Universal Quantification in a Constraint-Based Planner

Keith Golden and Jeremy Frank*
NASA Ames Research Center
Mail Stop 269-1
Moffett Field, CA 94035
{kgolden, frank}@ptolemy.arc.nasa.gov

Abstract
Constraints and universal quantification are both useful in planning, but handling universally quantified constraints presents some novel challenges. We present a general approach to proving the validity of universally quantified constraints. The approach essentially consists of checking that the constraint is not violated for all members of the universe. We show that this approach can sometimes be applied even when variable domains are infinite, and we present some useful special cases where this can be done efficiently.

1 Introduction
Softbots (software robots) are intelligent software agents that sense and act in an environment, such as a computer operating system. Since software environments are so rich, there is no limit to the kinds of tasks that softbots can perform, including on-line comparison shopping, managing email, scheduling meetings, and processing data. Planner-based softbots (EW94; ?) accept goals from users and invoke a planner to find a sequence of actions (e.g., commands or program invocations) that will achieve the goal.

We are working on softbots for data processing, including image processing, managing file archives, and running scientific models. Due to the richness of softbot problem domains in general, and data processing domains in particular, the planner needs to be able to handle a rich action representation. In particular, it must support

- universal quantification: Many commands and programs operate on sets of things, where membership in the set can be defined in terms of necessary and sufficient conditions. For example,
  - The Unix ls (or DOS dir) command lists all files in a given directory
  - The "tar x" (or unzip) command extracts all files in a given archive.

- The grep command returns all lines of text in a file matching a given regular expression.
- Most image processing commands operate on all pixels in an image or in a given region of an image.

- incomplete information: It is common for softbots to have only incomplete information about their environment. For example, a softbot is unlikely to know about all the files on the local filesystem, much less all the files available over the Internet.

- large or infinite universes: The size of the universe is generally very large or infinite. For example, there are hundreds of thousands of files accessible on a typical filesystem and billions of web pages publicly available over the Internet. The number of possible files, file pathnames, etc., is effectively infinite. Given the presence of incomplete information and the ability to create new files, it is necessary to reason about these infinite sets.

- constraints: As noted in (CFL+97; ?), data processing domains typically involve a rich set of constraints. By constraints, we mean non-fluent conditions, such as numeric relations, whose truth values can be computed.

The intersection of these features poses some interesting challenges. For example, the intersection of universal quantification and incomplete information means that standard approaches to dealing with universal quantification in planning (PW92) don't work, and other approaches are needed (Gol98; ?; ?). This paper discusses the effect of universal quantification and large/infinite universes on constraint reasoning and proposes a way to accommodate universally quantified constraints into a constraint-based planner.

1.1 Universally quantified constraints
Given a representation that allows both universal quantification and constraints, it is not surprising that we encounter universally quantified constraints. In fact, such constraints can be exceedingly useful. For example, to represent an image-processing command that performs a horizontal flip of the pixels in a rectangular region of an image between (MINX, MINY) and (MAXX, MAXY), we might write something like:
\( \forall x, y \ when(MINX \leq x \leq MAXX \land MINY \leq y \leq MAXY) \)
\[ output.value(x, y) := input.value(MAXX-MINX-x, y) \]

where \( output.value(x, y) \) is the pixel value of the image \( output \) at coordinates \( x, y \), and similarly for \( input.value \).

We might also want to specify spatial transforms of an image, such as scaling or affine transforms, or changes to color values. All of these are convenient to represent using numeric constraints, quantified over the pixels in the image or the specified region.

In describing commands that act on text files, it is useful to quantify over lines or characters of text. For example, the grep command outputs all lines of text contained in the input that match a given regular expression:

\[ \forall line \ when \ containsLine(input, line) \land matches(input, regexp) \land containsLine(output, line) \]

Similarly, many commands operate on sets of files, which can often be expressed in terms of a regular expression satisfied by their pathnames. For example, the files recursively contained in directory " /foo/bar" all have the pathname " /foo/bar / .+ " , where ".+" means "any string at least one character long."

In both of these examples, we see that it is necessary to reason about constraints on variables with either finite or very large domains.

1.2 Roadmap

In the remainder of the paper, we discuss how universally quantified constraints arise in the planning process and how they are solved. Section 2 discusses how universally quantified constraints arise as subgoals in the planning process. Section 3 presents a general approach to solving universally quantified constraints in a constraint network. Section 4 presents an algorithm for implementing this approach and proves that the algorithm is both sound and complete. The general approach is not always possible to instantiate when there are infinite domains. Section 5 provides an instantiation of this general approach to efficiently handle constraints with infinite domains under certain restrictions. Section 6 presents an example covering both planning and constraint reasoning. Section 7 discusses related work.

2 Planning with universal quantification

The traditional approach to planning with universal quantification, used by UCPOP (PW92) and other planners works as follows:

1. Universally quantified goals are replaced with the the equivalent universally ground conjunctive goal, which is called the universal base.

2. Universally quantified effects are peeled as needed. That is, given an effect
\[ \forall x \ when(P(x)) \ Q(x) \]
and a goal, \( Q(a) \), a new ground effect is "peeled off" the forall effect to satisfy the goal:
\[ when((P(a)) Q(a)) \]

The result is the subgoal \( P(a) \).

Replacing goals with their universal base depends on the Closed World Assumption (all objects must be known) and on the number of objects in the universe being relatively small. In softbot domains, neither assumption is likely to be valid. For example, not all files accessible to the softbot will be known, and the number of available files can easily be thousands or millions.

To address the problem that not all files are known, the softbot can first achieve a subgoal of knowing all the relevant files, and then proceed as above (EGW97), but that still leaves the problem that the number of files may be large. For example, suppose the softbot has the goal of ensuring that all of the files in the user's home directory are group readable. This goal could be achieved by identifying all the files (recursively) contained in the home directory "user" and then ensuring that each one is group readable, but it would take some time just to identify all the files. It is much simpler and faster to handle them all at once with a single Unix command:

\[ chmod -R g+r "user" \]

Such an approach is supported in the PUCCINI planner (Go98) by directly linking from universally quantified goals to universally quantified effects.

