler equations. The gust is propagating from the inlet along the
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meanflow and will interact with the swept flat plates to generateacousticwaves.Tile whole flow field
including the acoustics,gust wave,andmeanflow is simulatedby solving the nonlinearEuler equations.
At t = 0, tile time-marching variables, (Ur_)_, in the whole domain are defined using the mean flow

variables, and (U,nx)_ = (Umy)_ = 0 everywhere.

3.1. Boundary Conditions

With tile gust superposed on tile mean flow, the time-marching variables at the inlet(x = -6) are

described as:

(_,)_ = p, (_)_ = p(_+ ¢), (_)y = p(_+ ¢), (_)y = p(v + _'),

(_ - P + _[(_ + _')_+ (v+ v')_+ (w+ _')_]°Ja 7- 1

The inlet values of (um_)y, (u_v)} _, and (u,,,z)_ are obtained by taking derivatives of (urn)}'.
outlet(. = 4), the non-reflecting boundary condition is enforced by setting

(12)

(13)

At the

= (. "_n+l ," ",n+l (. "_n+l(um)_+_ (um)_+1/2, ,"m_5 = _u_)j = ,"m_5 =0, m= 1,2,3,4,5. (14)

The periodic boundary condition is imposed on planes y = -0.5 and y = 1.5, and the reflecting

boundary conditions are used on the flat plate surfaces and the top and bottom walls in the z-coordinate

direction. No grid points are located at the flat plate leading and trailing edges to avoid a singular

point.

3.2 Numerical Results

The flat-plate cascade sweep angle is varied to determine its effect on the acoustic field generated by the

interaction of a eonvected gust with the flat plates. Four sweep angles are studied here. A structured

200x20x26 hexahedral grid is used in the computational domain -6 _< x _< 4, -0.5 _< y _< 1.5, and

0 _< z_< 2.6. The parallel version of the 3D Eulersolver is used with c_ = 0, e = 0.5, and fl = 1.

A detailed description of the 3D Euler solver is given in [4]. The parallelization of the code will be

reported in another paper.

The numerical solution of the acoustic pressure non-dimensionalized by the amplitude of the gust wave

is plotted in all figures. The pressure distribution at some constant lines and pressure contours on x-y,

x-z and y-z planes are shown for sweep angles of 0°, 5 °, 10 °, and 15 ° in Figs. 14 17, respectively. It

can be seen that the acoustic field does not vary along the z- direction for 0 ° sweep angle. As the sweep

angle increases, the acoustic field yields more obvious variations along the z- coordinate direction. The

profile of the acoustic pressure at both the inlet, and outlet planes changes gradually for various sweep

angles. The RMS pressure at the point (-5, 0, 1.3) near the inlet is plotted in Fig. 18 for different

sweep angles showing a decreasing trend with the increased sweep angle in the range of [0°, 15°].

For the current parallelized code using an Origin2000 with 31 CPUs, it takes around 2 hours wall clock

time(56 hours CPU time) to run until t = 20T for 624000 cells with a required memory of 763MB.
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4. Category 3: Problems 2 and 3(the Second CAA Workshop)

Problem 2 in Category 3 from tile Second CAA Workshop concerns the acoustic field generated by

the interaction of a 2D gust with a cascade of fiat plates. The convection of a gust and acoustic

wave are simulated simultaneously. Problem 3 is the same as problem 2 except a sliding grid is added

downstream of the plates. This tests the ability of a numerical scheme to model the acoustic wave and

the gust across a sliding interface typical of those used in rotor stator interaction problems.

Consider tile cascade of fiat-plate airfoils shown in Fig. 19. The mean axial flow is uniform with

prescribed inflow velocity, U_, and static density, p_. The inflow Math number, 5I_, is 0.5. The

length of each plate is c, and the gap-to-chord ratio, g/c, is 1.0. Flow variables are non-dimensionalized

by using U_ as the velocity scale, c as tile length scale, c/U_ as the time scale, p_ as the density scale,

and p_U_ as tile pressure scale. Thus the mean flow is described in dimensionless variables as

p= 1, u=l, v=0, p=4.0/1.4. (15)

The vortical gust carried by the mean flow has x and y velocity components given by

,_'= -(v_k,,/kx)cos(kxX+ k_, - _ot) (16)

and

v' = va cos(kxZ + k_y - _t) (17)

respectively, where kx = k_ = w = 5rr/2 and 13rr/2 respectively for the two cases studied here. The

corresponding periods, T = 2rr/a_, of the gust wave are 4/5 and 4/13. It is assumed that p' = p' = 0

which enables the gust to satisfy the linearized Euler equations. The gust is propagating from the inlet

along the mean flow direction and will interact with airfoils to generate acoustic waves. The entire flow

field is simulated using tile full Euler equations. To avoid the nonlinear effect, va = 10 -_ is used in the

current computation.

4.1. Boundary and Initial Conditions

With the gust superposed on the mean flow, the time-marching variables at the inlet are described as:

rt n '/t rt(ltl)j, k = I9, (l/2)j, k = p(u + U'), ( a)j,k p(v + V'), (18)

(_),,_ = _- 1 + _[(u+ u')_+ (_+ v')_]. 09)

n n U nThe inlet values of (umx)j,k and (u,,_v)j, k are obtained by taking derivatives of ( m)j,k. The non-reflecting

boundary condition is enforced 1)y setting

(_ _n+l / \n+l/2 [_ "_n+l / \n+l t \n+l/2
um)j,k tu_)j,k _mxjj,k = 0, = 1, 2, 3, 4 (20): , _Urny)j,k _Umy)j,k , m :

at the outlet. This non-reflecting boundary condition allows tile flux to "stream" out of the spatial

domain smoothly. However, the numerical solutions so obtained at the inlet and outlet are not the
-- 1 fto+T_2dtcorrect physical solutions. To accurately compute the required sound intensity, p2 = _ Jr0 t' , at

NASA/CP--2000-209790 139



the inlet (x = -2) and the outlet (x = 3), a larger domain is used. The actual computational domain

is -2 - xb _< x _< 3 + x_, where x_ = 4/5 and 3/14, respectively for the two cases.

Periodic boundary conditions are imposed on the upper and lower boundaries, and the reflecting bound-

ary conditions described in [2] are used on the airfoil surfaces. The computational mesh shown in Fig.

19 is laid out in such a way that grid points are purposely not located at the airfoil trailing edges to

avoid a singular point. In Fig. 19, there are two sets of grid points, presented as solid circles and open

circles. They are used to show the difference in spatial location of grid points a half time step apart.

At t = 0, the time-marching variables (u,n)j_,k, (umx)j_,k, and (umv)j_,k in the entire domain are defined

in the same way as that for imposing the non-reflecting BCs at the inlet.

4.2. Numerical Results and Discussions

In the following discussion, the number of grid points mentioned pertains to the region -2 < x < 3. In

all plots shown here, p_ is non-dimensionalized by dividing it by vc,. The details of the 2D Euler solver

can be found in [2].

Numerical computations were performed using 301x121 uniform grid points for the low frequency case.

This results in a grid size of Ax = 1/60, Ay = 1/30 with 24 grid points per wavelength in the x-

direction for the shortest wave. In the following numerical tests, e = 0.2, _ = 1, and c_ = 0 are used.

To show the performance of the non-reflecting BCs at the inlet and outlet, the time history of the

acoustic pressure at point (-2, Ay/2) obtained using two different computational domains with the

same CFL (= 0.8) number is shown in Fig. 20. The corresponding data at point (3, Ay/2) are plotted

in Fig. 21. Figures. 20 and 21 reveal that the profiles of the converged solutions obtained using different

computational domains are very similar at both points. The size of the computational domain has a

small effect on the numerical solution. The pressure difference on the flat plate is plotted in Fig. 22(a)

and compared with the exact solution showing good agreement. The sound intensity, p2, at the inlet

and outlet are plotted with the analytical solution in Fig. 22(b). Some discrepancies are observed.

Several other numerical results obtained using high-order accurate DRP schemes have a similar or

bigger discrepancy with the analytical solution[14]. Contours of the scattered pressure at t = 200T are

plotted in Fig. 23.

For the high frequency case, the CE/SE solutions of the pressure difference on the airfoil surface

obtained using 651x261 uniform grid points are plotted along with the analytical solutions in Fig.

24(a). The radiated sound intensity at the inlet and outlet are compared with the analytical solutions

and shown in Fig. 24(b). Contours of the scattered pressure at t = 47T are plotted in Fig. 24(c).

In Fig. 25, the corresponding data are plotted for the low frequency case with a downstream sliding

grid. The grid speed is 5, and the moving distance is one Ay per At. No interpolation is needed at the

sliding interface, since the grid points are aligned at every time step. The computations use c = 0.3,

= 1, and (t = 0 with CFL= 0.8 and a 401x241 uniform grid in the domain of -2.8 < x < 3.8. The

computed pressure distribution at y = 0.5, 1.5, 2.5, 3.5 and pressure difference across the four flat plates

at t = 38T are shown in Fig. 26 and compared with those obtained with a stationary downstream grid

under the same computational conditions. It can be seen that the two solutions are identical.
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The present vectorized 2D Euler code was run on a Cray C90. For the low frequency case with a

301x121 uniform grid and CFL= 0.8, tile CPU time was 28 seconds for one period, and a converged

solution at t = 50T took 23 minutes and 39 seconds of CPU time and 2MW memory.

5. Conclusions

In Category 1, a satisfactory numerical solution is obtained using a nonuniform mesh with 401 grid

points for problem 1. An excellent agreement between the numerical results and the analytical solution

was obtained on a 101 point uniform mesh for problem 2. The non-reflecting boundary condition

works extremely well for 1D problems. In Category 3, it is demonstrated that the CE/SE method is

capable of solving 3D aeroaeoustic problems in an efficient way. The results show a decreased RMS

pressure with the increasing sweep angle in the range of [0 °, 15°]. The Category 3 from the Second

CAA Workshop compares well with the analytical solution and the accuracy is comparable to those of

several high-order DRP schemes. The simple non-reflecting boundary condition works well for multi-

dimensional problems. In summary, it is demonstrated that the CE/SE method is capable of solving

aeroacoustic problems with/without shock waves in a simple and efficient way. No special techniques

are used for shock waves, and acoustics waves and shock waves can be captured concurrently within

the computational domain.
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ROTOR NOISE RADIATION

USING A FINITE ELEMENT METHOD

PATRICE MALBI_QUI, CHRISTOPHE PEYRET AND GEORGES I;LIAS

ONERA, CFD AND AEROACOUSTICS DEPARTEMENT
BP 72, 92320 CHATILLON, FRANCE

INTRODUCTION

In Computational Aeroa.coustics (CAA), most of the numerical techniques solve the Euler equa-

tions using a.n eulerian representation of the aerodynamic field. Ill addition, the efficient Dispersion-

Relation-Preserving (DRP) finite difference scheme proposed by Tam [1] is usually applied for spatial

discretization and the Runge-Kutta method is used for the time integration of the linearized Euler

equation. In this paper, an alternative numerical technique is proposed. The fluid variables (i.e., pres-

sure, velocity and density) are first expressed with a mixed eulerian-lagrangian representation, using

the displacement vector. Such a. representation leads to a. second order propagation equation proposed

by Galbrun [2]. This wave equation is established without any restriction on the flow, so that it can

handle rotational flows. Moreover, it derives from a Lagrangian that provides exact flux energy as well

as a straightforward finite element implementation. A finite element method (FEM) iS under develop-

ment at ONERA to solve the Galbrun equation. This paper presents the application of the FEM to the

Benchmark Problem-Category 2 on ducted rotor noise, proposed in the third CAA Workshop 1. The

theoretical hackground of the Galbrun equation including the la.grangian formulation, acoustical energy

and preliminary results of duct propagation are summarized in the first section. The modelization of
the FEM for the Benchmark Problem on ducted rotor is described in the second Section. The third

Section illustrates the results.

I. THEORETICAL BACKGROUND

This section briefly presents the theoretical formulation of lhe Galbrun equation. It. first recalls

the definition of the displa.cement vector and then gives the expression of the Galbrun equation, its

lagrangian density and the acoustical intensity (energy flux density) expressed with the displacement.

This section is to outline the formulation, but does not aim at providing demonstrations of the algebraic

formula. More details can be found in [2-6].

1.1. Acoustic displacement. Consider a.n infinitesimal fluid element inside a flow: between dates to

and t_, the element follows the path a:(t) resulting from the flow (solid line in Fig. 1). Now, reconsider

the fluid element, inside the flow at same dates and suppose the presence of a disturbance: the element

follows the path y(t) resulting fi'om the flow and the displacement caused by the disturbance (dashed

line in Fig. 1). The displacement vector is defined as:

t) = v(t) - ,,,(t).

Date:

1Third computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA Glenn Research Center and
Ohio Aerospace Instilul.e, Brook Park/Cleveland, Ohio, November 8-10, 1999
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FIGURE 1. Displacement vector, x(t) is solid line and y(t) is dashed line.

The so-called mixed representation of acoustics, developed by Poire'e [3] in 1985, uses the displacement

vector to separate the acoustic perturbation inside the aerodynamic airflow.

1.2. Galbrun equation. Usually', the flow (p0, po, Vo) and the perturbation (p, p, v) are described with

Euler variables. In the case of a small adiabatic perturbation (p << po, p << p0 and v << ao). Poirde

shows that the usual eulerian variables, namely the acoustic pressure, density and velocity are related

to the displacement:

t, = -po,o_v. _ - _. v p0(1) p =-poV._-{.V Po ,
dt_

v = 77-_'Vv0

where d/d*= cO/Ot + vo • V is the total time derivative referred to the unperturbed flow. In practice,

these relations show that when computing tile displacement field with a FEM, it. is possible to return to

the standard eulerian pressure, velocity or density. Starting from the linearized Euler equations, using

the lagrangian displacement and assuming acoustic propagation is isentropric (i.e ds = 0 in lagrangian

system), the formulation of mass, momentum and energy continuity leads to the Galbrun equation:

f-{ - V (Poao_ V. _) - V (_. Vpo) + (_. V) Vpo = O.
(2) G(I?,) = po dt 2

The Galbrun equation is a wave equation, based on the single displacement variable, established with-

out any restriction on the flow. As mentioned by Poirde [7], using both the relations (1) and the

Galbrun equation (2), few works attempted [8,9] to establish a wave equation based on single variable

(p, p, v), but the authors failed because algebraic expressions are too complex. Obviously, assuming an

homogeneous medium, the Hehnholtz equation for harmonic solution is directly retrieved.

1.3. Lagrangian formulation. Recently, a lagrangian density of the Galbrun equation was found

by Elias [5]. Instead of expressing the lagrangian perturbation of the total energy of the flow (kinetic

plus potential energy'), an heuristic approach is proposed to formulate the lagrangian density. The

lagrangian expression reads:

1 (d_)2 1 )2 l t_(3) L(_) = _ po\ d_ - _ polo'(V._ - (_. V _,o)V. _ - _ [VV po]_ •

Lagrangians satisfy tile least action principle [10]. It states the integration in time and on the finite

volume l,; (whose envelope is &) of L(_) is e×tremum:

oo

/ :0
--00
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For the Lagrangian expression (3), it turns to:

oo

--oo

where:

f/ o . ') =0,

(6) b(() = pn + po(vo.n) d__
dt

In pratice (5) associated with (6) is solved using a Finite Elemenl Method (FEM). As a standard

numerical technique, the FEM implementation is not described in this paper. The FEN leads to a large

complex sparse linear system to solve the displacement at tile mesh nodes.

1.4. Acoustic Rower and intensity. Conservative expressions of acoustic power and intensity were

also derived by Elias [5] fi'om the Lagrangian density (:3) using properties of Lagrangians [10]. These

expressions read:

pod, d,d, 1 [ ](7) w= 5- dt dt poz. (Vo.V_)+ 2poao_ p_-(_.Vpo) _ ,

(s)

with:

(9)

i = po \ Ot " dr] vo + p Ot "

Ow
--+V.i =0.
Ot

The same expressions were also establishedby Godin [4] using the reciprocity, principle in non uniform flow.

In contrast with usual formulations based on eulerian variables, these expressions satisfy the energy

conservation law (9) without any additional source terms. Although the intensity in equation (8) can

not be expressed with the acoustic velocity, its accuracy has been proved for basic duct problems

including high subsonic shear flows (Mach number up to 0.9), in the low fl'equency range.

1.5. Preliminary Results. In the case of acoustic propagation in a circular lined duct in the presence

of a shear flow, the Galbrun solution is computed with the FEM and compared to the exact solution

obtained by the resolution of the Lilley equation. Both real parts of the pressure field solutions are

plotted in figure 2 and are found in good agreement. The in-duct flow is similar to the one used by

Eversman for duct acoustics studies [11]. This result, illustrates the capability of the Galbrun equation

to handle rotational flows. More details about the validation can be found in [12].

2. FEM MODELIZATION OF THE BENCHMARK PROBLEM ON DUCTED ROTOR

The Benchmark problem is detailed in the Proceedings of the third CAA workshop, so only the

main variables are presented. The governing equations are the linearized Euler equations. The duct

geometry is axisymetric with a constant radius b and rigid walls. The duct length fi'om the rotor plane

to the duct exit is 8b. The distribution of rotating body force on the rotor plane is described with

the ruth-order Bessel function J,,_(Am,Nr) , where A,,_,N is the N rh root of J',,, and N the radial mode

number. A harmonic time dependence exp(-j,_f't/) is assmned, where fl is the rotational speed. No
mean flow is considered in the fluid.
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FIGURE 2. Re(p2,2(r,z)) at frequency 1350 Hz computed with Lilley equation on the

upper plot and Galbrun equation on the lower plot. M0 = +0.5, boundary layer thickness

of the flow: 0.15 m, reduced impedance of the liner: 1 - j.

2.1. Mesh. For this FEM application, the formulation (5) is transformed into the frequency domain.

The cylindrical coordinates (r, 0, z), with a exp(-jm0) dependence of the variables are also used to

reduce the three-dimensional problean to a two-dimensional problem. Figure 3 shows the mesh of the

fluid used for the computations. The fluid is meshed with non-structured linear elements. To obtain

an accurate solution, the size of the elements is of the order of A/6. In practice, for the frequencies

to be considered, ahout 2:3 145 elements are required. Both the in-duct fluid and the fluid in free-

field are meshed with conventional finite elements. The coupling between the FEM, with conventional

elements in the duct and close to the exit, and the wave envelope technique [13] in the far-field is under

development. The duct surface and the rotor plane are also meshed with linear elements (i.e., line

segments for the two-dimensional modelization).

2.2. Boundary conditions. At the duct entrance, z = 0, the acoustic pressure described by the

m th order Bessel function is considered as the acoustical source. The corresponding values of the

displacement is obtained using equations (1) in the absence of mean flow and the Iinearized Euler

equations for the mass conservation:

w

poa_ k 2

(Op/O )
_j m_P

-jk_p

where k_ is the axial waa.e number. On the rigid walls of the duct, the normal displacement is fixed to

zero. Finally, on the boundary of the exterior domain, a non-reflective condition is needed to properly

simulate the Somnlerfeld radiation condition (i.e., to avoid numerical reflections). Using the Euler

representation, an anechoic termination based on the wave impedance (the pressure over the normal

acoustic velocity) can be used for this purpose. A similar condition is applied with the displacement
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variable using equations (1) together with the linearized Euler equations:

b = jpo rout
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3. RESULTS

The two rotational speeds f_ = 0.85 (subsonic tip speed) and f_ = 1.15 (supersonic tip speed) are

proposed in the Benchmark Problem, with an 8-blade rotor (_n = 8). Note that f_ is a nondimensional

variable with respect to the ambient sound speed and the duct radius. Using the standard modal

analysis of the duct acouslics, the in-duct pressure is:

p(r,O,z,t) = am(A,,_,Nr)exp[--j(,nf_l- ,nO + kzZ)] ,

and the dispersion relation is:

where k is the total wave number (k = 'mf_), kr is the transverse wave number and/c_ is the axial wave

number. In case of rigid walls, the transverse wave number is equal to A_,N. For the two rotational

speed f/= 0.85 and 1.15, /,:_ is purely imaginary and equals j6.84 and j2.9, respectively. The mode

(nz = 8, N = 1) at these frequencies is evanescent. The attenuation, in decibels, of the sound pressure

level along the duct is 20/log m Ira(kay. At the speed f_ = 0.85 and 1.15, the attenuation is 60 dB

and 25 dB per radius, respectively'. Many computations have been performed using several meshes to

propagate the induct pressure field. However, at present time, the FEM does not provide suital)le results

for these configurations, including strongly cut-off fl'equencies. Keeping the same duct geometry and

the same mode number (m = 8, N = 1), additional FEM computations hawe been performed for a. cut-

on frequency, f_ = 1.7, corresponding t.o k_ = 9.87. The real part of the l)ressure fie]d and its amplitude

are plotted in 4. As expected, for a propagating spinning mode, at a fixed radius, the amplitude is
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constant in the duct. Moreover,the radiated field is characterizedby a main lobe around the angular
location q5 = 45 degrees. This result is in agreement with the Taylor and Soft'in prediction [14], where

the angular location is given by sin _5 = kr/k.
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FIGURE 4. Supersonic tip speed f_ = 1.70, ducted rotor
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4. CONCLUSION

The FEM based on the Galbrun equation is an attractive technique to solve the linearized Euler

equations. In contrast with other wave propagation equations, this equation is established without any

restriction on the flow. This is of interest to solve many CAA problems. In this paper, the FEM has been

applied to the ducted rotor noise configuration, proposed in the Third Computational Aeroacaoustics

Workshop on Benchmark Problems. At present time, the FEM fails to predict the far-field pressure for

the strongly cut-off frequencies. On the other hand, keeping the mode number and the duct geometry,

the FEM provides results in good agreement with the modal approach, for cut-on frequencies.
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Introduction

Numerical results for problems in Category 1, 2 and 5 are presented. Due to high resolution requirements

of these problems, high-order finite difference schemes are used. Both the spatial and temporal discretizations

have been optimized for obtaining low dissipation and low dispersion errors in computation. In addition,

Perfectly Matched Layers (PML) are used at all non-reflecting boundaries encountered in Categories 2 and 3.

The schemes used in the present work are modified from those for the benchmark problems in the previous

two CAA workshops [1,2]. Further details of the algorithms are referred to [1 ] and [2].

Propagation of sound waves through transonic nozzle

In this problem, an acoustic wave is introduced at the nozzle exit region and the sound wave that travels

upstream through the transonic nozzle is to be calculated. The amplitude of the incoming sound wave is

10 -5 , which is very small compared to the mean values of the flow. The nozzle flow is modeled by the

one-dimensional Euler equations with variable nozzle area. In the present work, the acoustic wave will be

computed directly by solving the non-linear governing equations, rather than solving the linearized equations.

This makes it harder to compute the acoustic waves. The challenge is whether the small amplitude wave can

still be captured in the computation.

The governing equations are

Op Op Ou pu OA
O----[+ u-_x + P-_x + A Ox -0 (1)

Ou Ou 10p
0--[+ u-_x + p Oz - 0 (2)

Op Op Ou 7pu OA
0--7+ u-_z + 7P-_z + ,40z - 0 (3)

where p is the density, u is the velocity and p is the pressure. A in (1)-(3) is the nozzle area and is a function

of x given by

A(x) = { 0.536572- 0"19808e-0"2)(_)_'_ 2 x > 01.0- 0.661514e -0"2)(_) , x < 0
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Thecomputationaldomainis -10 _<x _< 10. An upstream propagating wave with very small amplitude

is introduced at the nozzle exit region in the form of

u = 10 -'_ - cos co(1 _g----_ + t) (4)

P acoustic 1

When propagating upstream, part of the wave will be reflected at the nozzle throat and the other part is

transmitted which travels to the left and leaves the inlet region of the nozzle. The mean values at the exit

region are given,

Pexit = 1.0, (texit = 0.4, "fi¢xit = 1/"y

To solve (1)-(3), boundary conditions are needed at the nozzle inlet and exit. At the inlet, there is a only

left traveling wave and at the exit, there are left traveling incoming wave (given in (4)) and its reflection by

the nozzle throat, a right traveling wave. The necessary numerical boundary conditions can be obtained in

several ways. One approach is to rewrite the non-linear equations (1)-(3) in characteristics form and add the

incoming wave as source terms [3, 4, 5]. In the present work, we derived the boundary equations based on the

characteristics of the linearized equations of (!)-(3) since the wave amplitude is very small. We note that the

linearization is only applied at the exit and inlet regions where the nozzle area is constant.

let

p= fi+ J

p=_+pl

where an overbar indicates the time-independent mean value. Since now A = constant, we linearize equa-

tions (1)-(3) and write in the matrix form,

O 1 O u' = 0

u' + 0 _ _ _ P'p' 0 7p _

The coefficient matrix can be easily diagonalized,

(5)

i

i
i

= 0 (6) I
I
!
i

(p) )(0 u' + 0 'f '_ e 0 0

Ot p, 0 1 1 0 0 ft - 8

1 0 _P 0
0 _ u'

i -57x p,0 -P-P- -
2 2

where _ = _ is the speed of sound and _, fi, + a, u - g are the eigenvalues.

Boundary conditions can now be formulated using (6). At the inlet, let

P = Pinlet q- pl

!
_t = _inlet "-F 11,

P =fiinlet +P!
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where p', u', p' are the out-going (traveling to the left) waves. The equations for p', u', p' are found by keeping

only the negative eigenvalue in the characteristics form (6), namely _ - g. It follows that

OP t ('_inlet -- ainlet)Pinlet O_tt ?1inlet -- ainlet OP t
+ = 0 (7)

Ot 2gti,act Ox 2gz_nta Ox

OU t _linlet -- _linlet 0 ttt _inlet -- ainlet OP t
-- + - -- = 0 (8)
Ot 2 Ox 2])intet_tinlet Ox

OP t (_inlet - Clinlet)Pinletainlet out

Ot 2 Ox

Similarly, at the outlet, we decompose the variables as

Uinlet -- _linlet OP I
+ - 0 (9)

2 Oz

P= Pexit + Pa + P'

_t = _exit nt- _a @ _tt

P = P_it + P_ + P'

where p,_, ua and Pa are the incoming wave as specified in (4) and p', u' and p' represent the right traveling

out-going wave (reflection by the nozzle throat). By only keeping positive eigenvalues in the characteristics

equations (6), namely _ and _ + _, we get following equations,

Off t flexitOP ' (_ezit q- (lexit)Pezit Oft uexit -- _lezit Op'
0-7+ -aT.+ - =

0 (!o)
2_exit Ox -22aexit Ox

OUt _exit q- gtexit OU' _texit -k gZexit Op'
--+ + =0 (11)
Ot 2 Ox 2_c_fz_it Ox

0-7 + 2 0--7 + 2 Ox = 0 (12)

In the present calculation, Euler equations (!)-(3) are applied in -8 < x < 8. The inlet and exit boundary

conditions, (7)-(9) and (10)-(12), are applied in -10 < x _< -8 and 8 _< x < 10 respectively, as shown in

Figure 1. The partitioning for these domains is somewhat arbitrary, so long as the nozzle areas are constant

inside the boundary zones.

The spatial discretizations is carries out using a non-uniform grid with Ax_i,_ = 0.0125 and Axma:_ = 0.1

and a total of 381 grid points. The central differencing scheme used is the same as that of [6]. The time

integration is carried out by the Low Dissipation and Low-Dispersion Runge-Kutta scheme (LDDRK56 [7])

with a time step At = 0.0076.

The initial values of the density, velocity and pressure are formed by a simple linear distribution, as shown

in Figure 2 in dashed lines. As time increases, the solution adjusts itself for the given nozzle shape and mean

values at the inlet and exit. The solid line in Figure 2 show the the density, velocity and pressure distribution at

t = 200. Figure 3 shows a time sequence of the pressure distribution.This is to demonstrate that the transient

responses propagate out of the computational domain very effectively. Figure 4 shows the pressure as a
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function of time at x=-8, 0 and 8 respectively. Clearly, time periodic solution is reached after about t = 100.

In the present calculation, the acoustic wave is computed directly from the non-linear equations (1)-(3) and

together w ith the me an flow. It shows that despite the sm all amplitude of the wave, the sche me can still captu re

the wave. After subtracting the mean value, the acoustic wave is found and the wave envelope is shown in

Figure 5.

Shock-Sound Interaction

In this problem, the pressure at the exit is specified such that a shock is formed inside the nozzle. The

mean velocity at the inlet is now given as _i,,m = 0.2006533 and the pressure at the exit is,

/Sc_a = 0.6071752

The governing equations are the same as that in the previous section, namely (1)-(3). An incoming wave

is given in the inlet in the form of

u

p acoustic

= 10 -5 [1 [1 sin w(1
1

x+ M t

Numerically, this problem is solved in a similar manner as in the previous one. At the inlet region, we let

[ inlet?t : Uinle t

P Pinlet

+ Ua -t- tt/

Pa P'

and p', u' and p' are solved using (7)-(9). At the exit region, we let

I_t = _-texit "4- _t

P P_xit P'

and p', u' and p' are solved using (10)-(12).

Time history of pressure variation in x is shown in Figure 6 which exhibits in detail the formation of the

shock. The final profiles of density, velocity and pressure are given Figure 7. Clearly, there are oscillations

near the shock. Since a central difference scheme is used in the present calculation, the oscillations near the

shock are not unexpected. Artificial dissipation terms have been introduced in the discretized equations. The

magnitude of the artificial viscosity used at each grid point is set to be proportional to the maximum variation

of the solution near the point. Again, non-uniform grids are used with AXmin = 0.003125 and AXrnaz = 0.1

with a total of 617 points. As a results, the oscillations near the shock are limited to a very narrow region as

shown in Figure 7. =

The emphasis of the current calculation is to see whether the small acoustic disturbance can still be accu-

rately computed despite the inaccuracy near the shock. The results are satisfactory. Time periodic solutions

are obtained after around t = 80 as shown in Figure 8 where pressure as a function of time at x = -8, 0
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and 8 are given. The small acoustic wave is again captured directly from the non-linear equations (1)-(3). By

subtracting the numerical solution by its mean value, wave envelop is found and shown in Figure 9. We see

that despite the high spike of the wave near the shock, the transmitted and reflected sound waves are quite

accurate.

Rotor Noise

In this problem, sound generated by an 8-blade rotor is simulated. Two cases are considered. The first

is an open rotor and the second is a ducted rotor. The rotor is modeled by introducing forcing terms to the

governing equations as specified in the problem,

Ou 4_ Op _ F

av 4- __p_ p
-_ -- Or=_r
ow . lop _ (13)
--b-f-1- 70+ = re
Op 4- Ou 4- Ov + v low =0
ot -- _ -- -b7 7 + 7 o+

where the forcing terms are given as follows,

Fr = Re 0 e im(_-_t)

F 4, Jm (Amr) re -(in 2)(lOx)2

Here, m represents the number of blades. Equation (13) is further reduced to a 2-D problem by factoring out

the ¢ dependency of the solution,

and we get, in complex variables,

where

v = Re 7_
W _'[_ e_mdP

p P

0___+ _x = S(r)e-(ln2)(lOz)2e-im_t
o

-gi + or
O_o + _ rS(r)e-(ln2)(lOx)2e-imf2_
-- T _ _ J m
_tp + Off Of, f, icv _ot 5-_+ _ +-; + 7 0

(14)

= J" Jm(/_mNT), r <_ 1S(r)
I 0, r>l

in which Jm is the Bessel function of order m and AmN is the Nth root of J_m" For the problem specified,

m = 8 and N = 1 and A8,1 = 9.64742.
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Open Rotor

For the open rotor case, the computational domain of [-9,9] × [0,9] is shown in Figure 10. Spatial

derivatives in (14) are discretized by a 7-point optimized central difference scheme (as in the DRP scheme

[5]) using a uniform grid of Ax = Ay = 0.05. The time integration is carried out by the Low-Dissipation and

Low-Dispersion Runge-Kutta scheme (LDDRK56 [7]) with a time step At = 0.025. In addition, a tenth-order

explicit filter is applied throughout the computational domain [2,9].

Perfectly Matched Layer (PML) equations are used at non-reflecting boundaries of the problem shown in

Figure t0. The width of the PML domain is 1. Inside the PML domain, the pressure/3 is split into two parts

and the following equations are solved:

0i5_ 0,5

0---7+ + = o

0152 O_ _ imE,

0---7-+ orf2 + + -r + r - 0

in which ax and a,. are the absorption coefficients introduced for absorbing the waves that enter the PML

domain. The choice of the absorption coefficients follows a "matched" manner [8, 9]. At the right and the left

PML domains in Figure 9, err = 0 and at the top PML domain, Crx = 0. At the corner regions, both coefficients

are not zero. Specifically, the magnitudes of the absorption coefficients vary smoothly inside the PML domain

as follows,

= (x-O'x (Ymax _)Xo ) 2

where x0 and r0 are the location of the initial positions of the PML domain and D is the width of the PML

domain. In all calculations, o'maxAx = 2.

At the centerline r = 0,

_=_=/_=0

and singular terms in equation (14) are replaced by partial derivative terms using L'Hospital's Rule, namely,

r Or' r Or' r Or

atr =0.

Pressure contours are shown in Figure 1 l (a) and (b) for _ = 0.85 and 1.15 respectively. To show that

a time periodic state has been reached, the pressure as function of time at point (0, 8.5) is shown in Figure

12. We note that although the pressure contours show similar patterns of sound radiation for both cases, the
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intensities are quite different. The second frequency, _ = 1.15, has supersonic tip speed and radiation is

stronger.

Ducted Rotor

For the ducted rotor, the computational domain is shown in Figure 13. The discretization process is

identical to the previous case except now an infinitely thin duct wall is placed at r = 1 for -4 _< x _< 8.

When the rotor is placed inside the duct, very little sound will be radiated because both frequencies are

cut-off. Figure 14 shows the pressure contours at t = 10, 20, 45,100. It shows that the intensity of sound

radiation decreases dramatically after the initial transient state. Pressure history is shown in Figure 15 and no

time periodic solution is found.

Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

In this problem, a point source is placed inside a 2-D jet and acoustic radiation is to be computed. The

governing equations are the linearized Euler equations,

- Ou' - Or' d-P-Vl = 0

Ou r - Ou' 1 Opr dfz ,Or-- + + = oo_ _-_ ox _ (15)
Or' -- f_ _ Or' 1--L-OP'-- 0
o--i- + LY)_ + p(v) ou --

ou, _ o,' = Ae-BOne)(x%u_) cos(f/t)

In the present calculation, the variables are non-dimensionalized by the mean values at the jet centerline,

namely, the speed of sound aj for the velocity, pj for density and pja 2 for the pressure. The parallel mean

velocity profile is,

{ ]l"/j t-(In2)( bl_)2, lyl _ tt (16)i%, lul<_o

and the mean density is obtained by the Crocco's relation. Mach number of the jet Mj = 2. The other

parameters are A = 1, B = 8, h = 0.6 and b = 0.4.

The computational domain of [-8, 54] × [0, 12] is shown in Figure 16. Due to symmetry in the mean flow

and the source term, only the solution in the upper half plane is computed. Symmetry condition is applied for

p', u' and p' and antisymmetry condition is applied for v'.

As indicated in Figure 16, supersonic and subsonic non-reflecting boundary conditions are treated differ-

ently. By (16), mean flow is supersonic for IY[ < 1. At supersonic inflow, all variables are set to be zero

and at supersonic outflow, backward difference is used for all the spatial derivatives in (15). At subsonic

non-reflecting boundaries, the following PML equations are used [9],
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ap'l l - Ou'
07+ + + = o

I - Or' __d_vlot + cryPl + P(Y)_ + dy 0

- Ou' 1
o_ao,+ cr=4+ + = o
o__ + %u'2 + _v' = 0
ot dv (17)

l - Ov r°-5 + cr_v_+ u(y)_ x = 0
, lo_£ =0°o_tt'+ ayv2 + ? oy

, 0_,' = 0
at ' -F crxPl -F -_-

ot + cryf2 + or' = 0
oy

where crx and cry are the absorption coefficients. A more detailed and general formulation for non-uniform

mean flow is given in [9]. The width of the PML domain is 2 at the top and left radiation boundaries and 4 at

the right outflow boundary for better absorption of the growing instability waves.

A uniform grid is used in x with Ax = 0.1 while a non-uniform grid is used in y for an increased resolution

inside the shear layer. The grid size in y is such that Ay = 0.025 for 0 < y < 2, Ay = 0.05 for 2 < y < 3

and Ay = 0.1 for 3 < y < 12. Again, the spatial derivatives are approximated by the optimized 7-point

central difference scheme (DRP in [6]), time integration by LDDRK56 [7] and a tenth-order explicit filter is

applied throughout the computational domain for the elimination of short waves that are not resolved in the

discretization [9].

Instantaneous pressure contours are shown in Figure 17 for the two frequencies specified in the problem,

f2 = 0.287r (St= 2yRu_ = 0.14) and f2 = 1.27r (St=0.6), respectively. Since the shear layer is unstable in
uj

the low frequency case, the excitation of the instability wave results in stronger sound radiation. This is also

seen in the instantaneous pressure profile along y = 1 (the center of the shear layer), shown in Figure 18,

and t32 along y = 10, shown in Figure 19. Indeed, in an earlier calculation where the values of h and b were

inadvertently interchanged, which results in a larger shear layer thickness, the growth of instability wave was
much smaller and the sound radiation weaker.
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Abstract

The transonic nozzle transmission problem and the open rotor noise radiation problem are solved

computationally. Both are nmltiple length scales problems. For efficient and accurate numerical

simulation, tile multiple-size-mesh multiple-time-step Dispersion-Relation-Preserving scheme is used

to calculate the time periodic solution To ensure an accurate solution, high quality nmnerical bound-

ary conditions are also needed. For the nozzle problem, a set of nonhomogeneous outflow boundary

conditions are required. The nonhomogeneous boundary conditions not only generate the incoming

sound waves but also, at the same time, allow the reflected acoustic wmres and entropy waves, if

present, to exit the computation domain without reflection. For the open rotor problem, there is an

apparent singularity at the axis of rotation. An analytic extension approach is developed to provide

a high quality axis boundary treatment.

1. Introduction

Category 1, Problem 1 and Category 2 problems are solved by the Dispersion-Relation-Preserving

(DRP) scheme (Tam and Webl), Ref. [1]). Both proMems are characterized by nmltiple length

sca.les. This is typical of most aeroacoustics problems. For this type of problems, the spatial resolu-

NASAICP--2000-209790 191



tion requirements varies significantly from region to region in the computation domain. To provide

adequate computation accuracy locally, a nmltiple-size-mesh is used. The computation domain is

divided into a number of subdonaains in each of which the mesh size is uniform. In each of the

subdomains the solution is computed by the DttP time marching scheme. At the mesh size change

boundaries special stencils are used. To advance in time, the scheme uses the local time step that

satisfies the local stability requirement dictated by the local mesh size. In other words, different size

time steps are used in different subdomains. This is possible because the DRP scheme is a multi-

level time matching algorithm. We will refer to the computing scheme as the multiple-size-mesh

multiple-time-step Dispersion-lRelation-Preserving scheme. Recently such a scheme has been used

successfldly to sinmlate the generation of screech tones fi'om imperfectly expanded supersonic jets

(Ref. [2]) and the micro-vortex shedding phenomenon associated with an acoustic liner in a high

acoustic intensity environment (1Ref. [3]). Presently, there are very few time marching computation

algorithms that permit the use of multiple time steps. This feature makes the DRP scheme ideal for

solving aeroacoustics problems.

