Abstract—Often adaptive, distributed control can be viewed as an iterated game between independent players. The coupling between the players’ mixed strategies, arising as the system evolves from one instant to the next, is determined by the system designer. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a Lagrangian function of the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian minimizing point, lower the expected value of the control objective function, and repeat. Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.

I. INTRODUCTION

This paper considers the problem of adaptive distributed control [1], [2], [3]. Typically in such problems, at each time \(t \) each control agent \(t \) sets its state \(x^t \) independently of the other agents, by sampling an associated distribution, \(q^t(x^t) \). Rather than directly via statistical dependencies of the agents’ states at the same time \(t \), the coupling between the agents arises indirectly, through the stochastic joint evolution of their distributions \(\{q^t\} \) across time.

More formally, let time be discrete, where at the beginning of each \(t \) every agent sets its state (“makes its move”), and then the rest of the system responds. Indicate the state of the entire system at time \(t \) as \(z^t \). \(z^t \) includes \(z^t \), as well as all stochastic elements not being directly controlled. So the joint distribution of the moves of the agents at any moment \(t \) is given by the product distribution \(q^t(z^t) = \prod_i q^t_i(x^t_i) \), and the state of the entire system, given joint move \(x^t \), is governed by \(P(z^t | x^t) \).

Now in general the observations by agent \(i \) of aspects of the system’s state at times previous to \(t \) will determine \(q^t_i \). So \(q^t \) is statistically dependent on the previous states of the entire system, \(z^{t'<t} \). In other words, the agents can be viewed as players in a repeated game with Nature, each playing mixed strategies \(\{q^t\} \) at moment \(t \) [4], [5], [6], [7], [8]. Their interdependence arises through information sets and the like, in the usual way.

From this perspective what the designer of a distributed control system can specify is the stochastic laws governing the updating of the joint strategy. In other words, the designer wishes to impose a stochastic dynamics on a Multi-Agent System (MAS) that optimizes an overall objective function of the state of the system in which the MAS is embedded, \(F(z) \). Formally, this means inducing a joint strategy \(q(z) \) with a good associated value of \(E_q(F) = \int dz q(z) E(F \mid z) \equiv \int dz q(z) G(z) \). Once such a \(q \) is found, one can sample it to get a final \(z \), and be assured that, on average, the associated \(F \) value is low. \(G \) is called the world utility.

In this paper we elaborate a set of algorithms that iteratively update \(q \) in such a manner. The algorithms presented here are based on using steepest descent techniques to minimize a \(G \)-parameterized Lagrangian, \(L_G(q) \). Because the descent is over Euclidean vectors \(q \), these algorithms can be applied whether the \(x \) are categorical, continuous, time-extended, or a mixture of the three. So in particular, they provide a principled way to do “gradient descent over categorical variables”.

In the next section we first derive the Lagrangian \(L_G(q) \) and discuss some of its properties.

In the following section we show how to apply gradient descent (and its embellishments) to optimization of the Lagrangian. If we view the agents as engaged in a team game, all having the same utility \(G \), then this gradient descent is a distributed scheme for each agent to update its strategy, in a way that will steer the game to a bounded rational equilibrium [14], [9].

In this section we also consider second order methods. In contrast to gradient descent, in general any single application of Newton’s method to update a product distribution \(q \) will result in a new distribution \(p(q) \) that is not a product distribution. So we must instead solve for the product distribution \(q^t(p) \) having minimal Kullback-Leibler distance to \(p \). In this section we derive the rule for iterative updating of our distribution so as to move \(q \) in the direction of \(q^t(p(q)) \).

In practice any local descent scheme often requires Monte Carlo sampling to estimate terms in the gradient. To minimize the expected quadratic error of the estimation, typically the game is changed from being a team game. In other words, in general changing the agent’s utilities \(g_i \) to not all equal \(G \) will result in lower bias plus variance of the estimation of the gradient, and therefore will speed evolution to a good joint strategy. These and other techniques

1Here we follow the convention that lower \(F \) is better. In addition, for simplicity we only consider objectives that depend on the state of the system at a single instant; it is straightforward to relax this restriction.

2For simplicity, here we indicate integrals of any sort, including point sums for countable \(x \), with the \(\int \) symbol.

3See [9], [10], [11], [12] for non-local techniques for finding \(q^t \), techniques that are related to fictitious play, and see [13] for techniques that exploit the Metropolis-Hastings algorithm. Other non-local techniques are related to importance sampling of integrals, and are briefly mentioned in [14].
for shrinking bias plus variance are discussed in [11], [10].