2.1 Goal regression with quantified variables

The subgoaling, or goal regression, procedure we use is similar to that used by PUCCINI. We use the peeling technique outlined above, with the addition that quantified variables in the effect can be replaced by quantified variables in the goal. Suppose we have a goal \( when(\Phi_g) \psi_g \) that we want to satisfy using an effect \( when(\Phi_e) \psi_e \). If the right-hand side (RHS) of a goal \( \psi_g \) contains multiple conjuncts, they are solved independently, so subgoals are all of the form \( when(\Phi_g) \psi_g \) , where \( \psi_g \) is a single literal. We rely on a unification function \( MGU(\psi_e, \psi_g) \), which returns the most general unifier between the effect literal \( \psi_e \) and the goal literal \( \psi_g \). If the literals don't unify, \( MGU \) returns \( \bot \). Otherwise, it returns a set of pairs \( \{ (v_e, v_g) \} \) , whose interpretation is that \( \psi_e \) unifies with \( \psi_g \) if all the constraints \( v_e = v_g \) are satisfied. To determine the conditions required for \( when(\Phi_g) \psi_g \) to satisfy the goal, \( \psi_g \) is matched against each of the literals \( \psi_e \), using the following procedure:

1. \( regres((\Phi_g) \psi_g), (\Phi_e) \psi_e) \)

2. \( let \beta = MGU(\psi_e, \psi_g) \)
3. let $C = \{\}$
4. let $\Phi_n := \text{copy}(\Phi_e)$
5. if $\beta = 1$, then return failure
6. for each $(v_e, v_p) \in \beta$
7. if $v_e$ is $\forall$ then replace $v_e$ in $\Phi_n$ with $v_p$.
8. else if $v_p$ is $\forall$, then return failure.
9. else $C := C \land (v_e = v_p)$.
10. end for
11. replace all unmatched $\forall$ variables in $\Phi_n$ with $\exists$ variables.
12. return $(\text{when}(\Phi_p) \Phi_n) \land C$

where the new $\exists$ variables are inside the scope of all $\forall$ variables from the goal. This subgoaling procedure alone is not sufficient for the planner to be complete, because it provides no way to determine that two or more effects combine to achieve a universally quantified goal. An additional technique, called goal partitioning, implemented in the PUCCINI planner (GOL98; ?), provides this ability, but at a high computational cost. We are investigating a way to lower this cost, but that is outside the scope of this paper.

For example, suppose that we have an action to give a Mothers' Day card to all new mothers:

$\forall p_1, p_2: \text{person} \ \text{when}(p_1 = \text{parent}(p_2) \land \text{sex}(p_1) = \text{female}) \land \text{case}(p_1)$

and our goal is to give a card to Mary (i.e., has-card(Mary)). Applying this action to satisfy the goal will result in the subgoal

$\exists p_2: \text{person} (\text{Mary} = \text{parent}(p_2) \land \text{sex}($Mary = $\text{female}) \land \text{age}($Mary = $< 1)$

That is, the action will achieve the goal if Mary is female and has a child less than one year old. Note that although $p_2$ is universally quantified, $p_2$ is existentially quantified. It is not necessary for Mary to be the parent of all children under one year of age; any one child will suffice. This is true in general; any unmatched universally quantified variable $v$ in the effect is replaced with an existentially quantified variable $v'$ in the subgoal. The reason is that since the effect occurs for all $v$ that satisfy $\Phi$, and $v$ doesn’t matter (isn’t mentioned in the goal), it is only necessary to find some $v$ that satisfies $\Phi$. Note that if it the effect were of the form “give a card to everyone who is the mother of all children,” then it would indeed be necessary for $p_2'$ to be universally quantified in the subgoal. However, as we discuss below, quantifiers can’t be nested within antecedents and existentials are not allowed in effects, so effects of that form are impossible to state.

Now suppose our goal is to give a card to all mothers of newborn boys:

$\forall m, s: \text{person} \ \text{when}(m = \text{parent}(s) \land \text{sex}(m) = \text{female} \land \text{sex}(s) = \text{male} \land \text{age}(s) = 0) \land \text{has-card}(m)$

If we use the action to give a card to all new mothers, the subgoal then becomes

\[
\forall m, s: \text{person} \ \text{when}(m = \text{parent}(s) \land \text{sex}(m) = \text{female} \land \text{sex}(s) = \text{male} \land \text{age}(s) = 0) \\
\{(m = \text{parent}(s) \land \text{sex}(m) = \text{female} \land \text{age}(s) < 1)\}
\]

Note that the left hand side of this expression is just the left hand side of the original goal, and the right hand side is the “peeled” left hand side of the effect. All subgoals from conditional effects are generated the same way, so the same LHS expression is carried back through successive goal regressions.

The RHS literals $m = \text{parent}(s)$ and $\text{sex}(m) = \text{female}$ are clearly entailed by the LHS, which we can determine by unification, using a slight variation on the regression procedure above. When the LHS entails a literal on the RHS, we say that the goal literal is trivially satisfied, and remove it without further subgoaling.

The remaining goal condition, a constraint, is not so straightforward. Although $\text{age}(s) = 0$ clearly entails $\text{age}(s) < 1$, the two do not unify. As we discuss below, the purpose of universally quantified constraints is to answer the entailment question for constraints.

### 2.2 Restrictions on universally quantified expressions

Given the requirement to support universally quantified goals directly with universally quantified effects, it is important to specify exactly what kinds of expressions the language will allow, since the unrestricted case would require first-order theorem proving, which is undecidable.