2. Category 1, Problem 1

Since the amplitude of the incoming sound wave is very small, it is sufficient to look for a linear

solution of the prol)lem. The mean flow solution of the nozzle flow is,

p_l A = prltrAr

-i_ p: (2.1)

_72 _ p,. u_ ",/ p,.
_- + _ -= -p_-I +7 lP_r = --_ "y-lpr

where subscript r denotes the reference station. We will use the uniform flow region at Math 0.4 as

1 and A,. 0.536572. It is easy to find thatthe reference station so that p_. = 1, 'ur = 0.4, p,. = _= =

the Math number at the nozzle throat is equal to 0.94. The governing equations for small amplitude

disturbances are,

Op -_ u dA
-- -J[- ---

Or A d.r

Ou d-fi i-i dA d _ Op

+ _ + _,_ + p_ + p-y;. + _ =o

Ou Ou d _ d-iT Op

_-N- +_v_ +pv _ +_ + o_ =o (2.2)

--_ it + (]5'u + pi7) +3'P _rl, + _p_,_ = O.
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111the uniform flow regions upstream and downstream of the nozzle throat, (2.2) reduces to

Op Ou _ Op

o-7+-z _ + ,, _ =0

Ou Ou 1 cop _ 0 (2.3)
0--7+ i_b-7+ FOx

Op 01) Ou
o_ + _ +'_

(2.3) supports three independent wave solutions. They are

which may be written in the form,

1

I

i

=0

the upstream propagating acoustic waves,

_ _+t , (2.4)
O -- ll

the downstream propagating acoustic waves,

1 (2.5)

and the entropy wave,

1

= 0

0
H(x-gt),

1

where F, G and H are arbitrary functions. _ = (-_) "_ is the local speed of sound.

(2.6)

2.1. Mesh Design

For an upstream propagating time harmonic acoustic wave of angular frequency w, (2.4) becomes

p= tte [Ac-i"(_+')] . (2.7)

Thus the acoustic wave length A is given by,

)_ = 2rra(1 - M) (2.8)
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where M = g is the local Mach number of the mean flow. Formula (2.8) indicates that at the nozzle
a

throat with M = 0.94 the acoustic wave length is nearly ten times shorter than that in the Math

0.4 uniform region of the nozzle. We will use the Dispersion-l_elation-Preserving (DRP) scheme fi_r

our computation. With a 7-point stencil, the scheme can calculate waves of wave length equal to

or longer than 7 mesh spacings with good accuracy. Based on these estimates and ,J = 0.67r, a

computational mesh as shown in figure 1 is used for the calculation. In this figure, only the mesh

distribution fi'om z = 0 to x = 10 is shown. Four mesh sizes are used. The mesh sizes are related

by Ax, = 2"Ax0 (7_ = 1,2, 3). The finest mesh is at the nozzle throat region with Ax0 = 0.0125.

There are altogether 359 mesh points, which is less than the maximum 400 mesh points stipulated

by the benchmark problem.

60Ax 0 21Ax_ 20Ax 2 77Ax 3

'" I I I Ii_,, III, _ I I I

x = 0 x = 0.75 x = 1.3 x = 2.3 x = 10.0

Figure 1. Mesh distribution from x = 0 to x = 10

2.2. Numerical Boundary Conditions

In the inflow region of the nozzle, there are only upstream propagating acoustic waves. The form of

the solution is given 193' (2.4). It is straightforward to show by differentia.tion that regardless of what

the function F is, the waves satisfy the following relationship.

,0[i],.., L.:0 (2.9)

(2.9) is the inflow boundary condition. It is used to advance the solution in time at the last 3 mesh

points on the left of the computation domain.

In the outflow region, there could be three types of waves. They are the incoming acoustic waves,

the reflected acoustic waves and the entropy waves. We may, therefore, write

/)out

'_/'O/lt

Pout

_G

11 cos a_ 1-3,-----II +t .
(2.10)

The second term on the right of (2.10) is the incoming acoustic wave given 195' the benchmark problem.

The first term represents disturbances that would exit the computation domain through the right

boundary. These disturbances are composed of the reflected acoustic waves and possible entropy
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waves (convected downstream by the mean flow). Thus by (2.5) and (2.6) we have,

Pout J 1

(2.11)

By simple differentiation, it is straightforward to find, on eliminating the unknown functions G and

H of (2.11), the following outflow boundary conditions,

OPout OPout

Ot -- (1+3I) 0:------C-

0'_l O_1 t . 0tt out (2.12)
Ot -- (I+M) 0:---C--

0pout __ M0p°ut Opout
Ot Ox Ox

(2.12) is used to advance the values of (Pout, _ O" [l ' POUt) at the last three mesh points (tile outflow

region) at the right end of the computation domain. Once these quantities are known, the values

of (p,u,p) are found by (2.10). Since a 7-point stencil is used, the stencils used to compute (2.12)

would extend beyond the first 3 mesh points into the interior region. In the interior region, the

values of (p,u,p) are advanced in time. To calculate the Vallues of (Pout, Uout,pout) to support the

time advancement of the unknowns in the boundary region, (2.10) is again used. This arrangenlent

automatically generates the incoming wave in the outflow region and, at the same time, permits any

outgoing disturbances to leave the computa,tion domain smoothly.

2.3. Numerical Results and Comparisons with the Exact Solution

To find the solution of the sound transmission problem, (2.2) is first discretized according to the DRP

scheme using the mesh as given in figure 1. At the mesh size change interface, special 7-point stencils

are used. These stencils are provided in the Appendix of Ref. [3]. Because of space limitation, they

will not be repeated here. The D1RP scheme is a central difference algorithm. As such, there is no

intrinsic numerical damping. To assure that short spurious waves are eliminated so as not to pollute

the numerical solution, artificial selective damping is included as discussed ill Ref. [4]. [5]. The

inverse mesh Reynolds number, R2x 1 , is taken to be 0.05 in the computation.

Tile D1RP scheme is a time marching scheme. To start the calculation, the zero initial condition is

used; i.e., t = 0, p = it = p = 0 for all mesh points except the last three mesh points on the right

NASA/CP--2000-209790 195



boundary. This is the outflow boundary region. In this region, we set pout = Uout = pout = 0 at t = 0.

The incoming wave is, however, not equal to zero. Since a time periodic state is to be found, such

a solution is attained after a long period of computation. In the present calculation, the incoming

wave is turned on slowly. Thus, in the outflow boundary region, instead of (2.10) we use

[ ] [ ] [ 11] (1- -_) [ (1_,_.I) ]"f
[_p J 1_pout 1

(2.13)

where r is taken to be 10___or five oscillation periods. The phase ¢ is to be adjusted such that the

cosine term is zero at the third mesh point from the right at t = 0. This ensures that the initial

condition is continuous at the interface between the interior region and the outflow region.

On starting with initial condition (2.13) in the outflow boundary region and the zero condition in the

rest of the computation domain, (2.2) is solved by the multiple-size-mesh multiple-time-step DtlP

scheme on the mesh as shown in figure 1. The maximum pressure envelope is measured after a time

periodic state has been achieved. It is shown in figures 2 and 3. Plotting in these figures also is

the exact solution. As can be seen, there is good agreement between the numerical a.nd the exact

solutions. The amplitude of the computed transmitted wa_e is slightly lower. This is due to the

artificial selective damping. The agreement between the numerical and the exact solution can be

improved by increasing the mesh Reynolds number or by reducing the mesh size.
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Figure 2. Comparison between numerical solution and exact solution,

-- numerical, ....... exact
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3. Category 2 Problelns

It is easy to show, for the given rotor problem, the rotational fi'equency of the ducted rot():" is below

the cut-on frequency. In other words, all the acoustic disturbances are cut-off or nonpropagating.

Thus, there is no sound radiation out of the open end of the duct. For this reason, only the open

rotor problem is computed.

The governing equations are,

The forcing functions are

0_ 8g
Ot Or

O t"d im N

Ot -- r p + _0 c-i"nt

og
-- -_- ?x c-imnt

Ot Ox

o_-+ +--+--=or Or r Ox

{ F(,r)rJ,,_(h,,,Nr), r <_ 1fie, = O, r > 1

r _<1F"_ = O, r> 1

(3.1)
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F(x) = exp [- (In2) (10x)21 •

To ensure that the computed solution is accurate, one must rnake provisions to take into account two

important characteristics of this problem. First is that the noise source is discontinuous at the blade

tip. This could be a source of short spurious waves. Second is that the blades are slender. That

is, the loading is concentrated over a narrow width. Computationally, this requires a finer spatial

resolution in the source region than in the acoustic radiation fieht.

3.1. Grid Design

The half-width of the forcing flmction (2.5) and (3.3) is 0.2. To resolve this width a minimum of 10

mesh points is necessary. In other words, the maximum mesh size in the source region is 0.02. This

high resolution is not needed as one moves away into the acoustic field. We will use the multiple-

size-mesh multiple-time-step DRP algorithm for computation. This allows us to use coarser and

coarser mesh starting from the source region. Pigure 4 shows our computation domain. The domain

is divided into three regions. The mesh size as well as the time step double themselves each time

one crosses into an outer region. It is possible to use n-lore regions with larger savings in computing

time. But this will require slightly more programming effort.

50.4! r

A 3 =0.08

_t
o_
q%

2.88

A2: 0.04 _'
eq ,_'

1.64 o
_D

A i=0.02i

X

-50.4 - 1.92 -0.64 0 0.64 1.92 50.4

606A 3 32A 2 64A j 32A 2 606A 3

Figure 4. The computation domain and mesh size distribution
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3.2. Numerical Boundary Conditions

Two types of numerical boundary conditions are needed. Ahmg the outer boundary of the com-

putation domain, radiation boundary conditions are required. Along the axis of the cylindrical

coordinates; i.e., r = 0, a special set of axis boundary condition is needed. In this work, the following

radiation boundary conditions (see Ref. [1]) are used.

=0

pJ

(3.4)

where R = (r 2 + x2)½.

As r --+ 0 (3.1) has a numerical singularity and cannot be used a.s it is. \Ve note, however, that near

the axis, if we consider the Fourier-Laplace transform of (3.1) in x and t, the local solution has the

fornl

~ J,.(gr)

N

W "-'

dd,.(/3,')
d'F

(3.5)

J,,

where fl is a. parameter involving the transformed variables and ,1,,,( ) is the mr'h-order Bessel

function. It is well established (see Ilef. [6]), that Bessel functions of integer order can be analytically

extended into the region of negative argument as,

&,(-9,-) = (3.G)

By means of (3.6), the solution may be extended to the negative r part of the x - r-plane as fi)llows,

g(-r,x) = (-1)'_ iT(r, x)

"v(-r,x) = (-1)m-l v(r,x)

,_;(-r,x) -- (-1)"-' z_;(r, x)

_(-r, x)= (-1)" _(r, x).
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Formula (3.7) allows us to extend the computed solution into the lower half of the z - r-plane as

indicated in figure 5. In this way, points near the axis, but not oi1 the axis such as point A in figure

5, the 7-point stencil can be extended into the negative r half-plane as shown. For the points on

the axis, such as point B in figure 5, they will not be calculated by the time marching DriP scheme.

They are to be found, after the values at all the other points have been updated to a new time level,

by symmetric interpolation. Such a 7-point interpolation stencil for point B is shown in figure 5.

m

n

A
\

r

B

I I

o

x

Figure 5. Extension of the computational domain in the upper half

x - r plane to the nonphysical lower half plane

3.3. Artificial Selective Damping

Artificial selective damping is incorporated into the DRP computation algorithm for two purposes.

First, it is used to provide background damping to eliminate short spurious waves to prevent them

from propagating across the computation domain. Generally speaking, small amplitude short spu-

rious waves are just low level pollutants of the numerical solution. But if these waves are allowed

to impinge on an internal or external boundary of the computation domain, they could lead to the

reflection of large amplitude long waves. These spurious long waves are sometimes not distinguish-

able from the physical solution and is, therefore, extremely undesirable. The second reason to add

artificial selective damping is to stabilize the numerical solution at a discontinuity. The damping

prevents the build-up of spurious short waves, which are generated by the discontinuity, and this

promotes stability.
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In the present problem, tile forcing functions are discontinuous at tile blade tip. Thus, in addition

to the general background damping with an inverse mesh Reynolds number 0.05, extra damping is

added around the blade tip region. The mesh size change interface a.s well as the external boundary

of the computation domain are also a fi)rm of discontinuity. Extra. damping is added around these

boundaries as well. For extra, damping, a distribution of inverse mesh Reynolds number in the form

of a Gaussian function with a half-width of 4 mesh spacings normal to the boundary is used. The

maximum of the Gaussian is on the discontinuity with an assigned value of 0.05. At the tip of the

blade, where the forcing function is discontinuous, more damping is required. A maxinmm value of

0.75 is used instead.

3.4. Numerical Results

Equations (3.1) are discretized according to the multiple-size-mesh multiple-time-step DRP scheme

and marched in time to a time periodic state. To start the computation, the zero initial condition

is used. Figure 6 shows a comparison of the directivity at R = 50 obtained computationally and the

exact solution for f_ = 0.85, the subsonic tip speed case. As expected, most of the acoustic radiation

is concentrated in the plane of rotation. There is good agreement between the numerical results and

the exact solution. Figure 7 shows the directivity at supersonic tip speed with _ = 1.15. There is

again good agreement. At the higher frequency, the acoustic wave length is shorter. Thus, figure 7

is a more stringent test of the accuracy of the entire computation Mgorithm.

o
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Figure 6. Directivity of sound radiation at R = 50, f_ = 0.85,

-- numerical, ....... asymptotic
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Abstract

The high order Dispersion-Relation-Preserving (DRP) scheme is used to solve the first two category l

problems of the third CAA Benchmark workshop. The perturbation equations about the mean flow are used

as governing equations in solving two problems. Special non-homogeneous inflow and outflow boundary

conditions are derived to generate incoming or outgoing disturbances. In order to create accurate results and

keep a minimum number of grid points, a non-uniform grid systern in which neighboring mesh sizes differ by

a factor of 2 are used. In the area of grid interface, a combination of Tam & Webb DRP and Lele's cell-centered

high order differencing scheme are implemented, not requiring any interpolation. Large oscillations

typically produced by high order spatial schemes when the stencil extends across a discontinuity such as a

shock are avoided by introducing three methods, namely shock perturbation relation method (SPRM),

averaged mean flow discontinuity method (AMFDM) and limiter method (LM).The mean flow solutions are

obtained analytically by using one dimensional isentropic flow as well as the shock relations.

1. Introduction

The focus of computational aeroacoustics (CAA) is concentrated on obtaining long term time accurate

numerical solutions to unsteady flow and acoustic problems. There are several different concepts of how to

simulate acoustic problems numerically(refs. 1). The main three of which are (1) employing an acoustic wave-

equation approach in combination with a predetermined dedicated acoustic source term, (2) the direct numerical

simulation (DNS) of all vortical scales, or the large eddy simulation (LES) of all essential scales including the

sound generation, and (3) the perturbation approach, in which an averaged (quasi-) steady flow is pre-computed

and any perturbations to it are simulated, using Euler's equations. In this paper, only method 3 is used to solve

the third benchmark problem.

The numerical study of aeroacoustic problems places stringent demands on the choice of a computational

algorithm. For long it has been recognized that numerical schemes with minimal dispersion and dissipation

error are needed, since the acoustic waves are non-dispersive and non-dissipative in their propagations.

Therefore, all the benchmark problems considered here are solved by using Tam & Webb's 7 points DRP

scheme (ref. 2) which is generally only used for uniform grids. In case of non-uniform grid systems in which

the neighboring mesh sizes differ by a factor of 2, a combination of DRP scheme and Lele's cell-centered high

order scheme (ref. 3) are implemented to describe the derivative. The time advancing schemes used here are

classical 4 stage Runge-Kutta schemes.

2. Category 1, Problem 1: Propagation of sound wave through a transonic nozzle

To reduce the complexity of the problem, but maintaining the basic physics, this problem has been modeled

by a one-dimensional acoustic wave transmission problem through a nearly choked nozzle.
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Thegoverningequations,whicharenon-dimensionizedwith respectto the characteristicvaluesin theuniform
regiondownstreamof thethroat,readasfollows,

olp 1 _)
_---_+ _xx(puA ) = 0

c_u _u 1 o3p _
a7 + u_-+ _- o

ap I a, uA, _.]. a___o3"-_+ _--_LP ) + p (uA) = 0, (7= 1.4)

(1)

where A describes the cross section along the nozzle with following area distributions

A(x) =

-(In2)(&) 2
0.536572 - O. 198086e ,x > 0

1.000000 - 0.661514e ,x < 0

(2)

The computation domain extends from x=-10

Fig.(1)

Radiation

BD

to x=10 with the nozzle throat located at x=0, as shown in

I

I
Outflow BD

I _ Me=0.4_ II +Disturbance.__0, tAhOustic wave

Iroat
I

Fig. 1 Schematic diagram of the computation domain for the propagation of sound

through a transonic throat of a subsonic nozzle

The perturbation formulation can be obtained by splitting the flow variables into the mean and perturbations,

the given mean flow field (_, fi, _), which is steady density, velocity and pressure, respectively. The

perturbation equations about the mean flow then have the following forms,

O , 10
_-i-9 + _--_-(_u' + p'fi + p'u')A = 0

_u +(fi+u') u'+ u'+_---_)_--_ +_--'-_---_p =0

19 , 1 a,_u, A, l c)., - 1 a,, ,a) +._p,o__x fiA ) +_p + X_-_t p ) + X_-_( p fia) + X_-_t p u

-Y-_(_ + p')_--_(u'a) = 0

(3)

In this problem, a single frequency (m = 0.6rt) sound wave with very small amplitude (e = 10-5) is
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generatedwaydownstreamof thenozzlethroat,and it propagatesupstreamthroughthenozzle,asshownin
Fig. (1). Theupstreampropagatingwavefar downstreamof thenozzlethroat isgivenas

F = u''- c cos co _+t (4)

Firstly, the steady solution is determined and secondly the perturbation solution is solved.

2.1 Steady flow solution

The physical quantities of the mean flow in the nozzle are connected by the isentropic flow relations as well

as the continuity equation. With area ratio A/A e and M e known, _ is first found by solving the following non-

linear equation:

/1 1 _...£e/A'_-2 _-2 1
+ 2 \A e) - + _ = 0 (5)

where A e and M e are area and Mach number at the uniform region downstream of the nozzle throat and A(x)

is the area at any given position x in the nozzle.

The other flow variable, pressure _, local sound speed a, Mach number M and velocity fi can easily be found

by

1=7, _/_7-1, Me( A )-1
=_p a= M=-_--_-\_e) ,fi = Ma (6)

For M e = 0.4, the steady solutions are shown in Fig.(2). It can be seen that the local Mach number at the

nozzle throat is about 0.94 which is close to sonic. With the known mean solution, the perturbation equation

(3) can now be solved by using high order schemes.

2.2 Radiation and outflow boundary condition

From a physical point of view, the upstream propagating sound wave will partly be reflected from the area of

the transonic nozzle throat and partly transmitted to the upstream of the nozzle throat. In the nozzle throat, the

sound wave amplitude will be amplified. Therefore, to ensure that the computed solutions are of high quality

on the limited computation domain, the farfield boundary condition (BD) has to be imposed on both sides

of the computation domain as shown in Fig.(l).

At the left boundary of the computation domain, radiation boundary conditions which permit the transmitted

acoustic waves to leave the computation domain are to be imposed. These boundary conditions are developed

by using asymptotic solutions of the governing equations,
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O-(1 -M) lu'l-

Lp'I

(7)
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Mean flow (_, fi, _, M)distribution along the nozzle for problem 1

At the right boundary of the computation domain, outflow boundary conditions are applied which allow

incoming sound waves to propagate upstream into computation domain and at the same time permit entropy

waves and reflected acoustic waves to leave the computation domain. Thus by means of the asymptotic

solution, in general the density, velocity, and pressure fluctuation can be written in the form of

+ t'] + ;I x _ t I + H x t (8)
) M I+M

where G and H are unknown entropy waves and unknown reflected acoustic waves, respectively, and F is given

as Eq.(4). By differentiating Eq.(8) with respect to t and x and eliminating H and G, the following non-

homogeneous outflow flow BD can be obtained,

_-p +M_-_.p +_x-xP = F

_-]-u +(I+M) u'=_sinl_M to _+t F

_--_p+(l+M) p'=-_sinl_M (°I1--'-S'M+t F

(9)
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where F = 1 - e is a "turning-on" function which has been added to the right side of Eq (9) in order

to turn on the disturbance gradually. The larger'r, the smaller is the DC component in the time history of the

solution. Equations (7) and (9) of inflow and outflow BD are used to update the solution at the left and

right boundary points of the computation domain.

2.3 Grid systems

In order to keep adequate approximation to the partial derivative, a minimum of 6 to 8 mesh points per wave

length is required by the DRP scheme. The mean flow in the nozzle is so strongly non-uniform, especially

close to the nozzle throat, that the wavelength of the propagated acoustic waves are strongly varying too. In

general the non-dimensional wavelength can be estimated as _ _=2rt( 1 - M)/o_. Since the maximum M in the

nozzle throat is 0.94, the sound wave has a minimum wave length of )__ )_0 " 0.06 in that area, where _0

corresponds to non-dimensional wavelength under zero mean flow and X0 = 3.33 in the present case. Due

to the problem description, it is required that no more that 400 mesh points be used. A uniformly spaced

grid mesh with 400 grid points in the computation domain could only render 4 mesh points per wave length,

which is much less than that required by the DRP scheme. Therefore, a non-uniform grid system in which the

neighboring mesh size differs by a factor of 2 is used, as shown in Fig.(3)

AX=AX max AX/2 AX/2 n=AXmi n AX

'Interface Region B
Region A I 1 2

I

AX I AX/2

I

I

I
I

Fig. 3 A non-uniform grid system. The neighboring mesh size differs by a factor of 2.

Since the grid size in adjacent areas differs by a factor of 2 as shown in Fig.(3a), it is not difficult to form a 7

points DRP stencil at every point in region A with a mesh size of Ax and every point in region B using a mesh size of

Ax/2 except for the first two points from the interface.

For the second point shown in Fig.(3c), a DRP stencil with a grid size of Ax can be implemented. For the first

point, a Lele cell-centered symmetric stencil (CC), as shown in Fig.(3b), is used. A 6th-order explicit scheme

based on this stencil can be obtained from an approximation of the form
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elfi ) b(f a(f )' = _f 3 + - f i (10)
fi _ +5 -f 5 +_"_ i+3 h i+_i-_ _. i- 1 i-_

where h = Ax and a = 1.171875, b = -0.1953125, c - 0.0234375. It should be noted that this concept

can be directly transferred to 2D and 3D, by applying the mid-point differencing of Lele along the grid diago-

nals in 2D and 3D.

The spectrum characteristics of Eq.(10) and its comparison with the DRP scheme as well as the exact solution are

given in Fig.(4), where _ and c_ are the wave number representation of the finite difference scheme and of

the partial derivative respectively.

It can be seen that with o_Ax up to 1.2 the curve for the CC scheme is nearly the same as the DRP scheme.

After that, the CC scheme shows better resolution characteristics than that of the DRP scheme which drops down

very quickly for high wavenumbers.

<a

2.5

1.5

0.5

Lele-CC /

..... Tam-DRP /

_" \.\

\,\

1 2 g

(_Ax

Fig. 4 Plot of modified wavenumber vs. wavenumber for DRP and CC-schemes

To test the numerical dispersion and dissipation properties due to the non-uniform grid, a one dimension

nozzle with a uniform area distribution of A=I.0 and uniform mean flow (M = 0.5, _ = 1, _ = +)isused and

a Gaussian distributed acoustic pressure pulse is seeded into the computation domain at x=0.0 at time t=0.0.

This initial value problem is solved by the 7 points DRP scheme for the uniform grid and by the combination

of DRP and CC schemes for the non-uniform grid. The half width b of the pressure pulse is 3.0.25, which

means that the half width of the pulse is resolved with more than 15 points for the uniform grid. In order to

eliminate the short wavelength spurious numerical waves generated due to the changing of the grid size and

different schemes used in the interface area, Tam's artificial selective damping (ref. 4) is additionally

introduced. A background damping coefficient of 2 is used in the numerical computation. In the calculations

of the propagation of sound wave through the transonic nozzle, extra damping coefficients are also added to
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the background damping in the area close to the nozzle throat where strong flow gradients occur. With

inclusion of the artificial selective damping terms, spurious waves are effectively eliminated in the numerical

solutions.

The governing equation has the form of Eq.(3). Computations are based on two different grids, one uniform

grid with 400 grid points and grid size Ax = 0.05 and one non-uniform grid with only 209 grid points and

the grid size decreasing from AXma x - 0.25 to AXmi n = 0.015625.

Initial value problem,t=0

P=P-

exp/_(ln2) (7:O'2--5)2)(x2+y2) ]

M=0.5

uniform grid:

DRP scheme +

Atificial selective damping

Non-uniform grid:
DRP scheme +

CC scheme +

Atificial selective damping

0.5
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Fig. 5 Acoustic pressure distribution along nozzle axis (uniform cross section)

The calculated waveform at two different time instants t=2.0 and t= 10.0 are shown in Fig.(5). When released

at time t=0.0 an acoustic pressure pulse is generated and then split into two, the one propagating in the

upstream direction and the other in the downstream direction. At time t= 10.0, the downstream propagated signal

has already left the computation domain. The results for both grids show very small dispersion error. Both the

peak value and shape of the waveform on the two grid systems match very well except at t=10.0. At

t=10.0, the magnitude of the peak is almost identical. The difference on the shape of the waveform close to

the peak is purely due to the graphical representation on the large grid spacing used in the non-uniform grid

system.

2.4 Numerical solution for propagation of sound wave through a transonic nozzle

The computation is performed by solving Eq.(3) with the above mentioned hybrid high order schemes and farfield

boundary condition. Three different types of grid arrangements, one for uniform grids with 400 grid points

and the other two for the non-uniform grids with 209 and 321 grid points, are used. The grid point distribution

is so arranged for the non-uniform grid that the finest grid size is always located around the nozzle throat to

give the best wave resolution. The numerical computations continue for each grid until a time-periodic state is
achieved.
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The effects of the different 'r on the asymptotic DC component are studied. The non-uniform grid with 209

points is used to carry out a numerical simulation. Fig.(6) shows the time history of the pressure disturbance

at the nozzle throat at x = 30 and the effect of different "c on the DC-component. With increasing x, the

transient DC component drops very sharply from positive to one negative value and then gradually asymptotes

to the zero-axis. Although with large "c the DC can be reduced, long running time is needed until the solution

attains an asymptotic periodic state. This zero-frequency component will remain in the solution since there is

no natural decay of it in a one-dimensional problem. Finally "c = 30 is selected in the following computations.

o.ooo_5 I:=30
0,000125 4E-05

0.0001 3E-05

7.5E-05 2E-05

5E-05
1E-05

2.5E-05

P o DC 0

-2.5E-05 -1E-05

-5E-05 -2E-05

-7.5E-05 -3E-05
-0.0001

-0.000125 -4E-05

0 50 1O0 150 200 250 300

t

Ii Iff_,
0 10

I 1
20 30

Fig. 6 Time history of pressure disturbance at x=0 and effect of different 1: on the DC-component

Turning back to the non-constant nozzle area case, the pressure distribution for the non-uniform grid with 321

grid points in which AXma x and AXmi n are 0.125 and 0.0078125 respectively is given in Fig.(7) at time

t=320. It shows that the transmitted waves travel upstream from the nozzle throat and leave the domain

through the left BD smoothly. Moreover, sound wave interference between upstream propagated wave from

outflow BD and reflected waves from nozzle throat is very obvious. In the nozzle throat, the sound signal has

been accumulated and amplified.

Fig.(8) shows the distribution of the maximum acoustic pressure over a cycle and the strong gradients zoomed

close to the peak area. The comparisons between non-uniform and uniform grid display the effectiveness of

the grid refinements. Even with 209 points on the non-uniform grid, almost half of 400 uniform-grid, one can

still obtain much better results. The grid refinement is necessary close to the transonic nozzle to capture the

physical behavior and this has a pronounced effect on transmitted waves.

3. Category 1,Problem 2: Shock-sound interaction

In this problem, a shock occurs downstream of the nozzle throat in the mean flow solution.The same governing

equations as Eq.(1) are used, with which the problem is simplified as a sound wave passing through a shock

in a quasi-lD supersonic nozzle. All physical quantities used in the governing equations are non-

dimensionalized using the upstream value. The same geometry is used as in problem 1.

Due to the formation of a shock in the nozzle, the change of the perturbation signal is attributed to the induced

motion of the shock wave and its interaction with the disturbances in the flow. These disturbances may be

large so that the mean flow and shock position will change or they are small such as in the case of acoustic

wave or vorticity wave. Since the sound wave used in the present problem has the magnitude of 10 -5, the
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problem is solved again by using perturbation formulation. In doing so, there is no feed-back loop between

the mean flow and the perturbation is assumed and the motion of shock is neglected, which is believed to be very

small due to the small disturbance.

Fig. 7
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Fig. 8 The distribution of the maximum acoustic pressure over a cycle

In order to propagate reliable information to the area downstream of the shock, the interaction between the

shock and the disturbance must be accurately predicted. Numerical difficulties in the form of large oscillations

occur using high order spatial schemes such as DRP or CC schemes when the stencil spans a discontinuity
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such as a shock. Three methods, which are named shock perturbation relation method (SPRM), averaging

mean flow discontinuity method (AMFDM) and limiter method (LM) are developed to avoid these problems.

The steady shock flow is solved by using isentropic flow and shock relations. The similar non-uniform grid

system as in problem 1 with the finest grid size in the area of the shock is used in the numerical simulation.

3.1 Steady shock flow solution

Two separated isentropic flow relations, one for the domain extending from inflow face to the pre-shock

position and the other for the flow behind the shock are used and are connected by shock relations. Using

isentropic flow relations and shock relations and assuming total temperature keeping constant across the

shock, one can figure out the equation for the pre-shock roach number M l,

1

(11)

Where P01 and P02 are total pressure of pre- and after shock respectively.

.._Z_ 7

P02 = Pe M + 1 'P01 = Pt M + 1 ,M t = 1.0 (12)

2 (Y-l) 2 (pt]2(At']2{

Me(-""_-Me+l) = [_ee) [_ee_ [l+_ -_)

The subscript t and e here represent taking the value at nozzle throat and uniform region downstream of the

shock. Pl can be solved by replacing M e and A e with M t and A t in the Eq.(5) and (6). Pe is given as
0.6071752. Then the shock position xlcan be found by solving the following equation,

A(x 1)

A t 1 /(_M_ + 1)/(_M_ 2 1)/Y 11
M' 4 (1+_-_) _ (1+7---_)

(13)

The steady solutions are shown in Fig.(9). The shock position is around x i=0.4.

3.2 Inflow and outflow boundary condition

The same computation domain is chosen as for problem I except small sound waves are introduced at the

inflow BD. Therefore, the inflow BD of Eq.(7) has to be modified to include this disturbance,

P' LII __.._ cos Io3( 1 __M t/lF(_ /
-(1 -M) u' = - x (14)
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Where03and E arethesameasproblem1.Theoutflow BD canbeobtainedby settingF=0 in Eq.(9).
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3.3 Numerical solution on sound-shock interaction

In order to reduce or avoid large oscillation when using high order schemes, three methods are introduced.

(1). Averaging mean flow discontinuity method (AMFDM)

In this method whenever DRP (or other high-order scheme) stencils come across the shock located between

x=s I and s 2 as shown in Fig.(10), the function values at sj and s2 are averaged. As an example ofa DRP-stencil

centered at a pre-shock position, the following approximation for the finite difference scheme at x will be used,

1 _ aj_(x + jAx) + al f(xl) + ___(f(x2) + _(x3)) + 2(f(x2) + _(x3))
['h-k'] .i: -3

A A A
V W W

Fig. 10

i' ?I I

I I
W W w V

Xl X2 X3 I
I I

Stencil used for AMFDM method

(15)

(2). Limiter method (LM) - set a limiter on finite difference of mean flow
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Two procedures have to be executed for this method. DRP differentiation at x is considered. Firstly, for

domain bounded by the vertical dashed line, see Fig.(ll), two extra-points are linearly inter-

polated between two adjacent grid points using the function value on these two grid points. Secondly,

the generated extra-points are used in the DRP stencil and a limiter is set on it as given in Eq.(16)

Extra-point% il i 2

• _ " : © _-o-_, @ @ " A
ILP' v v

I x Xl X2 _3
I

Fig. 11 Stencil used for LM method

_(x) :- ((A_/3) J= -3 + a lf(x I ) + a2f(x 2) + a3f(x3)),K
= 0.6 (16)

(3). Shock perturbation relation method (SPRM)

By perturbing the shock relation about the mean flow, an explicit linearized relation between the pre-and post-

shock perturbations may be obtained:

fi2

2u 2

[:j' -T P2

7- 1-2
P2

-1
P2 0

2fi2_ 2 l

fi2 7 1
7- 1 P2

_2
u I 2flip l

-7 Pi
_2 fi]

7- lp]

0

1

7 1

7-191

,'1
d

(17)

Where indices l, 2 denote pre- and post-shock state respectively. To implement this method, following

scheme arrangements are used. For the three pre-shock grid points the DRP-backward stencils are used as

shown in Fig.(12). For the two post-shock points downstream of s2 the DRP forward stencils including point

s2 are used. To update the value at s2, Eq.(17) is used. This method avoids the DRP stencils across the shock.

A A
W W

I' DRP Backw__d_il i 2 ID--D_RPF° Irffardl
I

V V

7 i
,I Point using linearized shock perturbation I

Fig. 12 Stencils used for SPRM method
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In order to implement AMFDM and LM methods, Eq.(3) has been modified, in that the differentials for the mean

flow variables and the perturbation variables are separated, as given in Eq.(18). Eq.(3) is used for the

implementation of the SPRM method. A non-uniform grid with 393 grid points is used. Fig.(13) shows the time-

asymptotic distribution of the pressure perturbation at start of a period for above three methods in

comparison with the exact solution. Comparisons show that the effects of different shock treatments on the

results upstream of the nozzle throat are very small since no information will be fed back upstream due to the

supersonic flow.

oq , u'O_ ____ _oh , _o-) , 1 o-) , ,._[p + _xxPA + fiA + p_--_u + u_--_p + _--_p u A = 0

_-_u'+(fi+u') u'+ u'+_--_j_--_ +_+p,ffx p =0

+, <+_ -+,-+,_--_p + _--_(pA) + + p' (fiA) + p_-_-u + u_--_-p +

X_-_.tp u .'_) + (1_ + p') (u'A) = 0

(I8)

The pressure distributions, shown as well in zoom scale near shock shc_ the SPRM method gives the best

representation of the sound wave in general, while LM and AMFDM have some dispersion error. The sound

waves downstream of the shock and in the shock area are very much dependent on the different shock

treatments. The LM method renders a fairly good representation of the amplitude downstream of the shock,

but there is a small phase difference to exact solution. AMFDM method in general underestimates the signal

downstream of the shock.
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Fig. 13 Distribution of the pressure perturbation at the start of a period

The instantaneous pressure field at the exit plane through one period as given in Fig.(14) again shows the same

tendency.
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Fig. 14
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Instantaneous pressure field at the exit plane through one period.

Conclusions

(1) In order to produce accurate results and keep a limited number of grid points, a non-uniform grid system

is used to solve problems 1 and 2. The results show the grid refinements to be effective when a combination

of the DRP and cell-centered high order schemes as well as artificial selective damping are used at the grid

interface.

(2) The DRP scheme and proper treatments in the area close to the shock can generate convergent results.

(3) The effects of different treatments on the results are seen in the area downstream of the shock; but little

effects on the results are observed in the area upstream of the shock.

(4) The SPRM method gives the best representation of the sound wave in general.
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SOLUTION OF THIRD COMPUTATIONAL WORKSHOP INTERNAL PROPAGATION

PROBLEMS USING LOW ORDER SCHEMES
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Abstract

The problems solved are Category ! Problems 1 and 2. Problem 1 is solved using a MacCormack

scheme. Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state.

The problems are solved on evenly spaced grids. While solutions were found, the methods selected and not

using stretched grids lead to solutions which do not compare well with those found using more accurate

schemes. However, the perturbation of the mean flow scheme used to solve problem 2 shows promise.

1 Introduction

The claim is often made that the computation of aeroacoustic problems requires numerical schemes of high

accuracy, low dispersion, and almost non-dissipation [1,2]. This paper shows some of the complications that

arise in obtaining a solution for the propagation of sound waves through a transonic nozzle for cases where

the flow is nearly sonic and for cases where the flow has shocks if one ignores these requirements and uses

lower order schemes.

The problems solved are Category 1 Problems I and 2. Problem 1 is solved using a MacCormack scheme.

Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state. The problems

are solved on evenly spaced grids. While solutions were found, the methods selected and not using stretched

grids lead to solutions which do not compare well with those found using more accurate schemes.

2 Governing Equations and Numerical Formulation

2.1 Problem 1

The solution scheme used to solve the propagation of sound waves through a transonic nozzle problem uses

the conservative nonlinear acoustic formulation Hariharan and Lester [3, 4] and a low order MacCormack

computation scheme. The mean flow was found using analytical gas dynamic equations.

The MacCormack differencing scheme used to generate numerical solutions has two steps applied at At�2

intervals. The first step involves a backward predictor, L + : _ = (fi-fi-l)/h and a forward corrector,

L- : _x = (fi+l - fi)/h. The second step uses a forward predictor with a backward corrector.
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In addition, no grid stretching was used since use of constant spacing maximized the time step size. A

total of 381 grid points are used. The largest CFL number that could be used for a convergent solution was

CFL = 4.10 -3. Consequently, for each cycle about 9925 steps were used.

2.2 Problem 2

The solution scheme presented for the Shock-Sound Interaction Problem is based on perturbation of a conser-

vative Euler equation solution. The Euler equation solution is solved using the Steger and Warming ( 1981) [5]

flux vector wave speed splitting technique. Note that while the Steger and Warming (1981) [5] paper discusses

using MacCormack schemes to obtain solutions for the flow field, the steady state flow field discussed herein

was obtained using procedures described in Chapter 10 Section 3 of Ref. [6] which require a block-tridiagonal

solver. The block-tridiagonal solver used is described in Ref. [7].

In addition, again no grid stretching was used since use of constant spacing maximized the time step size.

A total of 701 grid points are used. The CFL number used in these calculations was unity.

2.3 Shocks

Due to the limited number of points in the nozzle region the steady state solution did not work well with

supersonic flow. To make the code more robust in the nozzle region the following scheme was used when the

code has a problem obtaining a solution due to a shock. The code was prompted to use analytical solutions as
follows:

¢j-I = i'_Pj-lC2ef/Oj-I

Mi_l = uj_lCr_Z/Cj_l
2

M_ = M2-1 + T 1
2 2
_IMj_I -- 1.