We end this section by mentioning some other techniques for improving the Monte Carlo sampling. These include data-aging, and techniques for managing the descent when it gets close to a border of the (simplex of) allowed q, Q. Most of these techniques introduced can be used even with schemes for minimizing $L_G(q)$ other than gradient descent.

In the final section we introduce some alternatives to $L_G(q)$, designed to help speed convergence to a q with low $E(G)$. Miscellaneous proofs can be found in the appendix.

The general mathematical framework for casting control and optimization problems in terms of minimizing Lagrangians of probability distributions is known as the theory of probability Lagrangians. The precise version where the probability distributions are product distributions is known as “Product Distribution” (PD) theory. [11]. It has many deep connections to other fields, including bounded rational game theory and statistical physics [14]. As such it serves as a mathematical bridge connecting these disciplines. Some initial experimental results concerning the use of PD theory for distributed optimization and distributed control can be found in [15], [16], [17], [18], [19], [20]. See [13], [10], [21] for other uses and extensions of PD theory.

II. PRODUCT DISTRIBUTION LAGRANGIANS

A. The maxent Lagrangian

Say the designer stipulates a particular desired value of $E(G)$, γ. For simplicity, consider the case where the designer has no other knowledge concerning the system besides γ and the fact that the joint strategy is a product distribution. Then information theory tells us that the a priori most likely q consistent with that information is the one that maximizes entropy subject to that information $\prod_{i \neq j} q_j$. In other words, of all distributions that agree with the designer’s information, that distribution is the “easiest” one to induce by random search.

Given this, one can view the job of the designer of a distributed control system as an iterative equilibrium process. In the first stage of each iteration the designer works to speed evolution of the joint strategy to the q with maximal entropy subject to a particular value of γ. Once we have found such a solution we can replace the constraint — replace the target value of $E(G)$ — with a more difficult one, and then repeat the process, with another evolution of q [11].

Define the maxent Lagrangian by

$$L(q) = \beta (E_q(G) - \gamma) - S(q),$$

where $S(q)$ is the Shannon entropy of q, $-\int dxq(x)\ln \frac{q(x)}{\mu(x)}$, and for simplicity we here take the prior μ to be uniform.5

Writing it out, for a given γ, the associated most likely joint strategy is given by the q that minimizes $L(q)$ over all those (q,β) such that the Lagrange parameter β is at a critical point of L, i.e., such that $\frac{\partial L}{\partial \beta} = 0$.

Solving, we find that the q_i are related to each other via a set of coupled Boltzmann equations (one for each agent i),

$$q_i^\beta (x_i) \propto e^{-\beta E_q(G|x_i)}$$

where the overall proportionality constant for each i is set by normalization, the subscript q_i^β on the expectation value indicates that it is evaluated according to the distribution $\prod_{i \neq j} q_j$, and β is set to enforce the condition $E_q^\beta(G) = \gamma$.

Following Nash, we can use Brouwer’s fixed point theorem to establish that for any fixed β, there must exist at least one solution to this set of simultaneous equations.

We end this section by mentioning some other techniques for shrinking bias plus variance are discussed in [11], [10]. For simplicity, consider the case where the joint strategy is a product distribution.

B. Shape of the maxent Lagrangian

Consider L as a function of q, with β and γ both treated as fixed parameters. (So in particular, $E_q(q)$ need not equal γ.) First, say that $q(i)$ is also held fixed, with only q_i allowed to vary. This makes $E(q)$ linear in q_i. In addition, entropy is a concave function, and the unit simplex is a convex region. Accordingly, the Lagrangian of Eq. 1 has a unique local minimum over q_i. So there is no issue of choosing among multiple minima when all of $q(i)$ is fixed. Nor is there any problem of “getting trapped in a local minimum” in a computational search for that minimum. Indeed, in this situation we can just jump directly to that global optimum, via Eq. 2.

Now introduce the shorthand for any function $U(x)$,

$$[U]_{x_i,p}(x_i) \equiv \int dx_i U(x_i, x_{\neq i}) p(x_{\neq i} | x_i).$$

5Throughout this paper the terms in any Lagrangian that restrict distributions to the unit simplices are implicit. The other constraint needed for a Euclidean vector to be a valid probability distribution is that none of its components are negative. This will not need to be explicitly enforced in the Lagrangian here.
So $|G|_{i,q(i)}(x_i)$ is agent i's “effective” cost function, $E_{q(i)}(G \mid x_i)$. Consider the value $E_{q(i)}^\beta(|G|_{i,q(i)})$. This is the value of $E(G)$ at i's bounded rational equilibrium for the fixed $q(i)$, i.e., it is the value at the minimum over q_i of L. View that value as a function of β. One can show that this is a decreasing function. In fact, its derivative just equals the negative of the variance of $|G|_{i,q(i)}(x_i)$ evaluated under distribution $q_i^\beta(x_i)$ (see appendix). Combining this with the fact that $E(G)$ is bounded below (for bounded G), establishes that the variance must go to zero for large enough β. So as β grows, $q_i^\beta(x_i) \to 0$ for all x_i that don’t minimize $E_{q(i)}(G \mid x_i)$. In other words, in that limit, q_i becomes Nash-optimal.