#### 2.2.0.0.1 Effects

All universally quantified effects are conditional effects, in which the antecedent specifies restrictions on the universe(s) of the quantified variable(s) and the consequent specifies what will become true for members of the specified universes. These effects are of the form

\[
\forall \vec{x}, \vec{y} (\text{when}(\Phi(\vec{x}, \vec{y})) \Psi(\vec{x}, \vec{w})).
\]

where $\Phi$ and $\Psi$ are conjunctive expressions and variables in $\vec{w}$ are action parameters, variables in action schemas that need to be instantiated in order to obtain concrete actions. Limiting $\Phi$ to a conjunction is not a real limitation, since an expression of the form

\[
\text{when} (\Phi_1 \lor \Phi_2) \Psi
\]

can be rewritten as the conjunction of “when($\Phi_1$) $\Psi$” and “when($\Phi_2$) $\Psi$.”

Effects cannot contain existential quantifiers, \(^1\) or anything equivalent to existentials, such as universal quantifiers nested within an antecedent or negation. Allowing existentials or disjunctive consequents in effects would make them nondeterministic. Given the lack of nesting and existentials, all universals can be treated as free variables. All quantified variables appearing in $\Psi$

\(^1\text{Effects can introduce the creation of new objects, through the new keyword, which is similar in some respects to an existential quantifier, but that is irrelevant to the topic of this paper.}
must also appear in $\Phi$. This is just a sanity check, since the domain of any quantified variable that does not appear in $\Phi$ is completely unrestricted. $\Phi$ may contain additional quantified variables, $\widehat{y}$, that don't appear in $\Psi$. For example, in the Mothers' Day effect presented above, the variable $p_2$ appears only in $\Phi$.

2.2.0.2 Goals and preconditions The syntax of universally quantified goals and action preconditions is the same as that of effects, except that existential quantifiers nested within the universal quantifiers are allowed in $\Psi$:

$$\forall \overline{z}, \exists \overline{w} (\text{when}(\Phi(\overline{z}, \overline{w}))) \psi(\overline{z}, \overline{w}).$$

As with effects, the use of the keyword when indicates that $\Phi(\overline{z}, \overline{w})$ and $\psi(\overline{z}, \overline{w})$ refer to different times. That is, for all $\overline{z}$ that satisfy $\Phi(\overline{z}, \overline{w})$ when the goal is given (i.e., in the initial state), we want $\psi(\overline{z}, \overline{w})$ to be true (for some $\overline{z}$ when the goal is achieved (i.e., in the final state). Thus, we can specify goals like "paint all the blue chairs green" without contradiction:

$$\forall c: \text{chair when color}(c) = \text{blue} \text{ color}(c) = \text{green}$$

Goals can also explicitly refer to time. For example, we can ask for data on last Tuesday's rainfall. Whereas effects are not really restricted compared to the commonly supported subset of ADL (Ped89), the limitations on universally quantified goals are more restrictive. This particular set of restrictions was chosen to support the class of goals required for the softbot domain.

2.2.0.3 Subgoals Subgoals are just goals, and obey the same restrictions. However, since subgoals are generated through a specific process, outlined above, it is worth showing that the process maintains the restriction on goals.

- Since the subgoaling process always copies the left-hand side (LHS) of the goal to the LHS of the subgoal, all restrictions obeyed by the former are obeyed by the latter. In particular, the LHS is conjunctive and it can contain no existentials.
- The RHS of the subgoal comes from the (peeled) LHS of the effect. Since the latter is conjunctive, so is the former.
- Quantified variables appearing in the RHS but not in the LHS are existential. To see why, consider that every quantified variable that appears in the RHS either originated in the goal or is a copy of a variable from the effect. To see why, consider that every quantified variable that appears in the RHS either originated in the goal or is a copy of a variable from the effect.

1. If the variable appeared in the goal, then it cannot have been in the LHS of goal, since otherwise it would be in the LHS of the subgoal, contradicting our assumption. Since it was not in the LHS of the goal, it must be an existential.
2. If the variable came from the effect, then it must be an existential, since, as indicated in line 10 of the regression algorithm, all universals in the effect that aren't replaced by variables from the goal are replaced by existentials.

2.3 From planning to constraints

In the remainder of the paper, we discuss how to tell if the LHS of a universally quantified subgoal entails the RHS when both sides contain constraints. We will not concern ourselves further with the details of the planning algorithm. We can convert the whole planning problem into a constraint problem, but it would also be possible to use a POCL planner like PUCCINI (Go198), and perform constraint reasoning to answer questions about whether certain subgoals are trivially satisfied (the LHS entails the RHS). In either case, we can separate the problem of solving forall constraints from the rest of the planning problem.

We assume that the planner produces candidate plans that are complete except for the instantiation of some action parameters and are correct subject to a list of subgoals being "trivially" satisfied (i.e. no more actions need to be inserted into the plan. The planner sends the constraint reasoner this list of subgoals, which are of the form

$$\forall \overline{z}, \forall \overline{w} (\Phi(\overline{z}, \overline{w}) \Rightarrow \psi(\overline{z}, \overline{w}))$$

along with some additional constraints on the parameters. The job of the constraint network is to either return an assignment to all of the unspecified parameters ($\overline{w}$) such that all of the subgoals are trivially satisfied, or return failure in case there is no such assignment. If the constraint network returns failure then the candidate plan is invalid, so the planner should continue searching. Otherwise, the candidate plan, instantiated with the values for $\overline{w}$ returned by the constraint network, is a valid plan.