2
When My > 0 then

MW pj_ 1C2ref

Tj_| =

P j- I Rgas

y- I ,t.4 2
1÷ 2 "*j-1

Tj= Vj-i
y-1M2

l+ 2""j

1+7 M2' 1
j--

Pj = P j-1

(7+ I)M_-I

Pj = Pj-I (7- 1)M___ +2

Cj = l_

V
uj = cjM/cr_f
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2<0useWhenM j _

uj = b/j_ I if j=2

uj = 0.5(uj_l +uj-2) if j> 2
2 2

pj = 0.2p_C_/PrefCre f

pg = gpj-Ilu_

2.4 Formulation of Perturbation Scheme

After making sure one can use the mean flow program and obtain a mean flow solution for 13, _, and p, one

must modify the steady state program to solve the perturbation problem.

The first step in creating the perturbation scheme is to note that one can create the average of density, velocity

and pressure using a recursive method. Y(n) the average of x(n) over n time steps can be calculated from

- l x(k)=
n- I

(n+l)y(n) = y___,x(k)+x(n)=ny(n-l)+x(n)
k=O

,, x(,,)
y(n) = t-7-_y(n - 1) + --n+ I

The second step is to define the start of a period of a wave with frequency fo which is advanced in a time step

from t to t + At.

Let

O0 = 2/1;f0(At--].10 -6)

0 = 2rtt

Then the start of a cycle is defined as the time at which cos(O) > cos(O0), sin(O) > O, and sin(O) < sin(O0).

Using this scheme the average over a period for the Nth period of the density, < P >, velocity,< u >, and

pressure,< p > can be calculated. Then the acoustic perturbation quantities are defined as follows

(p')" = [an-<p>(N)

(u')" = un-<u>(N)

(p,)n = p,,_ < p > (N)

For the first period one can use the mean flow values
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3 Boundary Conditions

For Problem 2 the boundary conditions for the case studied have two parts. One part is for the steady flow

and the second is for the unsteady flow. The boundary conditions used for both parts are based on the acoustic

characteristic equations for flow in a constant area tube. The governing isentropic differential equations are

c3p ua_pp+ _ = o
at 0x

(Op au) ap = o

ap apu
---q---

Ot ax +(_,- 1)p_ = o (1)

The acoustic system equations are derived by decomposing the fluid variables into a steady flow component

and an acoustic perturbation component.

{¢}= {¢}o+{¢'}

[o] [poI{¢}: . , {¢}o= ,,o {¢'}= p'p po

Using this assumption Eq. 1 can be written as

a {¢'} + [M] a {(_'} _ 0
at ax

where

uo Po

[M]: 0 uo

0 7Po

Note that 7 Po = 13oc2.

0

uo
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The matrix differential equation is diagonalized by a similarity transformation using the matrix [T] such that

[)_T] = [T]-I[M][ T]

where

[_T]=
u0 0 0

0 u0 - co 0

0 0 uo+co

IT]= 1 lid 1/¢_ ]0-1/9oco 1/910c00 1

[T]-1 =
l o -I/4
0 -9oco/2 1/2

0 9oco/2 1/2

Then

-- + [_.T]O_-w} --0

where

{w} = {wl,w2,w3}T= [T]-l{_ '}

9'- P' / cg

(P' - Oo cou') /2

(p' + ooco.')�2

For subsonic flow the entropy wave associated with wl moves with the flow at velocity uo, an acoustic wave

associated with w 3 move with the flow at velocity u0 + co, and another acoustic wave associated with wz moves

against the flow with velocity u0 - co. Consequently, at the inlet where two characteristics enter the duct for

the steady state case two boundary conditions can be set and the third can be extrapolated from interior values.

3.1 Problem 1

The inlet is assumed not to produce reflections. Consequently, the gradients of the upstream moving charac-

teristic waves are zero. The downstream moving characteristic wave is assumed to be the same at points 1 and

2. The inlet boundary condition for the steady state and perturbed flow is then derived from

(P3-P2) - 152c2(u3- u2) = Ta

(pZ-Ol)-(p2-Pl)/e 2 = 0

(pz--pl)+Plgl(UZ--Ul) = 0
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The solution for 9z,uj and Pl is

o, = m- Ta/2<
Ul = H2 + T,/2(_l?l

Pl = P2 -- T,/2

At the exit

0 = ¢-O(Xexit/(1-Mexit) q-t)

pex# = E cos(O)

ue.,.i, = -E cos(O)

Pexit = E COS(0)

3.2 Problem 2

For subsonic flow the entropy wave associated with wl moves with the flow at velocity uo, an acoustic wave

associated with w3 move with the flow at velocity uo + co, and another acoustic wave associated with w2 moves

against the flow with velocity uo - co. Consequently, at the inlet where two characteristics enter the duct for

the steady state case two boundary conditions can be set and the third can be extrapolated from interior values.

The inlet boundary condition for the steady state and perturbed flow is then

9']+1 = i+ssinO

u_+1 2u_ ,"= - _3 + s sin 0

p_,+l = l/5'+e sinO

0 = CO ( Xl t)
1 +Ml

At the exit since two characteristics leave the duct and one enters, one can specify only one boundary condi-

tion. The other two boundary conditions are found by extrapolation from the interior.

Thus for this case where the exit pressure ,Pexit, is constant we have

pn+l ,7 _ n ._t_n+l
jbc -_- 2 Pjmax Pjmax-1 + (P )jbc

/n+] n n , l'_n+ l
jbc = 2 lt jmax - U jmax_ l "+" _u ) jbc

,i+1 z t_n+l
Pjbc : Pexit q- I,p )jbc

Additional comments on boundary conditions for one dimensional flow are presented in section 10.4 of Ref.

[6] and in section 16.4.2 thru 16.4.4 in Ref. [8].

The unsteady part is also based on acoustic characteristic equations.

For density and velocity perturbations we use
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. I'_n-I-] I n I n= -(o )jma.,-P ) j ,c 2 (p)

(-,n+l -- 2' 1_n , ,_n
U )jbc -- (bl)jmax- _bl )jmax-I

At the exit a non-reflecting boundary condition is used. Consequently, the wave components propagating in

the negative x direction are zero and we have -_ = 0.

Consequently,

3 p' 3u _

3x P°C°3x - 0

Ixn+l , I'_n+l [ ! n , tw_ ]P )jbc = tP )j,nax + 130c0 (U)jbc-- t,u )jmmJ

Note that these boundary conditions are used in the solution in flux vector form

Qt = 13

Q= = 13u

Q3 = 13e, =o(e+u2/2) = p/(?-1)+9u2/2

In addition, the quantity solved for in the tridiagonal matrix equation is AQ = Qn+l _ Qn.

4 Results

4.1 Problem 1

The steady mean normalized density, 15/gexit, velocity, L//Cexit, and pressure, fi/Pexit are shown in Figs. 1-3

for Category 1 Problem 1. The distribution of maximum acoustic pressure during cycle 2 is shown in Figs. 4

and 5. The ripple found between the nozzle throat and the nozzle exit in solutions by other participants did

not appear.

4.2 Problem 2

The steady mean pressure distribution is shown in Fig. 6 and a close up view of the nozzle region is shown in

Fig. 7. The steady mean Mach number distribution is shown in Fig. 8 and a close up view of the nozzle region

is shown in Fig. 9. While the overall plots of pressure and Mach number shown in Figs. 6 and 8 appear fine,

the plots in the nozzle region (Figs 7 and 9) only roughly resembles a good steady state solution.

Calculations were done using a CFL number of 1. For the shock sound interaction problem the pressure

perturbation distribution at the start of cycle 500 is shown in Fig. 5. Comparison with solutions using other
methods show that the solution after the shock is much better than the solution before the shock.

The pressure perturbation at the exit over one cycle starting at the start of cycle 500 is shown in Fig. 6. The

solution for the pressure time history at the exit shows a phase lag of about 320 degrees.

The error at the end of a period for the pressure perturbation distribution at the start of each cycle is shown in

Fig. 7. A stable solution is obtained after cycle 400.
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5 Conclusions

The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack scheme.

Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state. The problems

are solved on evenly spaced grids. While solutions were found, the methods selected and not using stretched

grids lead to solutions which do not compare well with those found using more accurate schemes and stretched

grids. The perturbation of the mean flow scheme used to solve problem 2 shows promise. Investigations should

be undertaken on how to improve accuracy by use of grid stretching and use of more sophisticated methods

of solving the mean flow.
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OPTIMIZED WEIGHTED ESSENTIALLY NON-OSCILLATORY FINITE DIFFERENCE

SCHEMES FOR COMPUTATIONAL AEROACOUSTICS

R. F. Chen and ZHI JIAN WANG

CFD Research Corp., 215 Wynn Drive, Huntsville, AL 35805

Abstract

Optimized weighted essentially non-oscillatory (WENO) finite difference schemes have been developed to

take advantage of the optimized schemes of resolving broadband noise with less grid points per wavenumber

(PPW) and the WENO scheme of highly accurate resolution for discontinuities. Optimized schemes for all

stencils used in essentially non-oscillatory (ENO) are constructed based on a given order of accuracy and by

minimizing truncation error for a given range of wavenumbers. Then these optimized schemes are combined

following the idea of the WENO scheme through weights. The weights, however, are not constructed purely
to achieve higher order of accuracy in smooth regions as in the WENO scheme. They are constructed also to

minimize the truncation error in the wavenumber space. The smoothness indicators are built in the weights as

in the WENO scheme so that the weights of the stencil containing a discontinuity can be essentially 0 to

emulate the ENO idea. A seven point stencil, third order accurate optimized weighted essentially non-

oscillatory finite difference scheme is constructed. The scheme has been tested for the scalar model wave

equation and compared to the seventh order accurate WENO scheme using the same stencils. The test shows

the developed scheme gives much better results in resolving a wave with 6 ppw than the WENO scheme, and
it performs as well as the WENO scheme near discontinuities. The scheme together with a third order TVD

Runge-Kutta method is then applied to the linearized Euler equations to solve the two benchmark problems in

Category 1. Analytical mean flow solutions are used in the linearized Euler equations for both problems. For

the first problem, the weights without smoothness indicators are used because the mean flow is smooth. For

the second problem, the smoothness indicators are built in the weights to damp the spurious oscillations near
the shock wave.

Introduction

The recent past has seen impressive progresses made in Computational Aeroacoustics (CAA). As pointed out

by Tam 1, aeroacoustic problems differ significantly from the aerodynamic problems in the nature,

characteristics, and objectives. They are intrinsically unsteady, and the dominating frequencies are usually

high. Therefore the development of CAA algorithms needs independent thinking. As a result of this

independent thinking, many powerful numerical algorithms have been deveIoped to address the particular

problems in CAA. One landmark development in CAA algorithms is the Dispersion-Relation-Preserving

(DRP) finite difference schemes developed by Tam and Webb 2. Many other CAA researchers have applied

high order schemes to CAA 3"9. In the DRP schemes, central differences are employed to approximate the first

derivative. They are, therefore, non-dissipative in nature. Although non-dissipative schemes are ideal for

aeroacoustic problems, numerical dissipations are required to damp any non-physical waves generated by

boundary and/or initial conditions. In practice, high-order dissipation terms are added to the DRP schemes to

damp spurious oscillations. The amount of artificial dissipations required is, however, problem dependent.
One may need to fine tune the artificial damping to obtain the best results for a particular problem at hand. To

remedy this problem, optimized upwind DRP schemes have been developed more recently by Zhuang and

Chen 1°. Instead of using the central difference stencil, an upwind-biased stencil was selected based on the

local wave propagating direction. Then the upwind schemes are optimized in the wave-number space

following the same idea of DRP schemes. The upwind DRP schemes are by design dissipative. Therefore

they are capable of damping spurious waves without any extra artificial damping, relieving the user from fine

tuning the amount of numerical dissipations. Another advantage of the upwind DRP schemes is that
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acceptableresultscanbe obtainedevenif the meanflow contains discontinuities. With both the DRP and

upwind DRP schemes, it is nearly impossible to obtain oscillation-free numerical solutions if the mean flow

is discontinuous. For non-linear shock-acoustic wave interaction problems, numerical oscillations may
contaminate the resultant solutions.

The pursuit of non-oscillatory numerical schemes for hyperbolic conservation laws has resulted in many

significant developments in CFD during the last two decades. Notable examples include the MUSCL scheme

by van Leer, TVD schemes by Harten, and other high-resolution schemes. The MUSCL and TVD schemes

are designed for shock-capturing, and is usually first-order near smooth extrema. In order to achieve

uniformly high-order accuracy throughout the computational domain, the Essentially Non-Oscillatory (ENO)

schemes were developed 12. More recently, weighted ENO (WENO) schemes were developed to further
: =

increase the order of accuracy, while resolving discontinuities with essentially no numerical oscillations 13.

Both ENO and WENO were designed to achieve hlgh-order accuracy in smooth flow region while

minimizing oscillations near discontinuities by avoiding the discontinuity-containing stencils. Like the ENO

scheme, the WENO scheme is designed for problems with piecewise smooth solutions containing

discontinuities often encountered in aerodynamic flows. Their high accuracy is referred to the truncation error

for smooth solutions and can be achieved for relatively long waves. For short waves, the scheme quickly

becomes less accurate 14. Unfortunately, acoustic problems always contain sound waves with broadband

wavenumbers. Therefore, the direct application of ENO or WENO schemes to CAA would not be optimum.

In this study, we attempt to unite the advantages of both the DRP schemes and WENO schemes in the

development of Optimized WENO (OWENO) schemes. The idea is to optimize the WENO schemes in the

wave number space following the practice of the DRP schemes to achieve high-resolution for high-frequency
waves, i.e., to resolve a wave with about 6 points-per-wavelength (PPW). At the same time, OWENO scheme

will retain the advantages of WENO schemes in that discontinuities are capturing with essentially no

oscillations, and without any extra numerical damping. Therefore, the OWENO scheme will perform as well

as the WENO scheme near discontinuities while having the advantage of the optimized schemes of resolving
broadband noise with minimum PPW.

Optimized WENO (OWENO) Schemes

Optimized schemes preserve the wave propagation characteristics for a relatively large range of
wavenumbers and require less PPW. They are usually constructed by optimizing the finite difference

approximations of the spatial and temporal derivatives in the wave and frequency domains 1'2. We start with a

one-dimensional model wave equation on a uniform grid and use conservative approximation to the spatial

derivative following common approaches for finite difference method in CFD 15. The constructed scheme for

the model equation can then be easily extended to the Euler equation in conservative form in multi-
dimensions. Consider the scalar wave equation with constant wave speed a:

au _)u

+ = o (1)

Given the point values of the solution u(x): ui = u(x i, 0, and a stencil {xi_ . ..., Xi+s} with r+s+ 1 = k, k is a

predefined stencil size, one can construct polynomials of degree at most k-1 to approximate u(x) in the

interval [Xi_l/2, Xi+l/2]. The polynomial approximations on the two boundary points of the interval can be

written as the linear combination of the values of u(x) at the given stencil points as

~r,- £_-1 ~r,+ Z_-I ~Ui+1/2 = =oCrjUi-r+j Ui-1/2 = oCrjUi-r+j (2)

The superscript r means that there are r points to the left of grid point x i. We note that the difference between
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the values with superscripts at the same location Xi+l/2 is due to the one stencil point shift. Therefore it is clear

_rj = Or- i, j Without loss of generality we consider the case of a > 0 only and drop the superscript _+ for

convenience. Consider the finite difference approximation to the spatial derivative in equation (1) to the pvth

order of accuracy:

rAX i+ 1/2 - l/i- 1/2) = + O(Ax p') (3)
i

where Ax = xi+ 1/2-xi_ 1/2 and Pl <_k. Assuming a solution in the form u(x, t) = U(t)exp(iotx) and

substituting it into equation (3) we have:
S

r--'fL-_ _., Cr, j+reXp(,f_jo_Ax)[1-exp(-,fL-laAx)] = ot + O(otAx) pt (4)
Ax j=-r

The left hand side of the above equation is known as the numerical wavenumber. From Taylor expansions, it

is seen that equation (4) gives Pl equations for k unknown coefficients, j=-r, .... s. IfPl <k, this leaves k-pl

coefficients as free parameters. These parameters can then be determined by minimizing the following L 2

norm of the approximation error of the numerical wavenumber to the actual wave number for a range of

waves. To be more specific, we seek crj so that they satisfy equation (4) and minimize the following integral

E = a°_ x {_.[Re(_rAx) - otAx] 2 + (1 - ;L)[Im(_zrAx)]2}dotAx (5)
-WoAx

where cx0 is a predetermined wave number which gives the optimized range ofwavenumbers. Parameter _Lis

chosen to be between 0 and 1 balancing the error in real part and in imaginary part. The imaginary part of

error affects the magnitude of computed wave, while the real part contributes to the phase error.

It is seen that there are k candidate stencils {Xi_ r, .... Xi+s} for r = 0, 1..... k-1. In both ENO and WENO

approaches, erj are solely determined by equation (3) with Pl =k, i.e. no optimized procedure is used. ENO

picks a preferred stencil by comparing divided differences of the solution u(x) to achieve the idea of"adaptive

stencil", while WENO convexly combines all of them through weights 15. In the OWENO approach,

optimized procedure is used for all the candidate stencils which are then combined through weights following
the idea of the WENO. The weights, however, are not constructed purely to achieve higher order of accuracy

in smooth regions as in the WENO scheme. They are constructed also to minimize the truncation error in the

wavenumber space. Smoothness indicators are built in the weights as in the WENO scheme so that the

weights of the stencil containing a discontinuity can be essentially 0 to emulate the ENO idea. More

= vk-! d firspecifically, we first seek constants d r in the combination fii + 1/2 _r = 0 r i + 1/2 so that if the solutions

is smooth over all the candidate stencil, we have

_(fii+ 1/2--_i-1/2)= \u._,/3(_'ff'L'-I+
O( Ax p' +P2) (6)

i

with _,rk __10dr = 1 and P2 <- k - 1 . This can be done by Taylor expansions which leaves k-l-p2 weights as

free parameters. These parameters can then be determined by minimizing integral in equation (5) with _r

,r,k- l . --r
replaced by _ = 2-,r = 0 ar(_ " Since d r is determined based on the assumption of smooth solution, it is not

suitable when solution has a discontinuity in one or more of the candidate stencils. In this case we expect

weights to be essentially 0 in the stencils containing discontinuities to emulate the ENO idea. We would use
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= + O(Ax p2- ]nonlinear weights w r to replace d r with a built in smoothness indicator so that wr d r ) for smooth

solution, and it is automatically set to a small value close to 0 for the stencils containing a discontinuity.

Following the approach in [15], we choose the following weights

O_r dr k- 1 _ p (x)

Wr -- Z_ -- I ' O(r -- (Eq-_ r)2, I_r = l= "' O XZ_rI_l/2 Ax21- l_, " +01/2 ) dx, r = O, ..., k-1 (7)
00_r

where pr(x) is the polynomial of (k-l)th order over the interval [xi_s/2, Xi+l/2] determined by the given values

on stencil (xi_ r .... xi+s}.

In this paper we constructed a third order accurate OWENO scheme with k = 4,p] = 2,p 2 = 1, _, = 0.5 and

ot0Ax = 0.357t. Figure 1 shows numerical wavenumber comparison between the third order accurate

OWENO scheme and the 7th (2k-l) order accurate WENO scheme with same stencils. It is seen for the same

accuracy the OWENO can resolve wave with otAx up to 1.05 while WENO with otAx up to 0.7. In another

word the OWENO requires only 6 ppw while WENO requires 9 ppw.
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0.002 ......... WENO, Real Part li..........1

I...1..... WENO,Imagi.  P rt ..........-1

<_ ! ! _ ! ! ! i i'-,T"- i

i .........................................,,.,..i...'...x.,..
....................................!...........i'...................... ',,

. 1.' _ .............................. i_.....
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_ _ _ i
] : : I

-0.006 ._..__a_, d._ _ i i i i i, ! i
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otAx

Figure 1. Comparison of numerical wavenumbers of the OWENO and the WENO schemes

Validation

To validate the designed advantages of OWENO over WENO, two cases for the model wave equation (1)

with a=l are chosen for the comparison of OWENO and WENO schemes. A third order accurate TVD

Runge-Kutta method is used for time integration for both schemes 15. in the first case a sinuous0idal wave

Uo(X ) = sin(/t/3x) is released initially. Weights without smoothness indicators are used, i.e. w r = d r.

Figure 2a shows the comparison of computational errors for the two schemes at t=60, with spatial size

Ax = l or ppw=6. It is seen the numerical error by OWENO is significantly less than that by WENO. In the

second case a periodic step wave is released initially. Figure 2b shows the numerical results compared with

exact solution at t = I00 With Ax = 0.5. It indicates that the OWENO behaves as well as the WENO near

discontinuities. In both cases time step At is set to 0.I which is small enough so that the error due to time

integration is negligible.
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Figure 2. (a) Computational errors for sinuousoidal wave; (b) Comparison of numerical results with the exact

solution for the step wave

Application to Benchmark Problems

In this section we extend the OWENO scheme to the linearized Euler equations and apply the scheme to the

two benchmark problems in Category 1. For both problems the third order accurate TVD Runge-Kutta

method used in the validation cases is applied for time integration. Near boundary, waves are decomposed

into incoming and outgoing components. One-side biased 3rd order optimized schemes are constructed and

applied to the decomposed wave components.

Propagation of sound waves through a transonic nozzle

In this problem, non-conservative linearized Euler equations in curvilinear coordinate x = x(_) are used.

The equations can be written as:

+ = (8)

where A 0 is the Jacobian matrix with respect to the mean flow. _ contains mean flow variables, and mean

flow variable derivatives and nozzle area derivatives. Mean flow and mean flow derivatives are obtained

analytically. We extend the OWENO scheme to equation (8) as the following:

a'}-J + _ [A°(qi+ ]/2-_l;-]/2) + A-°(El;+ ]/2-qi-t/2)at i = Si (9)

~+

with qi+ 1/2 and qi + 1/2 obtained by the procedure described in above section. The Jacobian matrix is

+ +

decomposed into two parts, .40= .40 + .40, with .40 containing only non-negative eigenvalues and .40 only

non-positive eigenvalues. A non-uniform grid with 301 points on domain [-10, 10] is used with hyperbolic

sine transformation. No smoothness indicators are used in the weights because of smoothness of the mean

flow. Figure 3 displays the maximum pressure envelope on three intervals for better comparison with the

exact solution. It is seen that about 6 ppw is used for the wave near the outlet. Excellent agreement between
the numerical result and the exact solution is shown.
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Figure 3 Comparison of numerical maximum pressure distributions with the exact solution

Shock-Sound Interaction

Since there is a shock wave in the mean flow, we use conservative linearized equations written as

.-)

where Q is conserved perturbation variables, B 0 is the Jacobian matrix of conserved fluxes with respective

to the mean flow conserved variable. Now source term does not contain the derivatives of mean flow

variables. The mean flow is obtained analytically. Define left and right propagating flux vectors as

F- = 0.5[B0-ma:_lX'_0)[] _ F+= 05t 0+ (11)

where _t, l=1,2,3 are three eigenvalues of matrix B o. We then extend the OWENO to equation (10) as the

following:

--_i4- l(_i+ ''2 -- _'i- 1'2) = Hi _'i. 1,2 = _';. I/2 4- _"++ 1,2 (12)3t

A uniform grid with 201 points on domain [-10, 10] is used. Figure 4 shows the comparison of numerical

results with the exact solutions. Results obtained with OWENO using conservative linearized equations agree

very well with the exact solutions except for a little overshooting near the shock wave. This may be caused by

the extension of scalar scheme to the split flux vectors of equation (11). Characteristics based extension may

give better prediction near the shock wave. Furthermore the smoothness indicator given in equation (7) may
not be most suitable for the optimized schemes. Future work will investigate effects of different extension and

smoothness indicators. We note that non-conservative equation under predicts the pressure in the exit plane,
because the solution is not continuous.

Conclusions

OWENO schemes have been developed to combine the advantages of both the DRP and WENO schemes. By

design, OWENO schemes have high-resolutions for broadband waves with waveqengths longer than 5'6 grid

points per wave. Meanwhile, the OWENO schemes retain the essentially non-oscillatory nature of WENO
schemes in the presence of discontinuities, such as shocks and contact discontinuities. Numerical tests with

model wave equations confirm the expected advantages of OWENO schemes. The OWENO schemes have

been applied to solve the first two problems in the Third Computational Aeroacoustics (CAA) Workshop on
Benchmark Problems. Numerical results for both smooth and shocked mean flows agree well with analytical

results. The OWENO schemes are ideally suited to solve the non-linear Euler equations for shock-acoustic
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wave, and shock-vortex interaction problems. The implementation of the OWENO schemes for the Euler

equations is now under way.
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Figure 4. Left: Comparison of computed pressure with the exact solution; Right: Comparison of pressure at

exit plane computed with conservative and non-conservative linearized equations with the exit solution
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1. Introduction

Several kinds of artificial dissipation models were developed so far for the purpose of obtaining

numerical stability and efficient convergence features of numerical schemes based on the central

differences [1-7]. These present good resolution characteristics near discontinuity of nonlinear waves but

have a tendency to damp out the amplitude of linear waves seriously, because these were originally

designed to suppress the low wavenumber components of a wave profile. Therefore these are not suited

for the time-accurate numerical solutions of aeroacoustic problems that contain linear waves of very small

amplitudes in the far field. Jameson [1], Pulliam [2] and others [3-5] applied the nonlinear artificial

dissipation model to the steady Euler computations, which was a blend of the second-order and fourth-

order derivative term with the nonlinear switching coefficients. It has excellent shock-capturing properties

and helps fast convergence to the steady state, but it leads to the unnecessary damping of the linear waves

because it cannot distinguish the small-amplitude linear waves from the spurious numerical oscillations.

The artificial selective damping model was introduced by Tam et al. [6, 7] to solve the nonlinear acoustic

problems using the dispersion-relation-preserving scheme [8] which is a high-order and high-resolution
solver based on the central differences. The artificial selective damping model has been used for time-

dependent CAA solutions and not for the convergence to a steady-state solution. It was designed to damp

out the spurious wave components effectively in the high wavenumber range unresolved by the finite

difference scheme, while at the same time keeping the wave components in a wide band of the low

wavenumber range unaffected. It is good for linear waves without unnecessary damping, however it lacks

the shock-capturing properties to resolve the nonlinear discontinuity and is not able to remove the

spurious oscillations completely around the nonlinear waves.

In this paper, an improved formulation of artificial dissipation model is derived for CAA, which

removes the spurious numerical oscillations produced by the nonlinear waves sufficiently but does not

have an effect on the linear waves. The artificial selective damping model and the nonlinear artificial

dissipation model are combined for the numerical stability and temporal accuracy of CAA performed by

the high-order and high-resolution central difference schemes. The artificial selective damping model is

reformulated into a conservative form to maintain the correct phase speeds of nonlinear waves. The

second-order derivative term in the nonlinear artificial dissipation model is combined with the artificial

selective damping model to improve the shock-capturing property progressively. Quasi-one-dimensional

formalism is presented in the generalized coordinates for Problem 1 and 2 in Category 1 of the Third CAA

Workshop on Benchmark Problems. An adaptive constant is devised to control the local magnitude of the

dissipation level automatically and need not be readjusted for a variety of problems. The compressible

Euler equations in the conservative form are solved for the present computations. The optimized fourth-

order compact schemes based on the central differences [9, 10] are used for evaluation of the spatial

derivatives and the classical fourth-order Runge-Kutta method is used for temporal integration of the flow

variables. The feasibility and performance of the adaptive nonlinear artificial dissipation model are

investigated for CAA in the present paper.
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2. Governing Equations

The entire conservation forms of quasi-one-dimensional Euler equations are used for the governing

equations of Problems 1 and 2 in Category 1. The equations are fully nonlinear ones, which are somewhat

different from the equations of non-conservation form provided by the Workshop Committee. The words

'conservation form' mean all the spatial variables including transformation metrics and Jacobian are

contained in the differential operator. The equations are expressed in Cartesian coordinate as

3(AQ) 3(AE)
H = 0 (2-1)

3t 3x

where Q is the vector of conservative variables, E is the vector of inviscid fluxes and H is the source vector.

A = A(x) is the cross-sectional area. The vectors and their components of the conservative variables and the

inviscid fluxes are expressed as

Q = [p , pu , pe, _ , E = [pu , pu 2+ p , (pe, + p_,

where the total internal energy et is defined as

1 P+lu2
et -

7-1p 2

Actually, the equation (2-1) should be transformed to those in the generalized coordinate for obtaining

efficient solutions on variable grid meshes. The equations in the generalized coordinate are expressed as

3(Aft) + I_I= 0. (2-2)

ot
The superscript '^' denotes the functions in the generalized coordinates system. These vectors are given as

Q ___xE _I=_ x dA
6--7' --7-' I

where J is the transformation Jacobian and _, is the transformation metric from the Cartesian to the

generalized coordinates. In the one-dimensional case, J is identical with _x

3. High-Order and High-Resolution Schemes and Boundary Conditions

Recently, the need of accurate and efficient numerical algorithms with high truncation order and high

resolution has been increased for CAA in that these are able to simulate the generation and propagation of

high-wavenumber (or high-frequency) and small-amplitude wave components directly. These are almost

non-dissipative and less dispersive than the standard low-order ones that have been used widely so far.

For the present work, the optimized fourth-order compact schemes are used for the evaluation of spatial

derivatives and the classical fourth-order Runge-Kutta scheme is used for the integration in time. To be
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compatiblewith the high-orderand high-resolutionschemes,the characteristicboundary conditions are
implementedasphysicallycorrectand time-dependentnumericalboundaryconditionsfor CAA.

Optimized Compact Finite Difference Scheme at Interior Nodes

The main scheme presented here is the pentadiagonal type of central compact scheme to be used on

interior nodes and it is the generalization of the Pad6 scheme of the seven-point stencil as shown below:

f,.,-fi-i vbf.2-fi-2 +c d,'2 +af,', +d,'+q,', +  L'.2= a"
f i+3 -- f i-3

6A_
(3-1)

wherefi is a objective function, f i is its spatial derivative at node i and a, b, c, a and fl are the coefficients of

compact discretization with an order of truncation. This is the central difference formation for the
evaluation of the first derivatives on the interior nodes. The relations to determine the truncation order of

this scheme are derived by using Taylor's series expansion of Eq. (3-1). Only the tenth-order scheme has

unique values of the coefficients, and these are of the highest order obtainable with Eq. (3-1). The other
lower order schemes should have free coefficients that are not determined completely until more

constraints are imposed, and these can be used to improve the resolution characteristics. Analytic and

systematic constraints for the determination of the free coefficients are considered. The nature of these

constraints is minimization of the dispersive (phase) errors in the wavenumber domain by the Fourier

analysis. Using these constraints, the authors succeeded in optimizing the central compact schemes and

showed that the optimized fourth-order pentadiagonal scheme is the most accurate among the standard

central schemes and non-optimized compact schemes [9, 10]. The coefficients were obtained as follows:

a = 1.279672797796143, b = 1.051191982414920, c = 0.04475268855213291,

a= 0.5900108167074074, fl = 0.09779791767419070.

Optimized Compact Finite Difference Scheme near and at Boundary Nodes

Equation (3-1) can be solved by inversion of pentadiagonal matrix and the matrix should be closed at
the boundaries. Therefore some different formulations were considered near and at the boundaries. The

non-central or one-sided compact schemes to be used on near-boundary and boundary nodes are

expressed as

1 3

• i=0: fo+ao,lfl+flo,Ef_=--_j_=oao,jfj,

4

• i=1:a],ofo+f;+a,,2fi+fl_,3f3 =___.=1_1:oa14fi '

1 s
• i = 2 : /32,,,f0 + a2,,f; + f; + a2,gf 3 + fl2,,f; = "-iT Z a2qfj"

zag ;=0

(3-2)

(3-3)

(3-4)

Equations (3-2)-(3-4) were derived to close the pentadiagonal matrix at the boundaries and the optimum
coefficients were so determined that the schemes became the fourth-order ones except on the boundary

nodes (i = 0) for numerical stability. These formulations are, of necessity, non-central or one-sided

differences and their error characteristics are both dispersive and dissipative. The two kinds of errors can

be analyzed simultaneously in the wavenumber domain by the Fourier analysis and the authors

minimized these errors with the analytic optimization method too [9, 10]. The relations to determine the
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truncation ordersof theseschemesarederived by using Taylor's seriesexpansionof Eq. (3-2)-(3-4).The

optimum coefficients were obtained as follows:

i= 0 : Second Order :

a0,0 = -2.95516745786296,

a0,1 = 4.57321732196853,

a0,1 = -1.63175038219495,

f10,2= 2.27485354566209.

a0,2 = 4.28093227034817, a0,3= 0.305985569709741,

i= 1 : Fourth Order :

al,0 = -0.643755519081585, a1,1 = -0.215562412498565, al,2 = 1.39308006947385,

al,4 = -0.055981044934069,

al,0 = 0.204356208611126, al,2 = 0.046406522760991, _1,3 =-0.337432463538152.

al,3 = -0.47778109295963,

i=2

a2,0 =

a2,4 =

,o =

: Fourth Order:

-0.147618978190642, a2,1 = -0.659846174346428, a2,2 = -0.182251818640843, a2,3= 0.686060397630997,

0.29761855559004, a2,5= 0.00603801795687542,

0.0402516485629226,_2,_ = 0.449236223001478, a2,3 = 0.659998776315685, _2,4 = 0.10500904552933.

The optimum coefficients provide high accuracy and maximum resolutions for the central, non-central and

one-sided compact schemes, and these schemes were proposed as the optimized high-order compact

(OHOC) schemes. And these are used to evaluate the spatial derivatives accurately in the whole

computational domain for the present work.

Characteristic Boundary Conditions

The boundary conditions to be used for CAA in this paper are based on the local one-dimensional

characteristics. The characteristic variables are analyzed by transforming the governing equations to the

characteristic wave convection equations. The local one-dimensional relations between the characteristic

convection terms and the primitive variables are generated from the wave convection equations. The

physical boundary conditions are imposed to the characteristic convection terms using the local one-

dimensional relations. No extrapolations are needed in the implementation of the present boundary

conditions. Full nonlinear Euler equations in their entire conservation forms are directly solved at the

boundary without linearization or simplifications. The non-reflecting inflow/outflow conditions are used

for the steady mean solutions, and the transparent source conditions are employed to simulate the acoustic
disturbances at the inlet or outlet boundaries.

4. Adaptive Nonlinear Artificial Dissipation Model

The classical artificial dissipation consists of the second-order and fourth-order derivative term in

conservative form. The former is for a shock-capturing feature and the latter is for a background smoothing

effect. But the effect of the background smoothing term is so excessive that it may damp out the linear

acoustic waves seriously and it is not proper for CAA. On the other hand, the artificial selective damping

model lacks a stability to capture a high discontinuity generated from a strong nonlinear wave and still

produces numerical oscillations near the discontinuity. It was proposed in a non-conservative form so it

may have some error in reproducing the phase speeds of nonlinear waves if it is used in the original form.

In this paper, a revised formulation of the artificial selective damping term in conservative form is

presented. Then, it is desirable to combine the shock-capturing term and the artificial selective damping
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term as the background smoothing term. In this paper, this combination is proposed as an adaptive
nonlinearartificial dissipation(ANAD) model.

Quasi-one-dimensionalformalism of an ANAD model is suggestedin the generalizedcoordinates.
Considerthe dissipationterm addedon the right hand sideof thequasi-one-dimensionalEulerequations
in theflux vector form at the i-th grid point as:

_(AQ) 0(A_) _fl, =f),
(4-1)

where the vectors of the conservative variables, the inviscid fluxes and the source term are represented in

section 2. The dissipation term D, is given by the flux differences of the midpoint values as

[)i - A_+½_ti+"-A, l¢l,

A_ (4-2)

Then the numerical dissipation flux vector in the generalized coordinates is given in this paper as

_ s lentil ]

a q- J,+, .... ..>t ,+.(o,+,-Q,j- ,+_
slcnciI

Ixl,+_s,2, _">[..(Q,+,-Q,)+b2(Q,+_-Q,_.)+b._(O,+.-Q,_2)]}- I.E,+. (Q., - Q, )- i+.
J'+-I

(4-3)

where the differencing coefficients of the background smoothing term are obtained by constructing the

conservative form of the artificial selective damping term, which is also the flux differencing form of the

midpoint values. The resulting coefficients are as follows:

bl = -b0 = -0.1624382574577463, b2 = -b-1 = 0.07309131357825455, b3 = -b-2 = -0.01447042896399915.

The cross-section area on the midpoint in Eq. (4-2) and the transformation Jacobian on the midpoint in Eq.

(4-3) are evaluated just by the arithmetic averages of their values on the adjacent two grid points as

Ai+, + Ai Ji+2+ Ji .A_+I = 2 ' J'+'=

The stencil eigenvalue and the absolute eigenvalue are defined as

,a..<'""<'' minll;I.I ): max,;el+ )_ 3
i+1 - lll:-_ I Ill I'll :--2 _ I I+_ll

IXl,=_ul+c),t4xt,.

The nonlinear dissipation functions in Eq. (4-3) determine magnitudes of the second-order dissipation and

the fourth-order dissipation according to the change of pressure gradient. In regions of strong

discontinuity, the second-order dissipation, i.e. the shock-capturing term dominates and the fourth-order
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one is turned off. Out of the region, the second-order one becomes a very small value and the fourth-order

one, i.e. the background smoothing term, governs the dissipation. The nonlinear dissipation functions are

suggested in this thesis as

e(2)=_(2_ 3 e(4_ max[0 (a-(4)-E[2_)],max(v.,,,) ,+3= '

where the shock detector, vi is given as

V i =

tPi-t -2Pi + Pi+]l

Pi-_ +2Pi +P,1

The adaptive control constants in the generalized coordinates are devised in this paper as

ic(2)= _.(4) =--orall 1+ (or- 1)ta n_ - 1 )](x/-_fi) l÷t"nh(°-'),

= --_ -- i in 2afto pro,n, =i,?,o' {*l/lCxl;' R- ,

de= a + 1 tanh(o¢ - 1) ]J = fl_+ 1 tanh(fl - 1).
a-1 ' /J-1

(4-4)

where the meanings of the superscripts, 'max' and 'min' are explained by the following relations:

i171a'c imax

fma_ = max f, fm_ = rain f/.
i=0 ' i=O _ '

The adaptive control constants expressed in Eq. (4-4) are newly suggested in this paper for effective

applications of the artificial dissipation model to various CAA problems in the one-dimensional

generalized coordinates, which can be used for the linear and nonlinear waves at once. At each time step,

the optimal values of the control constants are calculated automatically by the flow properties. One need

not readjust the constants according to case-by-case nor waste additional computation time to find an

optimal value of them.

5. Application to Benchmark Problems
: -L

In this section, the numerical algorithms and ANAD (adaptive nonlinear artificial dissipation) model

presented in this thesis are applied to actual computations of Problems 1 and 2 of Category 1 in the Third

CAA Workshop on Benchmark Problems, and their accuracy and performance are investigated. It is shown

that the ANAD model enables the central difference schemes to simulate the propagation of sound waves

and shock-sound interactions in the transonic nozzle successfully.
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Problem I of Category 1

The numbers of grid points used are 301 and the grids are clustered near the nozzle throat. The time

step used is determined by CFL condition with a Courant number of 0.9. The convergence criterion for the

steady state is that the maximum value of the residual defined as Ip(n+l)-/_'l) I//_n) is below lx10 15 which is

the order of machine error. The computation time to obtain the steady mean solutions is 92.6 second in

25,000 operations using an IBM PC with an Intel Celeron Processor of 400 MHz. After the steady state is

reached, the acoustic perturbation starts at the exit plane, and the periodic oscillatory state with constant

magnitudes is achieved after 25 wavelets are produced. The error residual history for steady mean

solutions is represented in Fig. 1.