Next consider varying over all $q \in Q$, the space of all product distributions q. This is a convex space; if $p \in Q$ and $p' \in Q$, then so is any distribution on the line connecting p and p'. However over this space, the $E(G)$ term in L is multilinear. So L is not a simple convex function of q. So we do not have guarantees of a single local minimum.

The following lemma extends the technique of Lagrange parameters to off-equilibrium points:

Lemma 1: Consider the set of all vectors leading from $x' \in \mathbb{R}^n$ that are, to first order, consistent with a set of constraints over \mathbb{R}^n, $\{ f_i(x) = 0 \}$. Of those vectors, the one giving the steepest ascent of a function $V(x) = \bar{u} = \nabla V + \sum_i \lambda_i \nabla f_i$, up to an overall proportionality constant, where the λ_i enforce the first order consistency conditions, $\bar{u} \cdot \nabla f_i = 0 \ \forall i$.

Now examine the derivatives of $S(q)$ with respect to all components of q, i.e., the q-gradient of the entropy. At the border of Q, at least one of the $\ln(q_i)$ terms in those derivatives will be negative infinite. Combined with Lemma 1, this can be used to establish that at the edge of Q, the steepest descent direction of any player’s Lagrangian points into the interior of Q (assuming finite β and $\{G\}$). (This is reflected in the equilibrium solutions Eq. 2.) Accordingly, whereas Nash equilibria can be on the edge of Q (e.g., for a pure strategy Nash equilibrium), in bounded rational games any equilibrium must lie in the interior of Q. In other words, any equilibrium (i.e., any local minimum) of a bounded rational game has non-zero probability for all joint moves. So just as when only varying a single q_i, we never have to consider extremal mixed strategies in searching for equilibria over all Q. We can use local descent schemes instead [15], [19], [29].

Lemma 1 can also be used to construct G with more than one solution to Eq. 2. One can also show that for every player i and any point q interior to Q, there are directions in Q along which i‘s Lagrangian is locally convex. Accordingly, no player’s Lagrangian has a local maximum interior to Q. So if there are multiple local minima of i’s Lagrangian, they are separated by saddle points across ridges. In addition, the uniform q is a solution to the set of coupled equations Eq. 2, but typically is not a local minimum, and therefore must be a saddle point.

Say that we were not restricting ourselves to product distributions. So the Lagrangian becomes $L(p) = \beta E_p(G - \gamma) - S(p)$, where p can now be any distribution over x. There is only one local minimum over p of this Lagrangian, the canonical ensemble:

$$p^\beta(x) \propto e^{-\beta G(x)}$$

In general p^β is not a product distribution. However we can ask what product distribution is closest to it.

Now in general, the proper way to approximate a target distribution p with a distribution from a subset C of the set of all distributions is to first specify a missfit measure saying how well each member of C approximates p, and then solve for the member with the smallest missfit. This is just as true when C is the set of all product distributions as when it is any other set.

How best to measure distances between probability distributions is a topic of ongoing controversy and research [30]. The most common way to do so is with the infinite limit log likelihood of data being generated by one distribution but misattributed to have come from the other. This is known as the Kullback-Leibler distance [22], [31], [23]:

$$KL(p_1 \Vert p_2) \equiv S(p_1 \Vert p_2) - S(p_1)$$

where $S(p_1 \Vert p_2) \equiv - \int dx p_1(x) \ln[p_2(x)/p_1(x)]$ is known as the cross entropy from p_1 to p_2 (and as usual we implicitly choose uniform μ). The KL distance is always non-negative, and equals zero iff its two arguments are identical.

As shorthand, define the “pq distance” as $KL(p \Vert q)$, and the “qp distance” as $KL(q \Vert p)$, where p is our target distribution and q is a product distribution. Then it is straightforward to show that the qp distance from q to target distribution p^β is just the maxent Lagrangian $L(q)$, up to irrelevant overall constants. In other words, the q minimizing the maxent Lagrangian is q with the minimal qp distance to the associated canonical ensemble.

However the qp distance is the (infinite limit of the negative log of) the likelihood that distribution p would attribute to data generated by distribution q. It can be argued that a better measure of how well q approximates p would be based on the likelihood that q attributes to data generated by p. This is the pq distance; it gives a different Lagrangian from that of Eq. 1.