3 Solving Quantified Constraints

Before describing the approach further, we introduce some notation. Let $X$ be a set of variables. Denote the domain of $x \in X$ as $d(x)$. Let $D$ be the set of domains. Let $k = \{(x_1, \ldots, x_1); R\}$ be a constraint; $x_i \in X$ and $R \subseteq d(x_1) \times \cdots \times d(x_1)$ is a relation defining the permitted assignments to the variables. Let $K$ be the set of constraints. Then $C(X) = (X, D, K)$ is a CSP. A solution to the CSP is an assignment of values to the variables such that all constraints are satisfied. Let $S(C)$ be the set of solutions to $C$. Let $L$ be a relation on a set of variables $U$, and let $\pi_L(U)$ be the projection of the relation $L$ onto the set $V \subseteq U$. A CSP is $k$-consistent if any consistent assignment to $k-1$ variables can be extended to an assignment to $k$ variables ($k=2$ is arc consistency.)

A CSP is strongly $k$-consistent if it is $k$-consistent for all $k$. Let $\Psi(\overline{z})$, $\Psi(\overline{b})$ be CSPs. We then refer to a constraint of the form $\forall \overline{z}, \forall \overline{w} (\Phi(\overline{z}, \overline{w}) \Rightarrow \psi(\overline{z}, \overline{w}))$ as a quantified constraint, and refer to the constraints comprising $\Phi(\overline{z})$, $\Psi(\overline{b})$ as primitive constraints. The general approach to solving quantified implications is straightforward. Given an expression of the
form “all things that satisfy Φ also satisfy Ψ,” we identify the set of things that satisfy Φ and check whether they also satisfy Ψ. We can think of this as an empirical proof technique: we’re doing nothing more than checking the validity of the expression for all members of the universe.

More formally, given a quantified constraint

$$\forall \overline{x}, \overline{y} \exists \overline{w} (\Phi(\overline{x}, \overline{y}, \overline{w}) \Rightarrow \Psi(\overline{x}, \overline{z}, \overline{w})),$$

The variables in \(\overline{w}\) must be assigned values by a search procedure. As mentioned in Section 2, these variables represent the parameters of actions; the search over these values, in essence, is the search over candidate plans. During this search, we can propagate the domains of the variables in \(\overline{x}, \overline{y}, \overline{w}\) based on \(\Phi\), but do not assign these variables. We do not propagate based on the constraints in \(\Psi\), because these constraints do not hold unless the universe of discourse defined by \(\Phi\) is not empty. Once all of these variables are assigned, we are left with the constraint

$$\forall \overline{x}, \overline{y} \exists \overline{z} (\Phi(\overline{x}, \overline{y}) \Rightarrow \Psi(\overline{x}, \overline{z})),$$

where \(\overline{x}\) represents one or more universally quantified variables common to \(\Phi\) and \(\Psi\). Again, as described above, the desired semantics of this implication is that everything satisfying \(\Phi\) also satisfies \(\Psi\). Thus, we must identify the set of tuples corresponding to the assignments to \(\overline{z}\) that satisfy \(\Phi(\overline{x}, \overline{y})\), and check that each tuple also satisfies \(\Psi(\overline{x}, \overline{z})\). To do this, we solve both \(\Phi(\overline{x}, \overline{y})\) and \(\Psi(\overline{x}, \overline{z})\) for \(\overline{x}\). We then check to see if \(\pi(\overline{x})S(\Phi(\overline{x}, \overline{y})) \subseteq \pi(\overline{x})S(\Psi(\overline{x}, \overline{z}))\). Because the quantified constraint takes the form of an implication, if the set of solutions to \(\Phi\) is empty, then the implication is satisfied vacuously, and there are no constraints on the values of the variables in \(\overline{z}\). If there are solutions to \(\Phi\) but \(\pi(\overline{x})S(\Phi(\overline{x}, \overline{y})) \not\subseteq \pi(\overline{x})S(\Psi(\overline{x}, \overline{z}))\), then the quantified constraint is not satisfied, and some other assignment to the variables in \(\overline{w}\) must be generated. Otherwise, the constraint is satisfied, and the domains of \(\overline{x}\) are defined by the the restrictions imposed by \(\Phi\).

If the set of tuples satisfying \(\Phi\) is finite, then enumerating them and checking that each one of them satisfies \(\Psi\) is relatively straightforward, though possibly time consuming. But what if the set is infinite? In the general case, there is nothing that can be done. However, as we will see, there are some useful classes of problems where it is possible to identify the infinite set of tuples satisfying \(\Phi(\overline{x}, \overline{y})\) and check that they all satisfy \(\Psi(\overline{x}, \overline{z})\) using efficient constraint propagation techniques.

It should be noted that the steps presented above can be done in a variety of ways. There is no need to assign all variables in \(\overline{w}\) before beginning the process of identifying the domain of \(\overline{z}\). It is also possible to fix the domains of \(\overline{z}\) after solving \(\Phi\) before solving \(\Psi\) and only check to see if any elements of these domains are eliminated during the solving of \(\Psi\). These refinements are left as future work.

4 Algorithm

We present an algorithm for proving that universally quantified constraints are valid. The only assumptions are that there is a way of enumerating the variables in \(\overline{w}\), and that there is some way of representing the values satisfying \(\Phi(\overline{x}, \overline{y})\) and \(\Psi(\overline{x}, \overline{z})\). In the following sections, we discuss specific techniques for performing these operations.

1. choose assignments for all normal variables \(\overline{w}\).
2. for each quantified constraint \(\forall \overline{x}, \overline{y}, \exists \overline{z} (\Phi(\overline{x}, \overline{y}) \Rightarrow \Psi(\overline{x}, \overline{z}))\)
3. \(\text{if } (S(\Phi(\overline{x}, \overline{y})) \neq \emptyset \text{ then } \text{end for} \)
4. \(\text{for each assignment } \overline{d} \in \pi(\overline{x})S(\Phi(\overline{x}, \overline{y})) \text{ do } \)
5. \(\text{if } (\overline{d} \not\in \pi(\overline{x})S(\Psi(\overline{x}, \overline{z}))) \) then \(\text{return failure.} \)
6. \(\text{end for} \)
7. \(\text{return success.} \)

Theorem: The algorithm for proving quantified constraints is sound: it will not return success if, for any quantified constraint \(\forall \overline{x}, \overline{y}, \exists \overline{z} (\Phi(\overline{x}, \overline{y}) \Rightarrow \Psi(\overline{x}, \overline{z}))\), there is some assignment \(\overline{d}\) to \(\overline{x}\) such that \(\exists \overline{y}\), \(\forall \overline{z} \Phi(\overline{a}, \overline{y}, \overline{w}) \Rightarrow \Psi(\overline{a}, \overline{z}, \overline{w})\).