The steady mean solutions are represented in Fig. 2, where it is shown that the numerical solutions are

in good agreement with the analytic solutions. The perturbation distributions (p(x)-_(x), p(x)-_(x),

u(x)-/7(x)) at an instant are expressed in Fig. 3, where the interference between incident and reflected

waves at the upstream region, the shock-sound interaction at the throat, and the transmitted waves at the

downstream region are shown well. The distribution of maximum pressure perturbation in one period is

represented in Fig. 4.
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Fig. 1. Error residual history for steady mean solutions: Problem 1 of Category 1.
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Problem 2 of Category 1

The number of grid points used is 251 and the grids are clustered near the nozzle throat. The CFL

condition for time step and the convergence criterion for the steady state are the same as for Problem 1. The

computation time to obtain the steady mean solutions is 46.1 second in 16,000 operations using an IBM PC

with an Intel Celeron Processor of 400 MHz. After the steady state is reached, the acoustic perturbation

starts at the inlet plane, and the periodic oscillatory state with constant magnitudes is achieved after 25

wavelets are produced. The error residual history for steady mean solutions is represented in Fig. 5.
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Fig. 5. Error residual history for steady mean solutions: Problem 2 of Category 1.
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Thesteadymeansolutionsarerepresentedin Fig. 6,where it is shownthat thenumerical solutionsarein
good agreementwith the analytic solutions. The perturbation distributions (p(x)-_(x), p(x)-_(x),

u(x)- Tf(x)) at an instant are expressed in Fig. 7, where the interference between incident and reflected

waves at the upstream region, the shock-sound interaction at the throat, and the transmitted waves at the

downstream region are shown well. The exit pressure signal through one period is represented in Fig. 8.

The results in Fig. 7 and 8 are also in good agreement with the analytic solutions that are provided by the

committee of the Third CAA Workshop on Benchmark Problems.
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Fig. 6. Steady mean solutions compared with analytic solutions: Problem 2 of Category 1.
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Abstract

The optimized upwind DRP scheme (refs. 1 and 2) and the method of space-time CE/SE (ref. 3) are used to

solve two of the workshop benchmark problems, problems 1 and 2 of category 1. For problem 1 of category

1, both uniform and non-uniform grids are considered. A nearly converged solution is achieved with 400

uniform grid points for the upwind DRP scheme and with 1600 uniform grid points for the CE/SE method.

The use of the non-uniform grid points significantly reduces the number of grid points needed for obtaining

accurate numerical solutions. The pressure fluctuation increases drastically around the throat of the nozzle.

The fluctuation is accurately predicted by the upwind DRP scheme. For problem 2 of category 1, a

converged solution is achieved with 200 uniform grid points for both numerical methods. The steady flow

variables for both problems are calculated using the CE/SE method. The calculated steady flow solutions

agree with the analytical solutions very well.

Introduction

Aeroacoustic problems are governed by the same equations as those in aerodynamics, namely the Navier-

Stokes equations. Aeroacoustic problems, however, have their own nature, characteristics and objectives,

which are distinctly different from those commonly encountered in aerodynamics (ref. 4). During the past

years, many numerical schemes have been developed and applied for computational aeroacoustics. For the

current investigation, two of the numerical schemes, the optimized upwind DRP scheme (refs. 1 and 2) and

the CE/SE method (ref. 3), are used to solve problems 1 and 2 of category 1 for the 3 rd CAA benchmark

problems.

The optimized upwind DRP scheme was developed for computational aeroacoustics. The scheme is high

order accurate, uses fewer grid points per wavelength compared with that of standard high order accurate

schemes from the Taylor series expansion, and automatically damps out spurious short waves. The upwind

DRP scheme used here is the 7-stencil DRP upwind difference approximation with optimized coefficients.

The scheme is a fourth-order scheme. For instance, the first order derivative _" at the l" node of a grid with
bx

spacing A x is approximated by,

-- - a.i Ul+ j or - - a t ui+ ]

Ax t Ax "
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where the coefficients aj (ref. 1) are:

24 = 0.041382855555706463a_ 2

a2__= - 0.44077420643183318

a024= - 0.50020513450976445

a( 4 = 0.12475721579099250

24
a 2 =-0.45448643568845881

a 24 = 0.122650834511123463

a424 = - 0.016140071346698814

and

42 = 0.016140071346698814
a_ 4

42 -0.12265083451112346
a_3 =

42
a_2 = 0.4544863568845881

42 -0.12475721579099250a_l =

42 = 0.50020513450976445a 0

a_ 2 = 0.44077420643183318

a242 = -0.041382855555706463

The coefficients above are used for calculations in the interior computational domain. For the boundaries,

the coefficients (ref. 5) are:

a_ =-0.0283927780285557 a_ = 1/6

a_ = 0.192107686530459 a_ =-6/5

a_ =-0.617980095557289 a_ = 15/4

a_ = 1.28536574416235 and a6_ = -20/3

a_ I =-2.14340185401956 a_ = 15/2

5_ = 1.11244509330028 a6_ = - 6a 0

a_= 0.199856203612323 a_ = 49/20

6O
It is noted that aj represents standard six order accurate one-side scheme and was obtained solely from the

60
Taylor series expansion. The reason for choosing a; from the Taylor series expansion is that optimization

15 a51did not make visible improvement for this case. In addition, it is worthwhile to mention that a t = - -j and

06 _ a6°a t -- _;. The temporal discretization used in the scheme is from Tam and Webb (ref. 6).

The CE/SE method was developed for solving general fluid dynamics problems (ref. 3). The conservation

equations are solved in integral forms with flux conservation in space and time. Space and time are unified

and treated on the same footing. The CE/SE method used in the current study is a second-order scheme.

The objectives of the current investigations are to evaluate the accuracy of the two schemes for the

benchmark problems and to compare the solutions from the two numerical schemes.

Mathematical Formulations

It is known that the computation of sound wave propagation through a transonic nozzle and the simulation

of the shock-sound interactions are challenging problems for computational aeroacoustics (CAA). In order

to study the reliability and the accuracy of the current numerical methods for the CAA, simplified model

problems are formulated and solved using the upwind DRP and the CE/SE methods. The first problem is a

NASA/CP--2000-209790 248



one-dimensionalacoustic wave transmissionproblem through a nearly choked nozzle; and the second
problem is describedas a soundwave passingthrough a shock in a quasi-one-dimensionalsupersonic
nozzle.Forbothproblems,theareaof thenozzleis givenby:

[ -,.:(±7

_ 0.536572 - 0.198086e t06), x>0
A(x)=/ -,.:( _--1'

[1.0 - 0.661514e t°6) , x < 0

(1)

The governing equations for both problems are the quasi-one-dimensional Euler equations. The

dimensionless form of the equations is given as follows:

3 (pA)+ _--_(puA)= 0 (2)
3t

(3u 3ul OP=O3x (3)P _)_+u_-_-x +

3 (,pA)+ _---_(puA )+ ()'-1)p_-_-_(uA )=0 (4)3t

For problem 1, the inlet and outlet boundary conditions used in the computations are radiation boundary

conditions. At the inflow boundary,

l 3 -_-- .' =o (5)

,-M3,_p,j 3XLp,J

At the outflow boundary,

3___ + (I+M) = sin o_ +t (6)

 'tp'J ' -

where e=10 -5 , co=0.6zr and M=0.4. For problem 2, the radiation boundary condition and the outflow

boundary condition are used for the inlet and the outlet, respectively. At the inlet,

1 3 3 2toe x1-M 3t 3x l_M2 cos o_ ---t (7)
p, I+M
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At theoutlet,

lap' ap'
+ - 0 (8)

I+M Ot Ox

cDu' _0u' 1 ap'
--+ u + - 0 (9)
at ax

ap + __ .... + (lO)

at ax r l, at ax)

where e=10 -5 co=0.6Jr and M=0.2006533 The computational domain is considered as -10 < x < 10
, • _ -- .

Results and Discussions

The solutions of the two problems of category 1 are presented. In the first problem, both uniform grid and

non-uniform grid are considered. All the variables are non-dimensionalized with the characteristic values in

the uniform region downstream of the nozzle throat. In the second problem, only uniform grid is considered,

All the variagles are non-dimensionaiized using the upstream values such as the inlet nozzle height, the inlet

gas density, and the inlet speed of sound, etc. The steady state solutions for both problems are solved using

the CE/SE method.

Category 1 Problem l

The acoustic waves, with angular frequency (o=0.67r, are generated downstream of the nozzle and

propagate upstream through the narrow passage of the nozzle throat. Figure 1 shows the pressure

perturbation along the nozzle at time t=40 using the upwind DRP scheme with uniform grid. The numbers

of the grid points used in Figure I are 200, 400 and 800, respectively. We can see that a converged solution

is achieved with 400 uniform grid points. The maximum acoustic pressure distribution is shown in Figure 2

for the same numbers of the uniform grid points. However, after enlarging the region around the peak

pressure fluctuation of Figure 2, it is shown in Figure 3 that a non-uniform grid is needed to achieve a more

accurate solution if no more than 400 mesh points are allowed. The non-uniform grid points used in Figure

3 were obtained from the following transformation

A ln(l+_ tanh(fl)]

x =-_- (l_--_ tanh(fl)) (ll)

where A=5, fl=l.6and -l<__<l. The pressure perturbation along the nozzle at time t=40 is shown in

Figure 4 for the CE/SE method with 200, 400 and 800 uniform grid points. It is shown in Figure 4 that a

converged solution is not achieved yet. As the number of the uniform grid points increases to 1600, a nearly

converged solution, shown in Figure 5, is obtained by the CE/SE method. Again if non-uniform grid points

are used, a converged solution can be obtained by fewer than 400 grid points. The steady flow solutions are
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calculatedby theCE/SEmethod.Figure6 showsthenumericalsolutionsagreewith theanalyticalsolutions
very well.

Category. 1 Problem 2

The small amplitude acoustic waves, with angular frequency o9=0.6re, are generated upstream at the nozzle

inlet and propagate downstream through a shock in a quasi-one-dimensional supersonic nozzle. The

pressure perturbations along the nozzle are shown in Figures 7 and 8 for the upwind DRP and the CE/SE

schemes, respectively. It is seen that a converged solution is obtained for both schemes with 400 uniform

grid points. The comparisons of the solutions from the two schemes are given in Figures 9, 10 and 11 for

pressure, density, and velocity perturbations. We can see that there are some discrepancies between the

results from the two schemes, particularly after the shock. Since the same density and pressure perturbations

are expected, the wiggles in the density perturbations from the upwind DRP scheme, shown in Figure 10,

are the result of numerical errors. The pressure, density, and velocity perturbations from the upwind DRP

scheme are shown in Figure 12. It is seen that the pressure and density perturbations are identical before the

shock but different after the shock. However, there are no wiggles in the density perturbations from the

CE/SE method (Figure 13). One possible reason for this is that the CE/SE method is based on the

conservative formulation whereas the upwind DRP is not. If the conservative formulation were used for the

upwind DRP scheme, the wiggles in the density perturbation would disappear. Pressure perturbations at the

exit through a period of time are given in Figure 14 for both the numerical schemes with 400 uniform grid

points. The numerical steady flow solutions are compared with the analytical solutions in Figure 15. The

agreement between the numerical solutions and the analytical solutions is excellent.

Results of the two benchmark problems suggest that for the first problem the fourth-order upwind DRP

scheme needs fewer grid points than the second-order CE/SE method if uniform grid points are used. This

result is expected since the upwind DRP scheme used has a higher order of accuracy. However, for the

problem involving a shock-sound interaction (the second problem), the CE/SE method gives more accurate
results due to the conservative formulation.

Conclusions

In the paper, the two problems of category 1 have been solved using two numerical schemes, the upwind

DRP scheme and the CE/SE method. The results show that both methods give accurate numerical solutions

for both benchmark problems. For the first problem if the same grid point distribution is used the advantage

of the higher order scheme is that it requires fewer grid points for achieving an accurate solution. However

when there is a shock wave in the flow field, the conservative formulation becomes crucial for the accuracy

of numerical solutions.
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ESSENTIALLY NON-OSCILLATORY METHODS FOR SHOCK-SOUND INTERACTION

Yong Seok Kim* and Duck Joo Lee**

Department of Aerospace Engineering

Korea Advanced Institute of Science and Technology

Taejon, Korea

SUMMARY

High-order modified flux type Essentially Non-Oscillatory (ENO) schemes are used to solve the

Shock-Sound interaction problem of Category 1. The shock-capturing capability inherent to the

ENO scheme eliminates the oscillations near shock effectively. The peculiar characteristic of the

ENO scheme is the adaptive stenciling, however, this free adaptation of stencils is not necessary in

regions where the solution is smooth. This drawback is remedied by biasing stencils toward those

that are linearly stable. Nonreflecting numerical boundary conditions are employed at the inflow

and outflow for both the steady-state solution and time-dependent solution.

INTRODUCTION

As the computer is developed rapidly, the fluid and the acoustic fields can be solved directly by

using CAA (computational Aeroacoustics) technique. A class of uniformly high-order accurate,

essentially nonoscillatory (ENO) schemes have been developed by Harten and Oshcer [1], Harten

et al. [2]. An attempt to apply the ENO schemes to aeroacoustic problems was made by Meadow,

Caughy, and Casper [3], who discussed spurious entropy waves in calculations of unsteady shock

in the flow field. J.Y. Yang [4] implemented the Lagrangian ENO interpolation of the third-order

accuracy. Ko and Lee [5] improved the fourth-order modified flux approach ENO scheme of high-

resolution and high-order. The ENO schemes used in this paper not only produce sharp shock

profiles but also resolve the small amplitude waves.

At the radiation fields, Thomson's [6-7] non-reflecting characteristic-based boundary condition

was used as the physical boundary conditions so that no propagating waves reflect back inward

contaminating the acoustic field. Thompson decomposed hyperbolic equations into wave modes

of definite velocity and then specified characteristic boundary conditions for incoming waves.

The starting point of his analysis was nonlinear Euler equations. The idea of his approach was

that one-dimensional characteristic analysis could be performed by consideration of the

transverse terms as constant source term. The amplitudes of outward propagating waves are

defined entirely from the variables inside computational domain, while those of inward

propagating waves are specified as the characteristic boundary conditions.

* Graduate Student

** Professor
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NUMERICAL METHOD

The ENO scheme used in this work is briefly described as follows [8]. Consider the one-

dimensional Euler equations of inviscid gas dynamics in conservation law form:

a,Q+axF =0 (1)
where

Q = [p, p., pe,]_

F=bu, pu 2 + p, (pe, + p)u

p = (y-l)be , - 0.5pu 2] (2)

h = e, + p/p

]/= 1.4

Eq. (1) can be expressed in quasilinear form as:

O,Q+A(Q)O_Q =0 (3)

where A is the Jacobian matrix 3F/OQ and has real eigenvatues:

(a,, a 2, a 3) = (u, u+c, u-c) (4)

where c = ,_--_/p is the sound speed. One can transform Eq. (3) to a diagonal form using the

A = RAR -_ and W = R-_Q relations:

3,w + AaxW = 0 (5)

Eq. (1), based on Roe's approximate method, can be written as

Q'_+] = "-/]-[Fj+]/2- ~_j Qj -" Fj_,,2] (6)

where Fj]_/2 is the numerical flux and defined by

/Fj],,2 = l r ,, ,, . ._[Fj + Fj+, + Rj+,, 2 -Oj+,12] (7)

In light of the Godunov-type method this reflects different ways of resolving the Riemann

problem at the cell interface and Roe's approach is an ingenious way of extending the linear wave

decomposition, which is the exact linear solution to Riemann's problem, to nonlinear equations.

Here for the first order upwind scheme, the components of the column vector O_+_2 are given by:

' -' " (8)/2 = -- Ay+I/2 Rj+II2 (Qj+I

---=- At/+l/2 (_wlj+ll2

where R i+_n is the right eigenvector matrix and &v_i+_/2 is the element of the characteristic vector

as defined by:

6W=[6w,,6w _, 6w3]:[6p Spc2' pcSP+6u, SP_6UlpcJ (9)

The cell interface values are obtained by Roe's average. A higher-order ENO scheme for Eq. (1)

can be expressed in the form of Eq. (7) in terms of the numerical flux:

= _LFj + Fj+, + R;+,, 2 .O j+,12] (10)
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The components of {I}j+ll 2 are defined as:

<+,,2 g',+,(a',+,,2)+'' , r, a ,' ' '= (aj+,12)- g; (a;+,/2g2(aj+,12) - aj+,,z F;+,,2 +"2 +glj+l , )} (11)

where the characteristic speed, a_;._2, are the elements of the diagonal matrix A_+_2 and the first

difference of a characteristic value, A±w_, is the Ith element of the characteristic vector,

n -1 n glA±Wj = Rj+_/2A+Q j . are similar in the constant-coefficient case except three characteristic waves

exist. For the third-order accuracy these are given by:

i ' - ' -' +a(_'j+, ^'gi(aj+,,2)=a(a'j+,,2)fi_ +o'(aj.,,2)fl; ,2)flj (12)

where the o',{Y, {_ functions and the values of divided differences are expressed as below in case

of third-order:

,_(a)= lal(1-,_,lal)/ 2

{_(a)= a+(2- 31,_I+1;_1_)/6+ a-(1- I;_12)/6 (13)

_(a)=a+(l- I_,1=)/6+ a-(2- 31,_[+l;_12)/6
m(A_wj, a+w.j )

'), /J; =0 if(A_w' i _<a÷w'j) (14); =m(a_a_w',,A_A.w,
' ), fi_ = 0 otherwisefi; = m(A_A+ w',,A+A+ w,

ENO schemes are uniformly high-order accurate right up to the shock. However, they also have

certain drawbacks. One problem is with the freely adaptive stencil. This free adaptation of stencils

is not necessary in regions where the solution is smooth. For the present work, this drawback is

remedied by biasing stencils toward those that are linearly stable. Casper and Meadows [9] have

suggested a nonlinear biasing algorithm that retain the linearly stable stencils in smooth region,

yet allow more freedom near a discontinuity.

RESULTS AND DISCUSSIONS

The high-order ENO schemes discussed above are now applied to the solution of the shock-sound

interaction problem in a quasi-one-dimensional converging-diverging nozzle. The conservative

forms of the quasi-one-dimensional Euler equations are represented as follows:

_--7(AQ)+ _--7(AF) = H (15)

where

Q= pu ,

[Pe,]
I I:A1pu2+p , H= p (16)
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The variables p, u, p, e, and A are the density, velocity, pressure, total energy, and nozzle area,

respectively. And p is related to other variables by p = (7-1)Loe,-p( u2 +v2)/2] where 7 is the

ratio of specific heats.

The area of the nozzle and its derivative are illustrated in Fig. 1. A steady-state solution

(Fig. 2) is obtained from a third-order ENO scheme with a biased stencil algorithm when the

residuals are driven to 10-" order. It should be noted that this numerically converged initial

condition cannot be obtained with a freely adaptive stencil algorithm. Fig. 3 illustrates the

residual of the steady-state solution. A suitably converged solution demonstrates that the biased

stencil algorithm is well applied.

After steady state is achieved, an acoustic disturbance is introduced at the inlet, x=-10: At

the inlet boundary, the conditions are:

u = M + e.sin co t (17)

P 1/7 1+ M

where e=l.OxlO -5, c0=0.6rc, M,,_,=0.2006533. The pressure will be set at the outflow

boundary to create a shock (p),_,, =0.6071752. The calculation is performed on 251 cells clustered

near the nozzle throat. The time step used is determined by a CFL condition with a Courant

number of 0.9. The inflow is perturbed for 0 < t/Ta < 50, where Tz = 2zr/09 is one period of the

incoming acoustic wave. Fig. 4 shows the perturbation at the start of a period

(x,p(x)--d(x),u(x)-ff(x),p(x)--_(x)) over the period of the perturbation. The acoustic wave

propagates to the shock and where a reflected wave and a transmitted wave are formed. It is

observed that a large amplitude is generated at the shock position due to the interaction between

the acoustic wave and the shock wave. The pressure perturbation at the exit plane over one

period (t, p(t)- -riO)) is shown in Fig. 5.
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A Low Order and a High Order Solution

For A Converging-Diverging Nozzle Problem

John W. Goodrich

NASA Glenn Research Center

Cleveland, OH 44135

1 Introduction

The Computational Aeroacoustics Workshops on Benchmark problems are conducted in order to

generate solutions with a variety of methods for problems that are chosen both to be representative

of significant and relevant acoustic phenomena. It is generally recognized that CAA applications

require the resolution in time and in space of solution details over a significantly broader range

of scales than typical CFD applications. These requirements are forcing the development of new

methodologies for CAA applications. This paper presents numerical results from a third anda

seventh order algorithm for the propagation of an acoustic signal through a converging-diverging

nozzle. These two algorithms are members of a new family of high accuracy methods that have the

same order acuracuy in both space and time, and are an extension of previous work for linearized

Euler equations [3, 4, 5, 7] to fully nonlinear time dependent problems. The simulations are all with

the fully nonlinear quasi one dimensional Euler equations for the total solution, which includes both

the fluid dynamics and the acoustics. The acoustic solution is obtained from the time dependent

nonlinear solution by subtracting the steady solution.

2 The Governing Equations

The Euler equations for a quasi one dimensional problem with an ideal polytropic gas are:

Op 10Apv
0--7+ A Oz =0' (1)

OV + v _x + Op0--7 p_ = 0, (2)

Op Op Ov 1 dA
(:9-[+ V-_x + "YP-_x + "),pvA dx - O, (3)

where p is pressure, p is density, and v is velocity, and where A(x) is the cross sectional area of

a converging-diverging nozzle. We will take "y = 1.4 for air at standard conditions. The cross

sectional area of the converging-diverging nozzle A(x) is given as

A(x) = 0.536572- O.198086exp(-_x2),

= 1.000000- 0.661514exp(-_x2),

-10_<_ x < 0,

0 < x < +10.

(4)

Note that the first derivatives of A are continuous at x = 0, but that the second and higher are not.

This implies that there will be jump conditions at the throat for the second and higher derivatives
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of the solution. The benchmarkproblemis scaledsuchthat the conditionsfor the steadybase
flowat the nozzleexit are: Mo_ = 0.4; vc_ = 0.4; po¢ -- 1; ca = ,/_-_ = 1; and consequently,

1 An O[10 -5] acoustic disturbance is imposed on the O[1] steady flow at the nozzle exit, and

the goal is to find the time dependent pressure disturbance, and the maximum acoustic pressure

distribution.

For an ideal gas with constant specific heats, the entropy is S(x, t) = Cv log(_), where

OS OS

=0, (5)

so that entropy is convected with v. The stated problem has v > 0 throughout the nozzle, and

we may assume that the solution is isentropic. For the isentropic case with the scaling for this

problem,

p= lp , (61

the pressure equation reduces to the continuity equation, and p can be eliminated. The speed of
2

sound c = x/'p_-1, or p -- cT='r-_.The momentum equation can be written as

Ov Ov 2 Oc

+ + =o, (7)

and the continuity equation can be written as

Oc Oc _ - 10v 3'-1 dlog(A)
0"[ + V_x + '_-c"_x + --_cv dx

O. (8)

Our general solution approach is to

steady solution at the nozzle exit,

equations. Note that the equations

take S constant in the nozzle, with the value from the specified

and to solve for c and v with the momentum and continuity

for c and v have the Riemann invariants

2
R± - c =t:v, (9)

_,-1

and that for subsonic flow, R+ goes right and R_ goes left. A steady solution for the converging-

diverging nozzle is readily obtained as in Anderson [1]. The definition of entropy and the problem

reformulation in terms of c and v is from Whitham [8].

3 Numerical Methods

The computational results reported in this paper are from fully nonlinear simulations. The time

accurate algorithms are used to compute converged steady solutions for the flow in the nozzle,

and then to propagate the acoustic disturbance by oscillating the outflow boundary data about

the steady solution values. The results presented in this paper are from two algorithms that are

nonlinear realizations of a method for developing algorithms that can be applied to a variety of

time evolution problems [3, 4, 5, 7]. Both of the algorithms for the nozzle problem must provide

accurate nonlinear propagation of the solution, stable inflow and outflow boundary conditions, and

jump conditions for second and higher order derivatives at the throat. Because of space limitations,

only a summary of the algorithms can be given here, but further details will be presented in [6]. A

comprehensive presentation of our method for developing algorithms is also being prepared.

The algorithms that we are using in this paper are for nonlinear propagation of c and v, for

the total unsteady flow solution which includes the acoustic perturbation. The two nonlinear
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third orderderivativesat eachgrid point, and arethird and seventhorder accuratein spaceand
time, respectively.Higherordermethodsarepossible.Weusea staggeredgrid with a two point
stencil,anddataat eachgrid pointfor both c and v, and their spatial derivatives up to the specified

order for each particular algorithm. We use a local Hermite spatial interpolation with data at one

time level, and then obtain time derivatives by a realization of the Cauchy-Kowaleskya method [2].

This approach yields a local approximation of the system solution, and not an approximation of

derivative terms in an equation, so that the dynamics of the governing system are built into the

algorithms. The solution variables c and v, and their spatial derivatives up to the order specified
At

for each algorithm, are all propagated in time. The linear stability constraint is V_h-_ < 1, where

V is the velocity maximum in the scale of the problem. These algorithms are not in conservation

law form.

At the inflow boundary, R+ is specified as a function of time, and R_ is propagated from the

interior. At the outflow boundary, for the computation of the steady solution, R_ is specified

as a function of time, and R+ is propagated from the interior, while for the propagation of the

unsteady acoustic disturbance, c is specified as a function of time, and R+ is propagated from the
interior. The data for the acoustic disturbance is taken from the specified data for p(x, t) at the

right boundary. Spatial derivatives for the imposed boundary data can be obtained from the time

history of the boundary data.

There is a discontinuity in the second derivative of A at the throat, and consequently, in the

second and higher derivatives of the solution as well. Second or higher order interpolation across

the throat will introduce errors, and a special treatment at the throat is desirable. At the throat,

we compute R+ and its required spatial derivatives by propagation from the left, and R_ and its

required derivatives from the right. The interpolation stencils for each method are taken on the

appropriate side of the throat. In the case of the third order c2oljdl algorithm, only c, v, Oxc and

Oxv are required at the throat, and since they are continuous across the throat, this data can be

obtained directly from the data for the Riemann invariants. In the case of the seventh order c2o3jd3

algorithm, the second and third derivatives are different on either side of the throat, and these values
must be obtained from the second and third derivatives of R+ with their jump conditions. The

jump conditions are obtained from the evolution equations for the Riemann invariants.

4 Numerical Results

Numerical results will be presented from the third order c2oljdl algorithm with /kx = 1 and

from the seventh order c2o3jd3 algorithm with/Xx = _. Both algorithms use a uniform grid and

At = ¼. Note that the third order method uses approximately twelve times the number oftake
grid points as the seventh order method. With both algorithms, a steady solution is computed,

then time is reset to 0 and the disturbance oscillation is imposed. The acoustic disturbance at the

boundary is run for at least 0 _< t < 100 in order to let transients pass out of the nozzle. The

numerical results that we show have been computed on an IBM RS6000/397 workstation. On this

machine, the computation of the solution for three periods (say 90 < t < 100) takes approximately

674 seconds for the c2oljdl algorithm, and approximately 67 seconds for the c2o3jd3 algorithm.

Figures 1 and 2 present the total pressure at the throat for 90 < t < 100 from the third and

seventh order algorithms, respectively. The mean pressure level is slightly higher for the results from

the seventh order algorithm, but if the mean pressure levels are aligned, then the two time traces are

indistinguishable. The pressure disturbance is obtained by subtracting the mean pressure from the

total pressure. Figures 3 and 4 present the instantaneous acoustic pressure distributation at t = 100

for the third and seventh order methods, respectively. These profiles are virtually identical. Note
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that thewavelengthandamplitudedifferin the entranceandexit ducts,sincethe meanconvection
velocityis higherin the exit duct than in theentranceduct. Themaximumacousticpressurecan
alsobeobtainedat eachpoint bysubtractingthe minimumtotal pressurefrom the maximumtotal
pressure,and then dividing by 2. The maximumacousticpressureoccursat the throat, and is
9.500× 10-5 for the third ordermethod,and 9.572× 10-5 for the seventhorder method. The
maximumacousticpressuredistribution for the third orderalgorithm is presentedin Figure5 for
-10 < x < 10 and 100 < t < 110. We have included a magnified plot of the instantaneous pressure

at t -- 100 for the seventh order algorithm in Figure 6, for -1 <: x <: 1, or just across the throat

of the nozzle. This figure includes symbols for the grid points, and vividly shows the very few grid

points that are used by this seventh order algorithm to resolve the transmission of the acoustic

signal through the throat.

5 Conclusions

• It is possible to simultaneously compute the fluid dynamics and the acoustics for relevant

problems with a single algorithm and computation.

• High order acuracy is possible in both space and in time, even for nonlinear problems.

• Accurate algorithms with high order and high resolution can produce valid results with consid-

erably less total computational effort than less accurate methods, even for nonlinear problems.
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Figure 2: Throat Pressure History from the Seventh Order Algorithm
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Introduction

This paper presents an application of spectral methods to computational aeroacoustics problems.

The physics of sound propagation is modeled by the system of partial differential equations that

describe conservation of mass, momentum and energy in inviscid flows. The equations are solved

numerically in the time domain as an initial and boundary value problem to obtain the time-

dependent acoustic pressure in the flow field, from which sound pressure levels are obtained by

integration.

Both global spectral methods and multidomain spectral methods are used to discretize the space

terms that appear in the governing equations. While global spectral methods have some advantages,

such as ease of coding, use of fast Fourier transforms for computing derivatives and high accuracy,

the multidomain methods offer a viable alternative for domains with nontrivial geometric shapes.

They are handled by the use of unstructured grids of non-overlapping hexahedra that may have

curved boundaries. An isoparametric mapping is used to transform each hexahedron on the master

element, on which an efficient collocation spectral approximation can be defined by the use of

tensor products. Continuity of the solution in space is enforced as part of the solution process by

the use of a set of staggered grids that do not involve the element corners.

For time advancement, a set of Runge-Kutta methods optimized for wave propagation and with

minimal storage requirements are used for integration in time. Very simple yet effective radiation

boundary conditions are constructed by adding directional damping terms to the governing equa-

tions in regions near far-field boundaries, but without splitting the equations. As such, the cost at

which these boundary conditions can be implemented is very small. Furthermore, a method for

numerically capturing discontinuities is introduced, that allowed us not only to compute spectral

solutions for flows with shock waves, but also to simulate sound wave propagation through such

discontinuities.

Category 1, Problem 1

For the category 1 problems, the nonlinear Euler equations are solved in the form

OQ OF
0--7-+ 0go H (1)
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with thestatevectorQ, the flux vector F and the source term H given by

t011,

pu 2 + p

(pE + p)u
,H=

pu 0.4

A Ox
pu 20A

A Ox

(2)

For a usual spectral collocation method based on Chebyshev polynomials, the state vector

as well as the flux derivatives and the source terms are computed at the Gauss-Lobatto points

-cos (--_), with N the number of modes retained in the approximation. This would

/--k

\-,/

cluster the points quadralically towards the ends of the interval and would only allow a time step
1

At _ _-7. To alleviate this restriction on the time step, we used the Kosloff-Tal-Ezer [1] mapping,

arcsin(_) (3)
X- arcsin(_)

such that the position of the corresponding images Xi depends on the parameter w, with the two

limit cases being _v = 1, which corresponds to equi-distant nodes as for Fourier methods, and

= 0, in which case Hi will be the same Lobatto points. Differentiation using the Chebyshev

polynomials in ( will correspond to the use of a non-polynomial basis in X. The mapping intro-

duces an error, which can be made of the order of machine accuracy c by setting

2
zv = (4)

61/N -it- 6-1/N

which is the value that we actually used for these computations, and still results in a useful mapping

for sufficiently high values of N. To further cluster points in the central region of interest, the

collocation points in the z coordinate are obtained through a mapping of the form

x(x) ( tanh[r(1 4- X)]) (5)10 -qx +(l-q) 1- tanhr

where the parameter q controls the slope of the mapping, and r its departure from nonlinearity

(q=010i and r = 3 have been used for the results). With these mappings computed, derivatives

are computed in _-space using a Fast Cosine Transform method to evaluate the Chebyshev coeffi-

cients [2], and the derivatives in x are afterwards evaluated using the chain rule for differentiation.

The Euler equations become after discretization of the flux derivative a system of ordinary

differential equations of the form

d_QQ= F(t, Q(t)); Q(t n) = Q'_ (6)
dt

and is advanced in time with a low-storage, nonlinear, low dissipation and dispersion Runge-Kutta

method [3] of the form
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w_ = aiwi-1 + AtF(ti_l, @-1) "[

@ = @__ +/3,wi j"
i = 1,...,s (7)

with c_'1 = 0 for the algorithm to be self-starting. Here we denote Q0 = Q'_, Qn+a = Qs and

ti = t _ + c_At. It is found out that this discretization is however unstable due to nonlinear effects,

for which reason we had to use an exponential filter of the form

{1
C

k<C

k>_C

(8)

with o the order of the filter, C _ N a cut-off frequency, and w = - ln(c) in order to preserve

accuracy. This filter is applied directly to the Chebyshev coefficients Qk of the state vector only at

the end of a time step. We must note here that the filtered state vector Eo-kQkTk(.) does not any
k

more satisfy the discrete equations, i.e. its residual is not of the order of c; however, the discrete

residual change after the application of the filter is very small (of the order of 10 -s for N= 128, and

diminishing with N) such that we did not experience any problem in computing the propagation

of the acoustic signal.

For boundary conditions at the inflow and outflow boundaries, we used a simple Riemann

solution between the state as computed from the interior discretization and an externaI state, which

is defined by the problem specification. For computation of the mean flow this external state is

constant in time; after saving the steady-state solution, it is allowed to vary in time such as to

specify the incoming acoustic wave. Since the Riemann solver properly accounts for the correct

propagation of waves in unidimensional flows, no other special treatment is required. Figure 1(a)

shows the solution obtained for the maximum acoustic pressure along the nozzle using N=256

modes.

The main disadvantages of a global spectral method, in particular its lack of geometrical flex-

ibility, can be overcome by the use of multidomain spectral discretizations, in which the spectral

expansion is accomplished individually on each subdomain _i in a non-overlapping decomposi-

tion of the computational domain _ = [..Ji _i- The subdomains are then patched together to ensure

continuity of the solution across their interfaces. For the present work, we chose the multidomain

method first introduced by Kopriva and Kolias [4], extended to aeroacoustic problems in [5]. Since

the method is extensively described in these references, we only note here that we used a number

of 9 subdomains, with N=25 on each subdomain, giving a total of 225 discretization points. No

filtering of the solution is necessary in this case; the steady state solution was converged to ma-

chine accuracy. The subdomains have been clustered in the region of area variation for a better

resolution of the amplitude of the acoustic signal, as can be seen in figure 1(b).

Category 1, Problem 2

Shock capturing has long been considered a difficult problem for spectral methods, in particular

because of the lack of complete understanding of the Gibbs phenomenon. Lately however, a large

amount of work has been directed towards this problem, and it has been proved that one can use
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the spectral expansion of a discontinuous function to find the position and the strength of the

discontinuities and to build a spectrally accurate approximation [6], [7]. For the purpose of this

work, we took a different approach and implemented the so-called spectral viscosity method, first

introduced by Tadmor [9] and used for Chebyshev discretizations in [8].

In this case, the governing equations are modified by the addition of a numerical viscosity

taking the form:

OQ OF _(N) 0 ( OQ/Ox)0---7+ Ox - we'(x) Ox R, wC2(x) (9)

where the coefficient @_T) _ l/N, w(x) -----l/v/1- x 2 is the Chebyshev weight function, and

the exponents Cl and c2 are two parameters (taken as cl = 3 and c2 = 0 in our computations).

The viscosity term involves the convolution of the viscosity kernel R with the first derivative of Q;

for convenience, the convolution is actually evaluated in spectral space. The particularity of the

viscosity kernel is that it acts only on the high frequencies of the spectrum of Q, so that it does not

affect regions where the variables are smooth. Explicitly, the computation of the right-hand side

means evaluating

OQ/Ox _ ZRk(lkTk(. ) (10)
I¢ • wc2(x)

OQ/Ox
where Ok are the Chebyshev coefficients of wC2(x) " We used a scalar model for the viscosity, based

on the actual time-dependent variable in each of the three equations, and chose for the kernel the

Rk= 1- , k>C

form:

(11)

with C(N) the lowest mode at which the viscosity begins to operate. In figures 2, 3, 4, we present

results for a mesh made of 16 subdomains with N = 18 Gauss points each (hence a total of 288

discretization points), the mesh being somewhat clustered in the shock region as can be seen from

the data points in the figures (the smallest subdomain has a length Ax = 0.1).

Category 5 Problems

For this problem, the acoustic solver presented in reference [5] has been used. We solve the full

nonlinear Euler equations, and account for the known mean flow by subtracting the mean-flow

fluxes from the full instantaneous fluxes, such that the actual time-dependent variable is the pertur-

bation itself. For the discretization to be consistent with the staggered-grid muItidomain spectral

method, however, the mean-flow fluxes must be computed and stored direction by direction; com-

plete details are given in [10]. The main issues for this computation are a good resolution of the

shear layer, and the free field boundary conditions. As the Riemann solver we use is unidimen-

sional, it does not correctly represent the vorticity waves generated in the shear region, so that we

found it necessary to use the damping layer technique described in [5], based on adding a temporal

damping term to each equation of the form
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OQ
--+ -- -cr(:_)(Q - Q) (12)
Ot Oxi

where we take advantage of the fact that the mean flow is known beforehand. The damping varies

according to a power law in the damping layer,

I X"- T in$\, .ext int } (13)

with ,_-_" and _ext the coordinates of the interior and exterior limits of the layer. We emphasizea_i :b i

that, because the equations are not split, the extra cost introduced by the evaluation of the damping

terms is minimal.

For the computations, we used a grid made of 672 subdomains, covering the region (x, y) E

[-8, 56] × [0, 15], with 11 layers of elements between y = 0 and y = 1.9 for a better resolution

of the shear layer. The number of Gauss points in each element was varied between N = 5 and

N = 9, which leads to a total number of discretization points approximately between 16,000 and

54,000. Since, due to the nature of the discretization, the points are not equidistant, data along the

respective line segments were extracted using the computational field postprocessor (hence linear

interpolation). The perturbation has been introduced by adding the corresponding source term to

the energy equation. A non-dimensional amplitude of 0.001 has been used for the source, which

might introduce some nonlinearity into the solution, but we did not have the time to repeat the

experiment for a smaller source amplitude. Based on the maximum CFL number the time step

size was At = 0.06 on the coarsest grid, and the solution has been advanced at least up to t = 300.

Computational times for the problem on different grids varied from approximately three hours on

one CPU to about five hours on four CPU's for an Origin2000 machine with 195MHz R10000

processors. However, the results did not vary significantly over the stated range of grid sizes.