Evaluating, up to an overall additive constant (of the canonical distribution’s entropy), the pq distance is

$$KL(p \Vert q) = - \sum_i \int dx \ p(x) \ln[q_i(x_i)]$$

This is equivalent to a game where each coordinate i has the “Lagrangian”

$$L_i^*(q) = - \int dx_i \ p_i(x_i) \ln[q_i(x_i)]$$

where $p_i(x_i)$ is the marginal distribution $\int dx_i p(x)$. The minimizer of this is just $q_i = p_i \forall i$, i.e., each q_i is set to the associated marginal distribution of p.

In the interests of space, the rest of this paper we restrict attention to the pq KL distance and associated maxent Lagrangian.

III. DESCENT OF THE MAXENT LAGRANGIAN

A. Gradient descent

Consider the situation where each \(x_i \) can take on a finite number of possible values, \(|\xi_i| \). Say we are iteratively evolving \(q \) to minimize \(L \) for some fixed \(\beta \) and are currently at some point \(q \in Q \). Using Lemma 1, we can evaluate the direction from \(q \) within \(Q \) that, to first order, will result in the largest drop in the value of \(L(q) \):

\[
\frac{\partial L(q)}{\partial q_i(x_i = j)} = \mu_i(j) - \sum_{x'_i} u_i(x'_i)/|\xi_i|, \tag{5}
\]

where \(\mu_i(j) = \beta E_i(G | x_i = j) + \ln[q_i(j)] \). (Intuitively, the reason for subtracting \(\sum_{x'_i} u_i(x'_i)/|\xi_i| \) is to keep the distribution in the set of all possible probability distributions over \(x, p \).)

Eq. 5 specifies the change that each agent should make to its distribution to have them jointly implement a step in steepest descent of the maxent Lagrangian. These updates are completely distributed, in the sense that each agent’s update at time \(t \) is independent of any other agents’ update at that time. Typically at any \(t \) each agent \(i \) knows \(q_i(t) \) exactly, and therefore knows \(\ln[q_i(j)] \). However often it will not know \(G \) and/or the \(\xi_i \). In such cases it will not be able to evaluate the \(E(G | x_i = j) \) terms in Eq. 5 in closed form.

One way to circumvent this problem is to have those expectation values be simultaneously estimated by all agents by repeated Monte Carlo sampling of \(q \) to produce a set of \((x, G(x))\) pairs. Those pairs can then be used by each agent \(i \) to estimate the values \(E(G | x_i = j) \), and therefore how it should update its distribution. In the simplest version of such an update to \(q \) only occurs once every \(L \) time-steps. In this scheme only the samples \((x, G(x))\) formed within a block of \(L \) successive time-steps are used at the end of that block by the agents to update their distributions (according to Eq. 5).

B. Higher order descent schemes

In general, second order descent (e.g., Newton’s method) of the maxent Lagrangian is non-trivial, due to coupling that arises between the agents and the requirement for associated matrix inversion. However recall that one way to motivate the entropic product distribution Lagrangian \(L(q) \) starts by saying that what we really want is the fully coupled canonical ensemble distribution, \(p^0(x) \propto \exp(-\beta G(x)) \).

\(L(q) \) then measures \(pq \) KL-distance to that desired distribution. From this perspective, any given iteration of second order descent of the maxent Lagrangian runs downhill on a quadratic approximation to a distribution, a distribution that is itself a product distribution approximation to the ultimate distribution we want to minimize.

This suggests the alternative of making the approximations in the opposite order. In this approach we first make a quadratic approximation (over the space of all \(p \), not just all \(q \)) to the maxent Lagrangian, \(L(p) \). Via Newton’s method this specifies a \(p^* \) that minimizes that quadratic approximation. We can then find the product distribution that is nearest (in \(pq \) KL distance) to \(p^* \). This scheme is called Nearest Newton descent.

The gradient and Hessian of \(L(p) \) are given by

\[
\frac{\partial L(p)}{\partial p(x)} \bigg|_{p=p^0} = \beta G(x) + 1 + \ln(p^0(x))
\]

\[
\frac{\partial^2 L}{\partial p(x) \partial p(x')} \bigg|_{p=p^0} = \delta_{x,x'} \frac{\partial p}{\partial p(x)}
\]

where \(p^0 \) is the current point. This Hessian is positive-definite (given that the current \(p \) is a member of \(P \)). By simple Lagrange parameters, the general solution is either on the border of \(P \), or if in the interior is given by

\[
p^*(x) = -p^0(x) \left[\beta G(x) + \ln(p(x)) + \lambda \right]
\]

where \(\lambda \) is set by normalization. Solving, either \(p^* \) is on the edge of the simplex, or

\[
\frac{p^*(x)}{p^0(x)} = 1 - S(p^0(x)) - \ln(p^0(x)) - \beta[G(x) - E(G)]
\]

Note that the right-hand side is exactly the direction you should go using (simplex-constrained) gradient descent of \(L(p) \). So the direction to \(p^* \) from \(p^0 \) is given by the Hadamard product of \(p^0 \) and the direction given by gradient descent.