Proof: Suppose otherwise. There is some some \(\overline{a}\) such that \(\pi(\overline{a})S(\Phi(\overline{a}, \overline{y}, \overline{w})) \not\subseteq \pi(\overline{a})S(\Psi(\overline{a}, \overline{z}, \overline{w}))\). But then \(\pi(\overline{a})S(\Phi(\overline{a}, \overline{y}, \overline{w})) \not\subseteq \pi(\overline{a})S(\Psi(\overline{a}, \overline{z}, \overline{w}))\), contradicting the assumption that \(\exists \overline{y}\), \(\forall \overline{z} \Phi(\overline{a}, \overline{y}, \overline{w}) \Rightarrow \Psi(\overline{a}, \overline{z}, \overline{w})\).

Theorem: The algorithm for proving quantified constraints is complete: If, for all quantified constraints, \(\forall \overline{x}, \overline{y}, \exists \overline{z} (\Phi(\overline{x}, \overline{y}) \Rightarrow \Psi(\overline{x}, \overline{z}))\), then the algorithm returns success.

Proof: Suppose the algorithm returns failure, but for all quantified constraints, \(\forall \overline{x}, \overline{y}, \exists \overline{z} (\Phi(\overline{x}, \overline{y}) \Rightarrow \Psi(\overline{x}, \overline{z}))\). The algorithm will return failure if there is some quantified constraint for which \(\pi(\overline{x})S(\Phi(\overline{x}, \overline{y})) \neq \emptyset \) and \(\overline{c} \in \pi(\overline{x})S(\Psi(\overline{x}, \overline{z}, \overline{w}))\). But then \(\pi(\overline{x})S(\Phi(\overline{x}, \overline{y}, \overline{w})) \subseteq \pi(\overline{x})S(\Psi(\overline{x}, \overline{z}, \overline{w}))\), which in turn
violates the assumption that for all quantified constraints, \( \forall \bar{x}, \bar{y}, \exists \bar{z}. \Phi(\bar{x}, \bar{y}, \bar{z}) \Rightarrow \Psi(\bar{x}, \bar{z}, \bar{w}) \).

5 Handling infinite universes

The general approach discussed above works well for relatively small, finite domains. To handle large or infinite domains efficiently, we need to employ special-case constraint propagation techniques. We describe one such technique in detail in this section. The technique depends on being able to represent infinite domains concisely. In sections 5.1 and 5.2, we discuss concise representations of infinite domains for numbers and strings, and discuss classes of constraints for which these concise representations can store the valid domains exactly. In section 5.3, we discuss a way to use these domains to store the solutions of \( \Phi \) and \( \Psi \).

5.1 Numeric domains

Large or infinite sets of numbers can be represented concisely using intervals. Additionally, we can determine whether two intervals are equivalent efficiently. We will assume that all infinite numeric domains are represented as single intervals. Thus, the question of whether the domain of a numeric variable can represent exactly the possible values allowed by a constraint reduces to the question of whether the values for that variable allowed by the constraint can be represented as an interval. Assuming that the domains of the other variables in the constraint are also represented as intervals, the question then becomes whether the projection of an interval on one variable is an interval on another. We will consider both continuous (real) and discrete (integer) domains.

(a)

(b)

5.1.0.4 Continuous If the domain of \( x \) is continuous, then for every continuous function \( y = f(x) \), if the domain of \( x \) is an interval, the domain of \( y \) will also be an interval. The converse is not necessarily true. However, the converse is true if \( f \) is either non-decreasing (a) or non-increasing (b). If \( f(x) \) increases and decreases in \( x \), then there will be some \( y \) interval that corresponds to multiple \( x \) intervals (c). However, if the \( y \) interval obeys certain restrictions, then the domain of \( x \) will still be an interval. In particular,

- neither of the horizontal lines representing the bounds of the \( y \) interval may cross \( f \) more than twice. Crossing twice corresponds to passing through one peak or trough in \( f \).
- if one of the lines passes through a peak, the other
line must be above the peak (d), and if one line passes through a trough, then the other line must be below the trough.

We can apply the same sort of reasoning to relations (e). However a special class of relations is worth noting. If any relation defines a convex region (d), such that the relation is true for all points inside the region and false for all points outside it, then the projection of any interval on \( y \) will be an interval on \( x \) (or vice versa). Examples of convex regions are,

- \( x < 10 \)
- \( y > 2x + 1 \)
- \( z^2 + y^2 \leq r^2 \)

5.1.0.0.5 Continuous to discrete A function from a continuous (real) variable to a discrete (integer) variable is by definition not a continuous function. However, it may be regarded as a continuous function whose range is projected onto the integer number line. If such a description is valid, then the projection of any continuous interval on \( x \) will be a discrete interval on \( y \). Going the other direction, intervals on \( y \) will map to intervals on \( x \) under the same circumstances as in the fully continuous case: non-decreasing functions, non-increasing functions, and relations defining convex regions.

5.1.0.0.6 Discrete A function whose domain is discrete will not, in general, project an interval onto another interval. For example, consider the simple case of \( y = 2x \), where \( x \) and \( y \) are integers. The domain of \( y \) is the set of even numbers, which cannot be represented as an interval. However, when we consider relations defining convex regions, we again find that the projection of an interval is an interval. So although \( y = 2x \) does not give an interval, \( y \leq 2x \) does.