As a final comment, we remark that we expect the damping layer (its limits are set at the

outflow from x = 52 to x = 56 and at the upper boundary from y = 11.5 to y = 15) to perform

much better for the higher frequency case, since the sound will travel more wavelengths in this case

within this region. The computational results actually confirm this expectation. Recent work [11 ]

indicates that this kind of damping layer is best used in conjunction with grid stretching and low-

pass filtering, but we did not explore this issue here. Results obtained for the two cases, St, =- 0.14

and St = 0.6, in this category, are given in figures 5- 8. Insufficient resolution in the shear layer

may be the cause for the unexpected variation of the pressure perturbation at higher frequency

(St = 0.6) at y = 1 displayed in figure 8.
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Abstract

Category 5 and category 1, problem 2 are solved computationally using tile fourth-order DRP

scheme for spatial discretization, combined with a fourth-order Runge-Kutta algorithm for time

integration. In the category 5 problem, an unstable 2-D shear layer is excited by an acoustic

source, and instability wave radiation is observed for a range of excitation frequencies. The main

difficulty of this problem is to allow growing instability waves to leave the computational domain.

The category 1, problem 2 deals with internal sound propagation through a shock in a quasi-one-

dimensional nozzlc. The numerical solution is obtained in two steps. First the steady-state solution

is calculated using Euler's equations. Then an acoustic wave is imposed at the inflow condition to

evaluate the transmitted acoustic wave at the nozzle exit.

1 Introduction

Two benchmark problems are solved, category 5 and category 1 problem 2. Tile category 5 problem

deals with instability wave radiation in a 2-D supersonic shear layer. The Linearized Euler Equations (LEE)

solver used to compute the acoustic field generated by growing instability waves is the same as the author

has used previously to study 2-D and 3-D propagation problems. 12 In the category 1 problem 2, the quasi-

one-dimensional Euler equations are solved using the fourth-order DRP scheme for space discretization and

a fourth-order Runge-Kutta method for time advancement. This kind of numerical algorithm is not optimal

for supersonic flows in the presence of discontinuities. However, propagation of a sound wave through a

steady-state shocked flow in a converging-diverging nozzle is numerically investigated in spite of errors in the

mean-flow solution. The paper is organized as follows: the numerical algorithm used to solve LEE is described

in section 2; then numerical results of category 5 and category 1 problem 2 are presented in sections 3 and 4

respectively.
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2 LEE solver

2.1 Governing equations

Tile two-dimensional Linearized Euler Equations (LEE) may be written in cartesian coordinates as:

0U 0E 0F
+ + --z- + H -- S (1)

0--7- c,y

where U = [p', poU', poV', p,]t is the unknown vector, E and F are tile 2-D flux vectors. Tile vector H contains

refraction terms related to the gradients of the mean flow, which are equal to zero when the mean flow is

uniform. The vector S represents acoustic sources in the flow. The density pr, the velocity u' = (u r, v _) and

the pressure p_ are small perturbations superimposed on a mean flow of density Po, velocity Uo = (uo, Vo) and

pressure Po respectively. The three vectors E, F and H are written as:

E = u°P°Ul + pl VoPoUl
UoPoVr F = H =VoPoVt + pl

Uop' + 7PoU _ vop' + 7PoV' 0 I
• , , . Ouo . , l , Ouo

(poU + p Uo) -_x + (pov + p Vo)
. I I . _Vo . I ,, . OVo

(pou + p uo) --_-x + (poV + p vo) --_y

(7- 1)(p'V.uo- u'aP°ax-v'aP°_ay ]

where 7 is the ratio of specific heats which is assumed to have a constant value.

2.2 Numerical algorithm

A 2-D and 3-D LEE solver has been built using appropriate Computational AeroAcoustics (CAA) tech-

niques and has been used sucessflfily on a wide range of problems, 1-3 including previous CAA benchmark

problems. 4,5 An outline of the numerical procedure is given below. The linearized Euler equations (1) are

solved in a dimensionless form with length scale La, velocity scale Ud, density scale Pal, pressure scale pdu2d and

time scale Ld/Ud. The 7-point stencil, dispersion relation preserving (DRP) scheme of Tam &: Webb 6 is used

for the spatial flux derivations. For uniform mesh step sizes Ax and Ay, the discretized form of the equation

(1) is:

OUiJot - Ki,j with Ki,j = - E al -_xni+l,j + --_yFi,j+l - Hij + Si,j
/----3

In some cases it is necessary to remove spurious numerical oscillations due to non linearities or mismatches

with the boundary or initial conditions. These short waves can be filtered out by artificial selective damping. 7'8

The damping terms are added to the right-hand side of system (1) to obtain:

l a (1 1 )OUi,Jot - Ki,j + Di,j with Dij -- MR_ _ dz -_xUi+l,j + _yUi,j+ l (2)
1=-3

where M = Ud/Co, Co = _X/'_o/Po is the speed of sound and Rs = coA/u, is the mesh Reynolds number, A

being the physical mesh size and v. the dimensional artificial viscosity. The value of Rs is usually taken in

the interval [5 ; 20]. The time integration is performed by a four step Rungc-Kutta algorithm for its high
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stability limit and its low storage requirement. 9'1° The solution at time step n + 1 is obtained by the following

algorithm:

U_,j -- Un"_,3+ (_IAtK_,J

Ui_,j = U ?_,_+ (_2AtK_,j

uia, j = U n_,J+ _3AtK_,j

= K 3 D '_
uin; l un",3 -_ Old At ( i,j _- i j)

(3)

The time step is given by At = CFL × min{Ax/(uo + co),Ay/(vo + Co)} where CFL is the Courant-

Friedrichs-Lewy number. The stability limit requires a value of the CFL munber smaller than 1.73 and the

accuracy limit to reduce dissipation and dispersion errorQ ° is CFL < 0.73.

The 2-D and 3-D LEE solver is vectorized up to 520 MFlops on a Cray C98, with a time per iteration

and per node of 1.4 and 1.9 its respectively. The same computation on a Dec c_ 8200 at 625 MHz is 30 times

longer. The program is written in Fortran 90. All the calculations presented in this work are executed in

double precision on a single processor Dec c_.

2.3 Boundary Conditions

Formulation of the boundary conditions is very important in computational aeroacoustics, s Indeed, because

of the high quality of the numerical algorithm, any disturbance of small amt)litude can propagate in the com-

putational domain contaminating the numerical solution. Scveral boundary treatments have been considered

before choosing the most accurate methods for direct numerical simulation of acoustics. 11 These boundary con-

ditions are given in the form of differential equations which are integrated in time with the same Rmlgc-Kutta

algorithm (3) used for the interior points. The spatial derivatives are computed with optimized backward

difference stencils 6's for the three ghost points surrounding the computational domain.

2.3.1 Radiation boundary condition

The non-reflecting boundary condition of Tam and Webb 6 is implemented. This radiation boundary for-

mulation for outgoing acoustic waves is ba_ed on an asymptotic solution of the linearized Euler equations:

[0 0 '1_+v 9_+_ U=0 when r_,

where m = 0 and re = 1 for 2-D and 3-D geometry respectively, and r is the distance from acoustic sources.

In two-dimensions, and in polar coordinates (r, 0) centered at the source position, the group velocity vg of

acoustic waves used in geometrical acoustics, is defined by vg (0) = Uo.e_ + x/co2 - (Uo.e0) 2 where er and e0

are the unit vectors in the radial direction and the azimuthal direction respectively.

2.3.2 Outflow boundary conditions

For an outflow boundary condition, the pressure disturbance is an acoustic fluctuation, which is not the

case for the velocity and density disturbances. For these last two variables, linearized Euler's equations are
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used.This yieldsa setof compatiblefirst-orderdifferentialequations6:

Op' 1 ,fop' }0-7+ Uo.Vp' = c-_[ _- + uo.qp'

Ou--+ uo.Vu' - 10p'
cOt Po cOx

Ov I 10p'
0---7+ uo.Vv' ..... Po coy

Op' {0019 ' o Op' p ' }CO--_-+ vg cos -_x + sin -_y + _r
=0

2.3.3 Symmetric boundary condition

For a symmetric problem in y = 0, the boundary conditions at y = 0 are given by O/Oy[p',u',p'] t = 0

and v' = 0. Three ghost points are used across the symmetric axis to implement numerically these conditions:

n n u_,_j =u n. pn : n andvn .=-v .n. forj = 1, 3, wherej = 0 designates the position ofPi,-j = Pi,j, z,3_ _,-j = Pi,j _,-3 _,3 ""'

the symmetric axis.

3 Generation and radiation of acoustic waves from a 2-D shear flow

The category 5 problem deals with instability wave radiation. The 2-D supersonic mean-flow is parallel

to, and symmetric about, the x-axis. According to the boundary layer type approximation the mean static

pressure across the jet is taken as constant. The velocity profile is represented by:

{ I ]Uo(y)= u_+(uj-u_)exp -ln2 , y>_h

uj O<y<h

where b = 0.4 m is the half-width of the shear layer and h = 0.6 m is the width of the uniform core. All the

data concerning the mean flow are given in Table 1. The mean density profile is related to the axial velocity

by using the Busemann - Crocco relation, which is valid for parallel flow with a Prandtl number Pr = 1 and

constant pressurel2:

1 1Uo-U_ 1 uj-Uo 17-1tu °' q,Ioc )

Po pj ?tj - uoc Poe _tj - uoc 2 "YPo

An acoustic source excites instability waves in the shear layer. This source term takes the form:

S (x,y,t) = [0, O, O, 1]TAe -Bl'2 (x'+y2) coswt

where A = 10 -3 kg.m-l.s -3, /3 = 8 m -2, and co = 27rT is the angular frequency. The velocity is normalized

by the jet exit velocity itj_ the density by pj and the pressure by pju 2. The length scale is given by the

half-velocity distance R1/2 = h + b and the appropriate time scale is Rl/2/uj. Therefore, the non-dimensional

amplitude of the acoustic source is very small, A = 10 -3 x R1/2/(pju 3) _ 3.40 x 10-12.

LEE (1) arc solved for two forcing frequencies St = 0.14 and St = 0.6 where the Strouhal number is defined

by St = 2fR1/2/uj. For these two excitations, the computational grid is built up to correctly discretize all
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Tjo = 300 K

Mj=2

Tj = Tjo/ "[1+/_M# 2] = 166.67 K

ci = _-_ = 258.73 m.s -1

uj = Mjc i = 517.46 m.s -_

Pj = P = 101330 Pa

pj = P/(rTj) = 2.12 kg.m -3

Moo=0

Too = 300 K

coo = _ = 347.12 m.s -1

uoo=0

Poo = P = 101330 Pa

poo = P/(rToo) = 1.18 kg.m -3

Table 1: Mean flow data (problem 5). Tile subscript j denotes the exit value at tile centerline of the jet and

the subscript co denotes the ambient value. The constant r of the perfect gas equation of state p = prT is

taken as r = 286.8875, and the ratio of specifc heats is taken to be 7 = 1.4.

[.j : : : : : :: ',:: ',:',',[:::_;:i_Aff_lA 4A-I A-f-t--f-l-4-f- L
IX: .l_.3¢¢_J,t-t¢t-H_14)÷l'.q÷t'l-H÷44444_ ! I : : : : : : i
_, =====================================

0 _
-5 0 10 20

h- -H:::::

=-'

30

i ii

40 50
x/H

Figure 1: Computational domain: only every fourth line is shown in the two directions.

acoustic waves given in Table 2 as well as the shear-layer. The mesh is stretched in the radial direction with

a minimum spacing of iymi n = 0.05. The location of the radial grid points is given by:

/_Yrrlax + _kYmin hymax- iymin tanh /[Yi-l_ -- 4R1/2] !

Yi=Yi-l+ 2 + 2 t l.ff-R--_/_ J

with Ayrnax = 0.1. In the axial direction, the mesh is smoothly stretched at a rate of 1.5% from the location

of the acoustic source where Axmin = 0.05, to Axmax -----0.2 and then the grid is uniform again, as shown in

Figure 1. The nunlber of grid points is 361 × 151 points in the x and y directions respectively, giving 54511

points in total, and there is 20 points inside the shear-layer Ri/2. The stencil Reynolds number Rs is taken

to be Rs = 20 and the Mach number in equation (2) is M = uj/coo = 1.5. In our case, the best results are

obtained with the radiation condition applied to the outflow boundary.

Kelvin-Hehnholtz instability waves are expected since tim associated convection Mach number given by

Me = (ztj + cj)/(cj + Coo) _-- 1.28 is supersonic. These instability waves are of the form pi(y)e i(kz-wt) =

_i(y)e-k_ze ik_(z-g't) where the wave vector k = kr + iki is a function of the frequency w. For positive growth

rates -ki, a strong acoustic radiation is generated in the Mach wave emission angle 0. This angle is obtained

in matching the phase velocity of instability waves and acoustic waves, cos O = coo/c_o = krcoo/w. Figure 2

displays instantaneous pressure contours for the low frequency case St = 0.14. The acoustic intensity reaches
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frequency

St = 0.14
St = O.6

)_- __ Uj -- Cj 2 /_ __ Cj 2

R1/2 ttj St R1/2 - ttj St

7.14 7.14

1.67 1.67

RI/2

_ Uj + Cj 2

_tj St

21.43

5.00

Table 2: Apparent acoustic wave lengths corresponding to the two excitations.
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Figure 2: Instantaneous pressure contours for St = 0.14 at t = 37.8T. --Isolines from 0.25 × 10 -_ to

16 x l0 -1_ with a geometrical progression of 2, ..... dashed lines are negative contours. The dotted triangle

indicates the emission angle of instability wave radiation.

a peak for 0 -_ 23.5 °, in agreement with the linear instability theory. The radiated field is due to the two

contributions of the acoustic source and the instability wave, but this last component is larger. The acoustic

perturbation excites a growing instability wave, as shown in Figure 3 where the pressure is plotted along y = 1

in the shear layer at the start of a cycle. Figure 4 shows the mean quadratic fluctuations of the pressure p'2

along the two lines y/R_/2 = 10 and x/R1/2 = 50.

Results obtained fox" the high frequency St = 0.6 are displayed in Figures 5, 6 and 7 in a similar way. No

instability wave radiation is observed for this Strouhal number. For this neutral inode, the pressure fluctuations

are convected without amplification in the shear-layer. The radiated field is due only to the acoustic source of

small amplitude, located in a shear mean flow.

4 Internal propagation: shock-sound interaction

The second problem of category 1 is solved by using the quasi-one-dimensional Euler equations:

OAU OAE
-- + - H (4)

Ot Ox

where U = [p, pu, pet] t is the unknown vector and A (x) is the smoothly varying cross-section of the nozzle.

For a perfect gas, the total specific energy et is pet = pc + pu2/2 = P/(7 - 1) + pu2/2 where the variables p, u

and p are density, velocity and pressure. The two vectors E and H are given by [pu, pu 2 + p, u (pet + p)] t and

[0, pdA/dx, 0] t respectively.
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Figure 3: Left: pressure profile along the line y/R1�2 = 1 at the start of a cycle, t = 37T, and for a Strouhal

number St=0.14. Right: growth rate of the fluctuating pressure along the line y/R1�2 = 10.

x 10 24 x 10 22
8 3.5

A

%.4
V

2.5

2
A

f:X
V

1.5

0.5

0 ' 0
5 0 10 20 30 40 50 0 2 4 6 8 10

X/Iq y/Iq

Figure 4:p,2 along the line y/R1�2 = 10 and x/R1�2 = 50 respectively. Strouhal number St=0.14.
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Figure 6: Pressure profile along the line y/R1�2 = 1 at the start of a cycle at time t = 162T and for a Strouhal

number St=0.6.
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Figure 7:p,2 along tile line x/Ru2 = 50 and Y/Ra/2 = 10 respectively. Strouhal number St=0.6

The space derivatives are calculated by using the DRP scheme and the time integration is obtained with

the Runge-Kutta algoritlun (3). Moreover, a variable artificial selective damping 13 based on the difference of

velocity us in the stencil is implemented:

OUi _ 1 3 1 us 3 Ax Us

0t Ax __Ea E +j RsAx E3eJV +J Rs-
2 3 j=- P'a

• Y t,_ •

Ki I)i

where us = lumaz- uminl with Umaz = max {ui+j} and _tmi n ---- rain {Iti+j} for j = --3, ..., 3. The variable

damping is applied with Rs = 0.1. This damping is strong near shocks and very small in other regions. Thus

an additional constant artificial damping (2) with Rs = 5 is applied to all points of the coml)utational domain.

Non-linear characteristics are used at boundary conditions.

given by:
Dp 1 019

+L1 =0
Ot c2 Ot

, Ou 2 1 dA019+ + L2 + -0

0---[ pc-if[ puc _4 dxOp Ou 2 1 dA
O--[- Pc-_ + Lz + puc _4 dx -0

with

The compatibility equations of system (4) are

(Op 10p'_L1 = u _ _xJ

( Op Ou k

f Op Ou k

In order to set the pressure at the outflow boundary condition to create a shock, Pexit _- 0.6071752, a

correction term is added to obtain the steady-state solntion:

__OP+ L2 + L3
Ot 2

L3 = -L2

+ a (p - P_it) = 0 with 5 × 10 -3 <o_< 10 -2
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The areadistributionA (x) is given by:

A(x)=f 0'536572-0"198086c-1"2(°_-z)2 x>0 -10<x<10

t 1.-0.661514e -ln2(0.-_)2 x < 0 - -

and the location of the grid points is obtained using the following mapping:

1 1 1 [}+_itanhT]xi = - tanh -1 (_i tanh r) = - In
T 7- 2 -- _i tanh _-J

where -1 < _i = 2i/nx- 1 < 1, nz = 401 and T = 2. The minimum step size is at the throat with

Axmin = 0.0241 and the larger step size is Axmax _-- 0.3205 at x = +10. As a preliminary to solve the

workshop problem, propagation of an incoming acoustic wave is calculated in the nozzle without flow. The

numerical solution is compared with the solution provided by Webste,"s equation:

1 dA 013 w _ei_ t°2P + +k2 o k p (6)
Ox 2 A dx Ox co

Figure 9 shows the distribution of maximum acoustic pressure along the nozzle. The two solutions are

in agreement. Interferences of the reflected and incident waves produce a standing-wave pattern in the left

part of the nozzle. The transmitted wave calculated with (5) is slightly damped due to the coarse grid in the

downstream direction.

The numerical steady-state solution is displayed in Figure 9. No other special method were used at the

discontinuities than filtering with (5). The shock is located at x -_ 0.35 and the pre-shock Mach number is

M1 -_ 1.44. When tile residual is reduced to machine zero, a low-amplitude disturbance is imposed at the

inflow boundary using characteristic L2:

L2=(u+c)(l+pc)u+---cCOS w --u+c-t

with e = 10-5 and w = 0.67r = 27r/T. The amplitude e was turned on gradually using the expression

e x [1 -exp(-t/2T)] and the CFL number was taken as CFL = 0.7. Figure 10 shows the distribution of

pressure, velocity and density at the start of a period. The pressure perturbation at the exit plane through

one period is also plotted. Tile exit pressure amplitude is around 1.04 x 10-5.
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NUMERICAL SOLUTIONS TO THE THIRD CAA WORKSHOP

BENCHMARK PROBLEMS

Roy H. Loh and WEN H. LIN

The Boeing Company
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Canoga Park, CA

ABSTRACT

This paper presents numerical solutions to Problems l and 2 of Categories 1 and 6 of the 3rd NASA

CAA Workshop on benchmark problems. The numerical algorithm is based on a dual time scheme

for temporal discretization and a third-order finite volume scheme for spatial discretization. The aims

of this study are to apply a dual time stepping scheme to treat aeroacoustic problems of sound

propagation and to validate our CAA solver with the benchmark problems for developing a numerical

tool for noise analysis and control.

1. INTRODUCTION

Flow-generated sound accompanies the operations of almost every device in our daily life. Accurate

determination of sound pressure level is vital for us to understand the physics of noise generation,

control, and reduction in relation to designing a quiet device, machinery, or vehicle. Currently, an

analytic solution to a problem of flow-generated sound is formidable, if not impossible, because the

governing equations, boundary conditions, and initial conditions are so complicated. In most cases,

experimental or numerical schemes are used to obtain the desired sound pressure level for a flow-

induced noise problem. In this paper we employed a finite-volume method for spacial discretization

and a dual-time stepping scheme for temporal discretization to treat acoustic wave propagation in an

arbitrary flow field. The aim of this study is to demonstrate the applicability and accuracy of the

proposed method in solving an "aeroacoustic" problem in a transient flow environment. The ultimate

goal of the study is to develop and validate the proposed numerical tool to compute aeroacoustic

signals for engineering analysis.

In the following the mathematical equations and numerical algorithm are briefly discussed. Then the

computed results of the mentioned benchmark problems are presented.
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2. GOVERNING EQUATIONS

Acoustic wave motion in a flow field is considered a small perturbation to the flow. The total field of

the reference flow and acoustic perturbations satisfies the equations of continuity, momentum,

energy, and state. For a viscous compressible fluid the two-dimensional governing equations written

in a flux vector form with a pre-condition matrix are

onE 3G
3Q t, 3Q,. + + - O, (1)

D, 3 r + 3 t --fir OrI

where Qi, = [P, u, v, h}, Q,. = [19, pu, pv, pe}, D I, is a pre-condition matrix, r and t are respectively

pseudo and real time, p, u, v, and h are pressure, velocity components, and enthalpy, p and e are

density and internal energy, E and G are fluxes.

Consider the total field is a time-stationary process such that every field variable can be written as the

sum of a mean part and a purely fluctuating part [1]:

t

F(x,,t) - F(x,) + F (x,,t) (2)

1"

F(x,) = -_r I-_ F(x,, t) dt

I •
F (x_,t)dt = 0

_'g

where i = l, 2, 3, and F is any variable in Q, and Q,.. Applying this concept to Equation (l), one has

the governing equations for the fluctuating variables as

3E OG
OQ',, 3Q_. + + - 0 (3)

D p Or + 3t 3_ 3rl

It is noted that the pre-condition matrix Dp in the above equation is evaluated with the mean-flow

state.

At the (n+l) th physical-time and (s+l) th iterative-time levels, we write the above equations in a semi-

discrete form with a temporal accuracy parameter 0 ( 0 < 0 < 1 ) as
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(_QI,I'+' r_Q,_'+'(_Q:I" (_T+' (_ I"÷'+ _o + + =oJ {_' ) {1E) {_.){ J

Defining O c

= -(l+0) + 0 (Qf)"-- (Qf)'-:
At At

+!

(4)

Now letting D -= Dp + D,. (1 + 0)A_", we have
At

_,(e',,_"+'_ _Q,_
AT

+A--+B--

= -(l+0)
(Q[')' l (Qfl)'[ + 0 (Qf)"- (Qf)n-,

At At

where transformation matrices A and B are defined as

(5)

_t_o',,j ' t_o,,j
= OG c3Qf ]s

J

Equation (5) is the two-dimensional dual time stepping equation used to design the numerical

algorithm in modular forms in a Boeing-Rocketdyne CFD solver named TIDAL (Time Iterative

Density-based Algorithm) to compute the acoustic quantities. Details of the acoustic algorithm of

TIDAL can be found in Reference [2] and therefore omitted in this study.

3. NUMERICAL RESULTS AND DISCUSSION

Using TIDAL, we solved the following four benchmark problems of the third NASA Computational

Aeroacoustics (CAA) Workshop: Problems 1 and 2 of Category 1 for sound wave propagating in a

one-dimensional nozzle and Problems 1 and 2 of Category 6 for sound radiation due to boundary
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layer flows passing a cavity. All these examples were selected to study the functionality, accuracy,

and performance of the acoustic solver of TIDAL in solving the problems of sound propagation.

Results of the study are briefly presented in the following paragraphs.

3.1 PROBLEM 1 OF CATEGORY 1

Figure 1 shows the distributions of mean flow density, Mach number, and pressure. The computed

Mach number is 0.938 at the throat, which is very close to the

flow is nearly sonic at the throat. These results were obtained

a domain of size 20 (i. e., -10 < x < 10). If a uniform grid of

analytical value of 0.940 [3]. The mean

using a uniform grid of 1000 points for

400 points is used, the computed Mach

number is 0.928 at the throat. In all calculations for Category 1 problems both grids were used. Figure

2 shows the variations of acoustic pressures with respect to the number of grid points. It is noted from

this figure that at least 300 grid points are needed to resolve the right magnitude and phase of the

sound wave. However, the result obtained by the 1000-point grid has higher values at the throat and

in the upstream of throat than that obtained by 400-point grid. This phenomenon is mainly caused by

the spatial resolution associated with the third-order finite volume scheme.

Figure 3 shows the variations of acoustic pressures with time. The upstream propagating sound wave

has a speed of 0.6 in the constant area downstream of the throat and a varied speed in the convergent-

divergent area. At the throat the wave only travels at a speed of .0721738 because the flow speed is

0.9278262 there. Therefore, at t = 10 the wave front only travels six units from downstream and for t

greater than 20 it already passes the throat. Since the wave can not travel much upstream of the throat,

most of its energy is blocked and accumulated near the throat. A shock-like wave front of maximum

pressure is therefore formed just downstream of the throat, and this maximum oscillates continuously

with time.

Figures 4a and 4b respectively show the time series and Fourier spectra of the maximum sound

pressure. The amplitude of the maximum pressure is 7.76719x10 .5 obtained by the 1000-point grid

-5

and 4.58071x 10 by a 400-point grid. All these values are smaller than the analytical value predicted

by Tam [3]. Again, the under-prediction of peak value is caused by the spatial resolution limited by

the third-order finite volume scheme. Fourier spectra show that the main frequency is 0.3, which is

the same as the frequency of input wave. In figure 4b there is a harmonic of very small amplitude

-6 -6

(6.72744x10 , 1.05585x10 ) at the frequency of 0.9, which is three times the fundamental frequency.
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This harmonic is due to the nonlinear effect of sound wave propagation in a flowing fluid because the

acoustic solver of TIDAL includes nonlinear terms.

Figure 5 shows the envelope of the maximum acoustic pressure distribution inside the nozzle. There

are five complete waves downstream of the throat and only 3.75 waves upstream of the throat. The

non-dimensional wavenumber of the sound wave is 0.6 in the constant area downstream of the throat,

roughly equal to rt in the varying area, and equal to 3rd4 in the constant area upstream of the throat.

-7
The small amplitude (7.10818x10) of the wave, obtained by the 400-point grid, in the upstream of

the throat is 7.10818% of the input wave amplitude. Because the mean flow speed at the throat is not

exactly sonic, the sound wave still has energy to propagate upstream.

3.2 PROBLEM 2 OF CATEGORY 1

Figure 6 shows the density, velocity, and pressure of the mean flow. As seen from this figure, a

normal shock is formed just downstream of the throat. In the constant areas up- and down- stream of

the throat the flow properties are all constant.

Figure 7 shows the acoustic density, velocity, and pressure at the start of a period. All acoustic

quantities are amplified by the shock; the perturbed density and pressure are all in phase everywhere

in the nozzle, while the perturbed velocity is only in phase with the density and pressure after the

shock. Before the shock the acoustic velocity lags behind the acoustic density and pressure. The input

sound wave propagates from left to right, reflects from, and travels through the shock. The

transmitted wave continues traveling downstream of the shock and exits the nozzle; however, the

reflected wave interacts with the input wave and causes amplification and cancellation.

Figure 8 shows the envelope of the maximum acoustic pressure distribution in the nozzle for t = 40.

The maximum pressure amplitude behind the shock is constant and equal to the amplitude of the

input wave. However, the maximum pressure before the shock oscillates with respect to the

amplitude of the input wave. At the shock the amplitude of the maximum pressure is approximately

3.47999 times that of the input wave. A comparison is shown in Figure 9 of the computed acoustic

pressure and the corresponding exact solution [4]. Except for the phase and peak value at the shock,

the computed result agrees quite well with the exact solution.

Figure 10 shows the time series of acoustic pressures at the exit plane and at one plane in the constant

area upstream of the throat. This figure shows that both sound waves in front of and behind the shock

are harmonic with the same frequency as the input sound wave.
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3.3 PROBLEM 1 OF CATEGORY 6

Figure 11 shows the time series and Fourier spectra of sound pressures at the center of the left wall at

the center of the cavity mouth, and at one point 3D above the opening, where D is the dimension of

the intrusive plate at the opening. This figure indicates that pressure fluctuations at these three

locations are harmonics and that the pressure fluctuations at the left wall are out of phase with respect

to those at the mouth and outside. Most of the pressure fluctuations at the cavity mouth do not radiate

into the cavity or outside as sound waves. Carefully examining the figure indicates that there are 12

waves associated with the pressure fluctuations at each location in 0.008 second. Therefore, the

dominant frequency of these waves is 1500 Hz.

The most distinct modes are at 125, 750, 1500, 2250, 3000, 3750, and 4500 Hz, and the maximum

sound pressure level is at 1500 Hz for all three locations. The sound pressure level at 1500 Hz is

117.33 dB at the left wall center, 123.34 dB at the point 3D above the cavity mouth, and 133.63 dB at

the center of the mouth, where the sound pressure level in dB is referenced to 20 $.tPa. The sound

pressure levels of other modes in the frequency range of 100 to 6000 Hz are all above 55 dB.

3.4 PROBLEM 2 OF CATEGORY 6

The differences between this and previous problems are the incoming flow speed and the boundary

layer thickness over the cavity. Figure 12 shows the time series and Fourier spectra of sound

pressures at the center of the left wall, at the center of the cavity mouth, and at a point 3D above the

opening. Again, carefully examining this figure indicates that the pressure fluctuations at the mouth

center and the point outside are in phase and those at the left wall are not quite in phase with the

former two. There are about 15 waves associated with these pressure fluctuations within .006 second;

therefore, the dominant frequency of these waves is 2500 Hz.

The most distinct modes are at 1500, 1800, 2500, 3500, 4350, 5000, 5700, 6350, 6800, and 8000 Hz

and the maximum sound pressure level is at 2500 Hz for all three locations. The sound pressure level

at 2500 Hz is 116.29 dB at the left wall center, 125.79 dB at the point 3D above the cavity mouth, and

140 dB at the center of mouth. The sound pressure levels of other modes in the frequency range of 0

to 10000 Hz are aIl above 75 dB. The energy level of the sound wave at the mouth center is much

greater in this problem than in the first problem where the incoming velocity was 26.8 m/s. However,
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the maximum radiated sound levels at the left wall of the cavity are very close to each other for both

U = 26.8 and 50.9 m/s.
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GENERATION AND RADIATION OF ACOUSTIC WAVES

FROM A 2-D SHEAR LAYER *

Anurag Agarwaltand PHILIP J. MORRIS *

Department of Aerospace Engineering

The Pennsylvania State University

University Park, PA 16802

Introduction

A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented

in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently

being solved by using the Impedance Mismatch Method (IMM) [!, 2, 3]. In this technique, a solid body in the

domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different

value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The

great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made

for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all

parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The

incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with

the presence of the scattering body (through the impedance mismatch) and the propagation of the incident

field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the

vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of

great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the

effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave

propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

Governing Equations

The Governing Equations are the linearized Euler equations. These equations are solved using the Impedance

Mismatch Method. The linearized Euler equations can be rearranged in the following form

*Work funded under NASA Grant NAG- I-1924
*Graduate research assistant

*Boeing/A.D. Welliver Professor of Aerospace Engineering
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where S is a source term. The mean quantities, U and 9 are functions of y only (in the present problem) and

the static pressure P is a constant (except inside a scattering body). It should be noted that, in the IMM, the

density inside the scattering body is set to a lower value than the ambient density. The speeds of sound in the

two media are assumed to be equal. This non-physical treatment recovers the physical solution in the ambient

medium. The details of the methodology, including the rationale for choice of body impedance is given in

[1,2,3].

The total perturbation flow-field, q, is split into incident and scattered fields.

qt=qi+qs (2)

Then, equation (1) can be written compactly as

0ql _)E_ _)F/z 0q):

c3_- + --_-x + "-0-f'y- 0t R_=S (3)

with I being either i for incident or s for scattered, z being either n for non-uniform field or u for uniform field.

E and F are flux vectors in the x and y directions. R represents the residual. The incident field is assumed to

propagate in a uniform flow. Therefore, the governing equation for the incident field is

_)qi

Ot R u = S (4)

From equations (3 - 4), the equation for the scattered field becomes

Oqs

o3t Rn = - { Ru - Rn } (5)

The right hand side of this equation acts as a source for the scattered field, it is non-zero inside a scattering

body and in a region of non-uniform mean flow.

Numerical Algorithm

A fourth-order Dispersion-Relation-Preserving (DRP) scheme with a seven point stencil developed by Tam

and Webb [5] is used for spatial discretization and a fourth-order Runge-Kutta scheme is used for time inte-

gration. The time integration method is applied to both the incident and the scattered fields. The integration

of the incident field is performed after the first and third stages of the scattered field integration. To damp out

spurious high frequency waves, a sixth-order artificial dissipation term is used.

The spatial domain and its decomposition for parallel implementation is shown in figure (!). A symmetry

boundary condition is applied at the lower boundary for both the incident and scattered fields. Buffer zones [6]
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Figure i" A schematic representation of boundary conditions and domain decomposition

are employed at the other boundaries for the scattered field and Tam and Webb [5] uniform radiation boundary

conditions are used for the incident field. In the buffer zone, the perturbation quantities are gradually reduced

to zero by directly multiplying them with an appropriate damping function.

The parallel implementation is based on a technique developed by Lockard and Morris [4]. The code is

written in Fortran 90 and uses the Message Passing Interface (MPI) for communication between processors.

The message passing boundaries are shown by dotted lines in figure (1). Since the spatial stencil for the finite-

difference approximations uses seven points, a three-point overlap region is constructed along the interface of

each sub-domain.

Numerical Results

The physical domain extends from -5 to 50 in the x direction and from 0 to 10 in the y direction. The actual

domain used, including the buffer zones spans from -20 to 65 in the x direction and from 0 to 15 in the y

direction. A uniform grid of 401 x 451 grid points is used. This grid is used for both the incident and the
scattered fields.
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Figure (2) shows plots of perturbation pressure along y = l for the two Strouhal numbers. It illus-

trates that for S = 0.14, an instability wave is excited, whereas S = 0.6 corresponds to a neutral stability

case. Separate analytical computations show that the eigenvalue (wave number k) for the instability wave is

0.6149- 0.06724i. This is in exact agreement with the growth rate and wavelength obtained in the numerical

computation. In the higher Strouhal number case, the pressure at y -- I shows the interference between the

acoustic perturbations and the nearly neutral instability wave.

Figure (3) shows the mean square pressure along the outer boundary at y = 10 for the Strouhal number

of 0.14 and 0.6 respectively. The average is taken over 10 cycles for the lower Strouhal number and over 40

cycles for the higher Strouhal number. The exponential growth for S -- 0.14 is as expected. However, since

S --=0.6 corresponds to a weak neutral stability case, the acoustic waves contaminate the result for the domain

of interest. As a result a constant amplitude is not seen (as one might expect for a neutral stability case) for

the higher Strouhal number. Figure (4), that shows contours of equal instantaneous pressure perturbation,

illustrates this point. In the vicinity of the source the cylindrical wave pattern, distorted by the mean flow

convection, dominates the solution. Further downstream the wave field is associated with the Mach waves

generated by the instability wave. In the intermediate region, for 10 < x < 30, the interference between

the acoustic disturbance and the disturbance generated by the instability wave is evident. In contrast, from

figure (5) it can be seen that the strong instability waves dominate the solution at higher x for the lower

Strouhal number.
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Simulations with a scattering body

A scattering body, an ellipse with aspect ratio 20 : 3, is placed in the domain. It is centered at x : 35, y = 5. For

these computations, the physical domain is extended to x = 65 and y : 17. Figure (6) shows the instantaneous

pressure contours around the ellipse. A shadow region can be seen above the body. Figure (7) compares

instantaneous pressures for a domain containing the scattering body to a domain that does not, for a y location

just above the ellipse. It can be seen that there is a drop in pressure amplitude above and downstream of the

scattering body due to its presence. However, since the instability continues to be excited and grows further

downstream, the amplitude continues to increase beyond the body. In a case, such as a real jet, where the shear

layer grows, the instability would decay further downstream and the shielding effect of the ellipse would be

more evident. An application for this model problem would be the shielding of jet noise radiation for engines

mounted above the wing.

15

10

5

0
20 40 60

X

Figure 6: Instantaneous perturbation pressure contour plots around an ellipse outside the shear layer

All computations were performed on 16 processors of a Cray T3E at the University of Texas at Austin.

38200 seconds of total CPU time was used. A time step of .0146 seconds was used for 16800 iterations. The

equivalent single CPU/grid point/time step was 201 ps.
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GENERATION AND RADIATION OF ACOUSTIC WAVES

FROM A 2-D SHEAR LAYER
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Introduction

The two-dimensional excited shear flow provides a good test case to evaluate computational aeroacoustics

(CAA) algorithms and boundary conditions. Both the propagation of acoustic waves and the generation of

instability waves in the shear layer have to be accurately resolved. Also, due to the exponential growth of

the instability wave, the problem is in some respects even more demanding on boundary conditions than a

nonlinear flow problem.

An additional motivation for the present work was to compare boundary condition configurations which

had previously been applied to fully three-dimensional turbulent jet flows [l ], where it had become clear that

further improvements were necessary. In practical CAA simulations, it is often necessary to average far-field

data over relatively long periods, and the minimization of artificial reflections at computational boundaries

plays an important role. Issues considered here are the placement of the different boundary conditions, the

location where they join, and the size of the computational domain compared to the physical domain. Also of

interest are the effects of grid stretching and refinement in the shear layer.

Numerical Method

The linearized Euler equations are solved using the Dispersion-Relation-Preserving (DRP) scheme [2] on a

stretched grid and a RK4 scheme for time integration. Artificial sixth-order dissipation is added for stability.

At the inflow at x = -5, characteristics based (MOC) boundary conditions [3] are used for y < 3 and Tam

and Webb (T&W) radiation conditions [2] for 3 < y < 10. At the far-field boundary, y = 10, either T&W

radiation conditions are specified or a buffer zone is added which extends to y = 20. At the outflow at x = 50,

either outflow conditions (Tam and Dong (T&D) [4] or MOC) are specified for y < Y0 and T&W radiation

outside, or again a buffer is added which extends up to x = 80.

*Post-doctoral research associate

tBoeing/A. D. Welliver Professor of Aerospace Engineering
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Two different buffer methods are evaluated:(i) a simple technique (Wasistho et al. [5]) where all perturba-

tion variables are forced to zero near the computational boundary by applying the buffer function

fbuffer(:rb) ---- (1 - c1._:b2)(1
1 -- C C2xb2

), O<xb<l
1 -- ec"

at every stage of the RK4 integration;(ii) a convective buffer (Freund type [6]) where the governing equations

are augmented by artificial convection (ub(x), vb(y)) and damping or(x, y) terms according to

&p ..... + ub(x)p,x +

at. ..... + udx)u,x +

Otv = .... + udz)v,x +

(Otp ---- .... + Ub(X)p,. +

+ y)v
+ y)v.

Cosine profiles (1 + cos((1 + xb)rr))/2 are chosen for both convection (Ubma., Vbma. = 1.2Coo) and damping.