Now we can approximate \(p^* \) with the product distribution having the minimal KL distance to it. In particular, consider using \(pq \) KL distance rather than \(qp \) KL distance. Recall that for this kind of KL distance, the optimal product distribution approximation to a joint distribution is given by the product of the marginals of that joint distribution (see the discussion just below Eq. 4). Say that \(p^0 \) is in the form of a product distribution, \(q^0 \), i.e., that we are starting from a product distribution. Then calculating the marginals of the associated \(p^* \) to get \(q^* \) is trivial:

\[
\frac{q^*_i(j)}{q^0_i(j)} = 1 - \beta \left(E(G | x_i = j) - E(G) \right)
\]

Note that since the original quadratic approximation was over the full joint space, this formula automatically takes into account inter-agent couplings. In practice of course, it may make sense not to jump all the way from \(q^0 \) to \(q^* \), but only part-way there, to be conservative. (In fact, if \(q^* \) isn’t in the interior of the simplex, such partial jumping is necessary.) One potential guide to how far to jump is the \(pq \) KL distance from \(p^* \) to \(\prod_i q^*_i \). Unlike the KL distances
to the full joint Boltzmann distribution, we can readily calculate this KL distance.

The conditional expectations in Nearest Newton are the same as those in gradient descent. Accordingly, they too can be estimated via Monte Carlo sampling, if need be. It’s also worth noting that Eq. 6 has the same form as one would get by evaluating the Hessian of the maxent Lagrangian, so long as one ignored inter-agent aspects of that Hessian.

C. Practical issues

In practice, the block-wise Monte Carlo sampling to estimate descent directions described above can be prohibitively slow. The estimates typically have high variance, and therefore require large block size L to get a good descent direction. One set of ways to address this is to replace the team game with a non-team game, i.e., for each agent i have it estimate quantities $E(g_i | x_i = j)$ rather than $E(G | x_i = j)$, where each private utility g_i is chosen to have much lower variance than G [11], [15], [10].

Another useful technique is to allow samples from preceding blocks to be re-used. One does this by first “aging” that data to reflect the fact that it was formed under a different $q(i)$. For example, one can replace the empirical average for the most recent block k,

$$\tilde{G}_{i,j}(k) \equiv \frac{\sum_{t=k-L}^{k-L+L} G(x') \delta x''_{i,j}}{\sum_{t=k-L}^{k-L+L} \delta x''_{i,j}}$$

with a weighted average over the expected G’s of all preceding blocks,

$$\sum_m \tilde{G}_{i,j}(m) e^{-\kappa(k-m)} \sum_m e^{-\kappa(k-m)}$$

for some appropriate ageing constant κ.

Typically such ageing allows L to be vastly reduced, and therefore the overall minimization of L to be greatly sped up. For such small L though, it may be that the most recent block has no samples of some move $x_i = j$. This would mean that $\tilde{G}_{i,j}(k)$ is undefined. One crude way to avoid such problems is to simply force a set of samples of each such move if they don’t occur during their own accord, being careful to have the $x(i)$ formed by sampling $q(i)$ when forming those forced samples.

Other useful techniques allow one to properly decrease the step size as one nears the border of Q.

IV. OTHER LAGRANGIANS FOR FINDING MINIMA OF G

There are many alternative Lagrangians to the ones described above. The section focuses on such alternative Lagrangians for the purpose of finding argmin$_x G(x)$. Two classes of such Lagrangians are investigated: variants of the Maxent Lagrangian, and variants of the two types of KL-distance Lagrangians.

A. Maxent Lagrangians

Say that after finding the q that minimizes the Lagrangian, we IID sample that q, K times. We then take the sample that has the smallest G value as our guess for the x that minimizes $G(x)$. For this to give a low x we don’t need the mean of the distribution $q(G)$ to be low — what we need is that the bottom tail of that distribution is low. This suggests that in the $E(G)$ term of the Maxent Lagrangian we replace

$$q(x) \rightarrow\frac{q(x) \Theta[k - \int dz' q(z') \Theta[G(x) - G(z')]]}{\kappa}$$

where Θ is the Heaviside theta function. This new multiplier of G is still a probability distribution over x. It equals 0 if $G(x)$ is in the worst $1 - \kappa$ percentile (according to distribution q) of G values, and κ^{-1} otherwise. So under this replacement the $E(G)$ term in the Lagrangian equals the average of G restricted to that lower κth percentile. For $\kappa = K^{-1}$, our new Lagrangian forces attention in setting q on that outlier likely to come out of the K-fold sampling of $q(G)$.