5.1.0.0.7 Other domain representations The decision to represent a numeric domain using a single interval has had a profound impact on the class of constraints that we can “solve” for particular variables. Another representation, such as a finite set of intervals, would allow additional constraints to be handled, though at the cost of some additional complexity in constraint execution.

5.2 String domains

Just as infinite sets of numbers can be represented by intervals, infinite sets of strings can be represented by regular expressions. Regular expressions are a much more flexible representation than intervals, in that the set of regular expressions is closed under intersection, union and negation, whereas the set of intervals is only closed under intersection. Regular expressions (regexps) are equivalent to finite automata (FAs) in expressive power, and in fact we represent regexps as FAs, since the latter are easier to compute with. For example, deciding whether two FAs accept the same language can be done efficiently.

5.2.0.0.8 Concatenation The concatenation of two strings, \( a \) and \( b \), yields another string, \( c \). This constraint is represented as \( c = a \cdot b \). If the domains of \( a \) and \( b \) are regexps, the domain of \( c \) will simply be the regexps resulting from concatenating the regexps for \( a \) and \( b \). Less obviously, if the domains of \( a \) and \( c \) are regexps, the domain of \( b \) is a regexp. To construct an FA for \( b \) given FAs for \( a \) and \( c \), we in effect traverse the FAs for \( c \) and \( a \) in parallel. Whenever a transition is allowed by both \( c \) and \( a \), that transition is taken. Whenever an accept node in \( a \) is reached, the corresponding node in \( c \) is marked. A new NFA for \( b \) is constructed by copying the NFA for \( c \) and making all the marked nodes start nodes. A similar procedure can be used to construct an NFA for \( a \), given NFAs for \( b \) and \( c \).

5.2.0.0.9 Containment The relation contains(\( a, b \)) means that string \( b \) is a substring of \( a \). If the domain of \( b \) is a regexp \( r \), then the domain of \( a \) is simply the regexp \( "^r.*" \), where \( "\cdot" \) means "accept any character," so \( "^r\cdot.*" \) means "accept any string of zero or more characters." Less obviously, if the domain of \( a \) is a regexp, then so is the domain of \( b \). Given an FA for \( a \), we can construct an NFA for \( b \) by eliminating any dead-end
nodes from a (that is, nodes from which it is impossible to reach an accept node), and then making all nodes in a both start and accept nodes.

5.3 Tractable Reasoning

In the previous sections we established that we can enforce consistency on a variety of constraints, even when the domains are infinite. We now show how to use these results to demonstrate that a quantified constraint is satisfied. In order to do this, we need some additional definitions. Let \( C(X) \) be a CSP. Consider the hypergraph \( G_C \), where the vertices of \( G \) are the variables of \( C \) and the hyperedges are the constraints. Assume we have imposed a total order on the variables \( X \). Freuder (Fre82) defines the width of a variable \( x \) as the number of variables earlier in the ordering that are in the scope of a constraint on \( x \). The width of an ordering is the maximum width of a variable, and the width of the CSP is the minimum width over all orderings.

We restate the following theorem from (Fre82) without proof:

**Theorem:** Let \( C \) be a CSP. If \( C \) is strongly \( k \)-consistent and the width of \( C \) is \( \leq k \), then there is a backtrack-free procedure to find a solution to \( C \).

We can now prove the following:

**Corollary:** Let \( C \) be a CSP and assume \( C \) is strongly \( k \)-consistent and the width of \( C \) is \( \leq k \). Let \( x \) be the first variable in a search order inducing a width of \( \leq k \). Then \( d(x) = \pi_k(S(C)) \).

**Proof:** We will show that each element of \( d(x) \) can be extended to a solution to \( C \). For each \( \alpha \in d(x) \) make the assignment \( x = \alpha \). Consider the assignment of any variable \( y \). Now, since the width of \( C \) is \( \leq k \), we know that when we use a variable ordering that induces a width \( \leq k \), fewer than \( k \) variables sharing constraints with \( y \) are assigned before assigning \( y \). Further, since we also know that \( C \) is strongly \( k \)-consistent, any consistent assignment of fewer than \( k \) variables can always be extended by one assignment. Thus, we can continue assigning variables without failure until all variables are assigned, regardless of the initial assignment to \( x \).

Thus, any \( \Phi \) and \( \Psi \) for which \( k \)-consistency can be established and for which the single shared universally quantified variable \( x \) is the first variable in the search order for both \( \Phi \) and \( \Psi \) can be handled this way. For infinite domains, achieving strong \( k \)-consistency requires the constraint to be similar to one of those described in sections 5.1 and 5.2.

6 Example

In this example, we illustrate the entire planning process, including generating subgoals through regression, determining entailment through unification and computing entailment for universally constraints with infinite domains.

Suppose we have a grayscale image corresponding to the elevation over some region:

\[
\text{plot.xSize} = \text{XMAX};
\]

\[
\forall x, y: \text{unsigned}, \text{el: real}.
\]

\[
\text{when}(x < \text{XMAX} \land y < \text{YMAX} \land
\text{el} = \text{elevation(xProj(x),yProj(y)))}
\]

\[
\text{plot.value}(x, y) = . \text{hProj}(\text{el})
\]

where \( \text{xProj} \) and \( \text{yProj} \) are linear functions mapping the \( x, y \) coordinates of the image to the corresponding longitude, latitude that they represent, \( \text{hProj} \) is a linear function mapping elevation to pixel values in the image, with lower (black) values correspond to lower elevations, and \( \text{elevation}(x, y) \) is the elevation at longitude \( x \), latitude \( y \). The notation \text{plot.xSize} denotes the horizontal size of the image \text{plot}, and \text{plot.value}(x, y) means the pixel value at the coordinates \( x, y \) in the image \text{plot}.