Results and Discussion

Excited at the lower frequency, St = 0.14, the shear flow is unstable and generates exponentially growing

instability waves downstream of the source. The flow is neutrally stable for an excitation at St = 0.60 and

the main radiation occurs in the vicinity of the excitation. Figure 1 shows the instantaneous pressure in the

shear layer for the two Strouhal numbers and different boundary conditions. The different solutions agree

very well. However, the instantaneous pressure has not been found to be a good measure to assess the quality

of the different boundary conditions used.

Simulations on various grids indicated that the minimum resolution required is determined by the resolu-

tion of the shear layer and not the number or grid points per wavelength of the acoustic or instability waves.

Sufficient resolution in the v-direction is found for 16 grid points per half-width b of the shear layer. This

yields 401 grid points within the physical domain 0 < y < 10. In order to reduce the total number of grid

points, calculations have also been carried out on geometrically stretched grids, where the resolution within

0 < y < 2 is kept at b/Ay = 16 and then decreases to match the uniform axial grid spacing at y = 10. The

axial spacing is chosen to be Aj/Ax = 10, 15, 20, and 40, where Aj is the acoustic wavelength at the excitation

frequency. Table 1 shows the grid sizes for both Strouhal numbers. A missing entry indicates that the cor-

responding resolution is either insufficient or not necessary to obtain acceptable solutions. The mean-square

pressure is averaged from t = 10T to 30T for St = 0.14 and from t = 40T to 130T for St = 0.60.

Figure 2 shows the effects of grid resolution and stretching on the mean-square pressure at y = 10 for

both T&D and MOC outflow (y < 3) boundary conditions. The mean-square pressure at the outer edge of the

computational domain appears to be very indicative of imperfections in the boundary conditions. Neglecting

the acoustic field due to the exciting source, the pressure is expected to rise exponentially for St = 0.14.

Oscillations are due to reflections at the boundaries. This will become clear below where the results for the

buffer zone approach are shown. One notes that the T&D boundary conditions perform considerably better

than the characteristics-based MOC boundary conditions. It is also interesting to note that the oscillations

become stronger as the resolution decreases, even though the shear layer is equally well resolved in the y-

direction in in all cases (y < 2) and the resolution is at least 15 points per wavelength in both directions

(whole domain). Differences are also noticeable between the stretched and uniform grid with the highest axial
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resolution. This is surprising since the resolution in these two cases is at least 40 points per wavelength in the

whole domain.
I

Figure 3 shows the mean-square pressurepm s at y = 10 for St = 0.60. The waves that are convected across

the boundaries are much weaker for the higher Strouhal number and the MOC outflow boundary conditions

performed equally well (not shown). The main radiation is due to the acoustic source at x = 0, and the

radiation conditions at y = 10 are well suited to let these waves leave the domain. The acoustically dominated

flow is sufficiently resolved with 10 points per wavelength and the stretched grid can be used without loss of

accuracy.

The influence of the artificial dissipation on the growth of the instability wave is shown in Fig. 4. Its effect

is relatively small for the whole range of values used. The simulations became unstable for _ = 5.0 × 10 -_,

and a value of 2.0 x 10 -4 was chosen for all runs.

The advantages of a buffer zone approach over standard outflow boundary conditions are apparent in Fig. 5

for St = 0.14. The computational domain is extended to x,,_,_,_ = 80 and Y,,_a_- = 20, i.e. buffers are added

at the outflow and outer radiation boundaries. The grid inside the buffer is geometrically stretched by a factor

of 5, which increases the total number of grid points by only 33 percent. The stretching is such that acoustic

waves at the buffer exit are still resolved by at least 8 points per wavelength. Judging by the smoothness of

the mean-square pressure at y = 10, the simple Wasistho buffer produces the best results, followed by the

Freund approach where the flow is supersonically convected across the boundaries. One also sees that the

reflections become considerably larger if the regular boundary conditions (T&W radiation and T&D outflow)

are prescribed at the exit of the enlarged domain instead of the physical boundary. This is due to the very

high amplitude of the exponentially growing disturbance at the new outflow location. The best T&D result of

Fig. 2(a) is shown for comparison (dotted line). It is not a priori clear whether these reflections are caused

by the radiation or outflow boundary conditions, but one can clearly conclude that due to the nature of the

exponentially growing instability wave there is no benefit in moving the boundary conditions further away

from the physical domain of interest.

The benefits of a buffer are smaller for St = 0.60. Compared in Fig. 6 are the mean-square pressure for

the Wasistho buffer (x,,,x=65, yma:_=20) with results for T&D outflow conditions applied to both the enlarged

and regular domain. Results for the Freund buffer are identical and not shown. No further stretching is used in

the buffer region since for St = 0.60 the resolution outside the shear layer is only 10 points per wavelength.

It is likely that the radiation and outflow conditions perform, compared to the buffer approach, better for the

higher Strouhal number since, in that case, the main source location of the radiation is known (x = 0). One

notices that towards the exit (x = 50) the curve for the Wasistho buffer is much smoother than the ones for

T&D. A possible explanation for the deterioration in the latter case is the lower (second) order stencil near

the boundary. However, one would expect this influence to become negligible in the case where the boundary

conditions are applied to the extended domain. By increasing the strength of the acoustic source it has been

verified that the irregularities are not due to numerical round-off errors.

Figure 7 indicates that the weak oscillations present in the mean-square pressure for the Freund buffer

zone (cf. Fig. 5) cannot be removed by increasing the amplitude of the damping function. Shown is the RMS

pressure at y = 10 for the whole computational domain, including the buffer zone. Simulations are carried

out for 0.1 < omax < 12.5, without observing any effect on the flow in the physical domain. The exponential

growth of the linear instability wave is too strong to be overcome by the artificial damping for the buffer size

used. It appears as if the artificial convection velocity in the buffer is the main contributor to the effectiveness

of the boundary condition, and that the damping does not play a significant role. Instantaneous pressure

contours for the Freund buffer, showing the artificial convection within the buffer zone, are given in Fig. 8.
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The effectiveness of the Wasistho buffer is remarkable, and attempts to minimize its size have been made.

Figure 9 shows that the buffer size in the 0:-direction can be reduced to xma_ = 65 without affecting the

results significantly. The grid in the shorter buffer is again stretched by a factor of 5 and the grid overhead

compared to the physical domain is now reduced to only 18 percent. The buffer size could undoubtedly be

shrunk further. Figure 10 shows the damping functions in the x-directions for the two buffer sizes. One notes

that the suppression of the outgoing waves occurs over a remarkably few grid points. Instantaneous pressure

contours for the larger Wasistho buffer are shown in Figure 1 !. One attractive feature of the Wasistho buffer

not shown is the observation that the grid in the buffer can actually be stretched beyond what would be required

to accurately propagate acoustic waves through the same domain.

Conclusions

Several boundary conditions, including buffer zones, have evaluated in terms of their effectiveness in letting

acoustic and instability waves leave the physical domain for the case of a two-dimensional shear layer. The

simple Wasistho buffer performs remarkably well without requiring a large buffer size and buffer resolution.

Tam and Dong outflow boundary conditions produce considerably less reflections than nonreflecting MOC

boundary conditions for the shear flow investigated. Due to the nature of the exponentially growing instability

wave for St. = 0.14, there is a clear disadvantage rather than advantage if standard boundary conditions are

applied to an enlarged domain. The quality of the boundary conditions is assessed based on the degree of

artificial oscillations in the mean-square pressure along the boundaries.
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Figure l" Pressure along shear layer at y = 1. 309 x 401 grid points in physical domain (xmaz=50, 9max=10).

Note that the pressure is interpolated onto a coarser mesh than that used in the simulations.
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Figure 2: Effects of grid resolution and stretching on mean-square pressure P'm., at fl = 10; St = 0.14.
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Figure 4: Influence of artificial dissipation on mean-
#

square pressure p,,, at y = 10; St = 0.14. T&D

outflow boundary conditions.
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Figure 8: Instantaneous pressure contours {-1.0 x 10 -6, 1.0 X 10 -6, step 1.05 x 10 -7} for St = 0.14 at

t = 30T; Freund buffer, c_max = 0.5. Shown is the whole computational domain.
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Abstract

The category 5 problem 'Generation and Radiation of Acoustic Waves from a 2-D Shear Layer' is solved based

on the 2-D linearized Euler equations. The dispersion-relation-preserving (DRP) finite difference scheme is

applied for spatial discretization and the low-dissipation and low-dispersion Runge-Kutta (LDDRK) scheme is

utilized for the time integration. Special attention is paid to the implementation of the non-reflecting far-field

boundary conditions.

Physical problem

It is well known that an acoustic source inside a jet can excite an instability wave in the shear layer. This will

result in sound generation and radiation to the far-field. The category 5 problem is an idealized case of this

physical phenomenon. The linearized Euler equations are utilized as the governing equations:

Op' _ Ou' Ov' v'Op(y) _ 0o-(+ u(v) + P(Y)-_x+ p(v)_ + a_ (1)

Ou' Ou' v, OU(y) 10p' (2)
o--(+ u(y)--_ + Uy : _(y)ox

Or' Or' 1 Op'

0-7+ u(v)-Sx- p(v)ay

o,,'o_7 _or'+ u(y) + + _-'_ : ,4oxp y_)]cos(_O

and the mean flow variables are given by

(3)

(4)
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U(y) = { U_ + (UJ - U_) exp [-(ln 2)(bU -- h)2] ' y>huj O<y<h,

1 1 7- 1 1 (U(y) - U_) 1 (Uj - U(y))

p(v) - 2 (u(y) - - + +

The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis as

shown in Fig. 1.

The length scale is given by the half-velocity

distance R1/2. The velocity is scaled by the

jet velocity Uj, the density by pj, the pres-

sure by pjU_, and the time and frequency by

R1/2/U j. The constants are given as P =

101330 (kg/m s2), R = 286.8875(m2/s _

K), Uj = 517.4569 (m/s), T_ = 166.6667

(K), U_ = 0, To = 300 (K), Mj = 2,

T_o/T_ = 1, 7= 1.4, R1/2 = h+b= l(m),

h = 0.6 (m), b = 0.4 (m),A = 0.001 (kg/m

s3), and B = 8 (l/m2).

Y

Source

b

v

Figure l: A sketch of the physical problem

Numerical Methods

The discretization scheme and non-reflecting far-field boundary conditions are the key technical issues for

accurate CAA simulations.

The present research employs the dispersion-relation-preserving (DRP) scheme Tam and Webb[5]. The 46

low-dissipation and low-dispersion Runge-Kutta (LDDRK) scheme by Hu et al. [2] is explored for time inte-

gration. Furthermore, in order to enhance the predictive quality of the solution and to stabilize the numerical

procedure, the selective artificial damping method [6] is adopted for eliminating short wavelength spurious

waves.

The non-reflecting boundary conditions in the far-field are crucial to the present numerical simulations.

The computational domain is depicted in Fig. 2 with -5 < x/R1�2 <_ 50 and 0 _< y/R1�2 <_ 10.

The characteristic boundary conditions by Thompson [7] are applied at the inflow boundary region where

Ma > 0.001. Since the inflow is supersonic, all characteristics are incoming and all are set to zero.

At the outer boundary region where the local mean flow Mach number Ma < 0.001, the asymptotic radiation

boundary conditions by Bayliss & Turkel [I] or Tam & Webb [5] are specified.

At the downsteam boundary region where Ma >_ 0.001, the outflow boundary conditions by Tam & Webb [5]

are implemented. This boundary condition has an assumption of uniform mean flow which is not true for the

present flow cases. However, the numerical results given below are rather good with little reflections.

A symmetric boundary condition is applied at y/R1�2 = O.

The developed CAA code has been validated by a series of benchmark problems from the first and second

CAA workshops. It has been written into a parallelized version and applied to duct acoustics[3][4].
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Simulation Results and Discussions

One of the main difficulties of simulatinga shear layer in a large computational domain lies in different resolution

requirements in different regions. Usually, the grids must be fine enough to capture the sound generation

process across the thin shear layer whereas the grids can be relatively coarse in the propagation region. For

simplicity, a uniformly distributed small mesh size has been used in all the simulations with A_:/R_/2 =

Ay/R1/_ = 1/32. This ensures a high resolution across the whole computational domain. However, much

more CPU time is required due to a large number of grid points. For accelerating the computations, 24 evenly

distributed multi-block grids are generated by a domain decomposition technique [3]. All the computations

are performed on a 24 PC cluster (Pentium I1450Mhz). Numerical calculations show that the CPU time is 0.6

second per time step. And the parallel efficiency is 80%.

For St = 0.14, the time step size is chosen as At = 0.014285714. The instantaneous pressure contours at

t = 428.57143 (at the start of cycle 31) are shown in Fig. 3. The radiation pattern shows that the acoustic

intensity increases along the downstream direction. This implies that the acoustic source inside the jet has

excited an amplified instability wave mode which has generated and radiated amplified sound field along the

downstream direction. There are very little reflections at all the outer computational boundaries. Fig. 4 gives

the sound pressures along the line y/R1�2 = 1 for St = 0.14 which also shows the amplification tendency

along the downstream direction.

For St = 0.6, the time step size is chosen as At = 0.011111111. The instantaneous pressure contours are

shown in Fig. 5 at t. -- 403,333333333 (at the start of cycle 122) whereas the pressures along the line y/R_/2

= 1 are shown in Fig. 6. Quite different from the case of St. = 0.14, the acoustic intensity for St = 0.6

approaches a stable level along the downstream direction gradually. This indicates that a neutral instability

mode has been excited at St = 0.6. Furthermore, the outer boundary conditions have also been shown very

effective with little reflections.

Figs. 7 and 8 give the calculated sound intensities p--v2along y/R1�2 : 10 for St. = 0.14 and St : 0.6,

respectively. The far field prediction results (along y/R1�2 = 10) are consistent with the near field prediction

results (along y/R1/2 = 1), (seeFigs. 4 and 6). The sound intensities p_2 along x/R1/2 = 50 (downstream

boundary) are shown in Figs. 9 and 10 for St = 0.14 and St - 0.6, respectively. We can see that the sound

intensity of case St = 0.14 is approximately several thousands larger than that of the case St. = 0.6.

Table 1 gives a summary of the computer used, the number of grid points, the total CPU time, the time step

size and the total number of time steps, etc.

Table l: A summary of main parameters in the calculations

Main parameters St=0.14 St=0.60

Computer used 24 PC (Pentium II 450Mhz) 24 PC (Pentium II 450Mhz)

Number of grid points (each block) 25245 25245

Total number of grid points 605880 605880

Time step size 0.014285714 0.011111111

30000 36300Total time steps

CPU time per time step

CPU time on each PC (s)

Total CPU time (s)

0.6s

18000

432000

016s

25245

522720

Parallel efficiency 80% 80%
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Figure 2: The computational domain and boundary conditions.
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Figure 3: Instantaneous acoustic pressure contours at t = 428.57143, St = 0.14.
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Conclusions

The generation and radiation of acoustic waves from a 2-D parallel shear layer is calculated based on the

linearized Euler equations. The high order DRP scheme and LDDRK scheme are applied for space and

time discretizations, respectively. Appropriate non-reflecting boundary conditions have been implemented

for different boundary regions. All the computations were performed on a 24-PC cluster efficiently by the

parallelized CAA code. Numerical results have shown that St = 0.14 and 5'_ = 0.6 are corresponding to an

amplification and a neutral instability mode, respectively. Further work is still required on grid generation and

far-field boundary conditions.
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AN APPLICATION OF THE QUADRATURE-FREE

DISCONTINUOUS GALERKIN METHOD

DAVID P. LOCKARD*AND HAROLD L. ATI,:INS t

NASA Langley Research Center, Hampton, VA 23681-2199, U.S.A

Introduction

Tile process of generating a. block-structured mesh with the smoothness required for high-accuracy

schemes is still a time-consmning process often measured in weeks or months. Unstructured grids about

complex geometries are more easily generated, and for this reason, methods using unstructured grids

have gained favor for aerodynamic analyses. The discontinuous Galerkin (DG) method is a compact

finite-element projection method that provides a practical framework for the development of a

high-order method using unstructured grids. Higher-order accuracy is obtained by representing the

solution as a high-degree polynomial whose time evolution is governed by a local Galerkin projection.

The traditional implementation of the discontinuous Galerkin uses quadrature for the evaluation of the

integral projections and is prohibitively expensive. Atkins and Shu J introduced the quadrature-free

formulation in which the integrals are evaluated a-priori and exactly for a similarity element. The

approach has been demonstrated to possess the accuracy required for acoustics even in cases where the

grid is not smooth. Other issues such as boundary conditions and the treatment of non-linear fluxes

have also been studied in earlier work 2'3

This paper describes the a.pplica£ion of the quadrature-fl'ee discontinuous Galerkin method to a

two-dimensional shear layer problem. First, a brief description of the method is given. Next, the

problem is described and the solution is presented. Finally, the resources required to perform the

calculations are given.

Numerical Method

The discontinuous Galerkin method is applicable to systems of first-order equations of the form

Oq + Ofi-- -- (1)
Ot Oxi

A summation convention is used for all repeated indices. Itere, i ranges from unity to the number of

coordinate directions. The domain of interest is divided into non-overlapping elements each of which is

defined on some domain t2 with a boundary Of_. For the two-dimensional linearized Euler equations, q,

f, and s are given by

q
p fj = .0 U 7P 0 0 V 0 2P
u ' 0 1/_ _7 0 q' f_= 0 0 l:-= 0

v 0 0 0 U 0 1/-fi 0 l _

q_

*Research Scientist,
tSenior Research Scientist
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0 0 0 0 )

0 (1 - 7)(_ +Vy) (7- 1)T_ (7- 1)Py

s = -_ x -_7 q"(uu + VG)l-d (ll-d) V.
(2)

Tile vector of dependent variables is q. An over-line has been used to denote local temporal-mean

quantities, and subscripted values denote differentiation, p and p are the perturbation density and

pressure, and u and v are the z and 9 directed velocities, respectively. The ratio of specific heats is "7.

The equations have been made dimensionless using the ambient speed of sound co as the reference

velocity.

The discontinuous Galerkin method is obtained by approximating the solution in each element {2 in

terms of an appropriate set of basis fimctions b_.

N

q "_ __, qmbm = q_bm
m=l

where {b_, m = 1,2,...,N} is a set of basis flmctions. The coefficients of the approximate solution q,_

are the new unknowns, and equations governing these unknowns are obtained by an integral projection

of the governing equations onto the basis set.. The weak conservation form is obtained by integrating by

fbk_ttddft - -g-CJ- fd dfi + f bk(JJ-mf . ) R& = f bksJ dfl (3)
fl fl Off

parts.

for k = 1,2,..., N. Because the solution q is approxinlated as a local expansion in terms of the basis

functions, both q and fi are discontinuous at the boundaries between neighboring elements. The

discontinuity in q between adjacent elements is treated with an approximate Riemann flux, which is

denoted by the superscript R. The Jacobian of the transformation fi'om the global coordinates (x, y) to

the local coordinates (_, _1) of the element is J and J = IJl. The basis set lnnst be complete, but many

classes of fimctions could be used. A common choice is a set of polynomials of the form _iTlJ that are

defined local to the element. The basis set for degree p contains all polynomials of the form _irlJ such

that the integers i + j _< p. A possible basis set in two dimensions and p = 2 is {1, _, 77,_2, (71,712}.

To implement the quadrature-free approach, the flux f,: must also be written as an expansion in terms

of basis flmctions:

fi(q) _ fij(q)bj,

and a similar expansion is made for the approximate Riemann flux and the source s. Because the

functional behavior of all of the variables is known, the integrations in equation (3) can be performed

analytically. To obtain the values of the integrals for a particular set of coefficients requires the

multiplication of a matrix times the vector of the coefficients of the flux polynomial.

The final form of the semi-discrete equation is

Oqm

Ot
, • -1 j-I _ (dj-1 Rl [M_.,Aikj( d fij) M_]_B_,_j,. ft.) ]+d

d

S?l_

(4)
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The exact definitions of the A and /7 matrices can be found in reference 4. The groupings

Sio = jj-lfij and j',_ = (JJ-' f,,,)R have been used beca.use that is what is normally stored in the

computer implementation. Because all elements of a given type are mapped into the same similarity

element, the coefficients Jli,d and Dim n Call be precomputed once and applied throughout the

calculation. Equation (4) is advanced in time by using the five-stage, fourlh-order, Runge-Kutta

method of Kennedy e:t al. "5Analysis of the stability of this approach can be found in reference 1.

Problem Definition

The DG method was applied to the category 5 problem of the 1999 CAA Workshop on Benchmark

problems. The problem involves an acoustic source within a two-dimensional, supersonic shear layer.

The velocity profile is given by

g(_) = u_ + (uj - U_)exp -(ln2) -- , V > /' (5)
wj, 0_<y<h

and the density is obtained fl'om the mean velocity. The mean pressure is uniform, and the flow in the

core is at Mach 2. A source term on the pressure equation of the form

A exp .17,1n.)(.r 2 + (6)

excites the shear layer with an acoustic source. The parameters are set as follows: P = 101330 kg/(m

s2), h = 0.6 m, b = 0.4 m, A = 0.001 kg/(m s3), B = 8/m 2, T_=300 K, and Tjo/Too = 1. The shear

layer is forced at frequencies of St=2fL/Uj = 0.14 and 0.6. The length scale L = 1 m. The solution is

required between x = 0 m to 50 m and y = 0 m to 10 m.

Solution Procedure

3O

20

10
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Figure 1: Grid used for the St=0.14 case. Shaded region is enlarged on the right.

A basis set consisting of standard polynomials up to degree four is used which yields a scheme which is

fifth-order spatially. The efficient sohltion procedures discussed in reference 4 about poly, nomial
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Figure 2: Pressure contours in Pa,

products are used in the current work. A typical grid of rectangular elements is shown in figure 1. The

right part of the figure is a magnified view of the grayed out portion of the grid on the left. The

enlarged region shows the clustering of elements in the vicinity of the shear layer. Eighteen elements are
, OU. . • ,_ " ,. "_, ," " ..

used bet, ween y_ -- 0.6 a_nd y' = 1.7 where _-oy]s large and the perturballon _olutlon vanes sngn!ficantlv.
Uniform cells are used in the rest of the specified computational domain from z=-5 to 50 and y=0 to

10. A simple symmetry bound0_ry condition is applied along the line y = 0. Characteristic conditions a

on the other boundaries produced unacceptable reflections, so a buffer technique is applied. The region

outside of the specified domain is considered the buffer region. The grid spacing is unchanged for 5 m

outside of the specified domain extent, then it is abruptly coarsened. Because the DG method is

insensitive to grid smoothness, the grid spacing wa.s altered abruptly to conserve grid points without

degrading the solution. Within the buffer, the equations are modified to include a Newtonian cooling

term, 6 a_nd t:he me_'m velocities are modified to obtain supersonic outflow at the boundaries T using a

1/2(1 + cos) term. Very little optimization of the buffer parameters was performed. Figure 2 shows the

pressure contours throughout the entire computational domain for the two fi'equencies. The pressure is

reported in dimensional units of Pa throughout the paper. A growing instability dominates the low

frequency solution, whereas the wa.ves have neutral growth at the higher frequency.

Grid Refinement

A grid refinement was used to assess the quality of the solutions. The number of points within the

shear layer was increased first until the growth rate of the instability did not cha, nge significantly. Next,

the overall number of grid points was varied. Figure 3 shows compares the solutions from two different

grids for the St=0.14 case. Figure 3(a) shows the p--galong y = 10, and (b) depicts the pressure along

y = I at fifty unifon_aly spaced points between x = 0 m and x = 50 m. The solutions are very similar

for this grid resolution, and the grid can be coarsened considerably with only a small degradation in the

solution.

A similar grid refinement for the St=0.6 case is presented in figure 4. Again, the solutions are quite

similar between the two grids. Because a fixed number of sampling points are used to generate the

figures, the solution looks unresolved in figure 4(b). However, the actual solution is quite smooth.
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Buffer Length

Using the coarsest grid that provided a grid independent solution, the length of the buffer was also

varied to assess the required ]ength to minimize reflections. Figure .5 reviews the results for the St=0.14

case. The solution along 9 = 10 is more sensitive to the buffer length, but the solutions for the two

longest buffer lengths are nearly identical. There is ahnost no noticeable difference in the solutions

along y = 1. At the higher fi'equency, the buffer length was decreased because the wavelength is much

shorter. Figure 6 shows that the solutions showed very little variation for the two buffer ]engths tested.

However, the solution along .r = 50 m, which is not shown, changed significantly, and a completely grid

independent solution was never obtained. The acoustic signal is extremely weak in that region, so even

small errors show up in the solution.
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Figure 5: Variation of solution with hurler length for St=0.14

Resources

This section describes the resources used to obtain tile solutions submitted to the workshop. All cases

were run on a single processor of a 250 MHz, SGI R10k Octane. There were 3784 fifth-order rectangular

elements for the ,_qt = 0.14 case. The grid was partitioned into several uniformly spaced regions and can -

be seen in figure 1. Eighteen elements were placed between 0.6 and 1.7 to resolve the shear layer, and

10 elements in tile rest of the region up to 9 = 10. The grid was uniform in z with 58 elements between

x = -5 m and 50 m. The buffer extended an additional 21 m at all inflow/outflow boundaries and

required 710 elements. The grid was unaltered in the first 5 m of the buffer, and then the spacing was

tripled. 15715 steps were required to run to a time of I = 15T =0.414 s where T is the period of the

source. The time step was At = 9.54 x 10-4T = 2.635e-5 s. The required CPU time was 5.7 hours.

There were 6816 fifth-order rectangular elements fox" the ,_ql = 0.6 case. A refined version of the grid

used for the lower fi'equency was used. Again, eighteen elements were placed between 0.6 and 1.7 t.o

resolve the shear layer, but 24 elements in the rest. of the region up to y = 10. The grid was uniform in
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Figure 6: Variation of solution with buffer length for St=0.6

a" with 110 elements between x = -5 m and 50 m. The buffer extended an additional 15 m at all

inflow/outflow boundaries and required 1226 elements. The grid spacing in tile buffer was tripled after

5 m. 13833 steps were required to run to a time of t = 60T = 0.387 s where T is tile period of the

source. The time step was At = 4.12 × 10-3T =2.794e-5 s. The required CPU time was 10.2 hours.
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Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

Using the CE/SE Method

Ching. Y. Loh,* Xiao Y. Wang_ Sin-Chung Chang, and Philip C. E. Jorgenson

NASA Glenn Research Center, Cleveland, Ohio 44135, USA

In tile present work, tile Category 5 problem in the 3rd CAA Workshop is considered. An acoustic source

inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation.

The numerical solution is obtained by solving the Euler equations using the space time conservation

element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic

source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All

other conditions are the same except that the Crocco's relation has a slightly different form. In the following,

after a brief sketch of the CE/SE method, the numerical results for the Category 5 problem are presented. A

detailed description of the 2-D CE/SE approach can be found in [1-2].

1. The 2-D CE/SE Euler Scheme

1.1. Conservation Form of the 2-D Unsteady Euler Equations

Consider a dimensionless conservation form of the 2-D unsteady Euler equations of a perfect gas:

Ut + Fx + Cly = 0, (1.1)

where the conservative flow variable vector U and the flux vectors, F and G, are given in the usual way. Note

that, in contrast to other schemes, not only U but also its spatial derivatives Ux and Uy are considered as

unknowns. Also, the fluxes F and G are conveniently written in terms of components of U. The integral form

of Eq. (1.1) in the space-time 3-D Euclidean Space, E3, is to be solved by the CE/SE scheme:

s Hm" dS = 0, m = 1, 2, 3, 4, (1.2)
(v)

where S(V) denotes the surface around a volume, V, in E3 and Hm = (Fm, Gm, Urn). In the CE/SE scheme,

the above flux conservation relation in space-time is the only mechanism that transfers information between

node points (see filled and open circles in Fig. 1). No extrapolations (interpolations) across a stencil of cells

are needed or allowed. The conservation element, CE, is the finite volume to which the integral flux condition

(1.2) is to be applied (Fig. 2(a)). Discontinuities are allowed to occur in the interior of a conservation element.

A solution element, SE, associated with a grid node is shown as a set of three interface planes in E3 that pass

through this node in Fig. 2(b). The solution vectors U, U×, and Uy are calculated at this node. Within a

given solution element SE(j, k, n), where (j, k, n) is the node index, the flow variables are not only considered

continuous but are also approximated by linear Taylor series expansions.

The grid is staggered in both time and space. For a spatial plane in E3, the grid nodes, see Fig. 1, are

grouped as two staggered sets I21 (open circles) and f_2 (filled circles). The solution is alternatively evaluated

on grid set f_l or f_2 with each half time step. As can be seen in this figure, each 'interior' node then has three

* Taitech Inc.

t Taitcch Inc.
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nearest neighbors at tile previous half time step. Thus, there are three CE's associated with each node in this

arrangement, consequently there are the same number of relations as there are unknowns. Figure 2 illustrates

the three conservation elements associated with the node point G' and its three nearest neighbors A, C, and

E at the previous time step.

For full details of the implementation of the 2-D CE/SE Euler method leading to the a, a - c and

weighted a - c schemes, the reader is referred to [2]. The weighted a - c scheme is used here. The adjustable

parameter e ( 0 _< E _ 1) controls the numerical dissipation, and the weighted scheme is intended for cases

where discontinuities may be present in the inviscid flow field.

1.2. Non-Reflecting Boundary Conditions

In the CE/SE scheme, the idea of characteristics stemming from differential equation theory does not apply,

since we are solving integral equations instead of differential equations. Rather, the following basic criterion is

adopted: In a CE located at the. numerical domain boundary, a non-reflecting boundary condition is equivalent

to letting the incoming flux from the interior domain to the bmmdary CE smoothly exit to the exterior of

the domain. As a matter of fact, the 2-D non-reflecting boundary condition (NRBC) has been proven to be

successful even at the near field boundary [3-5]. There are various versions of the NRBC. The following are

the typical NRBCs employed in our computations. For a grid node (j, k, n) lying at the domain boundary,

the first one labeled type I requires that (Vx)_k ---- (Vy)jnk = 0; while U_, k is kept fixed at the initially given

steady boundary value. Type II, for cases where there is a substantial gradient in the y direction, requires

that (Ux)_,k : 0, U;k -- "ll'Tn-1/2 n (. ,n-l/2"j',k' , and (Vy)j,k : _,Uy)j, k, . The proposed NRBCs above are all simple, truly
multi-dimensional, and effective. Our experiences show that, in general, the reflection amounts to about 1%

or even lower. However, when an extremely clean acoustic field is needed, such as in our current computation,

a buffer zone of a few cells with increasing size is adopted at the computational domain outflow boundary. In

the buffer zone, as in the rest of the computational flow field, the same Euler equations are solved with no

special treatment needed.

2. Generation and Radiation of Acoustic Waves From a 2-D Shear Layer

I11 the CE/SE approach, we choose to solve the original Euler equations in the conservation form. Thc

linearization is achieved by using a source of very small amplitude, A. The source term on the right hand side
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Figure 3: Isobars and v-contours at t = 100 (14T); 249 x 140 grid, At = .01.

of the energy equation has the form: _A-__lexp[--Bln(x2 + y2)]cos(wt), where the constant B = 8 and A = .001,
or .00005 in the actual computations. The angular frequency, w = 21rf, is obtained from the given Strouhal

number, St. Our investigation is mostly concentrated oll the case with St = 0.14.

2.1. Low Strouhal number case: St=0.14

2.1.1. Preliminary computation

For this case, we have conducted several calculations with different grids. In the first calculation, the

computational domain is chosen exactly the same as the physical domain, i.e., -5 <_ x _<50 and 0 _<y _< 10. A

grid of 249 x 140 nonuniform cells is adopted. The grid is uniform in x direction but stretched in y direction
so that more points can be packed around the shear layer. As stated in the Workshop problem statement,

the jet Mach number, Mj, of 2 is used. The acoustic source is located at the origin of the coordinate system

with A = 0.001. A marching time step size, At, of 0.01 is chosen. Initially, the shear layer is already formed

according to the given condition. The ambient flow is stationary and the static pressure P0 is assumed constant
over the entire domain.

Figure 3 shows the flow variables p and v at an early stage of (non dimensional ) time t = 100, or 14

periods (10000 steps). The NRBC as mentioned in the section above is used, and no visible numerical reflection

is found. Mach radiation from the supersonic shear layer is clearly displayed from the isobars and v contours.

The Math radiation direction forms about 23.5 ° with the x axis and the wave length )_ = 9.58. The angle and

wave length agree well with the analytical solution. Since A = 0.001 is a relatively strong source, the radiation

directly from the source is also visible from the p and v plots; but it is much weaker than the Mach radiation.

2.1.2. Detailed computation

In the second calculation, similar but slightly longer and higher computational domain is chosen to avoid

any possible influence fi'om the domain boundaries. A 279 x 144 grid (Grid A) is used, where 20 cells of

increasing size at the outflow boundary are used as buffer zone to guarantee an extremely clean acoustic field.

In addition, A is reduced to .00005. Figures 4a and 4b present the contours of p and v. Due to a weak A,

direct radiation from the source is no hmger visible; but the patterns of Math radiation and their propagating
1 = .1785714 is

direction remain the same. Let f = p - P0 be the sound fluctuation pressure, where P0 =
the nondimensional static pressure of the flow field and is assumed constant over the entire domain. Figure

5a displays f along the line y = 1 at t = 400 (40000 steps) or the end of Period 28 (28T, T stands for period)
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Figure 4: Isobars and v-contours at t = 400 (28T); 249 x 140 grid, At = .01.

and at t = 600 (60000 steps) or the end of Period 42 (42T). It shows that periodicity is already achieved at

28T. In the following, all the computations are run to t=28T.

A grid of 319 x 144 nodes (Grid B) is also tested. The only difference between Grids A and B is that

Grid B has 30 more uniform cells in thc x direction than Grid A. The purpose of this computation is to check

the influence of the outflow NRBC. Figure 5b shows the sound intensity levels ( square of RMS p_ ) along the

line y = 10 at t = 400 (40000 time steps or 28T ) for Grid A and Grid B (the longer one). It is observed that

the maximum difference is about 2 x 10-l°, far below the discretization error, so the outflow NRBC (with the

buffer zone) is effective. It is also observed that p_2 growth rate increases when x ) 40.

A grid independence check is shown in Fig. 5c, 5d and 5e. For this purpose, Grid B is used as the coarse

grid and a third grid, Grid C, of 619 x 144 nodes with half grid spacing in z direction but identical grid spacing

in y direction is used as the fine grid. In each case, the Richardson extrapolation is applied to obtain a more

accurate result. Figure 5c demonstrates the sound intensity level p_2 (time average over 14T, 10000 time steps)

at y = 10 with Grid B and Grid C. If the Richardson extrapolation is considered as the more accurate solution,

then the solution with the coarse grid (Grid B) has a maximum error of about 1 x 10 -9 and the solution with

the fine grid has an even lower error of about 2 x 10 -1°. Both errors are far below the nominal 2nd order

accuracy of the CE/SE scheme.

Figure 5d displays the comparison of p_ along y = 1 at the end of a cycle (28T). Good agreement

between solutions of coarse and fine grids is found, although p_ fluctuates at a level still far below the scheme's

discretization error.

Figure 5e demonstrates the sound intensity level p_2 (time average over 14T) at x = 50. Good agreement

of the solutions with different grids is found for y ) 2 but relatively 'larger' deviation (2 - 4 x 10 -s ) appears

in the 2-D jet core area (y _< 1). This suggests that the grid may need flirther refinement at the jet core. Also

in this plot, since we are solving the Euler equations and nonlinear effect might take place, deviation from the

results via linearized Euler equations is possible.

All the computations are conducted on a DELL Dimension XPS PC with Pentium II 450MHz processor

and the Linux operating system. For case using Grid A, CPU time is about 4.5 see. per time step (single

precision). Figure 5a shows that a single precision computation does not introduce excessive error even after

tens of thousands of time steps.
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isobars at t=120T (40000 steps), St=0.6,529xlg0 grid, A=.00005, dr=0.01

Figure 6: Isobars at t = 120T; St = 0.6.

2:i/:

Figure 7: Isobars and v-contours for an axisymmetric jet at Mj = 2.0, A = 0.001 and St = .2.

2.2. High Strouhal number case: St=0.6

For this case, a grid of 529 x 190 nonuniform cells is adopted. The grid is actually uniform in x direction

except the buffer zone at the outflow. Due to the higher frequency, more points are needed. The physical

conditions are exactly the same as the case described above except the Strouhal number, St, is set equal to

0.6. The amplitude A remains at 0.00005.

For the acoustic flow field at 40000 time steps or 120T, the isobars are shown in Fig. 6. It is observed that

the Mach radiation is much weaker than the previous case while the direct radiation from the source becomes

relatively strong. This result is not a surprise, since the eigen-frequency of Mach radiation is mostly associated

with St around 0.2 and St = 0.6 is significantly higher.

2.3. Axisymmetric Mach radiation

The current 2-D problem is also extended to an axisymmetric case. The circular jet with Mj = 2.0, A = 0.001,

and St = 0.2 is considered. Figure 7 shows good agreement in radiation angle and wavelength with other

computations [6].
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3. Concluding Remarks

In this workshop paper, the Category 5 problem is solved by the CE/SE scheme. The following features

of the CE/SE scheme for CAA computations are demonstrated:

(a) Tile (2nd order) CE/SE schenm is robust, efficient and yields high resolution, low dispersion results

similar to those of higher-order schemes;

(b) The novel NRBC based on flux balance is strikingly simple, genuinely multi-dimensional, and easy to

implement. A combination of the NRBC and a small outflow buffer zone results in a low outflow boundary
influence far below the discretization error.
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Introduction

A problem of automobile noise involving feedback is solved. Figure l shows a schematic configuration of a
cavity with a lip, which models a gap between the front and back doors of an automobile. A self-sustained
free shear layer impingement on the downstream cavity edge generates a tonal noise, and this could be one
of the major automobile airframe noise sources. In the experiment (ref. 1), turbulent boundary layer flows
with free stream velocities of 26.8 m/s (case 1) and 50.8 m/s (case 2) are tested with the boundary layer

thicknesses of 15 mm and 19 mm, respectively.

In the present study, we start with laminar flow calculations to understand basically what the important
parameters computationally in simulating this type of flow are and how relevantly these solutions compare
with experiment. So we calculate two cases with the same incoming velocities as the experiment, but
reduced the boundary layer thickness to 10% of the cavity base length, L. The Reynolds numbers based on a

displacement thickness are 850 and 1,620 correspondingly for the cases 1 and 2, and these are within a
range between 600 and 3000 for the laminar instability of a free shear layer.

Since the flow speeds of both cases are low enough to be assumed as an incompressible flow (i.e.M= =
0.077 and 0.147), a splitting approach proposed by Hardin and Pope (ref. 2) was taken. The unsteady
incompressible Navier-Stokes equations are first solved by an unstructured triangular mesh flow solver,
which is based on a cell-centered finite-volume formulation. Then the unsteady flow solutions are coupled

with a set of acoustically perturbed equations for the acoustic field computations.