One can use gradient descent and Monte Carlo sampling to minimize this Lagrangian, in the usual way. Note that the Monte Carlo process includes sampling the probability distribution $\Theta[k - \int dz' q(z') \Theta[G(x) - G(z')]]$ as well as the q_i. This means that only those points in the best κ’th percentile are kept, and used for all Monte Carlo estimates. This may cause greater noise in the Monte Carlo sampling than would be the case for $\kappa = 1$.

As an example, say that for agent i, all of its moves have the same value of $E(G | x_i)$, and similarly for agent j, and say that G is optimal if agents i and j both make move 0. Then if we modify the updating so that agent i only considers the best values that arose when it made move 0, and similarly for agent j, then both will be steered to prefer to make move 0 to their alternatives. This will cause them to coordinate their moves in an optimal manner.

A similar modification is to replace G with $f(G)$ in the maxent Lagrangian, for some concave nowhere-decreasing function $f(.)$. Intuitively, this will have the effect of coordinating the updates of the separate q_i at the end of the block, in a way to help lower G. It does this by distorting G to accentuate those x’s with good values. The price paid for this is that there will be more variance in the values of $f(G)$ returned by the Monte Carlo sampling than those of G, in general.

Note that if q is a local minimum of the Lagrangian for G, in general it will not be a local minimum for the Lagrangian of $f(G)$ (the gradient will no longer be zero under that replacement, in general). So we can replace G with $f(G)$ when we get stuck in a local minimum, and then return to G.
once q gets away from that local minimum. In this way we can break out of local minima, without facing the penalty of extra variance. Of course, none of these advantages in replacing G with $f(G)$ hold for algorithms that directly search for an x giving a good $G(x)$ value; x is a local minimum of $G(x) \leftrightarrow x$ is a local minimum of $f(G(x))$.

An even simpler modification to the $E(G)$ term than those considered above is to replace $G(x)$ with $\Theta[G(x) - K]$. Under this replacement the $E(G)$ term becomes the probability that $G(x) > K$. So minimizing it will push q to x with lower G values. For this modified Lagrangian, the gradient descent update steps adds the following to each $q_i(x_i)$:

\[
\alpha \left[\beta q(G < K \mid x_i) + \ln(q_i(x_i)) - \sum_{x'_i} \beta q(G < K \mid x'_i) + \ln(q_i(x'_i)) \right].
\]

In gradient descent of the Maxent Lagrangian we must Monte Carlo estimate the expected value of a real number (G). In contrast, in gradient descent of this modified Lagrangian we Monte Carlo estimate the expected value of a single bit: whether G exceeds K. Accordingly, the noise in the Monte Carlo estimation for this modified Lagrangian is usually far smaller.

In all these variants it may make sense to replace the Heaviside function with a logistic function or an exponential. In addition, in all of them the annealing schedule for K can be set by periodically searching for the K that is (estimated to be) optimal, just as one searches for optimal coordinate systems [14], [11]. Alternatively, a simple heuristic is to have K at the end of each block be set so that some pre-fixed percentage of the sampled points in the block go into our calculation of how to update q.

Yet another possibility is to replace $E(G)$ with the κth percentile G value, i.e., with the K such that \(\int dx' q'(x') \Theta(G(x') - K) = \kappa \). (To evaluate the partial derivative of that K with respect a particular $q_i(x_i)$ one must use implicit differentiation.)

B. KL-based Lagrangians

Both the qp-KL Lagrangian and pq-KL Lagrangians discussed above had the target distribution be a Boltzmann distribution over G. For high enough β, such a distribution is peaked near argmin$_x G(x)$. So sampling an accurate approximation to it should have an x with low G, if β is large enough. This is why one way to minimize G is to iteratively find a q that approximates the Boltzmann distribution, for higher and higher β.

However there are other target distributions that are peaked about minimizers of G. In particular, given any distribution p', the distribution

\[
\theta_p(x) = \frac{p(x) \Theta[K - G(x)]}{\int dx' p(x') \Theta[K - G(x')]}\]

is guaranteed to be more peaked about such minimizers than is p. So our minimization can be done by iterating

the process of finding the q that best approximates θ_p and then setting $p = q$. This is analogous to the minimization algorithm considered in previous sections, which iterates the process of finding the q that best approximates the Boltzmann distribution and then increases β.