Say we would like to produce a color image showing the same elevations, but highlighting particular ranges of elevation using different colors. For example, pixels corresponding to points below sea level should be blue and points above the snow line should be shades of gray.

One way to accomplish this would be by creating bitmaps or monochrome images corresponding to the pixels of interest (i.e., pixels above or below a particular value), and using these bitmaps to select the pixels on which particular operations, like coloring the pixels blue, will be performed. Suppose we have a threshold command, which takes an image, \( in \), as input and has an argument specifying a threshold value, and outputs an image, \( out \), the same size as the input, with a value of 255 for every pixel in the input whose value is above the threshold and a value of zero for every pixel below the threshold:

\[
\forall x, y: \text{unsigned}, \text{v: pixelValue}
\]

\[
\text{when}(x < \text{in.xSize} \land y < \text{in.ySize} \land
\text{v} = \text{in.value}(x, y))
\]

\[
\text{when}(\text{v} < \text{thresh}) \text{out.value}(x, y) := 0;
\]

\[
\text{when}(\text{v} > \text{thresh}) \text{out.value}(x, y) := 255;
\]

where \( \text{thresh} \) is an action parameter of type \text{pixelValue} (i.e., a variable from \( \text{v} \)) denoting the threshold value, and a \text{pixelValue} is an integer in the range \( [0, 255] \). The use of nested \text{when}s is merely a shorthand, where \( \text{when}(\Phi) \{\text{when}(\Psi)\} = \text{when}(\Phi \land \Psi) \). This example is explored in more detail in (7). Here, we focus on a single subgoal that arises during planning: to generate a threshold map, \( \text{sea} \), based on elevation at sea level:

\[
\forall x', y': \text{unsigned}, \text{elev: real}.
\]

\[
\text{when}(x' < \text{XMAX} \land y' < \text{YMAX} \land
\text{elev} = \text{elevation(xProj(x'),yProj(y'))})
\]

\[
\text{when}(\text{elev} > 0) \text{sea.value}(x', y') = 255;
\]

\[
\text{when}(\text{elev} \leq 0) \text{sea.value}(x', y') = 0;
\]

where words in ALL CAPS are constants. Regressing this subgoal through the \text{threshold} action, we get:

\[
\forall x', y': \text{unsigned}, \text{elev: real}.
\]

\[
\text{when}(x' < \text{XMAX} \land y' < \text{YMAX} \land
\text{elev} = \text{elevation(xProj(x'),yProj(y'))})
\]
\[ x' < \text{in.xSize}; \]
\[ y' < \text{in.ySize}; \]
\[ v' = \text{in.value}(x, y); \]
\[ \text{when} \ (elev > 0) \ v' > \text{thresh}; \]
\[ \text{when} \ (elev \leq 0) \ v' \leq \text{thresh}; \]

We try to satisfy this goal using the initial state; specifically, letting the image be in plot.

\[ \forall x', y': \text{unsigned}, \ elev: \text{real} \exists v': \text{unsigned} \exists e': \text{real} \]
\[ \text{when} (x' < \text{XMAX} \&\& y' < \text{YMAX} \&\&
\quad \text{elev} = \text{elevation}(\text{xProj}(x'), \text{yProj}(y'))) \]
\[ x' < \text{XMAX}; \]
\[ y' < \text{YMAX}; \]
\[ v' = \text{hProj}(e'); \]
\[ e' = \text{elevation}(\text{xProj}(x'), \text{yProj}(y')); \]
\[ \text{in} = \text{plot}; \]
\[ \text{when} \ (elev > 0) \ v' > \text{thresh}; \]
\[ \text{when} \ (elev \leq 0) \ v' \leq \text{thresh}; \]

The subgoal \( e' = \text{elevation}(\text{xProj}(x'), \text{yProj}(y')) \) is trivially satisfied by unification if \( e' = \text{elev} \). The subgoals \( x' < \text{XMAX} \) and \( y' < \text{YMAX} \) are also trivially satisfied. This can be determined easily by quantified constraint reasoning: The domain of \( x' \) established by the LHS is \([0, \text{XMAX}-1]\), and the same domain is established by the RHS. Removing the satisfied terms, we get:

\[ \forall x', y': \text{unsigned}, \ elev: \text{real} \exists v': \text{unsigned} \exists e': \text{real} \]
\[ \text{when} (x' < \text{XMAX} \&\& y' < \text{YMAX} \&\&
\quad \text{elev} = \text{elevation}(\text{xProj}(x'), \text{yProj}(y'))) \]
\[ v' = \text{hProj}(e'); \]
\[ e' = \text{elev}; \]
\[ \text{when} \ (elev > 0) \ v' > \text{thresh}; \]
\[ \text{when} \ (elev \leq 0) \ v' \leq \text{thresh}; \]

which, simplified to it essence, gives us the following two quantified constraints.

\[ \forall e_1: \text{real} \ (e_1 > 0) \Rightarrow (\text{hProj}(e_1) > \text{thresh}) \]
\[ \forall e_2: \text{real} \ (e_2 \leq 0) \Rightarrow (\text{hProj}(e_2) \leq \text{thresh}) \]

Recall that \( \text{hProj} \) is an increasing linear function. Assume \( \text{hProj}(e) = 0.05e + 42 \). Note that although the domain of \( \text{hProj} \) is unbounded, the range is \([0, 255]\), so all values of \( e \) below \(-840\) map to \(0\), and all values above \(4260\) map to \(255\). Since we map real values onto integers, we will always round up.