Numerical methods

The unsteady incompressible Navier-Stokes equations are solved by using a projection method based
algorithm called SMAC (Simplified Marker and Cell) (ref. 3). First, the momentum equations are split into

two steps:

At

- i(o.,''+'- ."): <2>
At

Instead of solving eq. (2), we solved a divergent form of this while enforcing the continuity eq., which is
then a Poisson equation of,

V2q_ = V. t_ (¢ - Sp. At) (3)

The velocity and pressure fields at n+l step are then updated from

q_ , n+l u n f(u n, pn+!
p,l+l=pn+_p=pn+__ u = +At" ) (4)

" On a sabbatical leave at the Department of Mathematics, Florida State University, Tallahassee, FL 32306, U.S.A.
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The governing equations (1), (3), and (4) are discretized on unstructured triangular meshes by a cell-
centered based finite-volume method. The momentum equations (eq. (1)) are expressed as

E2iAQi / Ati = - Z [(F- Fv / Re) / Ay- (G- Gv / Re) / Ax] i,j (5)

j=k(i)

and solved by a four-stage Runge-Kutta method in time, with the second-order upwind scheme applied to
the convective fluxes in the right hand side. The Poisson equation, eq. (3), are also cast

1 1

Z (q)xAY-_Y Ax) = Z (fiAy-_3Ax) with (px=-_¢dy and _y= _2_¢dx (6)
j=k(i) j=k(i)

and solved by a point Gauss-Seidel relaxation method. These solution procedures are sub-iterated until

satisfying the continuity equation at each time level.

The fluctuating quantities of velocities, pressure, and density from the mean state are defined as
t v v

ui=Ui+ui, p=P+p, p=po+p (7)

and a set of acoustic field equations [4] are derived by subtracting the incompressible Navier-Stokes
equations from the compressible Navier-Stokes equations;

w v

Ofi =0, ]i_oj+uj)+PoUjuj+p_i,j]=O, +c2_- -_ (8)

where f =pu',+p'U, and c 2 =yP/p. Equations (8) are solved by a MacCormack's predictor-corrector
scheme, coupled with the solution procedure described above for the unsteady flow calculation.

Unsteady incompressible flow and acoustic field computations

A self-sustained periodically oscillating flow over a cavity with a lip is calculated on unstructured triangular
meshes. In the present computation, all the length scales are non-dimensionalized by the cavity base length
L. Figure 2 shows a global view of computational meshes with a total of 11,240 elements (case 1). One
hundred and ten mesh points are used in the streamwise direction for the upstream region, where a laminar
boundary layer develops and grows to a thickness close to 0. I*L. For the downstream region where the
vorticity waves propagate, 200 mesh points are used, since the grid resolution on that region might affect the
unsteady solution accuracy of the flow in feedback mechanism. One other crucial scale for resolving the
free shear layer instability is a normal grid spacing across it. So a minimal normal spacing of 0.001 is used
for case 1, and 0.0005 for case 2, with 100 mesh points distributed in y-direction from the wall to the top
boundary. The feedback mechanism is generated by disturbances from the downstream cavity edge, which
then propagate upstream and enhance the vortex shedding from the lip. Therefore, in order to resolve this
flow feature, 40 points are used across the lip, 60 along the lip, and 80 along the cavity opening. For the
cavity inside flow, 100 points are also distributed along the left vertical wall. Also one more important
factor that affects the solution of this problem is an outflow boundary condition. In this study, a convective
boundary condition is imposed at the downstream outflow boundary. For example, a wave equation,
3_/3t +cb¢/3x = 0, is solved at the boundary, where ¢ is either u or v and a local streamwise velocity is
used for c representing a local wave speed.

The self-sustained oscillating flows are computed for case l and the solutions of the first shear layer mode
are presented in Fig. 3 for the two instants in one period. The first one (cavity: expansion) corresponds to a
non-dimensional time, tU/L, at 35.9 and the second one (cavity: compression) is 0.41"T apart from the first
one, where T indicates a period of oscillation close to 1.47. This value also corresponds to a Strouhal
number of 0.68 or 1,215 Hz in frequency. This periodic behavior is demonstrated in Fig. 4 by a time history

of v-velocity right before the downstream cavity edge. This regularity of unsteadiness in a feedback
mechanism is well captured by the present grid (called grid-a), although this computation is quite sensitive
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to the grid resolution on many aspects of parameters. We have done some of the grid sensitivity tests: (i)
doubling the minimum normal grid spacing (grid-b) and (ii) halving the grid points in the streamwise
direction for the downstream region where the vorticity waves convect (grid-c). The computed results for v-

velocity at the downstream cavity edge are shown in Fig. 5. The regularity of this unsteady flow feature
starts to break down on grid-b and gets even worse on grid-c. The computed periodicity of the flow,
however, is still somewhat maintained on both grids. Comparing the vorticity waves computed on two

different grids, Fig. 6 might indicate a point such that the grid resolution in the downstream region could
play an important factor for imposing a different numerical impedance to the vorticity wave propagation,
and that might feed back to affect the unsteady flow behavior upstream.

An acoustic field of this oscillating flow is computed on the cartesian grid shown in Fig. 7. Since the flow
Mach number is quite low as 0.077 for case 1, the acoustic wave length is approximately close to 19 based
on the relation, _/L=I/(St_j .M=), and therefore the computational domain is stretched out to +60 to
include a couple of acoustic wavelengths. The number of grid points is selected such that roughly 25 points
are included in one wave length for the use of the MacCormack's scheme in the computations. The
computed sound pressure field is presented in Fig. 8, where the dashed line indicates the boundary of PML
zones. One can see from the left figure that the PML boundary condition encounters some difficulties
handling outgoing acoustic waves. The shaded flooding contours also show well a nearly circular radiation
of sound waves generated from the cavity (shown as a very tiny stick-out at (0,0) in the figure). The
computed acoustic wave length is close to 18, and the highest intensity of the radiated sound noise is
between 135 and 180 degrees, meaning that the passengers sitting in the front seats will hear louder noise.
The computed sound noise level outside of the cavity is approximately in the range of 80-90 dB. The sound
pressure field near and inside of the cavity is shown in Fig. 9, indicating that the cavity inside experiences a
lateral mode of compression and expansion, as a vortex shed from the lip starts to roll upstream of the
opening and then impinges off the downstream cavity edge, alternately. Figure 10 shows a time history of
the sound pressure at the center of the left vertical wall, and the sound pressure level (SPL) is predicted as
118 dB with a frequency of 1,215 Hz. Even though the computational condition (a relatively thin laminar
boundary layer) is different from the experimental one (a thick turbulent boundary layer), quantitative
comparisons are within a range. Figure 14 shows experimental results for cases 1 and 2. In case 1, the
experiment seemed to experience a dual shear layer mode of one and two. The unsteady characteristics are
not so strong as the case 2, but they are surely in the same frequency range as the present computational
result, though SPL was quite over-predicted by the present calculation.

The computational results for the case 2 are also presented in figures 11-13. The computational results show
a similar value of a Strouhal number close to 0.65 (or 2,080 Hz) and the acoustic wave length of 9.5, which

is also quite close to an estimated value of 10. See Fig. 12 for the computed sound pressure field. The SPL
of 133 dB inside the cavity left wall was also predicted from the computed result of p' shown in Fig. 13. The
frequency and SPL are quite closely compared with experimental data shown in Fig. 14.

Conclusions

Unsteady flow computations of a self-sustained feedback flow are quite sensitive to the mesh size,
computational domain, and outflow boundary conditions. Difficulties in keeping the numerical consistency
are encountered in these unsteady flow computations and further investigations are in definite need,
including the flow calculations with thick turbulent boundary layers.
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Abstract

We present results for computing the unsteady flow around a two-dimensional

automobile door cavity. The solution of the unsteady, compressible Navier-Stokes

equations is performed using the CFL3D code. By using a multi-block strategy, stretched

grids refined in regions of high vorticity and small time steps we are able to capture fine

vortical structures. A Wilcox k-c0 turbulence model is used, which is integrated through

to the wall. Simple extrapolation boundary conditions are used at the edge of the

computational domain. Results for a flow speed of 50.9 m/s with a thick (2.2 cm at the

cavity leading edge) incoming turbulent boundary layer are presented. These agree well

with experimental data, although the presence of numerical reflections is of concern.

Problem Description

The benchmark problem, category 6, is representative of the flow around an automobile

door cavity [1]. The geometry of the test case specified at the workshop is shown in

Figure 1. In this paper we present results for a flow speed of 50.9 m/s with an incoming

turbulent boundary layer which is 2.2 cm thick at the leading edge of cavity. A one-

seventh power-law velocity profile is assumed,

1

' (1)

where 8 is the boundary layer thickness.

Computational results are non-dimensionalised in time and space with respect to the

freestream speed of sound and cavity mouth width (8.76mm).

Solution Strategy

In order to compute the flow over the door cavity we use the CFL3D code (version 5).

This is a multi-block, compressible, finite-volume, unsteady RANS solver [4, 5]. In the

work presented here the code is configured to use second-order central differencing for
both the viscous and inviscid terms. Fluxes at the cell faces are calculated by the flux-

differencing-splitting method of Roe. An implicit three-factor approximate factorisation

method is used to advance the solution in time. For the results presented here we use
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CFL3D's t-TS sub-iterationoption [5], with tensub-iterationsperphysicaltime stepto
obtainsecond-ordertemporalaccuracy.While CFL3D hasnotbeenspecificallydesigned
for aeroacousticsproblems,it hasbeenshownto beableto resolveflow structures
responsiblefor noisegenerationprocesseswhensuitablyfinemeshandtime stepsare
used[2, 3].

For thisdoorcavity testcasewehaveusedaneleven-blockgrid, shownin

Figure2. A total of 68,736grid cellsareused.Thegrid is refinedsignificantlyalongthe
walls (Ay+<l at thewall), andnotablyalongthecavitymouthin orderto resolvethe

shearlayercorrectly. Grid stretchingwithin thecavity waskeptto aminimum,but
outsideof thecavitygrid stretchingwasusedin conjunctionwith a coarse'buffer region'
to dampdisturbancesbeforetheyencounteredtheoutflow boundary.

Adiabatic,no-slipboundaryconditionsareimposedonall solidwalls in thecomputation.
Along theupstreamboundarythethreevelocity componentsarefixed describingthe
approachingturbulentboundarylayerprofile,togetherwith thetwo turbulencequantities,
k andco,appropriateto theturbulencemodelbeingused.Wilcox's EDDYBL turbuIent
boundarylayerprogramhasbeenusedto ensurethatthespecifiedprofile providesthe
correctboundarylayerat the cavity lip [6].

At the outflow boundary downstream of the cavity, zeroth-order extrapolation is used.

Along the upper computational boundary characteristic 1-D Riemann invariants are

solved. The use of these simple boundary conditions does, not surprisingly, lead to

reflections, which degrade the solution quality for long-times.

For the results presented here the simulation is run to steady state initially for 1000

iterations. It is then restarted in unsteady mode. Numerical oscillations after the unsteady

restart appear to settle down quickly, after around 2000 iterations. For the purposes of

this benchmark we output the fluctuating pressure signal on the entire left-wall of the

cavity.

All computations were run on Pentium III 450MHz and 500MHz PCs. CFL3D was

compiled with Digital Visual FORTRAN (version 6), using aggressive compiler

optimisations, under Windows NT 4 Workstation (Service Pack 4). Run times were of the

order 24 hours for 2000 iterations (one shedding cycle) on a single 500MHz processor.

Results and Discussion

After several preliminary simulations with different grids, we found that we were able to

resolve flow separation, secondary vortex structures, and comer flow within the cavity

using the grid described above.

Vorticity contour plots for a single cycle of the cavity mouth shear layer are presented in

Figure 3. We show results for the case with a large time step, Ax--0.01. Refining the time

step by an order of magnitude shows no change in the solution, with changes in peak-to-

peak pressure amplitude of less than 0.1%. Therefore we are confident that the coarse

time-step solution is converged.
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A comparison of the measured [1] and calculated spectrum of the pressure signal is

shown in figure 4 for the coarse time step, with frequency and amplitude comparisons

given in Table 1. The spectrum was obtained by averaging the CFD results over an area

equivalent to that covered by the (1/4 inch diameter) microphone in the experiment. A

flat-top window was used for the FFT analysis, with a bandwidth of 49 Hz. Note that the

experimental results are at a lower speed and with a thinner boundary layer than that

specified in the original problem statement (and used in the CFD). This may account for

some of the discrepancy between the experimental and computational results.

Additionally, in the experiment the flow was seen to randomly switch preferred modes.

Henderson [ 1] states that she does therefore not expect numerical results to be closer than

approximately 3-5 dB of experiment.

The CFD results agree well with the experimental observations for the near-field initially.

The presence of reflections that appear to be emanating from the upstream computational

boundary is cause for serious concern, and is likely to be due to the specification of the

inflow boundary condition, and the use of low order extrapolation at the outflow

boundary. The use of a larger computational domain with non-reflecting boundary

conditions is required for accurate long-time simulations to be run with confidence.

Frequency (Hz) Sound Pressure

Level

Experiment

50m/s, 1.9cm boundary layer

Unsteady RANS CFD simulation

50.9m/s, 2.2cm boundary layer

1824 134

3552 111

1960 141

3920 111

Table 1. Frequency and sound pressure levels from pressure signal at the centre of

the door cavity left wall

Conclusions

In this paper we present unsteady CFD results for an automobile door cavity using a

compressible RANS code. With careful grid construction and small time steps the near-

field unsteady flow is captured. The spectrum of the pressure signal agrees well. The use

of fixed inflow and low-order extrapolation boundary conditions leads to reflections,

which degrade the solution. Extending the computational domain and implementing non-

reflecting boundary conditions are necessary to carry out longer-time simulations for far-

field acoustic calculations. For this problem we have demonstrated that the use of a low-

order, unsteady RANS code can give reasonable results for the near-field aeroacoustics

and it is the lack of non-reflecting boundary conditions which currently limits the

application of this approach.
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Figure 2: Computational grid around cavity mouth
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Abstract

A parallel numerical simulation of cavity flow and noise at low subsonic Mach number is presented

in this paper. The one-equation Spalart-Ailmaras model is implemented to simulate the turbulent flow

phenomena in two dimensions. In order to prevent excessive numerical dissipation from the turbulence

model in separated flow regions, the Detached Eddy Simulation (DES) proposed by Spalart et al. [l]
is used. Laminar and turbulent simulations have been carried out for a Mach 0.15 flow. An incoming

boundary layer thickness of O.05D is selected to insure tone generation. Various phenomena of the cavity

flow are examined. Frequencies and sound pressure levels of the tones are calculated and presented in this

paper.

1 Introduction

Significant attention has been paid to the reduction of automobile aerodynamic noise in recent years. This

is due to a tremendous decrease in the noise generated by engines, tires, transmission, and many other com-

ponents. Since a major source of automobile aerodynamic noise is due to flow over cavities such as open

windows or door gaps and seals, the elimination of cavity noise can offer a commercial advantage in the au-

tomobile industry by creating a more comfortable and environmentally friendly vehicle. In this paper, both

direct numerical simulations and unsteady Reynolds Averaged Navier-Stokes (RANS) calculations of a sub-

sonic flow over a deep cavity are presented. This research is part of an effort to understand the noise generation

mechanisms of deep cavities, and ultimately to minimize this noise source.

2 Numerical Approach

The governing equations that describe the near-field turbulent flow and the far-field acoustics are the com-

pressible Navier-Stokes equations. With the implementation of Favre averaging and the assumption of the

*Graduate research assistant

+Boeing/A. D. Wellivcr Professor of Aerospace Engineering
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Boussinesq eddy viscosity approximation,

written as

_p _pui
--+
bt bxi

a(pu,) a
a-Z-+ (f,u:,,)

-- + N-j j
a(pE,)

Ot

the governing equations, using a standard nomenclature, can be

- 0 (l)

ap 3

- _xi + _ ((_ij + "Ciy) (2)

- _ [--qLj--qTj +ui((_ij+'r.ij)] (3)
Oxj

where (Yij is the laminar viscous stress tensor, T,ij is the Reynolds stress tensor, and qTj is the turbulent heat

flux. Notational differences between Reynolds and Favre averaging have been omitted for simplicity. The

Reynolds stress tensor is modeled with the use of the one-equation Spalart-Ailmaras turbulence model [2],

where the eddy viscosity is determined from

(4)

z3 9
vt=gfvl, f,,l=_, Z -=v. (5)

v and vt are the kinematic laminar and eddy viscosities respectively. A modification to the turbulence produc-

tion term in Eq. (4), proposed by Edwards and Chandra [3], has been implemented to provide a more stable

calculation in modeling near-wall behavior. In order to prevent excessive numerical dissipation from the tur-

bulence model in separated flow regions, a hybrid RANS/LES approach called the Detached Eddy SimuIation

(DES), proposed by Spalart et. al [1], has been used. In DES, the distance to the closest wall, d, in Eq. (4) is

replaced with d- min(d, CDEs A) where A _----max(Ax, ky) and CDES iS an adjustable constant, set to unity in

present calculations.

The governing equations are discretized with a fourth-order, seven-point stencil, DRP differencing oper-

ator spatially, and are integrated in time explicitly with the use of a fourth-order Runge-Kutta method. A

parallel multiblock implementation with pipeline block communication is employed to take advantage of the

geometry of the problem. This is an extension to the parallel multiblock implementation proposed by the

authors [4]. Solid wall boundaries are assumed to be adiabatic, and the no-slip boundary condition is applied.

A small section of the wall upstream of the cavity is assumed to be a slip wall. This allows the flow to trigger

the onset of boundary layer growth naturally, while simplifying the implementation of the inflow boundary

condition so that a Riemann invariant boundary condition can be employed. For the far-field and the outflow

boundaries, the MOC boundary condition is used.

For the laminar calculation, the number of grid points used for the computational meshes are 171 x 97 and

59 x I 13 for the upper block and the cavity block respectively. The meshes used for the turbulent calculation

have 17i x 113 and 59 x 135 grid points respectively for the two blocks. Simulations are run on the new PC

cluster at Penn State, with 32 dual 500 MHz Intel Pentium III nodes (64 processors) and a fast ethemet network

with 100 Mbits/s transfer rate. The equivalent single CPU/grid point/time step of the code is 226/as, and about

30% of the run time is spent on communication. This is reasonable, since additional communications need to

be performed for the block interface. The relative communication time will drop further for three-dimensional

calculations or larger problems.

=
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3 Results and Discussions

Initial time-dependent RANS calculations with the splitter plate in the original configuration and an incom-

ing turbulent boundary layer thickness of about 10% of the total cavity depth showed that the flow was

not able to maintain a self-oscillatory mode. According to the the experimental study by Sarohia [5], for

a thin incoming boundary layer such that 5olD < 0.5, the value of the nondimensional length of the cavity

(Lmin/_0) v/Re(So�D) has to be above 290 for a sustained flow oscillation to occur. Therefore, to satisfy this

criterion, a new configuration has been set up in which the splitter plate has been removed. This eliminates the

difficulty that arises from the multiple scales present in the original configuration, and isolates the investigation

to the effects of boundary layer thickness on cavity flow oscillations.

Both laminar and turbulent calculations have been performed for the new configuration, and results are

discussed in this section. The Mach number of the flow is 0.15, and the Reynolds numbers based on the cavity

depth are 15000 and 335041 for the laminar and turbulent calculations respectively. These Reynolds numbers

correspond to an incoming boundary layer thickness 5o/D of 0.05 in both cases. For the laminar case, the

nondimensional cavity length based on Sarohia's analysis is calculated to be 317, so this satisfies the minimum

cavity length criterion for flow oscillations. It is still not clear whether the same criterion can be applied to

turbulent flows.
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Figure 1" Instantaneous contours of nondimensional density for a laminar, M = 0.15, Re = 15000, LID :

0.58, 5o : 0.05D cavity flow at different times, corresponding to approximately one period of the large-scale

structure oscillation. Contour levels range from 0.995 (dark) to 1.001 (light).

Figure 1 shows the instantaneous contours of nondimensional density (9/9o) for the laminar calculation at

different nondimensional times that correspond to approximately one period of the large-scale structure evo-

lution inside the shear layer. As the vortical structure impinges on the downstream cavity wall, part of it spills

over the cavity and continues to travel downstream, forming smaller vortical structures along the downstream

flat plate. The rest of the vortex rolls underneath the downstream cavity edge, creating a recirculating region.

The presence of a well-formed, trapped vortical structure is more prominent in deep cavities, and the present

calculation agrees qualitatively with the experimental work of Roshko [6] and Maull and East [7]. Unlike

shallow cavities, the flow oscillates in a depth mode for deep cavities, more like a Helmholtz resonator. This

is shown in Figure 2. The instantaneous pressure is sampled for a nondimensional time of 32 that corresponds
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to approximatelyfour periodsof the large-scalestructureevolution in the shearlayer. The soundpressure
levelsarecalculatedfrom thisdata,andtheacousticfield indicatesthatthesoundsourcedueto theflow over
thecavitybehaveslike amonopole,asshownin Figure3.
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Figure 2: Instantaneous contours of nondimensional pressure for a laminar, M = 0.15, Re = 15000, LID =

0.58, 6o = 0.05D cavity flow at different times. Contour levels range from 0.71415 (dark) to 0.7147 (light).
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Figure 3: Contour levels of sound pressure level for the laminar calculation.

The far-field noise generation mechanism for the laminar and the turbulent cavity flows is quite similar:

however, the main difference lies in the near-field flow solution. Figure 4 shows a series of instantaneous

nondimensional density contours at different nondimensional times that correspond to approximately one

period of the vortical structure evolution in the turbulent shear layer. It is evident that there are multiple large-

scale structures present inside the cavity. The largest large-scale structure undergoes roughly a solid-body

rotation, while smaller structures from vortex shedding in the turbulent shear layer are swept up by the main

vortex. This results in a stronger recirculation zone, as indicated by the mean shear layer profiles and the

streamline contours for the laminar and turbulent case shown in Figures 5 and 6 respectively.

Time history data at position (0.0,-0.5) have been sampled, and an FFT has been used to calculate the

power spectral density of the data. This is plotted in Figure 7 for both the laminar and turbulent calculations.
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laminar calculation.
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turbulent calculation.

According to the analysis by Tam [8], the lowest normal mode of a LID = 0.58 two-dimensional rectangular

cavity has a mode frequency of 2191.32 Hz. Even though this analysis is based on the no flow condition,

the model should be a reasonable approximation since the current flow Mach number is only 0.15. For

the laminar calculation, the lowest mode frequency from the power density spectrum is 2018.08 Hz. The

frequency resolution is Af = 87.75Hz. Higher harmonics are also captured in the current calculation. For

the turbulent calculation, the fundamental mode has a lower frequency, 1852.61 Hz, than the laminar case, as

shown in Figure 7. Besides higher harmonics of the normal mode, there are also higher frequency modes as

well as a very low frequency content that is present in the turbulent case. This very low frequency mode can

be seen clearly from the time history of the data as shown in Figure 8. Similar observations have been made

in the experimental work by Henderson [9], though the cavity configurations are different.

4 Summary and Conclusions

Simulations of low subsonic flow, M = 0.15, over a deep cavity, LID = 0.58, are presented in this paper.

The splitter plate from the original problem configuration has been removed in the present simulations. The

incoming boundary layer thickness is kept at fio/D = 0.05 for both the laminar and turbulent calculations. At

such a low Mach number, the deep cavity is under a normal resonance, and the frequency of the lowest normal

mode for the laminar case compares well with the analytic result. For the turbulent case, the dominant mode

has a slightly lower frequency than the laminar case, and there is a very low frequency oscillation that is also

observed in the experiment work. More analysis needs to be performed to ascertain the physical nature of the

very low frequency oscillation in the turbulent calculation.
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Abstract

The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP)

scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an a.u-

tomol)ile door cavity. In this work, the flow Reynolds nmnber is restricted to R5. < 3400; the

range of Reynolds number for which laminar flow may be maintained. This investigation focuses

on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone

frequency and intensity and the effect of the size of the computation donlain on the accuracy of the

numerical sinmlation. It is found that the tone frequency decreases with an increase in boundary

layer thickness. When the boundary layer is thicker than a certain critical value, depending on the

flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems

are known to be sensitive to the size of the computation domain. Numerical experiments indicate

that the use of a small domain could result in normal mode type acoustic oscillations in the entire

computation domain leading to an increase in tone frequency and intensity. When the computation

domain is expanded so that the boundaries are at least one wavelength away from the noise source,

the computed tone frequency and intensity are fi)und to be computation domain size independent.
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1. Introduction

The benchmark problem specifes a. turbulent boundary layer flow over the cavity. To properly model

and compute the turbulent boundary layer flow and its interaction with the cavity is a task that will

rcquire extensive time and effort. Because of time constraint, we will consider a laminar boundary

layer instead. We believe that the cavity tone frequency would most likely be about the same whether

the flow is turbulent or laminar.

A boundary layer flow will definitely he laminar if Ra. < 600. This is the Reynolds number below the

stability limit of the Tolhnien-Schlichting waves. In modern facilities with low free stream turbulence

and sound, a boundary layer may remain laminar if Ra* is larger than 600 but less than 3400. For a

free stremn velocity of 50.9 m/s and 26.8 m/s (velocities prescribed by the benchmark problem), this

corresponds to a boundary layer thickness of 2.9 mm and 5.5 mm, respectively. In this investigation,

we will, therefore, restrict our consideration to a boundary layer thickness less than 3 mm and 5.5 mm

for flow velocities of 50.9 m/s and 26.8 m/s.

Cavity tone is a multi-facet problem. A flfll investigation is beyond the scope of this work. We

focus our effort primarily on two aspects of the problem. The first is on the effect of the size of the

computation domain on the computed tone frequency and intensity. Specifically, we wish to find out

if the size of the computation domain affects the solution. If it does what is the smallest size that

will still give accurate sinmlations. The second is on the influence of the boundary layer thickness on

the cavity tones. It has been suggested in Ref. [1] that boundary layer thickness has some influence

on the frequency of the tones. The present study offers some quantitative results.

2. The Computation Domain and Grid Design

The computation domain is shown in figure 1. It is designed primarily for the case U = 50.9 m/s

and a boundary layer thickness _ = 2 ram. In the actual computation, the outside dimensions of the

computation domain change somewhat with flow velocity and boundary layer thickness.

In the cavity opening region, viscous effects are important. To capture these effects, a fine mesh is

needed. Away from the cavity, the disturbances are mainly acoustic waves. By using the Dispersion-

Relation-Preserving (DRP) scheme (Ref. [2]) in the computation, only a very coarse mesh would

be necessary in the acoustic region. The mesh design is dictated by these considerations. The

computation domain is divided into a number of subdomains as shown in figure 1. The finest mesh

with Ax = A 9 = 0.0825 mm is used in the cavity opening region. The mesh size increases by a factor

()f 2 every time one crosses into the next sul)domain. The mesh size in the outermost subdomain is
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32 times larger than the finest mesh.
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Figure 1. Computation domain showing the division into sub-domains and their rnesh sizes.

3. The Governing Equations and the Computational Algorithm

Tile governing equations are tile compressible Navier-Stokes equations in two-dimensions.

Op Ouj Op

0-7+po-7+,tJ0-7=0 (1)

Oui Oui _ 10p 10rij

0_-+ _'Jaxs + --- (2)p c)xi [ OXj

Op 01) c)u j

0-7+ _'J_,_j+_v_xj= o (3)

";_s= u \O,,,j + o:,,,/ (4)

In this study, tile above equations are solved in time 1)y the nmltil>le-size-naesla multiI)le-time-step

DR P algorithm as described in 1-{ef. [3]. In each subdomain of figure 1, the equations are discretized

175,the DRP scheme of Ilef. [2]. At the mesh size change boundaries, special stencils as given in Ref.

NASA/CP--2000-209790 373



[3] are used. The time-steps of adjacent subdomains differ by a factor of 2 just as the mesh size. By

using the nmltiple-size-mesh multiple-time-step algorithm most of the computation effort and time

are spent in the opening region of the cavity where the resolution of the unsteady viscous layers is

of paramount importance.

4. Numerical Boundary Conditions and Artificial Selective Damping

Along the solid surfaces of the cavity and the outside wall, the no-slip boundary condition is enforced

by the ghost point method (Ref. [4]). Along the external boundary region (3 mesh points adjacent

to the boundary), the flow variables are split into a mean flow and a time dependent component.

The mean flow, with a given boundary layer thickness, is provided by the Blasius solution. The

time dependent part of the solution is the only portion of the solution that is computed by the time

marching schenae (for the split variable method, see Ref. [5]). The boundary conditions used for

the computation are as follows. Along the top and left external boundaries the asymptotic radia-

tion boundary conditions (Ref. [2]) are imposed. Along the right boundary, the outflow boundary

conditions (R.ef. [2]) are used.

Artificial selective damping is added to the time marching DRP scheme (see Ref. [6], [7]) to eliminate

spurious short waves and to prevent the occurrence of numerical instability. The damping stencil

with a damping curve of half-width 0.27r is used for background damping. Near the solid walls or the

outer boundaries where a 7-point stencil does not fit, a 5- or 3-point stencil as provided in Ref. [7]

is used instead. For general background darnping an inverse mesh Reynolds number (RT, _ =

where 7_(,is the artificial kinematic viscosity and a_ is the speed of sound) of 0.05 is used everywhere.

Along walls and mesh change interfaces, additional damping is included. The added damping has an

inverse mesh Reynolds number distribution in the form of a Gaussian function with the maximum

value at the wall or interface and a half-width of four mesh points. On the wall, the maximum value

()f RT_x1 is set equal to 0.15. The corresponding value at a mesh size change interface is 0.3. There

are three external corners at the caa'ity opening. They are likely sites at which short spurious waves

are generated. To prevent nmnerical instability from developing at these points, additional artificial

selective damping is imposed. Again a half-width of 4 mesh point Gaussian distribution of the inverse

mesh Reynolds number centered at each of these points is used. The maximum value of RT, 1 at these

points is set equal to 0.35. By implementing artificial selective damping distribution as described, it

is our experience that no nmnerical instability nor excessive short spurious waves have been found

in all the computations.
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5. Numerical Results

In this work, the time-marching computation uses the time independent boundary layer solution

without the cavity as the initial condition. Computation continues until a time periodic state is

reached.

Figure 2. Instantaneous vorticity contours showing tile shedding of small vortices at the

trailing edge of the cavity. [r = 50.9 m/s, 5 = 2 ram.

The characteristic features of the flow in the vicinity of the ca_rity opening and the acoustic field can

be found by examining the instantaneous vorticity, steamlines and pressure contours. Figure 2 shows

a plot of the instantaneous vorticity contours for the case U = 50.9 m/s and 5 = 2.0 ram. As can

easily be seen, vortices are shed periodically at the trailing edge of the cavity. The shed vortices move

inside the cavity driven by the circulation of a large vortex (to be described later) located at the

opening of the cavity. Vortices are also shed into the flow outside. They are convected downstream

by the boundary layer flow. These convected vortices are clearly shown in the pressure contour plot

of figure 3. They form the low pressure centers. These vortices persist over a rather long distance

and eventually dissipated by viscosity. Figure 4 shows the instantaneous streamline pattern. It is

seen that the flow at the mouth of the cavity is completely dominated by that of a single large vortex.

Below the large vortex, another vortex of opposite rotation often exists (see figure 4). The position

of this vortex changes from time to time and does not always attach to the cavity wall. The far

field pressure contour pattern is shown in figure 5. This pattern is the same as that of a monopole

acoustic source in a low subsonic stream. That the noise source is a monopole and not a dipole is

consistent with the model of Ref. [1]. The sound is generated by flow impinging periodically at the

trailing edge of the cavity.
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Figure 3. Near field pressurecontours showing the convectionof shedvortices
along the outside wall. U = 50.9 m/s, _ = 2 mm

Figure 4. Instantaneous sh'eamline pattern. U = 50.9 m/s, 3 = 2 ram.
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Figure 5. Far field pressure contours showing a monopole acoustic field. U = 50.9 m/s, 5 = 2 mm.

5.1. The Effect of the Size of the Computation Domain

The effect of the size of the computation domain on the cavity flow and acoustic field is investigated

by repeating the same numerical simulation three times each with a different size external domain.

At U = 50.9 m/s and _ = 2.0 mm the cavity tone frequency is around 2 KHz. Let ,\ be the acoustic

wavelength. The smallest size domain used is 0.3,\ by 0.23,\. This small size domain has the advantage

that the CPU time required for convergence to a time periodic state is very short. The moderate

size domain used is 1.85 by 0.9_. In other words, the external boundaries are a.t approximately 0.9

acoustic waaTelength from the trailing edge of the cavity or the noise source. The largest domain used

is 2.8_ by 1.4X. This is a very large domain and requires a long run time for convergence.

Figure 6 shows the pressure variations measured at the center of the left wall inside the cavity for

the three simulations. The large and the medium size computation domain give nearly the same

result with a tone at 1992Hz and a sound pressure level (SPL) at 125.6 dB. The small computation

domain gives a tone frequency at 2193 Hz and SPL = 131.8 dB. Thus the tone is stronger and at

a higher frequency. Upon examining the pressure fluctuations at a number of locations inside the

comlmtation domain fin' the small comlmtation domain case, it is fimnd that there are normal mode

type oscillations inside the entire domain. It is believed to be ca.used by partial reflections at the outer
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boundaries of the computation domain. The asymptotic radiation boundary conditions presuppose

that the boundaries are far fi'om the noise source. The above results suggest that this is reasonably

satisfied if the boundaries are, at least, one wavelength away fl'om the noise source.

%
,-go

1_..o
--_o

0

S
16 17 18 19

t/T

Figure 6. Time variations of the pressure field at the center of the left wall inside the cavity for

U = 50.9 m/s, 5 = 2 ram. ---- large size domain, ...... medium size domain, - - - small domain.

5.2. The Effect of Boundary Layer Thickness

The effect of boundary layer thickness on the cavity tone frequency and intensity at the two prescribed

flow velocities of the benchmark problem, U = 50.9 m/s and 26.8 m/s, are investigated. When the

boundary layer is thick, it is found that there is no tone. The boundary layer flows smoothly over the

cavity opening. In this case, the numerical simulation converges to a time independent state. Figure

7 shows the dependence of the tone frequency on the boundary layer thickness, 5, at U = 50.9 m/s.

The tone frequency decreases as 5 increases. At 5 = 4 mm, no tone could be detected. Figure 8

shows the SPL of the tone measured at the center of the left wall inside the cavity as a function of

boundary layer thickness. The highest intensity occurs at 5 = 2 mrn. This suggests that the intensity

depends on the instability characteristics of the mean flow profile. It does not vary monotonically

with boundary layer thickness. Figures 9 and 10 show the dependence of the dominant tone frequency

and SPL on 5 at the lower speed of 26.8 m/s. Again the tone frequency decreases with increase in

boundary layer thickness.
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Figure 7. Dependence of the tone frequency on the boundary layer thickness. U = 50.9 m/s.
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Figure 8. Dependence of the tone SPL on the boundary layer thickness. U = 50.9 m/s.
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Figure 9. Dependence of the tone fl'equency on the boundary layer thickness. U = 26.8 m/s.

O
r:)

O
o-4

£0
KD

O

_J
G_
Of?

O
O

O

I I I

t I I

no tone

Ob

0 1 2 5 4 5 6

d, FNm

Figure 10. Dependence of the tone SPL on the boundary layer thickness. U -- 26.8 m/s.

5.3. Noise Spectrum

Experiment.s indicate that cavity resonance may consist of a single tone or multiple tones. The

number of t(mos f(nu:d depend on the flow conditions and the cavity geometry. Figure 11 shows the
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noisespectrum measuredat the center of the left wall of the cavity at U = 50.9 m/s, _ = 2 mm (the

case of the highest tone intensity). Clearly the spectrum consist, s of a single tone at 1.99 1,2Hz.
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Figure 11. Noise spectrum at the center of the left wall of the cavity.

U = 50.9 m/s, _ = 2 mm ---- numerical simulation, ...... experiment (Henderson, Ref. [8]).

......... , ......... i ......... , ......... i ......... , ......... h......... i ........ , ......... , .......

Figure 12. Noise spectrum at the center of the left wall of the cavity.

U = 26.S m/s, _ = 1 mm ---- numerical sinmlation, ...... _'xperiment (Hend_'rson, Ilef. IS]).
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Shown in this figure also is the experimental spectrum measured by Henderson, 1Ref. [8]. There is

good agreement between the tone fl'equency of the numerical sinmlation and that of the physical

experiment. In the experiment, the boundary layer is turbulent, therefore, we do not expect good

agreement in the tone intensity. Figure 12 shows the noise spectrum at the lower speed U = 26.8 m/s

and _ = 1 mm. In this case, there are two tones. One is at a frequency of 1.32 KHz and the other

at 2.0 KHz. This is in agreement with the experimentally measured spectrum. Again, the tone

fi'equencies are well reproduced in the numerical sinmlation. But the tone intensities are different.

Figures 11 and 12 together suggest that as the flow velocity increases, one of the tones disappears.

The strength of the remaining tone intensifies with flow speed.

6. Conclusions

The present investigation demonstrates the feasibility of performing direct numerical sin-relation of

automobile cavity tones using the multiple-size-mesh nmltiple-time-step DRP scheme. It is found that

the size of the computation domain is a factor of infuence on the accuracy of the numerical simulation.

If too small a domain is used, the tone intensity as well as the frequency can be substantially increased

due to partial reflections at the boundaries of the computation domain. It is recommended that the

outer boundaries should be placed, at least, one acoustic wavelength away from the cavity trailing

edge where the tone is generated. In recent years, a number of investigators; e.g., 1Ref. [9] and [10],

had performed nmnerical simulation of cavity tones at a subsonic Math number. The study of the

size of the computation domain on the accuracy of the numerical simulation has, however, never been

done before.

The dependence of the cavity tone frequency and intensity on the boundary layer thickness is also

studied. No tone could be detected when the boundary layer is thick. For thin boundary layers,

the tone frequency increases with a decrease in boundary layer thickness. The variation of the

tone intensity with boundary layer thickness is not monotonic. It appears to be influenced by the

instability characteristics of the boundary layer velocity profile.
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COMPARISONS WITH ANALYTICAL SOLUTION: CATEGORY 1, PROBLEM 1

CHRISTOPHER K.W. TAM and ALEXEI AGANIN

Department of Mathenmtics

Florida State University

Tallahassee, FL 32306-4510

Email : tam@math, fsu. edu

Altogether, thirteen participants sul)mitted their computed results for comparison with the exact

solution. The solution consists of three distinct regions. In the region upstream of the nozzle throat,

there is only the transmitted waves. So the maximum pressure envelope is nearly a flat line. Near the

nozzle throat region, the pressure increases dramatically. The maximum pressure envelope consists of

a sharp spike. In the region downstream of the nozzle throat, the solution comprises of an interference

pattern formed by the incoming and reflected waves. In order to compare the above features well, two

figures are used. The first compares the transmitted wave amplitude in the region upstream of the

nozzle throat and the interference pattern downstream of the nozzle throat. The second compares

the location and peak pressure amplitude at and near the nozzle throat.
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;Solutions to Category 1 Problem 2

Ray Hixon and Rcda R. Mankbadi

CAA Group, ICOMP

NASA Glenn Research Center

Clcveland, Ohio 44135
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2) Perturbation Pressure Distribution
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3) Perturbation Pressure History at Exit Plane
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COMPARISONS WITH ASYMPTOTIC SOLUTION: CATEGORY 2

CHRISTOPHER K.W. TAM and ALEXEI AGANIN

Department of Mathematics

Florida State University

Tallahassee, FL 32306-4510

Email : tam,math, fsu. edu

Only two participants sulmfitted computed results for con-tparison with analytical solutions. The

analytical solutions are asymptotic solutions valid for large distances from the rotor. The computed

results, oil the other hand, are measured a.t finite distances away. One should take this difference

into account when judging the comparisons.