For the choice of pq-KL distance as the approximation error, the q that best approximates θ_p is just the product of the marginal distributions of θ_p. So at the end of each iteration, we replace

\[
q_i(x_i) \leftarrow \frac{\int dx'_i q_i'(x'_i) \Theta[K - G(x_i, x'_i)]}{\int dx' q'(x') \Theta[K - G(x')]} = \frac{q'(G < K \mid x_i)}{q'(G < K)} = \frac{q(x_i \mid G < K)}{q(x_i)}
\]

where q' is the product distribution being replaced. The denominator term in this expression is known exactly to agent i, and the numerator can be Monte-Carlo estimated by that agent using only observed G values. So like gradient descent on the Maxent Lagrangian, this update rule is well-suited to a distributed implementation.

Note that if we replace the Heaviside function in this algorithm with an exponential with exponent β, the update rule becomes

\[
q_i(x_i) \leftarrow \frac{E(e^{-\beta G} \mid x_i)}{E(e^{-\beta G})}
\]

where both expectations are evaluated under q', the distribution that generated the Monte Carlo samples. It's interesting to compare this update rule with the parallel Brouwer update rule for the team game [19], [11], [12], to which it is very similar. This update is guaranteed to optimize the associated Lagrangian, unlike the Brouwer update. On the other hand, since it is based on the pq-KL Lagrangian, as mentioned above there is no formal guarantee that this alternative to Brouwer updating will decrease $E(G)$.

This update rule is also very similar to the adaptive importance sampling of the original pq-KL approach discussed in [11]. The difference is that in adaptive importance sampling the $e^{-\beta G(z)}$ terms get replaced by $e^{-\beta G(z)}/q'(z)$. Finally, consider using qp-KL distance to approximate

\[
q'(x) \int dx' q'(x') \Theta(K - G(x'))
\]

rather than pq-KL distance. In the Lagrangian for that distance the q' terms only contribute an overall additive constant. Aside from that constant, this qp-KL Lagrangian is identical to the Maxent Lagrangian.

V. CONCLUSION

Many problems in adaptive, distributed control can be cast as an iterated game. The coupling between the mixed strategies of the players arises as the system evolves from one instant to the next. This is what the system designer

\[\text{\footnotesize \cite{6}}\text{\footnotesize \cite{7}}\text{\footnotesize \cite{8}}\]
determines. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a particular Lagrangian function of the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian minimizing point, lower the expected value of the control objective function, and repeat. Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.

VI. APPENDIX

This appendix provides proofs absent from the main text.

A. Derivation of Lemma 1

Proof: Consider the set of \(\bar{u} \) such that the directional derivatives \(D_u f_i \) evaluated at \(x' \) all equal 0. These are the directions consistent with our constraints to first order. We need to find the one of those \(\bar{u} \) such that \(D_u V \) evaluated at \(x' \) is maximal.

To simplify the analysis we introduce the constraint that \(|\bar{u}| = 1 \). This means that the directional derivative \(D_u V \) for any function \(V \) is just \(\bar{u} \cdot \nabla V \). We then use Lagrange parameters to solve our problem. Our constraints on \(\bar{u} \) are \(\sum_i u_i^2 = 1 \) and \(D_u f_i(x') = \bar{u} \cdot \nabla f_i(x') = 0 \ \forall i \). Our objective function is \(D_u V(x') = \bar{u} \cdot \nabla V(x') \).

Differentiating the Lagrangian gives

\[
2\lambda_0 u_i + \sum_i \lambda_i \nabla f_i = \nabla V \ \forall i.
\]

with solution

\[
u_i = \frac{\nabla V - \sum_i \lambda_i \nabla f_i}{2\lambda_0}.
\]

\(\lambda_0 \) enforces our constraint on \(|\bar{u}| \). Since we are only interested in specifying \(\bar{u} \) up to a proportionality constant, we can set \(2\lambda_0 = 1 \). Redefining the Lagrange parameters by multiplying them by \(-1\) then gives the result claimed. QED.