These constraints share the parameter \( \text{thresh} \), which needs to be assigned a value. As discussed above, there are a number of possible variable ordering strategies we could employ, the default being to choose a value for \( \text{thresh} \) and then see if the quantified constraints are satisfied. Say we pick the value 43. Let's tackle the constraint on \( e_1 \) first. Enforcing the LHS constraint sets the domain of \( e_1 \) to the interval \((-\infty, 0)\). On the RHS, propagating the value of \( \text{thresh} \) sets the domain of \( \text{hProj}(e_1) \) to \([44, 255]\). The domain of \( e_1 \) then becomes \([20, \infty)\). Since the domain of \( e_1 \) is not the same as it was according to the LHS, the constraint is violated, so 43 is not a valid assignment to \( \text{thresh} \).

Now say we pick 42. Once again, the domain of \( e_1 \) is \((0, \infty)\). This time, propagating \( \text{thresh} \) in the RHS makes the domain of \( \text{hProj}(e_1) \) \([43, 255]\), resulting in a domain for \( e_1 \) of \((0, \infty)\), which is consistent with the LHS, so we proceed to the other forall constraint. Enforcing the LHS sets the domain of \( e_2 \) to the interval \((-\infty, 0)\). Propagating the value of \( \text{thresh} \) in the RHS sets the domain of \( \text{hProj}(e_2) \) to \([0, 42]\), resulting in a domain of \((-\infty, 0]\) for \( e_2 \). Both forall constraints are consistent.

An alternative to branching on values of \( \text{thresh} \) would be to leave it unassigned and see if we can narrow down the choices through propagation. Working on the constraint on \( e_1 \) first, we enforce the LHS constraint, setting the domain of \( e_1 \) to the interval \((0, \infty)\). Propagating the value of \( e_1 \), the domain of \( \text{hProj}(e_1) \) is then \([43, 255]\) and the domain of \( \text{thresh} \) is \([42, 255]\). Since enforcing the RHS constraints did not shrink the domain of \( e_1 \), the first implication is valid so far. Enforcing the LHS of the second constraint sets the domain of \( e_2 \) to the interval \((-\infty, 0)\). Enforcing the RHS sets the domain of \( \text{hProj}(e_2) \) to \([0, 42]\) and restricts the domain of \( \text{thresh} \) to the singleton 42. The domain of \( e_2 \) did not shrink, and the reduction of the domain of \( \text{thresh} \) did not shrink the domain of \( e_2 \), so both implications hold, and the only valid parameter choice is 42, which is \( \text{hProj}(0) \), the pixel value corresponding to sea level.

### 7 Previous Work

The Amphion system (SWL+94) was designed to construct programs consisting of calls to elements of a software library. Amphion was supported by a first-order theorem prover. The task of assembling a sequence of image processing commands is similar to the task Amphion was designed to solve. However, the underlying representation we present here is a subset of first-order logic, enabling the use of less powerful reasoning systems.

Ginsberg and Parkes (GP00) point out that the satisfiability encoding of many STRIPS planning problems requires creating multiple grounded instances for axioms of the form \( \forall x, y, z \ (a(x, y) \land b(y, z) \Rightarrow c(x, z)) \), then performing search over the truth values for all of the grounded instances. They propose a formulation in which \( a(x, y) \), \( b(y, z) \) and \( c(x, z) \) are constraints on variables \( x, y, z \) and use this formulation to either search for units or find good variables to flip in local search. This is a different restriction on first-order logic from that we use, and furthermore, the domains of \( x, y, z \) are implicitly assumed to be finite.

Other planners, including (GEW94; ?; ?) also support universal quantification. The universally quantified statements in PSIPLAN (BS00) can include inequality constraints, which are used to exclude individuals from the universe of discourse. However, no prior planning systems support the ability to determine the validity of universally quantified constraints that we discuss here. L'Homme (L'H93) and Marriott and Stuckey (MS98) both describe methods of preserving an interval representation of variables involved in arithmetic constraints.
while eliminating infeasible values. However, they explicitly assume that the interval representation is an unsound approximation to the domain of feasible values. Benhamou and Goualard (BG00) describe a method of sound but incomplete approximate propagation of infinite domains. Since we require both soundness and completeness in cases where that set may be infinite, we have made stronger restrictions on the types of reasoning performed.

8 Conclusions and Future Work
We have described a planning methodology for softbots that supports universal quantification, incomplete information, and constraints on variables with very large or infinite domains. We restrict the form of both goals and effects, while preserving the ability to express conditional effects and reason about incomplete information. Our approach uses a combination of unification and constraint reasoning to demonstrate entailment. We described an algorithm for proving or disproving entailment for constraints over finite domains, and identified a subclass of constraints for which the same algorithm can prove or disprove entailment for variables with infinite domains. This class of constraints has proven useful in the domains of planning for image processing and managing file archives.

When describing the algorithm to validate quantified constraints, we assumed that all parameters of the actions were assigned before validation occurs. As described in Section 6, there are times when it is worth deferring the decision about parameters to actions, because propagation will limit the possibilities. Exploiting these possibilities is the subject of future work.

We can potentially weaken the conditions on quantified constraints required to reason about variables with infinite domains. The condition that \( \Phi \) and \( \Psi \) share only one variable can be relaxed when there is a procedure for checking the validity of the constraint without checking infinitely many values. One case is when all of the constraints describe linear equations or inequalities. In addition, it may be possible to generalize the conditions under which consistency enforcement allows us to conclude that all the values of a variable participate in solutions to a CSP. Finally, we can try to find more constraints on which we can enforce consistency when domains are infinite.

We currently assume that it is necessary to maintain both soundness and completeness while reasoning about constraints. In the case of large finite domains, this reasoning is slow, but for infinite domains outside the limited cases we discussed the reasoning may become impossible. Introducing unsoundness into the constraint reasoning is unlikely to be effective; since the quantified constraint must be satisfied, all elements of the universe satisfying the LHS and RHS must be identified eventually, and unsoundness only postpones this problem. Benhamou and Goualard (BG00) introduce sound but incomplete reasoning in order to maintain tractable representations of infinite domains. However, it may be worthwhile to consider the effects of sound but incomplete reasoning on the planning process.

References