There are two parts to this benchmark problem; the open rotor and the ducted rotor problems.

The blade passage frequencies of the ducted rotor, as prescribed by the benchmark problem, are

below the cut-off frequency of the duct. Therefore, effectively there is very little acoustic radiation.

Accordingly, no comparison is presented.
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COMPARISON OF ANALYTICAL AND CAA SOLUTIONS

CATEGORY 3, BENCHMARK PROBLEM 1

James R. Scott
NASA Glenn Research Center

Cleveland, Ohio 44135
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COMPARISON OF ANALYTICAL AND CAA SOLUTION(S)

CATEGORY 3, BENCHMARK PROBLEM 3

Edmane Envia
NASA Glenn Research Center

Cleveland, Ohio 44135

5

Analytical

• CAA

-25
0 5 20 25 20 25 30

Sweep Angle _, deg.

Sound pressure level reductions at the upstream location (-5c,0,g/2)due to

the introduction of sweep. Solid line is analytical solution and the symbols

denote the CAA-based solution due to Wang, et. al.
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COMPARISONS WITH ANALYTICAL SOLUTION: CATEGORY 5

MILO D. DAHL

NASA Glenn Research Center

Cleveland, OH

10 -11

i0-,_E

e

10 -13

=¢
o_

m

I::T
GO -14
=10

10 -15

Strouhal No. = 0.14, y/Rl_ 2 = 10

I
--- Total Solution

.... Instability Wave Solution i
1

Bailly _._

./2y" i

0 10 20 30 40 50

x/R_ra

E

%
o_

n

"o
0,)

¢T
03

10 -I0

Bailly

10 -11

10 -12

Strouhal No. = 0.14, x/Rl_ 2 = 50

--- - Total Solution

.... Instability Wave Solution

-- Bailly

t

........... i ........ t ......... i ........

4 6 8 10

Y/Rlra

10 -11

10-_2

Q)

10 -13

n

o

_ 10 -_4

10 -15

Strouhal No. = 0.14, y/Rl_ = 10

---- Total Solution

.... Instability Wave Solution

-- Hu ." _v -y:"

J'" ZZ

!-
0 10 20 30 40 50

1 0 -l°

E

3 ca.

L

10-u

Q_

£/3

Ol

Ha

10 -I_

Strouhal No. = 0.14, x/Rl_ _= 50

---- Total Solution
.... Instability Wave Solution

-- Hu

2 4 6 8 10

Y/RI,_

NASA/CP--2000-209790 413



10 -1_

i0 -12

_ 10 -13

13_

09 10-14

10 -_5

Strouhal No. = 0.14, y/R,2 = 10

--- Total Solution

.... Instability Wave Solution

-- Li _7 _"

J

s _

10 30 40 50

x/R,_

10 -I°

ol

E

Q.

10-1_
,it

"O

09

c

1 0 -12

Li and Thiele

Strouhal No. = 0.14, x/R,2 = 50

--- Total Solution

.... Instability Wave Solution i

-- Li

2 4 6 8 10

yiRI_

10 -tl

m 10_,_E

o..

09 10-14

10 -15

Strouhal No. = 0.14, y/R_,_ = 10

--- Total Solution

.... Instability Wave Solution

-- Lockard ..-" ,..

0 10 20 30 40 50

x/R_..2

o_

E

m

"O

_r
09

10 -10

10 -11

10 -_

Lockard and Atkins

NASA/CP--2000-209790 414

Strouhal No. = 0.14, xlR,_ : 50

---- Total Solution

.... Instability Wave Solution i

-- Lockard

i

4 6 8

ylR_a

z

10
_=

=

=



10 -11

co 10-12E

%

13-

"0

_ 10 -_4

]0 -15

Strouhal No. = 0.14, y/R,,_ = 10

t .._ S""
¢/

//"
/

"/

/

' / ." \ I

• ] .'" \_J

FI ."

10 -t0

i

J _

.._'/ ] E

10 -11

13_

i °O"

e-
---- Total Solution -'

....-- LohlnstabilityWave Solution I :_
1

0 10 20 30 40 50
10 -12

Strouhal No. = 0.14, x/Rl_ 2 = 50

i -- - Total Solution

i .... Instability Wave Solution

i -- Loh

i

i

4 6 8 10

y/R v2

Loh, Wang, Chang, and Jorgenson

tO -11

¢n 10__2E

I]1

10 -13
I]1

Q_

0"] -14

=10

10 -15

Strouhal No. = 0.14, ylR,2 = 10

---- Total Solution

.... Instability Wave Solution
- Scheidegger, Wasistho BC ..'"_,

-- Scheidegger, Tam and Dong BC ..."Sf'._-
• Scheidegger, Freund BC .... .'//

.......:::;*'"
°* h¢-

_:';_

/

,-
.L...."-." -.. ";._.

t/. j

0 10 20 30 40 50

E

.,...,

,¢

o..
10

_r
03
t-

10 -1°

10 -11

10 -12

Strouhal No. = 0.14, x/Rv_ = 50

- - - Total Solution
, - - - - Instability Wave Solution

Scheidegger, Wasistho BC

t Scheidegger, Tam and Dong BC
_ • • Scheidegger, Freund BC

_--.. _-_..

--.--_._ ,

i ......... i ......... i ......... i ......... J

2 4 6 8 10

Y/R,a

Scheidegger and Morris

NASA/CP--2000-209790 415

.°

.. ---.:=



10 -11

r_

_] 10-m

O..

:l

cO 10-;4
cd

10 -15

Strouhal No. = 0.14, y/R_ 2 = 10

I.... Total Solution

.... Instability Wave Solution

-- Stanescu /_._
/J

" /

r

0 10 20 30 40 50

x/Rv2

10 -1°

E

Q.

10-"
[3.

o"
cO

I1}

10-_*

Strouhal No. = 0.14, xlR_ 2 = 50

t
--- Total Solution

i

,.,. .... Instability Wave Solution

i

2 4 6 8 10

Y/R,,2

Stanescu, Ait-Ali-Yahia, and Habashi

10 -13

E¢_ 10-14

Q.

_10 o_5
m
0.

co 10-_B

10 -t7

Strouhal No. = 0.60, y/R_, 2 = 10

- - - Total Solution i

-- Bailly

i
i

v

10 20 30

x/R,_

4'0........ 50

v

Bailly

10 -14

10 -_s

IX.

"O

2

cO

NASA/CP--2000- 209790 416

10 -16

Strouhal No. : 0.60, x/R_,_ = 50

--- Total Solution

-- Bailly

F---

4 6 8

ylR_a

10



StrouhalNo.=0.60,y/R_=10
-13

J_

10-14E

)
w
-Q.

_ 10 -_s
(1)

Q..

_- 10-16
c

10 -17

L

r

[ i,,,, ..... i,

0 10 20

--- Total Solution

-- Hu

v

1

30 40 50

x/Rl_

10 -14

E

%
o..

_ 10-1s

O,..

"O
a)

_o

(I)

10 -16

DR

Strouhal No. = 0.60, x/R_, 2 = 50

- - - Total Solution

-- Hu

/
i/

/

2 4 6 8 10

y/R_

10 -13

10-14E

)

10 -15

13..

"O
<1)

2_

10 -17

Strouhal No. = 0.60, y/R_ 2 = 10
t

-- - Total Solution

-- Li

v

!

0 10 20 30 40 50

xlR_

] 0 -14

E

2_
v

%
e_

10 -_s
o.-

g
o')

10 -16

Li and Thiele

J

Strouhal No. = 0.60, x/R,a = 50

-- - Total Solution

-- Li

!

- !

|

t

t

4 6 8 10

Y/R,,,2

NASA/CP--2000-209790 417



10 -13

o_ 10_I 4E

)

10 -IS

I1.

"O

m

_0 10-1e
c
m
113

10 -17

Strouhal No. = 0.60, y/Rl_ 2 = 10

I --- Total Solution
. -- Lockard I

l+E

!

10 -14

f I
L ......... I ......... _ ...... ,,,J ......... i .... [

0 10 20 30 40 50

x/RI_

10-15
4
1 "o

i o"
130

4

i
i

I

10 -16
2

Lockard and Atkins

Strouhal No. = 0.60, x/R.2 = 50

r ...... - • • ,

Total Solution ;-- Lockard

[

I .......... i

4 6

Y/Rle

i

I

!

; i

10

Strouhal No. = 0.60. y/Rvz = 10
10 -_ ......... , ............... ,-_-_-_7-

m 10_14E

10 -15
n

10-16

0

10 -17

i \

!
/

/

f

t

, 10-14

--- Total Solution 1

Scheidegger, Wasistho BC _i

Scheidegger, Tam and D0ng BC i _
J

i_t] \/ '.-, \ .., r,,, l

':) ',..,'7 _10 -is

1 "O

g
O

0 10 20 30 40 50

x/R_

t 0 -16

Strouhal No. = 0.60, x]R.,,2 = 50

----- Total Solution

Scheidegger, Wasistho BC

Scheidegger, Tam and Dong BC

//
/ /

t
!

+

4 6 8 10

Y/RI_

Scheidegger and Morris

NASA/CP--2000-209790 418



10 -13

E

)

_ t0 -_5

,n

m

o-

_ t0 -_e
m

10 -17

Strouhal No. = 0.60, y/R.2 = 10

---- Total Solution

Stanescu

F

1
v

i

0 10 20 30 40 50

x/R_

10 -14

E

CL

10 -15

CL

E:r
09

g

10 -16

Strouhal No. = 0.60, x/Rll 2= 50

--- - Total Solution

-- Stanescu

t ......... i ......... i ......... 1

2 4 6 8

y/Rl_

Stanescu, Ait-Ali-Yahia, and Habashi

10

E

-cx

a.

Strouhal No. = 0.14, y/R_ = 1
8e-06 ......... _ ........ , .................. , .....

i ---- Instability Wave Solution
[

6e-06 _, -- Bailly

4e-06

2e-06

0e+00

-2e-06

-4e-06 ',

i
-6e-06 ! _\_

t ................... J ........ ,L ......... 1 ..... ,,

-8e-06
0 10 20 30 40 50

x/R. 2

Bailly

E

¢D

Strouhal No. = 0.14, y/R_ = 1
8e-06 ......... , ......... , ......... _ ......... , .......

f - -- - Instability Wave Solution
6e-06 i -- Hu

2e-06

Oe+O0

-2e-06

-4e-06

-6e-06 i

-8e-06 ......... ' ..................................... •
0 10 20 30 40 50

x/R_,_

Ha

NASA/CP--2000-209790 419



-Z
E

2

Strouhal No. = 0.14, y/R,2 = 1
t R

8e-06 L!....... _ '-"- Instability Wave Solution

6e-06 ! -- Li

4e-06 ;2e-06i

-2e-06

-4e-06 !

-6e-06 F

-8e-06 .................... _ ................ _

0 10 20 30 40

x/R_

5O

Li and Thiele

E

D.

n

8e-06

6e-06

4e-06

2e-06

Oe+O0

-2e-06

-4e-06

Strouhal No. = 0.14, y/R,_ 2= t

-6e-06
l

-8e-06 ! ...................................... _-......
0 10 20 30 40

x/Rv2

- - - Instability Wave Solution

i -- Lockard

,,I
t v 't//
f Y
1
t

i

5O

Lockard and Atkins

6o-06

40-06

2e-06

o

-2e_

.4e-(]6

-6e-(_

_e-06

Pedurbat_on pressure a_ong y = 1, Stro,Jhal No = 014

Instability Wave Solution

Agstwal /,_

/1

10 '2o 3o 4o

x

v

5o

Agarwal and Morris

8e-06 ,
Strouhal No. = 0.14, y/R_,2 = 1

A

-o.

e

! - - - Instability Wave Solution

6e-06 Scheidegger, Wasistho BC
i Scheidegger, Tam and Dong BC r,

', Scheidegger, Freund BC _',1

2e-06 //_', ;_''i ,! 'i_!
L..,_ I_.- z 1',, h" :_ I' ,

-4e-06

-6e-06 [

-8e-06 _................... _ .................. ± ........
0 10 20 30 40 5O

x./R_

Scheidegger and Morris

i

!

2

NASA/CP--2000-209790 420



_r.n

E

o

(3_

Strouhal No. = 0.14, y/R_/2= 1
8.0e-06 ...... , ......... , .......

- - - Instability Wave Solution
6.0e-06 -- Stanescu

4.0e-06

2.0e-06

0.0e+00 _ _ /' /

-2.0e-06

-4.0e-06

-6.0e-06

-8.0e-06

-1.0e-05 i

-1.2e-05 _.=1 ............ , ......... , .................
0 10 20 30 40

x/Rl_

Stanescu, Ait-Ali-Yahia, and Habashi

E

et

Strouhal No. = 0.14, y/R_= = 1
8e-06 .................................................

- - - Instability Wave Solution
6e-06 -- Loh

4e-06 II_'

: I
2e-06 / \ I ,q

-_ . /f _\ // \_ [ . [

0e+00 _ \ _ / _ \,,\..// //_\ ill�

i

-4e-°6J _ t _,/

-6e-06 ! , , ,
-8e-06

0 10 20 30 40

x/R,/2

Loh, Wang, Chang, and Jorgenson

5O

NASA/CP--2000-209790 421





Computational
Aeroacousfics

Workshop Industry
Panel Discussion

NASA/CP--.000-._09790





Computational Aeroacoustics Workshop

Industry Panel Discussion

A panel discussion was held, comprising representatives from industry, and each panel member

gave a prepared presentation on their views and interests in Computational Aeroacoustics (CAA).

The panel members were asked to address one or more of the following issues or questions:

1. What is the status of CAA as it applies to your business and product line?

2. How has CAA helped solve problems for your business in the past?

3. How are you implementing CAA in your organization?
4. What direction would you like CAA to go to provide tools useful to your business?

The following panel members participated:

1. DonWeir, AlliedSignal

2. Wesley Lord, Pratt & Whitney Aircraft
3. Mahendra Joshi, Boeing Company

4. Bill Dalton, Rolls Royce-Allison

5. Tom Dong, Lockheed-Martin
6. Phil Gliebe, GE Aircraft Engines

The participants gave approximately 20-minute presentations, followed by questions from the

audience. The paragraphs below summarize the highlights and significant points made by the
panel participants. The Appendix to this summary contains the presentation charts provided by

each presenter.

Phil Gliebe- GE Aircraft Engines

Areas where CAA can help include (1) turbomachinery noise analysis, (2)jet noise analysis, and

(3) combustor noise analysis. CAA has the potential to help in resolving physical modeling
issues which seemingly escape resolution by analytic and/or classical numerical methods.

Specific examples include (1) the relative roles of dipole and quadrupole sound sources in noise
generated by gust-blade row interaction, (2) flight effects on jet noise and attendant wind tunnel

or free-jet corrections of scale model jet test data to the flight condition, (3) duct propagation with
flow gradients, variable wall geometries and bifurcations, and (4) duct wall liner impedance

modeling and duct inlet and exit transmission/reflection effects. There is also a need for

additional benchmark experiments for validating CAA methods and codes, as the codes become
capable of analyzing more complex problems for which no simple analytical or classical

numerical solutions exist. Finally, there is concern about the ability of industry to implement,
train users, and deploy into the design community CAA tools, which are by nature very complex.

Issues that need to be addressed include compatibility with existing design tools, grid generation,

geometry modeling, CFD codes, etc. These tools must be robust and cost effective, and have to
be consistent with available computing capacity.

Don Weir - AlliedSignal
The acoustic design of aircraft engines has several objectives for noise reduction. These include

community noise certification, guarantees to airline customers, noise complaints from the

community, local airport rules and aircraft inlerior passenger and crew noise exposure. Testing of
various design options can be very expensive. CAA tools potentially can reduce the amount of

testing required if they can be used to down-select the options with confidence. With a good
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analysistool,a full matrixDesignof Experiments(DOE)evaluationcanbemadeto developthe
optimumdesign.SpecificareaswhereCAAtoolsmaybeableto contributeare(1) mixed-flow
jet exhaustnoise,(2) fanmultiple-pure-tone(MPT)noise,and(3) auxiliarypowerunit (APU)
noise. APU systemshaveuniqueinlet andexhaustconfigurations,whichareproneto flow
distortionsandunsteadyflowsandseparations,andthereforehavethe potentialfor creating
additionalnoise. As afinal note,CAAcodesandmethodsareverycomplex,andthereforeare
difficulttoimportanddeployinatypicalproductdesignenvironment.

Wesley Lord- Pratt & Whitney Aircraft

Future aircraft engines are envisioned to have much higher bypass ratio cycles than current fleet

engines, and thus fan noise is likely to be the dominant noise source. Thus CAA development in
fan noise modeling would be most useful. In the narrow view of CAA, i.e., actual time-accurate

computation of the sound field using discretized formulations of the basic fluid dynamic

equations, there has not yet been an impact of CAA on aircraft engine product design. In the
broader view, however, where CFD tools, and in particular unsteady CFD tools such as the

LINFLUX code are used to model acoustic phenomena, there has been significant utilization of

CAA in product development. The current paradigm for turbomachinery acoustic design

(especially fan design) is as follows:

Geometry --->3DCFD --->Noise Model --->Computed Noise

This paradigm has been used to successfully predict fan tone noise characteristics.

Areas where CAA could help quantify important noise-generation phenomena include the

following: (1) airfoil self noise, (2) noise from 3-dimensional nozzle geometries, (3) realistic

airfoil shapes and high Mach number simulation for blade row noise analysis, and (4) fan rotor tip
clearance effects on noise.

Mahendra Joshi - Boeing Company
CAA could be a useful tool for analysis of aircraft landing gear noise, auxiliary air system

exhaust valve noise, and "unexpected" tones from various aircraft surfaces, cavities, joints,

protuberances, control surfaces on the wings and stabilizers, etc. There is not always a need to
evaluate far field noise, as many aircraft noise problems are near field problems, and resolution of

the problem in the near field also solves any associated far field problem.

Bill Dalton - Rolls Royce-Allison

CAA is today where CFD was 15 years ago, a promising technology that is just beginning to

show potential. Today, CFD is now a standard analysis tool in aircraft and engine product
design, and it can be speculated that 15 years from now, CAA will also be a standard analysis

tool. Specific technology areas where CAA in the "broader view" has helped include (1) inlet

shape effects, (2) fan blade shape effects on MPT noise, and (3) installation effects on propeller
noise. Relative to the usefulness of CAA methods in the "narrow view," this depends on the

problem being addressed. Whether CAA is an appropriate tool for problem solving depends on

how long you have to solve the problem, how serious is the problem, and how good is the answer
going to be with the tool used. The problem itself (and its consequences if not solved) dictates

the level of sophistication of the tools used to address it. It would be useful to quantify the

domain of applicability of linear vs. nonlinear CAA methods, so that some guidance may be

provided for the complexity of the method required to address specific problems. Two specific
technical areas where CAA may be useful are (1) non-axisymmetric duct geometries and (2)

shear layer propagation.
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Tom Dong - Lockheed-Martin

Lockheed-Martin is actively pursuing development of the Tam DRP scheme for product

applications using multi-domain, multiple-time step approaches. Improvements in computational

efficiency are felt to be very important. Some problem applications of interest for utilization of
CAA methods are jet screech, and payload and weapons bay cavity noise and acoustic response.

Summary:

The industry panel consensus was that CAA has made significant progress in developing codes
and solution methods, which can address flow conditions and geometries of interest to the

industry community. The CAA research and development community is encouraged to continue

development of this important and potentially fruitful technology area. Key technical issues are

computational efficiency, correct modeling of boundary conditions for a high fidelity simulation
of a small amplitude of acoustic waves, and the capability to model high frequencies and complex

geometries. Eventually, preferably sooner than later, CAA codes and tools need to recognize and
deal with the issues of compatibility with industry design systems, and must embody robustness

so that generating accurate, believable solutions do not always require that a CAA expert be the

only user. It is also important to recognize and appreciate that CAA still holds out the promise
that it can provide quantitative evaluations of acoustic phenomena that defy useful analysis by

existing methods and techniques.

Appendix

1. "Industry Panel Session - Aircraft Engine Acoustics," P.R. Gliebe and R.E. Kraft, GE

Aircraft Engines, November 9, 1999.
2. "Relevance of CAA to Regional and Business Aircraft Engine Design," Donald S. Weir,

AlliedSignal Engines and Systems, November 9, 1999.

3. "An Industry View ofCAA," W.K. Lord, Pratt & Whitney, November 9, 1999.
4. "Use of Computational Methods for Noise/Vibration Problems," K. Viswanathan and M.K.

Joshi, Boeing Commercial Airplane Group, November 8-10, 1999.
5. "Industry Panel Discussion," William N. Dalton, Rolls-Royce Allison, November 9, 1999.

6. "Industrial Applications of CAA," Tom Dong, Lockheed Martin Aeronautical Systems,
11/09/1999.

Philip R. Gliebe

GE Aircraft Engines
December 10, 1999
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Industry Panel Session

Aircraft Engine Acoustics

Philip R. Gliebe
Robert E. Kraft

GE Aircraft Engines

Areas Where CAA Can Help

• Turbomachinery Noise Analysis

• Jet Noise Analysis

• Combustor Noise Analysis

Resolving Physical Modeling Issues Which Seemingly Escape

Resolution By Analytic and/or Classical Numerical Methods:

Example:

The Roles And Contributions Of "Dipole" Sound and Quadrupole" Sound
Sources in the Noise Generated By Blade Rows In Response To An
Incident Gust

Can a "CAA " Analysis of a Model Problem of This Type Identify,
decompose, resolve, etc., the existence of "dipole" and "quadrupole"
sound sources? What is the real blade row unsteady response - effective
"Sears Function"- vs. Mean Flow.Gust Interaction?

Develop A Better Understanding of Acoustic Phenomena Which

Defy Analytic Treatment Without Employing Severely Limiting

Approximations or Simplifications:

Example 1:

Flight Effects On Jet Noise .....
• Wind Tunnel Data and Free-Jet Corrections for Distributed Source Jet

Noise Measurements

• Correcting Static Engine Jet Noise Data To Flight

Can a "CAA" Model Problem be Constructed To Develop A More Accurate

Method For Extrapolating Static Data and Wind Tunnel Data To Flight?

NASA/CP--2000-209790 429



Develop A Better Understanding of Acoustic Phenomena Which

Defy Analytic Treatment Without Employing Severely Limiting

Approximations or Simplifications, Cont'd.:

Example 2:

Duct Propagation With Complex Geometry and Flow Gradients .....
• Variable Inner and Outer Wall Radius

• Radial Bifurcations and Struts

• Radial and Axial Flow Velocity and Pressure Gradients

Can A "CAA" Model Problem be Constructed To Quantify and Understand

Complex Duct Modal Pattern Behavior? Is "Duct Modes" the Right
Physical Paradigm ?

Develop A Better Understanding of Acoustic Phenomena Which

Defy Analytic Treatment Without Employing Severely Limiting

Approximations or Simplifications, Cont'd.:

Other Examples:

Duct Treatment Impedance Predictions - Time-Domain Models

Inlet and Exhaust Nozzle Transmission and Reflection Phenomena

Component Resonance and Instability Phenomena
• Combustors

• Cavities

• Rotating Disk Spaces
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Define Benchmark Experiments Which Can Be Used To:

• Validate CAA Methodologies

• Provide Key Insights into "Sticky" Modeling Issues - e.g., Boundary
Conditions, etc.

• Complement Benchmark Exact Solutions

• Extend The Validation Range To Problems Where Exact Solutions Do Not
Exist

Industry, Universities and Government (NASA) Need to be thinking about
Providing Resources to Execute These Benchmark Experiments

Issues Related To Commercial Application of CAA Tools In Industry

(Implementation, Training and Deployment):

• Compatibility with Existing Tools - CFD, Grid Generation, Geometry Modeling,
etc.

Complex Design Problems Often Require Solution In Short Time Frame, CAA
Tools May Require More Time To Use Than Is Available

Robustness - Minimize "Tweaking" and Iteration of Solutions

In-House vs. Outside Expertise - Designers May Not Have The Expertise To
Use Tools If They Are "Fussy" - Require Pampering To Get The Correct

Solutions - May require Outsourcing or Consulting Expertise

Cost Effectiveness - Can CAA Replace Costly Testing? Is the Technical
Advantage Relative To Standard Methods Worth the Investment?

Will Computing Capacity Limitations Constrain Use As A Standard Tool?
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Relevance of CAA to Regional and Business

Aircraft Engine Design

Donald S. Weir

AlliedSignal Engines & Systems

Why is CAA Relevant?

• Noise is an important design objective

- Customer guarantees

- Certification

- Operator complaints

• Testing is expensive

- trial and error doesn't always give expected results

- limited in number of configurations

• Computational models are a key element of design

- Makes "Design of Experiments" techniques feasible

- Obtain insight into root causes of problems

Want to use CAA tomorrow like we use CFD today!
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Three Examples

Turbofan Engine Jet

Turbofan Engine Fan

• APU installation

Full Scale Mixer Demonstration

• 18 Lobes

• 75% penetration

• 5% porosity
• lobed centerbody

• cutback core mixing lobes

• highly cutback centerbody lobes

AlliedSignalAcousticSanFacilityTestTan !_'_

Three Test Configurations
TFE731-40 nozzle baseline
Advanced Solid Mixer
Advanced Porous Mixer

! 120 degrees relative to inlet centedtne

,,0t , _z ...[ +.o_o._ : ............. :'._
dB -_I .... ! 96263PN086'

96263SN086 ! SPLs at Fn = 4,000 Ibsi , Com_°°d_o,_le,i
: 96263RN089 ,I

1/3 Octave Band Center Frequency, Hz
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MGB Analysis of Full Scale Mixer
compar_s_ or Measured ExhausI PWL (gO 160 dog) ind

Predicted Jet P_u_ Noise (20-160 dgg]

I Solution _ I i
T -- i

.......
FrecI (Hz}

--_- Bypass Mixer_ ] Internal
Core Mixer I Solution

--- Sum [

"___ -t--'I0_B -+--'-- !--i'Refe _enceRef_
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Frequency (Hz)

Mixer Nozzle __ .......... __ ..................

Compound Nozzle

Fan Noise Prediction
• Rotor Alone Tone Noi se

• Multiple Pu

Relative Mach Number Conlours

Narrow Band Spectrum

Freqt_.ncy (Hz)

• Rotor/Stator Interaction Noise

• Broadband Noise

113 Octave Band Spectrum

200 400 800 1600 3150 6300 12500

Frequency (Hz)
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Some Fan Prediction Results

Flow Through APU Inlet Ducting Has Significant Effect
On Installed Noise

i+_ s_,.n \:
Load Compressor Inlet Core Compressor Inlet

Axial and Lateral
Distortion Affect

Compressor Noise
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Measured Effect of Inlet Mach Number and Distortion

, r- ........... t' Ti ..._. ]
' i "-_-Baseline Narrow Duct 10dB it .o Plenum Baffle

O_d , ! ! ' -O- Plenum Baffle Distortion Decreased 40% "i
1 BI _ --_-Modified More Open Duct _. TI , j

_rl ' l

! F 1 F--_---_-_ I t I t I I _ f_ V _ E .I _ i _ _ i _ _ _ [

1/'3-Octave Band Center Frequency (Hz) 1/3-Octave Band Center Frequency (Hz)

CFD gives qualitative comparisons but
quantitative prediction not currently available

Conclusions

• Noise is an

important design

objective

• Computational

models are a key

element of design

• Want to use CAA

tomorrow like we

use CFD today!
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An Industry View of CAA

W. K. Lord

Pratt & Whitney

Subsonic-transport engine noise

fan tone noise

fan broadband

jet noise

other turbomachinery noise (LPC,LPT)
combustor noise

PW6000

Design Trends

higher BPR cycles

swept fan rotor or geared fan

swept FEGV

mixed-flow exhaust PW8000

or separate-flow with tabs/chevrons

extensive use of computational methods for 3D aero,structures,noise
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What is CAA?

Narrow Definition: compute unsteady pressure

at every point in the field

Examples: linearized-Euler for fan tone

LES for jet

Impact on design: none to date

still in development phase

What is CAA? #2

Broad definition:

component geometry + 3D CFD + noise model = component
noise

Examples: V072_FANS fan tone
BFANS fan broadband

KMGB, Tam, Morris jet noise models

Impact on design: set blade/vane airfoil counts
contributed to development of swept FEGV

TFANS/BFANS initial design studies '99
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Fan Rotor/Stator Interaction Tone Noise
First-generation models in place (VO72/-FFANS)

Linearized Euler results look promising (LINFL UX)

Acoustic Modal Analysis t 2 BPF Compared to Fan Rig Data

Inlet PWL(dB) Exit PWL (dB)

Mode Predicted Predicted__ Data

1,1 106.9 "___Y /q\53",_:_',_._J 120.4 121.4
1,2 114.9 "_ _ .,...,,., ,_k_ k!t_i 119.2 119.4

"----..-\\\\.,-,-..-,m
1,3 105.2 _ "" l', , "-S_×\X1 112.5 110.1

1,4 ....

Total PWL(dB) 117.5 125.4 126

• potential for FEGV airfoil shape aero/acoustic optimization

Fan Broadband Noise Sources

Interaction of

Interaction of Inflow Rotor Interaction of Endwall

Turbulence With Wake Turbulence Turbulence With

Rotor._p/Hub _,_ With _ane i_ S tator Tip/Hub

x'

.....\ /
R°t°r B.L:,T:Irb

..... /_._L--- _ -

BFANS modeling

noise due to turbulence inflow: CFD turbulence +airfoil

acoustic response model

airfoil self noise: empirical model (need help here!)
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Can LES of trailing edge flow

help develop improved self noise models?

Ref:

M. Wang
_ OrProe, ress in large-eddy simulation of trailing-edge

turbulence and aeroacoustics"

Center for Turbulence Research

Annual Research Briefs 1997

Jet Noise

methods for 3D mixing devices

Near term: RANS CFD

125 ......

_120 1

IIG -

o

r_
m

105

100 /

g5 ......

_00 t000

[t!i,tt,.................................1};
10000 100000

Frequency (Hz)

+ noise model

Longer term: large-eddy simulation
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CAA Direction

Expectation is that acoustics design tools will be merged

into component design systems

First-generation tools based on 3D CFD + noise modeling

Industry likes real airfoil shapes better than flat plates

Work needed on understanding/modeling airfoil self noise

Jet methods for design of 3D mixing devices,

including assessment of high-frequency mixing noise
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Use of Computational Methods for
Noise�Vibration Problems

K. Viswanathan & M. C. Joshi

Boeing Commercial Airplanes Group

What does CAA mean to Boeing?

• How has CAA helped solve problems in the past?

• How is CAA being implemented?

• What direction should CAA take to provide
useful tools?

• What types of problems should be tackled?

• Provide guidance to CAA community
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Problems of interest to Boeing
(Noise modeling & control activities underway)

• Community noise
- airframe noise

- jet noise
- fan noise
- acoustic liners

• Cabin noise

- turbulent boundary layer noise
- engine vibration related noise
- shock-associated noise

- equipment noise and noise squawks

Flow field computations

• Directed at understanding the physics

• Use unsteady CFD to gain insights

• Develop & implement suitable solutions

• Typical examples
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Preliminary DES: surface pressure & streamwise vorticity

• Unsteady flowfield & surface pressures from CFD

• Radiated noise from acoustic analogy

NASA ASCOT Airframe Noise Research

Landing gear experimental flow physics research

Approach

• Flow field _tudy around 4-wheel
landing gear model to identify the
flow physics associated with

noise generation
• Establish landing gear noise

reduction methodology

Experimental pressures and surface
streamlines

Courtesy of B. S. Lazos

Accomplishments

• Completed static pressure
measurements and oil flow
visualization on fore and aft

wheels

• Identified strong wake inflow

regions and separation zones
likely responsible for significant

noise generation
• Began extensive PIV mapping of

flow field above and below the

NASA/CP--2000-209790 447



Shock-cell noise

• Emphasis on interior noise

• Current method: Tam's model with empirical
corrections

• CAA approach: (Dr. S. Lele, Stanford U.)

- detailed flow field with RANS

- characterization of large structures with PSE
- shock-cell/turbulence interaction with DNS

• Ongoing data analysis:

- evaluate/interpret surface pressure data

- develop prediction procedure for pressure field

- develop cross-spectra input for FEM analysis

Equipment noise / Noise squawks

• Observed in product testing/pre-delivery flights

• Frequently, aero tones due to flow instabilities in
on-board equipment, airframe components, etc.
(vortex shedding, cavity tones, valve & pump noise)

• Annoyance & acoustic loads on nearby structures

• Potential application of computational tools
- diagnose problem
- provide design changes to eliminate problem
- define "noise-free" design space/guidelines

• Typical examples
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Aeroacoustic Analysis: Outflow Valve

40

, psi

2G

1(

0 1000 2000 3000 4000 5000

Frequency,

az

Requirements of computational tools for noise squawks

• Accurate prediction of amplitudes not always
necessary; ability to determine if a design change
can eliminate/reduce noise more important

• Near field unsteady pressures provide useful info.;
far field solutions not always required

• Many problems are tonal & may be more suitable for
advanced computational methods

• Rapid turn-around (overnight including grid
generation) required for squawk problems

• Validation necessary
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Rudder "tone" problem

/
J

• Unsteady CFD established vortex shedding

• Installed rubber 'boot' to eliminate problem

Concluding remarks

• CAA has made impressive strides

• Absolute predictions - not possible in near term

• Acceptable/realistic expectation:

ability to assesschange innoise due to
change in geometry

- gain insights to the physics

• Use CFD/CAA as diagnostic tools
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Third CAA Workshop on Benchmark Problems

Industry Panel Discussion

William N. Dalton

Rolls-Royce Allison

• Current predictive technology status- gas turbine engines

Continuing reliance on empirical data base

Limited application of numerical methods to tones

diagnostics

evalution of nonconventional control concepts

• Computation of broad band noise requires significant progress to

reach application stage

• Goal- Integration of numerical methods into the overall strategy of

noise prediction
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In a gas turbine engine, methods must capture:

1.Mean Flow Aerodynamic environment

2. Time dependent flows associated with the acoustic process of interest

Existence multiple wave numbers

Resolution of high frequencies

Complex internal geometry and flow field

Existence of both bounded(internal) and unbounded(external)
domains

Existence of convected and propogating disturbance fields

Presence of relative motion between adjacent domains

Examples of Rolls-Royce Allison applications of CAA

1. Effects of inlet geometry on tone radiation- diagnostic

2. Reduction in fan rotor generated shock noise- predictive

3. Installation effects on turbopropeller noise- evaluation of

corrective action for existing problem
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Effects of inlet geometry on fan tone radiation

Substitution of flight configured inlet for bellmouth inlet

produced reductions in fan BPF tone level and directivity in

forward quadrant during static engine testing

Both inlets were hardwall (no acoustic treatment)

Directivity shifts consistent with change in duct spinning
mode content radiated to far field

Sensitivity to rotational speed

Numerical solution for radiation field used to determine spinning

order content by matching radiation pattern

linearization of full potential equation about nonuniform
mean flow

Acoustic/flow interaction within duct

Diffraction around inlet leading edge

Limited to axisymmetric mean flow
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Reduction in fan rotor generated shock noise

Buzzsaw noise increase at part speed result of shock

spillage from fan rotor

Rotor sweep can be used to control rotational speed at

which shock moves out of passage

Solution of 3-D RANS Equations for rotor passage coupled

to potential flow radiation solver to determine far field

sensitity of shock induced noise to rotor sweep

Restricted to harmonics of BPF

Evaluation of installation effects on turbopropeller noise

Penetration of BPF harmonic tones into cabin exceeded

customer requirements. Levels incident on fuselage not

symmetric.

Installation effects produce assymetry in propeller noise

Propeller angle of attack

Propeller interaction with nacelle, wing, fuselage

Solution of 3-D unsteady flow around one half of the airplane

used to diagnose problem
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• CAA is already used to solve development problems

Diagnostics

Assessment of new component configurations

Solution of field problems

• Examples illustrate that problem dictates level of model

sophistication

Small perturbation approximations

Full non-linear fluid equations

Mixture

• Need: Accelerate the transition from research to application

Areas for technical effort important to engine applications

Improve existing models for tone radiation through a shear

layer

Downstream fan tone radiation

Application and refinement of methods to non-axisymmetric

geometries

drooped and scarfed inlets

ducts of non-circular cross section

Propagation in lined ducts

Modeling of segmented and non-axisymmetric liner
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Integration of linear and nonlinear solution methods

Establish domains and parameter ranges within which

small perturbation methods applicable

Clearly determine where differences result from numerical
implementations and physics

Improved boundary methods at interfaces

Proper transfer of convecting and radiating energy in both
directions

Relative motion between interfaces
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S IN" _ li m mIndu trlal / pp. :'car/ons
of CAA

BY

Tom Dong

Lockheed Martin Aeronautical Systems
Marietta, Georgia

CAA Code Development by LMAS/FSU

(1) High Accuracy DRP Finite Difference Algorithm

(2) Euler Computations (Navier-Stokes Capability Is Under

Development)

(3) A Large Set of BCs for Acoustics Computations

(4) Multi-block Grid Capability Interfaced w/Gridgen for
Complex Geometry

(5) Multi-domain, Multiple Time-Step (MDMT) Method to

Enhance Efficiency

(6) Implementation of MPI for Parallel Calculations
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APPLICATION OF DRP/CAA CODE -

Airframe Noise Source Mechanism Analyses (NASA AST)

I Flap Side-edge Noise

X

I Slat/Wing Noise

APPLICATION OF DRP/CAA CODE -

Screech Tones From Supersonic Jets (FSU)

I Unsteady RANS Simulation w/DRP
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Potential Aeroacoustics Applications

(a) Prediction - Acoustic loads and far-filed noise

from engines, airframes, and propellers.

(b) Reduction - Source mechanism investigation

Potential Aerodynamics Applications

/
(a) Flow separation control w/acoustics for high-lift |

systems (e.g. Seifert and Pack AIAA J.Sept. 1999). I

I
(b) Unsteady flow environment around open payload

bays (store separation, cavity) I

I
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Industrial Needs:

We Need CAA CODES with:

(1) Current CAA Accuracy (Algorithms, BCs)

(2) Current CFD Grid and Turbulence Capability

(3) All The Efficiency Enhancing Techniques:

Multi-domain, Multiple Time-Step Method

Parallel Computing

Multi-grid Technique

Good Programming Skills

(4) Flexibility For Future Modification (Modules)

Difficulty:

Block Communication:

The large stencils associated with CAA algorithms
make the communication at block interface difficult

Most CFD Algorithms Have Reduced Time

Accuracy At Interfaces
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Suggestions:

• Develop Modular CAA Codes using the Currently

Existing and Well-tested Methods w/a coordinated effort

among Government, Industry, Academia, Research
Institutes.

• Validate Various CAA Techniques

• Define the Needs For Future CAA Development
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