B. Proof of claims following Lemma 1

For generality, we provide the proofs in the general scenario where the private utilities \(g_i \) may differ from one another. See the discussion in Section III-C.

i) Define \(f_i(q) \equiv \int dx_i q_i(x_i) \), i.e., \(f_i \) is the constraint forcing \(q_i \) to be normalized. Now for any \(q \) that equals zero for some joint move there must be an \(i \) and an \(x_i' \) such that \(q_i(x_i') = 0 \). Plugging into Lemma 1, we can evaluate the component of the direction of steepest descent along the direction of player \(i \)'s probability of making move \(x_i' \):

\[
\frac{\partial L}{\partial q_i(x_i')} + \lambda \frac{\partial f_i}{\partial q_i(x_i')} = \\
\beta E(g_i | x_i) + \ln(q_i(x_i)) - \beta E(g_i | x_i') + \ln(q_i(x_i'))
\]

Since there must some \(x_i'' \) such that \(q_i(x_i'') \neq 0 \), \(\exists x_i \) such that \(\beta E(g_i | x_i'') + \ln(q_i(x_i'')) \) is finite. Therefore our component is negative infnite. So \(L \) can be reduced by increasing \(q_i(x_i') \). Accordingly, no \(q \) having zero probability for some joint move \(x \) can be a minimum of \(i \)'s Lagrangian.

ii) To construct a bounded rational game with multiple equilibria, note that at any (necessarily interior) local minimum \(q \), for each \(i \),

\[
\beta E(g_i | x_i) + \ln(q_i(x_i)) = \\
\beta \int dx_i q_i(x_i, x_i') \prod_{j \neq i} q_j(x_j) + \ln(q_i(x_i))
\]

must be independent of \(x_i \), by Lemma 1. So say there is a component-by-component bijection \(T(x) \equiv (T_1(x_1), T_2(x_2), \ldots) \) that leaves all the \(\{q_j\} \) unchanged, i.e., such that \(q_j(x) = q_j(T(x)) \forall x, j \neq i \).

Defne \(q' \) by \(q'(x) = q(T(x)) \forall x \). Then for any two values \(x_1' \) and \(x_2' \),

\[
\beta E(q_i | x_1') + \ln(q_i(x_1')) - \beta E(q_i | x_2') + \ln(q_i(x_2'))
\]

with \(x_1' \) and \(x_2' \) such that \(q_i(x_1') + \ln(q_i(x_1')) \not\equiv q_i(x_2') + \ln(q_i(x_2')) \).

So we may choose \(q \) such that \(q_i(x_1) = q_i(x_2) \) for \(i \) but \(q_j(x_1) \not\equiv q_j(x_2) \) for \(j \neq i \). Now choose the game so that \(q_j(x) \not\equiv q_j(T(x)) \forall x, j \neq i \).

9As an example, consider a congestion team game. In such a game all players have the same set of possible moves, and the shared utility \(G \) is a function only of the \(k \)-indexed bit string \(N(x, k) \), where \(N(x, k) = 1 \) if there is a move that is shared by exactly \(k \) of the players when the joint move \(x \) is. In this case \(T \) just permutes the set of possible moves in the same way for all players.
where the variance is over possible values, which we can write as \(q_0(0), q_0(1), q_1(0), \) and \(q_1(1) \), respectively. So we can parameterize the set of \(q \) we're considering by two real numbers, \(x \equiv q_0(0) \) and \(y \equiv q_1(1) \). The \(2 \times 2 \) Hessian of \(L \) as a function of \(x \) and \(y \) is
\[
\begin{pmatrix} \frac{1}{x} + \frac{1}{a-x} & \alpha \\ \alpha & \frac{1}{y} + \frac{1}{b-y} \end{pmatrix}
\]
where \(\alpha \equiv 1 - q_0(0) - q_0(1) \) and \(b \equiv 1 - q_1(0) - q_1(1) \), and \(\alpha \) is a function of \(q_i \) and \(\prod_{j \neq i} q_j \). The eigenvalues of that Hessian are
\[
s + t \pm \sqrt{4a^2 + (s - t)^2}
\]
The eigenvalue for the positive root is necessarily positive. Therefore along the corresponding eigenvector, \(L \) is convex at \(q \). QED.

iv) There are several ways to show that the value of \(E_q[p_i(q_i | q_{-i})] \) must shrink as \(\beta \) grows. Here we do so by evaluating the associated derivative with respect to \(\beta \).

Define \(N(U) \equiv \int dy \ e^{-U(y)} \), the normalization constant for the distribution proportional to \(e^{-U(y)} \). View the \(x_i \)-indexed vector \(q_i^\beta \) as a function of \(\beta, g_i \), and \(q_{-i} \). So we can somewhat inelegantly write \(E(g_i) = E_{q_i^\beta} \left[\pi(\beta, g_i | q_{-i}) \right] (g_i) \). Then one can expand
\[
\frac{\partial E(g_i)}{\partial \beta} = -\frac{\partial^2 \ln(N(\beta | g_i, q_{-i})))}{\partial \beta^2}
\]
where the variance is over possible \(x_i \), sampled according to \(q_i^\beta (x_i) \). QED.

References

